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Abstract—We design distributed spectrum sensing and access
strategies for opportunistic spectrum access (OSA) under an
energy constraint on secondary users. Both the continuous and the
bursty traffic models are considered for different applications of
the secondary network. In each slot, a secondary user sequentially
decides whether to sense, where in the spectrum to sense, and
whether to access. By casting this sequential decision-making
problem in the framework of partially observable Markov de-
cision processes, we obtain stationary optimal spectrum sensing
and access policies that maximize the throughput of the secondary
user during its battery lifetime. We also establish threshold struc-
tures of the optimal policies and study the fundamental tradeoffs
involved in the energy-constrained OSA design. Numerical results
are provided to investigate the impact of the secondary user’s
residual energy on the optimal spectrum sensing and access
decisions.

Index Terms—Cognitive radio, opportunistic spectrum access,
partially observable Markov decision process (POMDP), spectrum
sensing.

I. INTRODUCTION

O PPORTUNISTIC SPECTRUM ACCESS (OSA), also re-
ferred to as spectrum overlay or spectrum pooling [1], is

one of the approaches envisioned for dynamic spectrum man-
agement. It has received increasing attention due to its poten-
tial for improving spectrum efficiency and its compatibility with
the current spectrum management policy and legacy wireless
systems. The basic idea of OSA is to allow secondary users to
search for and exploit local and instantaneous spectrum oppor-
tunities with limited interference to primary users. The physical
platform of OSA and other dynamic spectrum access strategies
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is cognitive radio, which is capable of agile sensing and commu-
nication through adaptive learning [2]. As such, cognitive radio
is often used as a synonym for different dynamic spectrum ac-
cess strategies (see [3] for a survey of different approaches en-
visioned for dynamic spectrum access).

In this paper, we focus on the design of distributed medium
access control (MAC) protocols for OSA under an energy con-
straint on secondary users. We consider secondary users, each
with a finite amount of initial energy, exploiting temporal spec-
trum opportunities in a slotted primary system. In each slot, a
secondary user either turns off its transceiver to save energy or
chooses a channel in the spectrum to sense and possibly access,
resulting in different levels of reduction in its battery energy.
A MAC protocol governing such a sequential decision-making
process thus consists of two components: i) a sensing strategy
that specifies whether to sense and where in the spectrum to
sense and ii) an access strategy that determines whether to ac-
cess based on the sensing outcomes regarding the occupancy
state (idle or occupied by primary users) and the fading con-
dition of the channel. The design objective is to maximize the
throughput of a secondary user during its battery lifetime. We
propose optimal MAC protocols for both the continuous and
the bursty traffic models. For brevity, we adopt the continuous
traffic model, where the secondary user always has packets to
transmit, unless otherwise specified.

A. Energy-Constrained OSA Design

While optimal distributed MAC protocols for OSA have been
proposed in [4], [23], [5], [24], the impact of the energy con-
straint on optimal sensing and access protocols has not been
studied. The incorporation of the energy constraint significantly
complicates the problem. First consider the sensing strategy.
Without the energy constraint, the secondary user should al-
ways sense, and its channel selection should exploit the spec-
trum occupancy statistics to achieve the best tradeoff between
gaining immediate access and gaining statistical information
about the spectrum occupancy [4], [23], [5], [24]. With the en-
ergy constraint, however, the secondary user, even with packets
to transmit, may choose to sleep to conserve energy. Moreover,
channel selection should also exploit channel fading statistics
since a channel in deep fading requires more energy for trans-
mission. The design tradeoff involved in sensing decisions thus
lies among three often conflicting objectives: gaining imme-
diate access, gaining spectrum occupancy information, and con-
serving energy.

It has been shown in [5] and [24] that without the energy
constraint, the optimal access strategy is to access if and only
if the channel is sensed as idle, provided that the operating
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characteristics (false alarm rate versus miss detection rate)
of the spectrum sensor is chosen optimally according to the
interference constraint defined by the probability of collision.
With the energy constraint, channel fading statistics play an
important role in access decision-making. For example, when
the sensed channel is idle but has poor fading condition, should
the secondary user with packets to send access this channel to
gain immediate reward or wait for better channel realizations
to save transmission energy but waste the energy already used
in sensing? Clearly, such a decision depends on the secondary
user’s residual energy level and its energy consumption charac-
teristics, as well as the channel fading statistics.

Bursty Traffic: Bursty traffic of the secondary user fur-
ther complicates the design. In this case, the design tradeoffs
vary with the secondary user’s buffer state. Specifically, when
the buffer is empty, the secondary user does not need to gain
immediate access in the current slot. Hence, sensing decisions
are made for the sole purpose of gaining statistical information
about spectrum occupancy. The question raised here is whether
the secondary user should continue tracking the dynamics of the
spectrum for future use or turn off its transceiver to save energy.
Intuitively, the sensing strategy employed by the secondary user
when its buffer is empty should be fundamentally different from
the one used when it has packets to transmit.

B. Main Results

Within the framework of partially observable Markov deci-
sion process (POMDP), we tackle the optimal MAC design for
energy-constrained OSA. By modeling the primary users’ traffic
as a Markov chain, we formulate the problem of dynamically
choosing whether to sense, where in the spectrum to sense, and
whether to access for maximum throughput as a POMDP with a
finite but random time horizon. This formulation allows us to in-
tegrate the dynamics of spectrum occupancy and channel fading
into the MAC design. The optimal MAC design is given by the
stationary optimal policy of this POMDP, which can be solved
using existing POMDP algorithms.

To gain insights into the energy-constrained OSA problem,
we search for structures of the optimal sensing and access
policies. We show that in the single-channel case, the optimal
sensing decision (whether to sleep or sense) has a threshold
structure: the secondary user should sense the channel if and
only if the conditional probability that the channel is idle in the
current slot (conditioned on the entire sensing and observation
history) is above a certain threshold (referred to as the sensing
threshold). We also show that the optimal access strategy is a
threshold policy in terms of the channel fading condition. That
is, the secondary user should access the channel if and only
if the sensing outcome indicates that the channel is idle and
its fading condition is better than a certain threshold (referred
to as the access threshold). These structural results not only
reveal the fundamental design tradeoffs but also reduce the
computational complexity in searching for the optimal policies.

These structural results are complemented with numerical
examples. We study different factors that affect the optimal
sensing and access decisions. We find that the impact of the
secondary user’s residual energy on the optimal decisions

diminishes as the residual energy increases. This observation
indicates that energy conservation only plays a critical role in
sensing and access decisions when the battery of the secondary
user is close to depletion. We also find that when the sensing
energy consumption is large, the secondary user should be
more conservative in sensing, but more aggressive in access.
Specifically, the secondary user should increase the sensing
threshold and lower the access threshold.

Bursty Traffic: We also extend our analysis to the case
where the secondary user has bursty traffic. As explained in
Section I-A, the optimal sensing decisions in this case should
incorporate the secondary user’s buffer state. We, however,
note that due to random packet arrivals, the receiver does not
know the secondary user’s buffer state. This impedes optimal
distributed design since in the absence of additional control
channels, transceiver synchronization requires the secondary
user and its receiver to have the same information for deci-
sion-making [4], [5], [23], [24]. We overcome this obstacle by
treating the buffer state as a partially observable parameter. The
secondary user and its receiver can thus make sensing decisions
based on the conditional probability mass function (PMF) of
the buffer state. We show that the secondary user with an empty
buffer can benefit from sensing a channel if the time-correlation
of the spectrum occupancy state is sufficiently large.

C. Related Work

Cognitive MAC design for OSA has been addressed under
different network architectures (see [4]–[7], [23], [24], and ref-
erences therein). In [6], the authors address the implementation
of a MAC protocol for OSA in a GSM primary network. A ded-
icated control channel is required for the secondary transmitter
and receiver to exchange information about channel selection.
In [4] and [23] optimal distributed MAC protocols are proposed
for OSA in slotted primary systems. The proposed protocols en-
sure synchronous hopping of the secondary transmitter and re-
ceiver in the spectrum without requiring central controllers or
control channels. More recently, sensing errors have been taken
into account in the MAC design [4], [5], [23], [24]. Signifi-
cantly, a separation principle is established in [5] and [24] for
the optimal joint design of the physical layer spectrum sensor
and the MAC layer sensing and access strategies. In [7], access
strategies for a slotted secondary user searching for opportuni-
ties in an unslotted primary network are considered, where a
round-robin single-channel sensing scheme is used and sensing
is considered to be perfect. The joint design of the spectrum
sensor and sensing and access strategies for OSA in unslotted
primary systems has been addressed in [8]. To our best knowl-
edge, energy-constrained OSA design has not been considered
in the literature.

Statistical models for spectrum usage of primary systems
are important for OSA protocol design. Existing work along
this line can be found in [9]–[11]. Measurements obtained
from spectrum monitoring test-beds demonstrate the Makovian
transition between busy and idle channel states in wireless
LANs [9], a model similar to that used in this paper. With these
active experimental research activities, we can perhaps foresee
a public database of statistical models of spectrum usage in
different bands and at different times and locations. Secondary
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users can then download the required model for the design of
spectrum sensing and access strategies.

An overview of challenges and recent developments in OSA
can be found in [12].

D. Organization and Notation

The rest of this paper is organized as follows. After describing
the primary and the secondary network models in Section II, we
formulate the optimal MAC design for energy-constrained OSA
as a POMDP over a random horizon in Section III. In Section IV,
we derive recursive formulas for solving this POMDP and es-
tablish structures of the solution. We also address the distributed
implementation of the obtained optimal design. In Section V, we
further establish the threshold structures of the optimal sensing
and access policies and study different factors that affect the op-
timal decisions. Finally, Section VI focuses on the energy-con-
strained OSA design for secondary users with bursty traffic, and
Section VII concludes the paper.

Random variables and their realizations are denoted by cap-
ital and small letters, respectively. Vectors are denoted by bold-
faced letters. For two equal-length vectors
and , we say if for all .
Let denote the indicator function: if event oc-
curs and zero otherwise.

II. NETWORK MODEL

A. Primary Network Model

Consider a spectrum consisting of channels, each with
potentially different bandwidth . These

channels are licensed to a primary network employing a
synchronous slotted communication protocol. The primary
traffic is modeled as a time-homogeneous discrete Markov
process. Specifically, let de-
note the occupancy of channel by the primary network
in slot . The spectrum occupancy state (SOS), denoted by

, forms a Markov chain with state
space . The transition probabilities are denoted by

(1)

which are determined by the statistics of the primary traffic and
assumed known to secondary users.

B. Secondary Network Model

Consider an overlay ad hoc secondary network whose users
independently and selfishly search for, according to a MAC pro-
tocol, instantaneous spectrum opportunities in these chan-
nels. We assume that each secondary user can only sense and
access one channel in a slot. At the beginning of each slot, a
secondary user first determines its operation mode: sleeping or
sensing. If the former, the user turns off its transceiver until the
next slot. If the latter, the user chooses one channel to sense and
then decides whether to access this channel based on the sensing
outcome. We assume that sensing errors are negligible.

The optimal sensing and access decisions are made based on
the user’s statistical knowledge of the SOS and its own residual
energy. Our goal is to design the optimal sensing and access

strategies that maximizes the throughput of an individual sec-
ondary user during its battery lifetime.

Channel Fading Model: We adopt a block channel fading
model.1 Specifically, we assume that the channel gain between
the secondary user and its receiver is a random variable inde-
pendently and identically distributed (i.i.d.) across slots but not
necessarily i.i.d. across channels.

Energy Model: The secondary user is powered by a battery
with finite initial energy . Energy consumption in a slot may
include the following: i) the energy consumed in the sleeping
mode; ii) the energy consumed in sensing the channel oc-
cupancy and estimating the channel fading condition2; iii) the
energy consumed in successfully transmitting over
channel in a slot. In general, we have . For
ease of presentation, we assume that the sleeping energy and
the sensing energy are constants, invariant to channel fading.

Due to hardware and power limitations, the secondary user
only has a finite number of transmission power levels. We
assume that the user transmits at a fixed rate. Hence, to ensure
successful transmission, the user has to adjust its transmission
power according to the current channel fading condition. The
transmission energy consumption is thus a random vari-
able depending on the current channel fading condition. In gen-
eral, the better the channel, the lower the transmission power
level. Let denote the energy consumed in transmitting at the

th power level with . The PMF of is
determined by channel fading statistics and is denoted by

(2)

More specifically, is the probability that the fading condi-
tion in channel falls into an interval that requires a minimum
energy of for successful transmission.

Let denote the secondary user’s residual energy at the
beginning of slot . Due to random transmission energy con-
sumption, is also a random variable taking values from a
finite set

(3)

where are, respectively, the numbers of slots when the
secondary user switches to the sleeping mode, senses a channel,
and transmits at the th power level. Since the secondary user is
required to sense a channel before accessing it in order to avoid
collisions with primary users, we have .

Traffic Model: In Sections III–V, we adopt a continuous
traffic model, i.e., the secondary user always has packets to
transmit. The case where secondary users have bursty traffic is
considered in Section VI.

1Our analysis can be readily extended to a more general Markovian fading
channel model. See details in Section III-B.

2An interesting variation is to separate the energy for sensing channel occu-
pancy from that for estimating channel fading conditions; the latter would be
consumed only if the channel is sensed to be idle. This variation is easily incor-
porated into the framework developed here.
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III. A DECISION-THEORETIC FRAMEWORK

In this section, we formulate the optimal energy-constrained
OSA design as a POMDP. This formulation allows us to incor-
porate the secondary user’s residual energy into sensing and ac-
cess decisions at the MAC layer. We show that the optimal en-
ergy-constrained OSA strategy is given by the optimal policies
of this POMDP.

A. Sequential Decision-Making

Sensing Decision: At the beginning of slot , based on its
statistical knowledge of the SOS and its current residual energy,
the secondary user first determines its operating mode in this
slot: sleeping or sensing. If the sleeping mode is chosen, no
more decisions need to be made in this slot. Otherwise, the user
chooses a channel to sense. Let 0 represent the sleeping mode.
We define sensing action as

(4)

Sensing Observation: Suppose that the user has decided to
sense channel in this slot. Then, the user
observes the occupancy state and the fading condition of this
channel (see Section IV-E for implementation details). Com-
bining these two observations, we define sensing outcome
as

(5)

where indicates that the chosen channel is busy, and
indicates that the chosen channel is idle and the

fading condition requires the user to transmit at the th power
level.

Given , the conditional PMF of sensing out-
come for channel is given by

(6)

where is determined by channel fading statistics, and is
defined in (2).

Access Decision: After observing from the chosen
channel, the user determines whether to access. Let
denote the access decision given :

(7)

Note that to avoid collisions with primary users, the user
should refrain from transmission when the channel is sensed
as busy: (note that from (6), . Fur-
thermore, the user should not access when its residual energy
is insufficient for accessing the channel in the current fading
condition. With the above in mind, we define a set of
admissible access decisions when the user has residual energy

and obtains sensing outcome at channel
:

(8)

where is the energy required for a successful transmission
under the current sensing outcome . Hence, access de-

cisions for different sensing
outcomes should be chosen from the composite set :

(9)

At the end of the slot, the user updates its statistical knowl-
edge of the SOS by incorporating its decisions and observa-
tions in this slot (see Section III-B for details). Depending on
its sensing and access decisions, the user’s residual energy is
reduced from to

(10)

Note that when , the user should not access
; its residual energy is reduced to . The up-

dated SOS statistics, together with the reduced residual energy
, are then used by the user to make optimal decisions

in slot . The above procedure repeats until the secondary
user is incapable of successful transmission under any channel
fading conditions, i.e., .

B. A POMDP Formulation

We show that the sequential decision-making process de-
scribed above can be formulated as a POMDP. Specifically,
the system state is characterized by the SOS of the primary
network and the residual energy of the secondary
user.3 While the residual energy is fully observable to the user,
the current SOS of the primary network cannot be directly
observed due to partial spectrum monitoring. We thus have a
POMDP with a random horizon determined by the stopping
time .

Sufficient Statistics: At the beginning of slot , the user’s sta-
tistical knowledge of the SOS is provided by its decision and
observation history . As shown in
[15], a sufficient statistic for the SOS is given by a belief vector

of size , where each element rep-
resents the conditional probability (given the decision and ob-
servation history ) that the SOS is given by , i.e.,

(11)

At the beginning of slot , the belief vector can be
obtained from by incorporating the sensing decision
and possibly the observation in slot . Specifically, when
the user chooses to operate in the sleeping mode ,
no observation is made, and the belief vector is updated based
solely on the underlying Markovian model of the primary traffic:

3If a Markovian fading model is adopted, the system state should also in-
clude the fading conditions� � �� ���� � � � � � ����, where � ��� represents
the current fading condition of channel �. Due to partial spectrum monitoring,
fading conditions � are also partially observable.
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where

(12)

When the user chooses a channel to sense, the belief
vector can be updated using Bayes rule based on the sensing
outcome :

where

(13)

The belief vector together with the residual en-
ergy is a sufficient statistic4 for the system state

. That is , referred to as the information
state, is sufficient for making optimal sensing and access
decisions. A sensing policy is thus given by a sequence of
functions , where maps an information
state to a sensing decision in slot
. Given sensing policy , an access policy is given by a

sequence of functions , where maps an
information state satisfying (i.e.,
the user operates in the sensing mode) to an admissible access
decision . If functions are identical for all
is a stationary policy.

Reward and Objective: A natural definition of the reward is
the number of bits delivered by the user in a slot. The immediate
reward can thus be written as

(14)

where is a given function of the channel bandwidth ,
determined by the modulation and coding scheme used by the
user. For simplicity, we assume .

The expected total reward of this POMDP over a random time
horizon represents the expected total number of bits delivered
by the user during its battery lifetime. The optimal sensing and
access policies are thus given by

(15)

where the initial belief vector can be set to the stationary

distribution of the SOS if no information about the initial state
is available.

IV. OPTIMAL ENERGY-CONSTRAINED OSA DESIGN

In this section, we tackle the optimal MAC design for en-
ergy-constrained OSA defined in (15). We first show that the
optimal sensing and access policies are stationary and
then derive recursive formulas for solving (15). We also show

4If a Makovian fading model is adopted, the sufficient statistic consists of
three parameters: the belief vector, the residual energy, and the conditional dis-
tribution (given the decision and observation history) of the fading conditions
�.

the structure of the optimal solution and describe an efficient al-
gorithm for obtaining the optimal decisions. At the end of this
section, we discuss the distributed implementation of the op-
timal MAC design.

A. Stationary Optimal Policy

Stationary policies are usually preferred due to their reduced
memory requirements and low complexity in implementation.
The fact that the user consumes nonzero energy in each slot and
that its battery has finite initial energy implies that the system al-
ways reaches a terminating state (i.e., ) in a finite
but random time. The inevitable termination makes the energy-
constrained OSA design an example of a stochastic shortest path
problem, which always has a stationary optimal policy [13].

Proposition 1: For the energy-constrained OSA design given
by (15), there exist stationary optimal sensing and access
policies.

Proof: See Appendix A.

B. Value Function

Proposition 1 allows us to focus on stationary policies without
losing optimality. We can thus omit the time index for nota-
tional convenience. The next step to solving (15) is to express
the objective explicitly as a function of the information state

and the sensing and access actions .
Let denote the action-value function or the -func-

tion, which represents the maximum expected total reward that
can be obtained by taking sensing action in
the current slot when the information state is . The value
function, denoted by , is the maximum expected total
reward that can be accumulated starting from information state

. The value function and the corresponding op-
timal sensing action are given by

(16)

Since no reward will be earned after the user’s residual energy
drops below the minimum energy requirement ,

we have for all information states with
.

Next, we derive iterative formulas for calculating the value
function and the action-value functions .

1) Sleeping Mode: In the sleeping mode , the user
consumes energy and no reward will be earned in this slot.
The action-value function is thus given by the max-
imum expected remaining reward from the next slot:

(17)

where is the updated belief vector given in (12).
2) Sensing Mode: If the user chooses channel to sense,

it will observe a sensing outcome with probability

(18)

where is the conditional observation probability given
in (6).
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Given sensing outcome at the chosen channel ,
we can calculate the conditional maximum expected reward

achieved by adopting an admissible access
decision . Specifically, consists of two
parts: (i) the immediate reward obtained in this slot, which is
given by (14); (ii) the maximum expected remaining reward

starting from the updated information state ,
where given in (13) represents the updated
knowledge of the SOS after incorporating sensing action and
observation , and is the reduced
residual energy. We arrive at

(19)

Optimizing over all admissible access decisions and then
averaging over sensing outcomes , we obtain the max-
imum expected reward achieved by choosing channel
and the corresponding optimal access decision as

(20)

C. Solution Structure

We note that obtaining the optimal sensing and access de-
cisions hinges on the computation of the action-value and the
value functions. We thus seek structures of the value function
that lead to efficient computation of the optimal decisions.

1) Reduced Dimension: One of the difficulties in calculating
the value function is that the dimension of the belief
vector grows exponentially with the number of channels.
It has been shown in [4] and [23] that for independently evolving
channels, an alternative sufficient statistic for the SOS is given
by the marginal distribution of the
SOS, where denotes the probability (conditioned on the
entire decision and observation history ) that channel is
idle at the beginning of slot :

(21)

Let and denote the

transition probabilities of channel , where
and .

We can then obtain the belief updates similar to (12) and (13).
Specifically, when the user operates in the sleeping mode, we
have

where

(22)

When the user chooses channel , then the belief vector
is updated according to the sensing outcome :

where

(23)

Following Section IV-B, we can also develop a simpler recur-
sion for the value function :

(24)

where

(25a)

(25b)

(25c)

Compared with the original value function developed
in Section IV-B, the above value function not only has
simpler belief updates but also avoids computation of the
summation in (18).

2) Monotonicity: Monotonicity results for the value function
are usually desired since they not only provides insights into
the underlying problem but also serves as a stepping stone for
establishing the structure of optimal policies (see [14] for an
example). In Proposition 2, we study the monotonicity of the
value function with respect to each of its parameters.

Proposition 2: Monotonicity of Value Function
P2.1) The value function is monotonically increasing

with the residual energy , i.e.,
for .

P2.2) Assume that the SOS evolves independently across chan-
nels. If , then the value function given in
(24) is monotonically increasing with the belief vector

, i.e., for .
Proof: See Appendix B.

P2.1) is straightforward. P2.2) considers the case where the
SOS evolves independently across channels. It provides a suf-
ficient condition for the value function to be mono-
tonically increasing with the belief vector defined in (21).
Note that represents the case where the channel occu-
pancy state is positively correlated across time. In this case, a
larger current belief vector indicates a larger probability
that channels will be idle in all the future slots, leading to a
higher chance of getting rewards. When , the channel
occupancy state is negatively correlated across time. The value
function is not necessarily monotonic. This is because when

, a larger belief vector indicates a smaller proba-
bility that channels are idle in the next slot. The probabilities of
channels being idle oscillates over time.
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Fig. 1. An illustration of the structure of the value function � ��� ��. Each
point on the x axis represents a possible belief vector �. Each arrow repre-
sents the update of an information state ��� �� under certain decisions and
observations.

3) Piecewise Linearity and Convexity: It has been shown in
[15] that the value function for a POMDP over a finite and fixed
time horizon is piecewise linear and convex with respect to the
belief vector. In Proposition 3, we show that the value function

for a POMDP over a finite but random time horizon
also has this property.

Proposition 3: Piecewise Linear and Convex Value
Function

The value function given in (16) is piecewise linear
and convex with respect to the belief vector . That is, for
a given residual energy , the value function can
be written as

(26)

where denotes inner product, is a vector of size
, and is a finite set of such vectors .

Proof: The proof proceeds by mathematical induction on
the residual energy . See Appendix C.

As illustrated in Fig. 1, Proposition 3 shows that the domain
of the value function can be partitioned into a finite
number of convex regions, each of which is associated with
an -vector . The value function of a certain be-
lief vector is simply given by the inner product of this be-
lief vector and the -vector associated with the region where

lies. For the example in Fig. 1, the value function of
is given by . Hence, calculating the
value function over the entire continuous belief space is equiva-
lent to finding a finite set of -vectors. Readers are referred
to [16]–[20] for different dynamic programming algorithms for
constructing -vectors.

D. A Solution Procedure

At the beginning, the secondary user may not have any infor-
mation about the SOS other than its transmission probabilities

. Hence, the initial belief vector is usually set to the sta-

tionary distribution of the SOS. We note that given an initial
belief vector and an initial energy, the secondary user can only
experience a finite number of possible information states
during its battery lifetime. This is due to the fact that a belief
vector in a slot can only transit to a finite number of pos-
sible belief vectors in the next slot (see Fig. 1), and
that the POMDP given in (15) terminates in a finite time (see
Section IV-A). The above observation suggests that to obtain
optimal sensing and access decisions for a given initial infor-
mation state, we only need to calculate the value function for a
finite number of possible information states.

Also note that due to energy consumption in sleeping and
sensing, the user’s residual energy decreases after each slot.
Hence, the value function and the action-value function of
an information state only depend on those with less
residual energies. We can thus compute the value function in
an increasing order of the residual energy , which leads
to the following algorithm for computing the optimal sensing
and access decisions.

Algorithm for Computing Optimal Sensing and
Access Decisions

S0) According to the initial belief vector and the initial
battery energy , enumerate all possible information
states that the user may experience during its
battery lifetime. Let include all such with

.

S1) Let for all with and
.

S2) Use (16), (17), (19), and (20) to calculate the value
function for the information state satisfying

for all .

S3) Remove from set : i.e., . If
is nonempty, then goto S2). Otherwise, stop the

calculation.

We point out that the optimal sensing and access decisions for
all possible information states can be precomputed and stored
by each user before it operates. At the beginning of each slot,
the user simply looks up the optimal decisions using its current
information state . Hence, the proposed optimal OSA de-
sign does not impose any computational burden on the user.

E. Distributed Implementation

Next, we show that the optimal energy-constrained OSA
strategy obtained under the POMDP framework can be imple-
mented in a distribution fashion.

1) Channel State Acquisition: Suppose that the transmitter
and the receiver hop to the same channel at the beginning of
a slot. If the channel is sensed as idle, the transmitter adopts
carrier sensing (i.e., wait for a random backoff time before
transmission attempts) to avoid collisions among competing
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secondary users.5 If the channel remains idle when its backoff
time expires, it transmits a short request-to-send (RTS) mes-
sage at full power6 to the receiver. Upon receiving the RTS,
the receiver estimates the channel fading condition using the
RTS, and then replies with a clear-to-send (CTS) message
which contains the estimated channel fading condition. After a
successful exchange of RTS–CTS, the transmitter can adjust its
transmission power according to the channel fading condition
and communicate with the receiver over this channel.

2) Synchronous Hopping: Suppose that the transmitter and
the receiver have tuned to the same channel after the initial hand-
shake (one scheme for initial handshake can be found in [4]
and [23]). To ensure synchronous hopping in the spectrum af-
terwards without extra control message exchange, the receiver
must be aware of the transmitter’s sensing decisions at the be-
ginning of each slot. For this purpose, the transmitter and the re-
ceiver must maintain the same information state in each
slot.

We point out that when both the transmitter and the receiver
can observe the true state of the sensed channel, they will
have the same update of the belief vector and the residual
energy, thus reaching the same information state. When the
transmitter and the receiver are affected by different sets of
primary users or when sensing errors cannot be ignored, the
exchange of RTS–CTS for fading state acquisition can be ex-
ploited to ensure synchronous hopping between the transmitter
and the receiver. In this case, the common observation used for
updating the information state is whether there is a successful
exchange of RTS–CTS. A similar discussion on using common
observations to ensure synchronous hopping can be found in
[5] and [24].

V. THRESHOLD STRUCTURES OF OPTIMAL POLICIES

In this section, we study different factors that affect the op-
timal decisions obtained in Section IV-B. We focus on the oper-
ating decision (sleeping versus sensing) and the access decision,
which are unique to the energy-constrained OSA problem.

Careful inspection of (17) and (19) reveals that the user’s de-
cision affects the total expected reward in three ways: i) it may
acquire an immediate reward ; ii) it transforms the current
belief vector to or which
summarizes the information of the SOS up to this slot; and iii)
it causes a reduction in battery energy. Hence, to maximize the
total expected reward during the battery lifetime, optimal de-
cisions should be made to achieve a tradeoff among gaining in-
stantaneous reward, gaining information for future use, and con-
serving energy.

A. To Sense or Not to Sense?

Without the energy constraint, the user should always operate
in a sensing mode since sensing provides not only a chance to

5Carrier sensing among secondary users starts only after the state of the
chosen channel has been identified as idle. In other words, a minimum value
on the backoff time of secondary users is imposed to ensure the priority of the
primary users. This minimum value of the backoff time also allows a secondary
user to distinguish transmissions of primary users from those of competing
secondary users.

6Note that the energy consumed in channel state estimation is absorbed into
the sensing energy consumption � .

gain immediate access but also statistical information about the
SOS. With the energy constraint, however, the user may choose
to sleep since sensing costs energy. In this case, the optimal
operating decision should strike a balance between gaining re-
ward/information and conserving energy.

1) Analytical Study: We first provide a sufficient condition
for the user to operate in the sensing mode.

Proposition 4: When the secondary user’s belief vector is

given by the stationary distribution of the underlying SOS, its

optimal operating mode is to sense, i.e., if .
Proof: See Appendix D.

The intuition behind Proposition 4 is explained as follows.
Suppose that the secondary user chooses to operate in the
sleeping mode when its belief vector is given by the stationary
distribution of the SOS. Then, it will have the same belief
vector but reduced residual energy at the beginning of the next
slot. The energy consumed in sleeping is thus wasted without
gaining any statistical information about the SOS. This suggests
that the optimal operating mode is to sense.

Next, we consider the single-channel case, where
the belief vector can be characterized by a scalar as defined
in (21), and the transition probabilities of this channel can be
denoted by and

.
Proposition 5: Threshold Optimal Sensing Decision
Consider the single-channel case. For any given

residual energy , the optimal sensing decision has a threshold
structure:

(27)

where is the optimal
sensing threshold.

Proof: See Appendix D.
Proposition 5 states that the user should sense when the belief
of the channel is large and should sleep when the channel is

less likely to be idle. This agrees with our intuition.
Corollary 1: Consider the single-channel case.

When , the secondary user should always operate in the
sensing mode, i.e., .

Proof: See Appendix D.
2) Numerical Study: As indicated by Proposition 5, the

user’s residual energy affects the optimal operating decision
through sensing threshold . To study the role of the
residual energy in choosing operate modes, we plot the
optimal sensing threshold in Fig. 2 for different sensing
energy consumption and channel occupancy statistics

.
We find that the optimal sensing threshold is highly

dependent on the user’s residual energy when is small. As
increases, the impact of the residual energy on the user’s op-
erating decision diminishes. When is sufficiently large,
the optimal sensing threshold becomes independent of
the residual energy . This observation implies that when the
battery is depleting, the user should focus more on how to fully
utilize its residual energy.
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Fig. 2. Optimal sensing threshold � ���. � � � (bandwidth), � � ���� ���
(sensing energy), � � ��� (sleeping energy), � � ����� �� 	� (trans-
mission energy), � � � (number of channels), 
����� ����� ����� ��	�� �

���� ������������ (channel fading statistics).

We also see that the optimal sensing threshold fluctu-
ates more dramatically when the channel occupancy state is neg-
atively correlated (i.e., ). That is, in this case, the residual
energy plays a more important role in decision-making. As ex-
plained below Proposition 2, the probability that the channel is
idle fluctuates when . Hence, the user should focus more
on its residual energy in this case to save energy for those slots
when the channel is more likely to be idle.

Furthermore, we find that the optimal sensing threshold
increases with the sensing energy consumption . That

is, the user should be more conservative in making operating
decisions when is large. This observation agrees with our
expectation because when is large, the extra energy con-
sumed in sensing can only be paid off when the chance of
gaining immediate access is higher. On the other hand, when

is comparable to , the user can afford sensing more often
to gain statistical information.

B. To Access or Not to Access?

Without the energy constraint, the user should always access
an idle channel. With the energy constraint, however, the access
decision should take into account both the energy consumption
characteristics and the channel fading statistics. For example,
when the channel is idle but has poor fading condition, should
the user access this channel to gain immediate reward or wait
for better channel realizations for less transmission energy? We
find that such a decision is a monotonic function of the channel
fading condition.

1) Analytical Study:
Proposition 6: Given that a channel is

sensed, the optimal access decision is monotonically increasing
with the channel fading condition. Specifically, for any given
residual energy , the optimal access decision is
given by

(28)

Fig. 3. Optimal access thresholds 	 ��� ��. � � � (bandwidth),

 � ���� � � ��� (transition probabilities), � � ��� (sleeping en-
ergy), � � ����� �� 	� (transmission energy), 
����� ����� ����� ��	�� �

���������������� (channel fading statistics).

where is the optimal access threshold.
Furthermore, when (i.e., the single-channel case), the
threshold is independent of the belief vector

.
Proof: See Appendix E.

Note that the better the channel fading condition, the lower
the sensing outcome. Proposition 6 indicates that the user should
access when the channel is in good condition and not access
when the channel experiences deep fading. In particular, when
the sensed channel is in the best fading condition (i.e.,

, then the user should always access, i.e., , for
any .

Proposition 6 also helps us reduce the size of the access deci-
sion space from exponential to linear with
respect to the number of power levels, leading to a more effi-
cient search for the optimal access policy. Specifically, we can
restrict our search for the optimal access decision to the fol-
lowing set:

(29)

where the size of is on the order of .
2) Numerical Study: For simplicity, we consider the single-

channel case in the numerical study. As shown in
Proposition 6, the optimal access threshold in this case
reduces to , which is independent of the belief vector .
In Fig. 3, we plot the optimal access threshold as a func-
tion of the residual energy for different sensing energy con-
sumption .

Similar to the behavior of the optimal sensing threshold
, the optimal access threshold may vary consid-

erably when is small, but a common steady value is reached
when is sufficiently large. That is, the impact of on optimal
access decisions diminishes.
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TABLE I
A SAMPLE PATH OF THE SOS EVOLUTION AND THE CORRESPONDING OPTIMAL SENSING AND ACCESS DECISIONS. (� � ���� � � ���� � �

����� �� ��� �� 	�
� � 	�
� � 	�
� � 	�
� � ����� ������������� �� 	�
� � 	�
� � 	�
� � 	�
� � �����������������.)

We further see that the optimal access threshold in-
creases with the sensing energy consumption . Hence, when

is small, the user should refrain from transmission under poor
channel conditions and wait for better channel realization. On
the other hand, when is large, the user should be more ag-
gressive in making access decisions: it should grab an instan-
taneous opportunity even when the channel is in a deep fade.
This is because when is large, the sensing energy consumed
in waiting for the best channel realization may exceed the extra
energy consumed in combating the poor channel fading.

C. A Sample Path

To further illustrate the behavior of the optimal sensing and
access policies, we study an example of the SOS evolution and
the corresponding optimal decisions. In Table I, we consider

independent channels with identical transition proba-
bilities but different channel fading statis-
tics. At the beginning of the first slot, the user operates in the
sensing mode since its belief vector is given by the stationary
distribution of the SOS. This agrees with Proposition 4. We find
that to conserve energy, the user never chooses the channel (i.e.,
Channel 2) in deep fading even if there is a higher probability
that this channel is idle. This demonstrates the important role of
channel fading statistics in deciding whether to sense. We also
see that the exploitation of channel occupancy dynamics allows
the user to efficiently track spectrum opportunities. Specifically,
when the channel is less likely to be idle, the user operates in the
sleeping mode to save energy (see ). It wakes up when
the probability that the channel is idle is large.

VI. BURSTY TRAFFIC IN ENERGY-CONSTRAINED OSA

In this section, we address the optimal distributed MAC de-
sign for energy-constrained OSA when the secondary user has
bursty traffic. We show that in this case, the optimal sensing
and access decisions should also take into account the traffic
dynamics of the secondary user. We illustrate the impact of the
secondary user’s buffer state on the optimal operating decision.

A. Bursty Traffic Model

We assume that the packet arrival process is i.i.d. across slots,
for example, the Poisson packet arrival process. Let

, denote the probability that packets arrive in a slot.
We assume that the user has a finite buffer with maximum size

. It receives packets in every slot even if it operates in the

sleeping mode. Packets are dropped when its buffer overflows.
Let denote the number of packets in the user’s buffer at
the beginning of slot . Depending on the packet arrivals and
departures, the buffer state follows a Markov chain with
state space and transition probabilities
given by

(30)

We assume that the transmission time of a packet over a
channel with unit bandwidth is equal to the slot length. Hence,
the number of packets transmitted over channel in a slot is
either 0 or .

B. POMDP Formulation

The POMDP framework developed in Section III-B for
energy-constrained OSA design in the continuous traffic case
can be extended to the bursty traffic case. Specifically, the new
system is characterized by the following three components:
i) the primary network’s SOS ; ii) the secondary user’s
residual energy ; and iii) the secondary user’s buffer size

.
Sufficient Statistics: As explained in Section IV-E, to ensure

synchronous hopping in the spectrum without extra control mes-
sages, the user (i.e., transmitter) and its receiver must use a
common knowledge of the system state for decision-making in
each slot. We note that while the user and its receiver can main-
tain the same belief vector and residual energy ,
the receiver does not know the exact buffer state until no-
tified by the user during the exchange of RTS–CTS.7 Hence,
when making sensing decisions (which occur before the ex-
change of RTS–CTS), both the user and its receiver should treat
the buffer state as a partially observable parameter and
use statistical information about . On the other hand, since
both the user and its receiver know the exact buffer state after
a successful exchange of RTS–CTS, access decisions should be
made by taking into account the exact buffer state . Let

denote an admissible access decision

7The secondary user can piggyback its buffer state �	�
 to the RTS message.
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under sensing outcome and buffer state ,
where

(31)

The statistical information about the buffer state can be

summarized by a conditional PMF , where
and . Each element de-

notes the conditional probability (given the user’s notifications
of the buffer state) that the user’s buffer state is at
the beginning of slot . When the user operates in the sleeping
mode (i.e., ) or the chosen channel is sensed as busy

, the user is unable to inform the receiver of
its buffer state. Hence, the statistical information of
is updated at both the user and its receiver based solely on the
packet arrival process:

where

(32)

When a channel is sensed as idle, the receiver knows
the buffer state from the user’s RTS message. The
statistical information about the buffer state can thus be updated
based on the user’s sensing decision and access decision

:

where

(33)

Based on the above discussion, we see that in the bursty traffic
case, the information state used for sensing and access deci-
sion-making consists of the belief vector , the residual energy

, and the statistical information on the buffer
state. The design objective is thus given by

(34)

C. Optimal Solution

We derive here the value function and the ac-
tion-value function for the POMDP given in (34).
Following Section IV, we can readily obtain the maximum ex-
pected reward that can be achieved in the sleeping mode as

(35)

where is the updated knowledge of the buffer state
given in (32).

Next, we derive the maximum expected reward
that can be achieved in the sensing mode. Consider the sce-
nario where the secondary user chooses access decision

under sensing outcome when its buffer state
is . In this case, the maximum expected reward can be
calculated as

(36)

Optimizing over all admissible access decisions
and then averaging over all sensing outcomes

with (18) and all buffer states with current
statistical information , we obtain that

(37)

With (35), (36), and (37), the value function can be obtained as

(38)

We can readily generalize the solution procedure described in
Section IV-D and calculate the above value function in an in-
creasing order of the residual energy starting from .
After computing the value function, we can obtain the optimal
sensing and access decisions as

(39)

We point out that the structures of the value function devel-
oped in Section IV-C and the threshold structure of the optimal
access policy developed in Proposition 6 hold for the bursty
traffic case. The structural results for the optimal sensing policy
(i.e., Proposition 4 and 5 and Corollary 1), however, do not hold
since the optimal operating decision in the bursty traffic case is
highly dependent on the user’s buffer state. For example, we find
that in the bursty traffic case, the user may choose to sleep even
if its belief vector is given by the stationary distribution of the
underlying SOS (contrary to Proposition 4). This happens when
the probability that the user has packets to transmit is small. To
avoid wasting sensing energy, the user and its receiver should
wait until the buffer is more likely to be nonempty.

D. Numerical Study: Optimal Operating Decision for
Empty Buffer

It is interesting to note that even if the buffer is empty, the
user may want to sense a channel in order to gain information

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on February 6, 2009 at 21:04 from IEEE Xplore.  Restrictions apply.



794 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 2, FEBRUARY 2009

Fig. 4. Optimal thresholds � on the SOS correlation. �� �� (initial energy),
� � � � � (bandwidth), ���� � ����� ���	 (initial belief vector), � �
��� (sleeping energy), � � ���
� (transmission energy), �� ���� � �
�	 �
����� ���	� � � �� 
, (channel fading statistics).

about the SOS for future use, especially when the SOS is highly
correlated in time. We study below the optimal operating deci-
sion (sleeping versus sensing) in the empty buffer case.8

Consider two coupled channels where the SOS is ei-
ther (i.e., only channel 2 is idle) or
(i.e., only channel 1 is idle). We assume that

, i.e., the channel occupancy state changes
with probability in each slot. In this case, the correlation be-
tween the SOS in two successive slots can be characterized by
a single parameter . Extensive numerical results
show that the optimal operating decision is a monotonically in-
creasing with the SOS time correlation . Specifically, given
the user’s residual energy , there exists a threshold
such that

(40)

We assume a Poisson packet arrival process. In Fig. 4, we
plot the threshold on the SOS correlation as a function of
the packet arrival rate for different sensing energy consump-
tion . We see that the threshold decreases with the packet
arrival rate . Intuitively, when is large, there is a high prob-
ability that packets will arrive in this slot, and hence the user
should be more active in collecting information about the SOS
for better channel selection in the next slot. As the packet ar-
rival rate keeps increasing, the threshold approaches zero,
i.e., the user should always sense a channel. This observation
demonstrates Proposition 4 since we have the continuous traffic
case when is infinite. As expected, the threshold also in-
creases with the sensing energy consumption . As sensing cost

increases, the user with an empty buffer tends to operate in
the sleeping mode; it only senses a channel when the resulting
sensing outcome can provide more information about the SOS,
i.e., the time correlation of the SOS is high.

8Similar observations are obtained for the case when the probability �	� �
���
�	� � �� of empty buffer is close to 1.

VII. CONCLUSION AND DISCUSSIONS

Within the POMDP framework, we have developed optimal
distributed MAC protocols for energy-constrained OSA under
both the continuous and the bursty traffic models. To study
the fundamental design tradeoffs, we have established that the
optimal sensing and access policies have threshold structures.
We have also provided numerical examples to study the impact
of different factors that affect the optimal decisions. We find
that the residual energy has more significant impact on the
optimal sensing and access decisions when the battery is close
to depletion or the channel occupancy state is negatively corre-
lated in time. When the sensing cost is high, the secondary user
should be more conservative in sensing but more aggressive
in accessing the channel. Interestingly, we also find that even
if a secondary user does not have any packet to send in the
current slot, it should still choose to sense a channel when the
time-correlation of the channel occupancy state is large. These
results provide not only insights into the energy-constrained
OSA design but also guidelines for suboptimal designs.

We have assumed that secondary users have perfect knowl-
edge of the statistical model of the spectrum usage. We take the
viewpoint that such statistical models of a particular spectrum
region should be obtained through measurements before the de-
ployment of secondary networks in that spectrum region. This is
for the purpose of evaluating the potential gain or profit of sec-
ondary market in that spectrum region. Such statistical models
can then be made available to secondary users to facilitate de-
sign. We are, however, aware that in some scenarios, secondary
users may not have access to spectrum usage models. In this
case, we have a POMDP with unknown model, and existing re-
inforcement learning algorithms may be borrowed [21].

We have not considered sensing errors in this paper. When a
secondary user may mistake a busy channel as an idle one and
vice versa, the joint design of the access strategy and the oper-
ating characteristics of the spectrum sensor is crucial in order to
minimize overlooked spectrum opportunities without violating
the interference constraint. This issue has been fully addressed
in [5], [24] in the absence of energy constraint. The impact of
sensing errors on energy-constrained OSA design is one of the
future directions. In particular, how to exploit the RTS–CTS ex-
change to combat sensing errors and to ensure synchronous hop-
ping is worth investigating. Another interesting extension is to
consider a scenario where batteries could be slowly recharged.

The interaction among secondary users has not been taken
into account. The sensing and access protocols proposed in
this paper can be applied to a network of secondary users.
Their performance is, however, suboptimal in terms of network
throughput. Preliminary results on spectrum sharing among
distributed competing secondary users have been obtained
in [22] without considering energy constraints. We hope that
the proposed optimal single-user energy-constrained MAC
protocols provide insights for the design of multiuser OSA with
energy constraint.

APPENDIX A
PROOF OF PROPOSITION 1

As explained in Section IV-D, given any initial energy and

any initial belief vector , the secondary user can only experi-
ence a finite number of information states during its entire
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battery lifetime. Hence, an energy-constrained OSA problem
can be viewed as a MDP with a finite state space consisting
of all possible information states. Moreover, the immediate re-
ward defined in (14) is nonnegative. This, together with the in-
evitable termination, makes the energy-constrained OSA design
an example of a stochastic shortest path problem. Furthermore,
the strictly positive sleeping energy makes the state transition
of the resulting stochastic shortest path problem acyclic (i.e.,
loop-free).

The key to understanding the existence of stationary optimal
polices is to note that the residual energy of the secondary user
is part of the system state. Since the residual energy deter-
mines the remaining lifetime, the system state contains all the
time-dependent information for decision-making. The optimal
actions thus depend only on the system state and are stationary
in time.

APPENDIX B
PROOF OF PROPOSITION 2

Proof of P2.1: Note that the secondary user with residual
energy can always act as if it has a lower residual energy. Hence,
the secondary user with a larger initial energy earns no fewer
rewards.

Proof of P2.2: We prove P2.2 by induction over residual
energies . Specifically, for the lowest possible residual energy

, the value function of any information state is
and hence P2.2 holds. Suppose that it holds

for all possible residual energies lower than . Since
implies as seen from (22),

we obtain from (25a) that . Next, we
show that for . We note that
when , we have from (23)
and hence from (25c).
Since as seen from (23), we have

from (25c). Using (25b), we then obtain that

Hence, by (24), we have , which completes
the proof.

APPENDIX C
PROOF OF PROPOSITION 3

The proof of Proposition 3 is very similar to that provided in
[15] for a POMDP with finite and fixed time horizon. Hence, we
only briefly describe the procedure for this proof.

For any residual energy , we have ,
which can be written as an inner product of the belief vector
and an all-zero -vector. Suppose that Proposition 3 holds for
all residual energies that are lower than . After some
algebra, we can rewrite the action-value functions given in (17)
and (20) in terms of the -vectors:

(41)

(42)

where and are, respectively, the -vec-
tors associated with the regions containing belief vectors

and , respectively. Viewing each term in
the square brackets of (41) and (42) as an element of a
possible -vector , we find that the action-value functions
can be written as an inner product of the belief vector and an

-vector . Moreover, there are only a finite number of such
-vectors since we have assumed that sets are finite

for all . Since the maximum of a finite set of piecewise
linear and convex functions is also piecewise linear and convex,
Proposition 3 holds.

APPENDIX D
PROOF OF PROPOSITIONS 4-5 AND COROLLARY 1

Proof of Proposition 4: We prove by induction that

, i.e., . Clearly,

holds for any when
. Suppose that this equality holds for all residual en-

ergies lower than . Since is the stationary distribution
of the underlying SOS, we have . We thus obtain
from (16) and (17) that

(43)
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where the last equality is due to the monotonicity of the value
function in terms of the residual energy. Proposition 4 thus
follows.

Proof of Proposition 5: We consider the single-channel
case and adopt the value function defined in (24) and
(25). We note that when , the belief vector reduces
to a scalar as defined in (21), and the corresponding belief
update under sensing outcome from this channel
reduces from (23) to if and
if , which is independent of the current belief vector .

Lemma 1: Consider the single-channel case . Given
current residual energy , we have that for any belief vector ,

(44)

Proof: We prove this lemma by induction. For any residual
energy , the value function of any information state is

and hence (44) holds. Suppose that it holds for all
possible residual energies lower than . Then, applying
(25) to (24), we obtain that

(45)

where the last two inequalities follow from the fact that
and the value function is monotonically increasing with the

residual energy. This completes the proof of (44).
Suppose that the optimal sensing action is

(i.e., sensing) when the current belief vector is . That is,
. Consider any belief vector such

that . We obtain from (25b) that

(46)

Applying (25a) and (44) to (46), we obtain that

(47)

Since the value function is convex in belief vector ,
we obtain from (47) that

(48)

Hence, the optimal sensing action for is . That
is, is monotonically increasing in .

We see from (22) and (23) that the belief vector
. Furthermore, by Proposition

4, the optimal sensing action is given by where
is the stationary distribution of the SOS.

Hence, threshold is upper bounded by .

Proof of Corollary 1: When , we have as seen
from (22) and (23). By Proposition 5, the sensing threshold is
given by , and hence .

APPENDIX E
PROOF OF PROPOSITION 6

Consider the case where the secondary user operates in the
sensing mode and observes sensing outcome . Inspec-
tion of (6) and (13) reveals that the belief update is
independent of when . Hence, is iden-
tical for all positive . It thus suffices to show that
is monotonically decreasing with . This follows straightfor-
wardly from (19) and the monotonicity of the value function
with the residual energy.

Furthermore, when , the updated belief vector
is determined solely by the current observation. The

action-value function given in (19) and, hence,
the optimal access decision are thus independent of the current
belief vector.
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