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ADAPTIVE HESSIAN-BASED NON-STATIONARY GAUSSIAN
PROCESS RESPONSE SURFACE METHOD FOR

PROBABILITY DENSITY APPROXIMATION WITH
APPLICATION TO BAYESIAN SOLUTION OF

LARGE-SCALE INVERSE PROBLEMS

TAN BUI-THANH † , OMAR GHATTAS †‡§ , AND DAVID HIGDON ¶

Abstract. We develop an adaptive Hessian-based non-stationary Gaussian process response
surface method to approximate a probability density function (pdf) that exploits its structure, in
particular the Hessian of its negative logarithm. Of particular interest to us are pdfs that arise from
the Bayesian solution of large-scale inverse problems, which imply very expensive-to-evaluate pdfs.
The method can be considered as a piecewise adaptive Gaussian approximation in which a Gaussian
tailored to the local Hessian of the negative log probability density is constructed for each sub-
region in high dimensional parameter space. The task of efficiently partitioning the parameter space
into sub-regions is done implicitly through Hessian-informed membership probability functions. The
Gaussian process machinery is then employed to glue all local Gaussian approximations into a global
analytical response surface that is far cheaper to evaluate than the original expensive probability
density. The resulting response surface is also equipped with an analytical variance estimate that can
be used to assess the uncertainty of the approximation. One of the key components of our proposed
approach is an adaptive sampling strategy for exploring the parameter space efficiently during the
computer experimental design step, which aims to find training points with high probability density.
The detailed construction and an analysis of the method are presented. We then demonstrate the
accuracy and efficiency of the proposed method on several example problems, including inverse shape
electromagnetic scattering in 24-dimensional parameter space.

Key words. probability density approximation; Gaussian process; response surface; adaptive
sampling; computer experimental design; non-stationary; curse of dimensionality; Bayesian inversion;
covariance function; membership probability; adjoint; Hessian.

AMS subject classifications. 62G07, 62G08, 62K20

1. Introduction. Solving large-scale ill-posed inverse problems that are gov-
erned by partial differential equations (PDEs) is both of great practical importance
in science and industry as well as tremendously challenging. Classical deterministic
inverse methodologies, which provide point estimates of the solution, are not capable
of rigorously accounting for the uncertainty in the inverse solution. The Bayesian
formulation provides a systematic quantification of uncertainty by posing the inverse
problem as one of statistical inference. The Bayesian framework for inverse problems
proceeds as follows: given observational data and their uncertainty, the governing
forward problem and its uncertainty, and a prior probability density function (pdf)
describing uncertainty in the parameters m ∈ RN , the solution of the inverse prob-
lems is the posterior probability distribution πpost(m) over the parameters. Bayes’
Theorem explicitly gives the posterior pdf as

πpost(m|yobs) ∝ πprior(m)πlike(yobs|m),

which combines the prior pdf πprior(m) and the likelihood πlike(yobs|m). The prior
encodes any knowledge or assumptions about the parameter space that we may wish
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2 T. Bui-Thanh, O. Ghattas, and D. Higdon

to impose before any data are considered, while the likelihood πlike(yobs|m) explicitly
represents the probability that a given set of parameters m might give rise to the
observed data yobs ∈ Rp. For simplicity of exposition, we assume that the prior is
Gaussian and that the measurement and PDE model errors are combined into a noise
term e = yobs − f(m), which is additive and i.i.d. Gaussian. Then the pdf’s for the
prior and likelihood can be written in the form

πprior(m) ∝ exp

(
−1

2
(m− m̄prior)

TΓ−1
prior(m− m̄prior)

)
,

πlike(e) ∝ exp

(
−1

2
(e− ē)TΓ−1

noise(e− ē)

)
,

respectively, where m̄prior is the mean of the prior distribution, ē the mean of the
Gaussian noise, Γprior ∈ RN×N the covariance matrix for the prior, and Γnoise ∈ Rp×p
the covariance matrix of the noise. Restating Bayes’ theorem with these Gaussian
pdf’s, we find that

πpost(m) ∝ exp
(
− 1

2
‖m− m̄prior‖2Γ−1

prior

− 1

2
‖yobs − f(m)− ē‖2

Γ−1
noise

)
, (1.1)

where f(m) is the (nonlinear) operator mapping parameters to observations. Note
that the seemingly simple expression f(m) belies the complexity of the underlying
computations, which involves: (i) creation of the PDE model for given parameters
m; (ii) solution of the governing PDEs to yield the output state variables; and (iii)
extraction of the observables (i.e., the values of the states at the observation locations
in space and time). In general, f(m) is nonlinear, even when the forward PDEs are
linear in the state variables, since the parameters couple with the states nonlinearly
in the forward PDEs.

As is clear from the expression (1.1), despite the choice of prior and noise prob-
ability distributions as Gaussian, the posterior probability distribution need not be
Gaussian, due to the nonlinearity of f(m). The non-Gaussianity of the posterior poses
challenges for computing statistics for typical large-scale inverse problems since πpost

is often a surface in high (thousands or millions) dimensions, and evaluating each
point on this surface requires a solution of the forward PDEs. Numerical quadrature
to compute the mean and covariance matrix, for example, is out of the question.
Usually, the method of choice for computing statistics is Markov chain Monte Carlo
(MCMC) [28], which judiciously samples the posterior distribution, so that sample
statistics can be used to approximate the exact ones. But the use of MCMC for
large-scale inverse problems is still prohibitive for expensive forward problems and
high dimensional parameter spaces, since even for modest numbers of parameters, the
number of samples required can be in the thousands or millions. Nevertheless, MCMC
can be more efficient by exploiting higher order information such as the Hessian [44].

Since solving the forward PDEs is the most expensive component of evaluating the
posterior pdf, one can employ model reduction techniques to construct inexpensive-
to-solve reduced-order models of the PDEs [8,24,34,40,49,65]. On the other hand, one
can reduce the cost of evaluating the likelihood directly using polynomial chaos [45,46].
One can also pose the task of approximating the Bayesian solution as a density esti-
mation problem, for which there is a vast literature, including classical density estima-
tion, multi-dimensional kernel density approximation, and mixture density estimation;
see [61, 62] and references therein. Finally, one can reduce the cost of evaluating the
parameter-to-observable map f(m) by approximating this so-called response surface
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using such techniques as metamodels or radial basis functions [47, 64], and Gaussian
process models [30,31,36,53]. The majority of these methods do not exploit derivative
(of the parameter-to-observable map) information, which is our goal here.

Here, we choose to directly approximate the posterior using a Hessian-based Gaus-
sian process response surface. This results in an inexpensive-to-evaluate explicit re-
sponse surface equipped with an analytical uncertainty estimate. Thus, this “surro-
gate posterior density” can be sampled, using MCMC for example, at negligible cost
compared to sampling the original posterior density. The task of solving a statistical
inverse problem therefore reduces to approximating a function over high dimensional
parameter space, for which one has to face the curse of dimensionality.

The term “curse of dimensionality” was coined by Bellman [5] in the context of
optimization to reflect the fact that in order to obtain an accurate minimizer within

ε tolerance, an exponential number of function evaluations, i.e.,
(

1
ε

)N
, is required if

our knowledge about the cost function is limited, for example, to Lipschitz continuity.
A similar curse of dimensionality in function approximation says that an exponential

number of function evaluations, i.e.,
(

1
ε

)N
, is necessary for the approximation to be

uniformly accurate within ε tolerance if Lipschitz continuity is all we know about the
approximated function [20].

In the context of statistics, the curse of dimensionality reflects the fact that high
dimensional spaces are very sparse [61]. For example, the ratio of the volume of the
inscribed hypersphere and that of the corresponding hypercube converges to zero as
N approaches infinity. Another example is that the volume of a thin shell between
hyperspheres of radii r and r− ε converges to the volume of the hypersphere of radius
r as N approaches infinity no matter how small ε is. These two examples show that
the volume content of hypercubes and hyperspheres concentrates near their surfaces.
That is, the center of these objects is more or less empty. A concrete example of
the sparsity in high dimensional space is the hypercube [−1, 1]10 whose first quadrant
contains only the fraction 2−10 (2−N for N-dimensional space) of uniform sampling
data. Furthermore, almost no samples can be found in the inscribed hypersphere.

The problem of approximating a pdf in high dimensions by sample points is a good
example of this effect. Since the integral of a bona-fide pdf over the domain of interest
is at most unity, the pdf must be negligible everywhere except in the neighborhood
of the modes. In addition, if the modes are located away from the boundaries of the
domain of interest (which is true for most practical applications in which we choose
the domain of interest to be sufficiently large to contain all the important features of
the problem under consideration), random sampling methods (especially space-filling
techniques) will tend to fail to find the high probability regions, since almost no
samples will be in the neighborhood of these regions. In other words, the pdf at the
sampling points will most likely be close to zero, and hence any reasonable estimation
or interpolation methods based on these values will yield flat response surfaces whose
values are close to zero.

Nevertheless, the curse of dimensionality is not entirely a pessimistic result. In
fact, it implies that one might be able to reduce its impact if higher order information,
for example, gradients and Hessians of the pdf, is exploited. This has indeed been
the case for optimization of systems governed by PDEs (i.e., PDE-constrained opti-
mization), where the combination of (Hessian-based) inexact Newton methods with
appropriate preconditioners yields methods that can deliver solutions at the cost of
a constant number of forward PDE solves, independent of the dimension of the opti-
mization variable space (e.g., [6, 7, 21, 33]). That is, using a suitable class of Newton
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methods for optimization and under favourable conditions, the curse of dimensionality
in optimization can be mitigated, at least for locating local minima.

A natural idea is therefore to cast the density approximation problem as an op-
timization problem for which the effect of the curse of dimensionality can be lessened
by employing higher order derivatives. In particular, we pose the sampling task
(i.e., the task of selecting training points) for the Gaussian process approximation
as a sequence of optimization problems (solved by Newton methods) that seek to
maximize the error between the Gaussian process approximation and the underly-
ing true pdf. These points also tend to be points of high probability density of the
underlying pdf. Moreover, a “piecewise” Gaussian approximation to the underly-
ing pdf is adaptively constructed with local covariance matrices that are inverses of
Hessians of the negative log posterior evaluated at the interpolation points. (As is
well known, when the parameter-to-observable map f(m) is linearized, the posterior
covariance matrix is equivalent to the inverse of this Hessian.) This proposed Hessian-
based Gaussian process method for Bayesian interpolation exploits previous work on
adaptive choice of interpolation points in reduced model construction using a greedy
algorithm [11,14,27].

The remainder of the paper is organized as follows. Section 2 reviews important
characteristics of conventional Gaussian process response surfaces, among which are
the equivalence with radial basis function approximation, and with Bayesian interpo-
lation. This motivates us to develop a non-stationary Hessian-based Gaussian process
in Section 3, followed by a heuristic adaptive sampling strategy for computer exper-
imental design in Section 4. Next, Section 5 provides an analysis of our proposed
approach. Section 6 details the choice of the error function, numerical optimization
methods, initialization, and how to update the training set. Verification of the pro-
posed response surface methodology is carried out in Section 7 for several probability
density approximation problems, including the problem of Bayesian inference of the
shape of a scatterer from noisy observations of scattered electromagnetic waves. Fi-
nally, Section 8 concludes the paper and discusses some ongoing research issues.

2. Standard Gaussian process response surfaces. We start by reviewing
the standard Gaussian process response surface methodology. In order to avoid un-
necessary confusions with the Bayesian inversion described above, we rename the
posterior density solution of the inverse problem πpost(m) as d (m) for which we seek
to find an approximation. Assume we are given a training set {mi, di = d(mi)}ni=1

where mi ∈ RN is a point (training site) in the N -dimensional parameter space and
its corresponding function evaluation is di. If the training set is noise-free, which is
the case in this paper since we simply evaluate d (mi), the Gaussian process response
surface method is a Bayesian interpolation technique that aims to statistically inter-
polate the unknown underlying function d (m) given the training set [56]. The main
idea behind Gaussian process response surface methods is to assume the unknown
deterministic function d(m) to be a random function realization generated from a
Gaussian process prior. The Gaussian process prior should be therefore sufficiently
flexible, which is assumed from now on, so that ideally there exists a random function
realization that is indistinguishable from the unknown function. Once the observ-
able data are obtained, they are combined with the Gaussian process prior through a
Bayesian framework to produce predictions for the unknown function d (m).

By definition, a random function d(m) is a Gaussian process if the marginal
density π (d(m1), d(m2), . . . , d(mn)) is a multivariate Gaussian, for any set of points
{mi}ni=1. A Gaussian process is completely determined by a mean function µ(m) and



Hessian-based Gaussian Process Methods 5

a covariance function k (mi,mj) for two arbitrary points mi and mj . Assume that
these functions are given for now (their constructions are the subjects of Sections 3.1
and 3.2). By assigning a Gaussian process prior on the random function d(m), the

joint distribution of d(m∗) with n observations dobs = [d(m1), d(m2), . . . , d(mn)]
T

at
n training points M = [m1, . . . ,mn] is a Gaussian given by

π (d(m∗),dobs|M,m∗) = N
([

µobs
µ(m∗)

]
,

[
K(M,M) K(M,m∗)
KT (M,m∗) k(m∗,m∗)

])
, (2.1)

where the matrix K(M,M) is computed as Kij = k(mi,mj), and k(mi,m
∗) the ith

element of the column vector K(M,m∗). The availability of the training points is
assumed for now, and in Section 4 we will present an adaptive sampling method to
select these points. Using conditional distribution of multivariate normal [56,59], the
posterior distribution of d(m∗) is given by

πpost (d(m∗)|M,dobs,m
∗) = N

(
E {d(m∗)}post , var {d(m∗)}post

)
, (2.2)

where the expectation and variance read

E {d(m∗)}post = µ(m∗)︸ ︷︷ ︸
µ(m∗)prior

+KT (M,m∗) [K(M,M)]
−1

(dobs − µobs), (2.3)

var {d(m∗)}post = k(m∗,m∗)︸ ︷︷ ︸
var{d(m∗)}prior

−KT (M,m∗) [K(M,M)]
−1
K(M,m∗). (2.4)

Since m∗ is arbitrary, equation (2.2) is the posterior distribution of d (m) at any m
in the parameter space. The Bayesian interpretation is now clear as follows. Equation
(2.3) states that the posterior mean function at m∗ is the corrected version of the prior
mean function using the observation (or measurement) information encoded in the
second term on the right side. Furthermore, the posterior error bar (or the posterior
uncertainty) is reduced once the prior knowledge and observations are combined as
shown in equation (2.4). Indeed, since the covariance matrix K(M,M) is symmetric
positive definite, and hence its inverse, the second term on the right side is positive,
which shows that var {d(m∗)}post ≤ var {d(m∗)}prior.

We now discuss some other properties of Gaussian process response surfaces that
are useful for our subsequent developments. To begin, we introduce the mean squared
prediction error (MSPE) with respect to a distribution. Following Santner et al. [59]
we define

MSPE
(
d̂(m∗), Fn

)
= E

{[
d̂(m∗)− d(m∗)

]2}
Fn

, (2.5)

where d̂(m∗) is a generic predictor of d(m∗), Fn denotes the joint distribution of
(dobs, d(m∗)), i.e., the distribution in (2.1). The following theorem summarizes some
important properties of Gaussian process response surfaces.

Theorem 2.1. The following properties hold for the Gaussian process defined in
(2.1)

i) The predicted mean function (2.3) is the unique minimizer of the MSPE with
respect to joint distribution (2.1). Furthermore, it is a linear and unbiased
predictor. That is, it is the best linear unbiased predictor (BLUP).
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ii) The predicted mean function (2.3) interpolates the unknown functions at all
points in the training set M.

iii) The mean square prediction error incurred by the predicted mean function is
exactly the variance (2.4).

Proof. See Santner et al. [59] for a proof.
The first assertion of Theorem 2.1 therefore suggests that one should use the

predicted mean function (2.3) as the predictor for the unknown random function
d(m). The second assertion implies that the variance (2.4) is zero at all the training
points, that is, the predicted uncertainty at the training points is zero. Hence all the
random functions generated by (2.2) interpolate the observed data. Moreover, the
third assertion implies that the posterior variance (2.4) can be used as a measure of
uncertainty for the Gaussian process predictor (2.3).

We next relate the mean predictor (2.3) with radial basis interpolations. If the
covariance function k(·, ·) is of radial-basis-function type, the predicted mean function
can be shown to be a radial basis interpolation as follows [56]. Let us denote

α = [K(M,M)]
−1

(dobs − µobs).

Substitute α into (2.3) we obtain

d̂n(m∗) = µ(m∗) +
n∑
i=1

αik(mi,m
∗), (2.6)

which is a radial basis interpolation of the error between the predictor and the prior
mean. As a result, the predictor inherits the regularity of the covariance function,
assuming the prior mean is sufficiently regular. The importance of the mean function
and the covariance function is now clear. They reflect our prior knowledge about what
the unknown function d(m) is likely to be. For example, if the underlying function
is expected to be not very nonlinear and infinitely smooth, the mean function can
be chosen to be linear, and a squared exponential function (also known as Gaussian
kernel)

k(mi,mj) = exp

(
−1

2
‖mi −mj‖2Σ−1

)
, (2.7)

can be used as the covariance function. Here, we have defined the Mahalanobis norm
as

‖mi −mj‖Σ−1 =

√
(mi −mj)

T
Σ−1 (mi −mj), (2.8)

with a positive definite matrix Σ. Typically, Σ is chosen to be a constant diagonal
matrix whose diagonal entries are inferred from the training data [42,48]. Each diag-
onal entry corresponding to each dimension can be considered as the length scale over
which the predictor changes significantly in that particular dimension. Statistically,
these length scales determine distance between two points in each dimension such
that the predictions at these points are uncorrelated. In other words, these length
scales reflect our beliefs about the smoothness of the unknown function d(m). For
example, if Σii, the ith diagonal entry, is small, the predictor varies rapidly in the ith
dimension while it tends to be constant for large Σii.

3. Non-stationary adaptive Hessian-based Gaussian process response
surfaces.
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3.1. Prior mean construction. We next discuss on how to choose the prior
mean function and postpone the construction of the covariance function to Section
3.2. For our problem of interest where the unknown underlying function d(m) is a
probability density, its mean value can be estimated as

dmean =

∫
Ω
d(m) dΩ

m (Ω)
≤ 1

m (Ω)
,

where m (Ω) denotes the measure of Ω, and the inequality is obtained from the fact
that the domain of interest Ω is a subset high dimensional parameter spaces over which
d(m) is a bona fide density, i.e.,

∫
RN d(m) dΩ = 1. Clearly, the mean value dmean

is small if the measure of the domain of interest is sufficiently large. We therefore
expect that zero-mean is a good prior information. This is intuitively meaningful
since d (m), the Bayesian posterior probability density, is typically significant only in
the neighborhood of the modes, while it tends to be small or close to zero elsewhere.
On the other hand, since the approximation approaches the prior mean for points
that are further away from the training set, the zero-mean prior permits reasonable
approximations for regions with small probability density.

3.2. Adaptive non-stationary covariance function. Covariance functions
that are a function of only relative distance between two points, e.g., equation (2.7)
with constant Σ, are known as stationary covariance functions. However, Gaussian
processes with stationary covariance function can provide accurate predictors only
for functions with nearly constant smoothness since stationary lacks the ability to
adapt to variable smoothness of the unknown function of interest. A number of non-
stationary covariance functions have been devised in literature, see [23,26,32,37,50,51,
54–56,58,60] for examples. Below, we rationalize the derivation of our Hessian-based
non-stationary covariance functions.

We begin by re-examining the predictor (2.6) with zero-mean Gaussian process
prior as argued in Section 3.1:

d̂n(m∗) =
n∑
i=1

αik(mi,m
∗). (3.1)

If n = 1 and if the covariance is of Gaussian-type as in equation (2.7), then the pre-
dictor in (3.1) is nothing more than a Gaussian approximation to d(m) where the
covariance matrix is given by Σ. If, in addition, Σ−1 is the hessian of − ln d(m), i.e.,
Σ−1 = ∇2 (− ln d(m)), then the predictor becomes the popular Laplace approxima-
tion (see [43] and references therein). That is, the predictor is exact if the underlying
density d(m) is a Gaussian whose peak is at m1.

For n > 1, it is natural and intuitive to generalize the Laplace approximation idea
by combining local Laplace approximations constructed in different sub-domains. The
challenge is how to combine them to form a global approximation. Our idea is the
following. Since the Laplace approximation is locally an accurate approximation, the
contribution of k(mi,m

∗) to the predictor should dominate the other terms k(mj ,m
∗)

for j 6= i, if m∗ is closest to mi. In order to fulfill this goal, we introduce the following
non-stationary covariance function

k(mi,mj) =

L∑
l=1

P (z = l|mi)P (z = l|mj) exp

(
−1

2
‖mi −mj‖2Hl

)
, (3.2)
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where H l = ∇2 (− ln d(ml)) and L ≤ n (to be shown in Section 4). P (z = l|mi)
can be considered as the conditional probability of having selected the lth kernel
exp

(
− 1

2‖mi −mj‖2Hl

)
given mi, and z is known as latent indicator variable. For

example, P (z = l|mi) should approach 1 if mi → ml, and zero if mi is far away
from ml. In particular, as derived in Section 3.3, the following form of P (z = l|mi)
satisfies the requirements

P (z = l|mi) =
exp

(
− 1

2‖mi −ml‖2Hl

)
∑L
p=1 exp

(
− 1

2‖mi −mp‖2Hp

) , (3.3)

which can be seen as a special form of a well-known class of soft-max gating networks
in machine learning community [9]. Note that the denominator is just a normalized
constant while the numerator is a Gaussian with mean ml and inverse covariance
matrix H l.

The importance of the Hessian information of the underlying posterior d(m) is
now explained. It can be seen that the Hessians appear two times in the covariance
function definition (3.2). First, the appearance in the kernels exp

(
− 1

2‖mi −mj‖2Hl

)
ensures that the predictor is the desired piecewise Laplace approximation. Second,
the role of the Hessians in the membership probability P (z = l|mi) is to guide the co-
variance function to pick the appropriate dominant kernel in the predictor. Note that
the product P (z = l|mi)P (z = l|mj) is necessary because it not only guarantees the
symmetry of the covariance function but also determines the appropriate covariance
structure and hence the smoothness of the predictor. By definition, k(mi,mj) is the
covariance between d(mi) and d(mj). The covariance in turn encodes the smooth-
ness of the predictor. Moreover, the smoothness of a surface is typically measured
by its second derivatives, i.e., the Hessian. These suggest that the Hessians should
be used in the covariance to shape the smoothness of the predictor accordingly. Our
covariance function in (3.2) is built based on this intuition (and on the desire to have
a piecewise Laplace approximation). That is, if mi and mj are close to ml, with
respect to the norm ‖ · ‖Hl

, the lth term of the sum on the right hand side of (3.2)
dominates the covariance while its contribution to the covariance is small if either mi

or mj is far away from ml.

Under the piecewise Laplace approximation view point, the membership prob-
ability is served as an automatic mechanism to partition the high dimensional pa-
rameter space into overlapping sub-regions over which the posterior density of the
inverse problem is dominantly interpolated and approximated by local Gaussians. As
a demonstration, Figure 3.1 shows three membership probabilities corresponding to
three modes of the exact density d(m) = 1

3N (−4, 1) + 1
3N (0, 0.75) + 1

3N (4, 0.5). As
can be seen, each membership probability is one if mi is close to its corresponding
mode and zero otherwise. Sub-regions dominated by the first and the second mem-
bership probabilities do not overlap while they do with that of the third one. This
reflects the fact the first and second modes do not overlap, but they do with the
third one. The role of the membership probabilities in automatically identifying the
dominant local Laplace approximation is clearly demonstrated in this figure.

A question that needs to be addressed is whether (3.2) defines a valid covariance
function. This is important since a Gaussian process exists if and only if the covariance
function is valid, according to the Kolmogorov’s existence theorem [2]. The following
result answers this question.

Theorem 3.1. Assume L ≥ 1 and H l is symmetric positive definite ∀l =
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Fig. 3.1. Three membership probabilities corresponding to three modes of the exact density
d(m) = 1

3
N (−4, 1) + 1

3
N (0, 0.75) + 1

3
N (4, 0.5).

1, . . . , L. Then

k(mi,mj) =

L∑
l=1

P (z = l|mi)P (z = l|mj) exp

(
−1

2
‖mi −mj‖2Hl

)
is a valid non-stationary covariance function.

Proof. The non-stationary is clear since k(mi,mj) a function of not only the
relative distance between mi and mj but also mi and mj . The symmetry is also
clear. In order to prove that the kernel k(mi,mj) is positive definite, it is sufficient to
show that the matrix K (M,M) is positive definite ∀n ≥ 1. We begin by the following
fact

exp

(
−1

2
‖mi −mj‖2Hl

)
=

1

(π/2)N/2|H−1
l |1/2

×∫
IRN

exp
(
−‖mi −m‖2Hl

)
exp

(
−‖mj −m‖2Hl

)
dΩ.

Thus, ∀n ≥ 1,∀c ∈ Rn, we have

cTK (M,M) c =
∑
i

∑
j

cicjk(mi,mj) =
∑
l

1

(π/2)N/2|H−1
l |1/2

×

∫
IRN

{∑
i

ciP (z = l|mi) exp
(
−‖mi −m‖2Hl

)}2

dΩ ≥ 0.

It is clear that the equality happens if and only if the term in the curly bracket is zero
almost everywhere which in turn happens if and only if ci = 0,∀i = 1, . . . , n, and this
completes the proof.
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The importance of Theorem 3.1 is now clear. It ensures the positive definiteness
of K (M,M), which in turn guarantees its invertibility that is necessary for (2.3) and
(2.4).

3.3. Derivation of the membership probabilities. Recall that the member-
ship probability P (z = l|mi) is the conditional probability of having selected the lth
kernel exp

(
− 1

2‖mi −mj‖2Hl

)
given mi. Using the Bayes’ theorem gives

P (z = l|mi) =
P (mi|z = l)× P (z = l)∑L
p=1 P (mi|z = p)× P (z = p)

,

where P (mi|z = l) and P (z = l) are the likelihood and prior of selecting the lth
kernel, respectively. Since our prior knowledge is vague, we choose P (z = l) =
1/L,∀l = 1, . . . , L. The likelihood is chosen to be the (unnormalized) Gaussian
exp

(
− 1

2‖mi −ml‖2Hl

)
which reflects our desire that the likelihood must be large,

in the Mahalanobis norm ‖ · ‖Hl , as mi approaches the mean ml. The extent to
which the likelihood is still significant is determined by the curvature of the true un-
known d(m), which appears as the inverse of the likelihood covariance matrix. Hence,
the final form of the membership probability is given as in equation (3.3).

4. Sequential adaptive sampling strategy. This section addresses the com-
puter experimental design issue on how to look for the training points adaptively. The
method we are going to describe follows our previous work on scalable adaptive algo-
rithms for constructing reduced models in high-dimensional parameter spaces [11,14].
To begin, we define the following generic error function

G(m, n), (4.1)

which is a function of parameters m and the training set size n (and the training
set itself, but is omitted here for simplicity). The error could be, for example, the

squared error between the true function d(m) and the predictor d̂n(m)

G(m, n) =
[
d̂n(m)− d(m)

]2
, (4.2)

or the predictive variance in (2.4) as the error indicator. Generally, for Algorithm 1
and its corresponding theory to work, it is desirable that the cost G(m, n) be less then
some small tolerance ε at all training points. The squared error and the predictive
variance clearly satisfy this requirement since they are zero at all the training points.
We first outline the adaptive sampling algorithm as follows.

Algorithm 1.
Adaptive Sampling Algorithm
1. Given a set of training points {mi, di = d(mi)}ni=1, solve the optimization

problem

max
m∈Ω

G(m, n), (4.3)

to find the location in parameter space at which the error is maximized, i.e.
find m∗ = arg maxG(m, n).

2. If G(m∗, n) < ε, where ε is the desired level of accuracy, then terminate the
algorithm. If not, go to the next step.

3. With m = m∗, compute the true function d(m∗). Update the predictor. Go
to Step 1.
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The first step of the adaptive sampling algorithm incrementally find the next
training points at locations where G(m, n), as a measure of the error between the
underlying true posterior density and the current Gaussian process response surface
approximation, is maximized. The structure of the optimization problem that must be
solved in each adaptive cycle is similar to that of PDE-constrained inverse problems,
and hence, many of the associated tools for large-scale optimization can be recruited,
in particular Newton-CG solvers, trust-region globalization, and Eisenstat-Walker
inexactness, e.g., [3, 4, 6, 7, 11, 21]. In order to make Algorithm 1 well-defined, as
discussed in the next section, the initial guess is admissible if the error function is at
least ε.

If the maximum error is less than the prescribed tolerance ε in Step 2, the algo-
rithm stops. Otherwise, Step 3 will update the current predictor and return to Step
1. In particular, the training set is updated using the maximizer m∗ and its cor-
responding true posterior value d(m∗). If the Hessian of the negative log posterior,
∇2 (− ln d(m∗)), is positive definite, the adaptive covariance function (3.2) and the
membership probability (3.3) are updated by increasing L by one. That is, we build
a local Gaussian approximation whose inverse covariance is the local Hessian of the
negative log posterior. This local Gaussian approximation is then used to update the
Gaussian process covariance function and the membership probability. Effectively, the
method builds an adaptive sparse non-stationary Gaussian process that is generally
improved after each cycle. The method identifies regions in high dimensional spaces
where the discrepancy of the response surface is maximal, and then inserts local Gaus-
sian approximations at those points to drive the response surface error down. Since
the Gaussian process response surface is interpolating, the resulting approximation is
identical to the posterior density at these points. Furthermore, the Hessian ensures
that the response surface locally adapts to the shape of posterior d (m) accurately.

5. An analysis of the adaptive Gaussian process response surface. In
this section, each adaptive cycle in Algorithm 1 is analyzed to show that the whole
algorithm is well defined. We first show that the optimization problem (4.3) has a
solution under suitable assumptions.

Proposition 5.1. Assume G(m, n) is a continuous function of m ∈ Ω, where Ω
is closed and bounded subset of RN . Then there exists a solution for the optimization
problem (4.3).

Proof. See [11,14] for a proof.
The closedness and boundedness of the domain of interest Ω are reasonable. For

example, in the shape inverse electromagnetic scattering problem studied in Section
7, the shape parameters m are bounded due to our prior belief in the boundedness of
the shape. Proposition 5.1 therefore implies that Steps 2 and 3 of Algorithm 1 always
go through, thus each cycle certainly finishes.

Revisiting previous sampled points is an expensive task requiring forward and
adjoint solves, and hence should be avoided. On the other hand, distinction of sampled
points implies the non-singularity of K(M,M), which is vital in ensuring the existence
and uniqueness of the the predictor and its uncertainty in (2.3)–(2.4). Our next result
shows that in fact Algorithm 1 always finds new sampling points.

Theorem 5.2. Algorithm 1 is well-defined in the sense that (i) it terminates in
finite time and (ii) all sampled points are distinct.

Proof. See [11,14] for a proof.
The next question needs to be resolved is whether the proposed adaptive training

(also known as active learning) can systematically bias the inference. Since Bayesian



12 T. Bui-Thanh, O. Ghattas, and D. Higdon

inference is consistent with the likelihood principle [41] which states that the inference
should depend only on the likelihood of the data that is actually observed, one is free
to choose training points without introducing any bias to the inference.

We next show that our piecewise Laplace (Gaussian) approximation (2.3) im-
proves as the number of training points increases.

Theorem 5.3. Denote d̂n(m∗) as the mean predictor (2.3) and assume d̂n+1(m∗) 6=
d̂n(m∗),∀n ∈ N. As the number of training points increases, the mean squared pre-
diction error decreases in the following sense:

E
{[
d̂n+1(m∗)− d(m∗)

]2}
Fn+1

< E
{[
d̂n(m∗)− d(m∗)

]2}
Fn

.

Proof. We have the following inequalities for the MSPE

E
{[
d̂n+1(m∗)− d(m∗)

]2}
Fn+1

≤ E
{[
d̂(m∗)− d(m∗)

]2}
Fn+1

< E
{[
d̂n(m∗)− d(m∗)

]2}
Fn

,

where d̂(m∗) denotes an arbitrary linear predictor. The first inequality holds true due

to the minimization property of d̂n+1(m∗) in the first part of Theorem 2.1. The second

inequality follows from choosing d̂(m∗) = d̂n(m∗) and applying the marginalization
property of the multivariate Gaussian (2.1). Note that the second inequality is strict

due to the assumption d̂n+1(m∗) 6= d̂n(m∗) and the uniqueness of the minimizer

d̂n+1(m∗).

6. Error function, numerical optimization, initialization, and training
set update. The active learning method proposed in Section 5 works for a class of

quite general error functions. For our purpose, the true error
[
d̂n(m)− d(m)

]2
turns

out to be a good candidate, as we now explain. Recall that the main goal of this paper
is to find as many modes as possible and then to interpolate the expensive-to-evaluate
posterior density function d(m) using a piecewise Laplace approximation. Intuitively,
the interpolation is statistically more accurate if it captures most of significant proba-
bility regions of d(m). In order to fulfill this goal heuristically, we design Algorithm 1
to place training points where the discrepancy between the predictor and true function
is largest (at least locally). Due to the local Gaussian nature of the predictor, if m

is sufficiently far away from ml,∀l = 1, . . . , L, the predictor d̂n(m) will approach the

prior mean, which is zero, and hence the true error
[
d̂n(m)− d(m)

]2
will approach

[d(m)]
2
. As a result, the worst-case scenario error found in each adaptive cycle is

most likely a mode of d(m).
As also discussed in Section 5, Ω is typically generated by simple bound con-

straints on parameters m. Similar to our previous work [11, 14], we choose to solve
the bound-constrained optimization:

max
m
G(m), (6.1)

subject to

mmin ≤m ≤mmax, (6.2)
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using a subspace trust region interior reflective inexact Newton conjugate gradient
method described in [11].

Initialization is one of the important factors determining the cost that the opti-
mization solver takes to converge. In particular, if the initial guess is far away from the
optimizer, it might take several iterations for the optimization solver to move to the
basin of attraction where the designed convergence rate takes place, e.g., quadratic, if
a Newton method is employed. Therefore in order to reduce the cost, it is vital to find
a good initial guess for the optimization problem in each greedy cycle. Clearly, the
simplest way is to take a random initialization which is most likely not to be close to
the basin of attraction of any local optimizers. Since the MSPE (2.4) is analytical and
cheap to evaluate, another straightforward idea is to find the point where the MSPE
is maximized and then use it as the initial guess. However, as noticed by MacKay [41],
maximizers of MSPE tend to be at the boundary of the domain Ω, which is not of
our interest.

In the context of active learning (adaptive sampling) for Gaussian process, Seo et
al. [63] numerically shows that using the selection criteria by Cohn [18] yields a more
accurate predictor than that proposed by MacKay [41]. The reason is that the Cohn
criteria for sampling aims to minimize the mean squared error, and in particular,
it maximizes the average reduction in predictive variance. Nevertheless, adaptive
sampling using Cohn criteria is expensive as discussed in Christen and Sanso [17].
They propose a cheap alternative, an approximation to the Cohn criteria, over a
test set Ma = [ma

1 , . . . ,m
a
na ] of (random or grid) points in the parameter space.

Specifically, the selection process is based on the solution of the following optimization
problem:

max
ma

i ∈Ma
J (ma

i ), (6.3)

where

J (ma
i ) =

1
na

∑na

j=1 k(ma
j ,m

a
i )2 + 1

na I
1
M

I2
M +

√∑n
j=1 k(ma

i ,mj)2
,

with mj ∈M and ma
j ∈Ma; I1

M and I2
M are two constants independent of ma

i and
are defined as

I1
M =

na∑
i=1

n∑
j=1

k(ma
i ,mj)

2, I2
M = max

mi∈M

n∑
j=1

|k(mi,mj)|.

Due to the numerator, the maximizer of the cost in (6.3) should have high predictive
variance and be highly correlated with other points in Ma. At the same time, it
should not be so close, and hence less correlated, to the current training set M, due
to the denominator. Meanwhile, an approach for near-optimal training points has
been proposed [39]. However, one has to solve a combinatorial optimization, which
we try to avoid here since it is prone to the curse of dimensionality. After all, we need
a cheap and reasonably good initial guess and then devote our effort to the continuous
optimization problem (4.3) using efficient and scalable optimization solver, which is
designed to be immune to the curse of dimensionality. Keeping this goal in mind,
we choose the solution of (6.3) as the initial guess for three reasons besides its fast
evaluation. First, it is not so close to the current training set about which we have
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already learned. Second, since it has high predictive variance it could belong to some
region in parameter space where the error may be large. Third, due to its high
correlation to other points in Ma, learning this point could provide us information
about other unvisited points as well.

The question we would like to address next is how to update the training set M.
As discussed in Section 4, the covariance function and the membership probabilities
may not be updated after a greedy cycle, depending on whether the Hessian of the
negative log posterior ∇2 (− ln d(m∗)) is (semi-) positive definite or not. In contrast,
the training set M is always updated after each greedy cycle. One could simply add
the maximizer of the optimization problem (4.3) where we locally observe the largest
error. This point is currently and intuitively the best to learn about the unknown
function d(m). However, in addition to the maximizer, the numerical optimization
solver also supplies a whole trajectory of points starting from the initial guess to the
optimizer where the unknown function d(m) is evaluated. These points therefore
contain information about d(m) about which we are trying to learn. This suggests
that we should add the whole trajectory to the current training set. The trade-
off is that the condition number of the covariance matrix K (M,M) may increase,
and methods for inverting the covariance matrix accurately and efficiently have been
addressed elsewhere [25]. Here, we simply use the Cholesky decomposition.

7. Numerical experiments. In this section, the proposed Hessian-based GP
predictor is compared to the state-of-the-art radial basis function (RBF) interpolation
[10]. Since the standard stationary GP predictor can be shown to be equivalent to a
RBF whose kernel function is the same as the GP covariance function [56], we just
need to compare our method to a standard GP predictor. To be fair, we also adapt
the shape parameter of the radial basis function using the maximum likelihood. To
ensure that the cost of generating our GP predictor and the cost of generating the RBF
predictor are more or less the same, the number of function evaluations are forced to
be the same for both methods. In particular, the number of function evaluations for
the Hessian-based GP predictor is counted as the following. First, each forward solve
is counted as one. Second, each gradient computation which requires an adjoint solve
is counted as one assuming the costs of solving the forward and the adjoint are the
same. Third, each Hessian-vector product required in the conjugate gradient iterations
is counted as two since a forward-like and an adjoint-like equations have to be solved.
Thus to be fair, if the Hessian-based GP uses nF functions evaluations, the RBF
will have nF interpolation points. As a popular choice, the Latin Hypercube (LHC)
sampling is used to generate interpolation points for the RBF approach. Finally, to
assess the quality of the predictors, we use several popular discrete norms, namely,
the mean squared error, the `1-norm, the `2-norm, and the Hellinger norm [16].

7.1. One-dimensional examples. The first example considered in this subsec-
tion is a mixture of three Gaussians given by

d(m) =
1

3
N (−4, 1) +

1

3
N (0, 0.75) +

1

3
N (4, 0.5) .

Figure 7.1 shows the GP predictor together with its uncertainty given by 95% cred-
ibility envelope. The quality of the GP predictor (3 greedy cycles) and the RBF
predictor, both with 143 function counts, is shown in Table 7.1. As expected, the
RBF predictor is more accurate than the GP predictor for low dimensional problem
and simple density d (m). Note that since the squared error (4.2) is used as the cost
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in the adaptive sampling algorithm, the mean squared error tends to be smaller than
other measures.
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Fig. 7.1. The GP predictor together with its uncertainty given by 95% credibility envelope
versus the exact. Crossed are the points in the training set M found by the greedy algorithm.

Table 7.1
GP predictor error versus RBF predictor error over a LHC grid of 20,000 points.

Method MSE `1-norm `2-norm Hellinger norm

GP 6.55e-06 4.35 3.62e-01 1.74
RBF 3.77e-16 1.23e-02 2.75e-06 5.31e-03

For more complicated 1D density with anisotropy and localized features such as
the one in Figure 7.2, where the true density is given by

d(m) =
5∑
l=0

(25−l/63)N

([
65− 96

2l

]
/21,

(
32

63

)2

/22l

)
,

the GP predictor (with 371 function counts after 7 greedy cycles) starts to be com-
petitive and this can be seen in Table 7.2.

Table 7.2
GP predictor error versus RBF predictor error over a LHC grid of 20,000 points.

Method MSE `1-norm `2-norm Hellinger norm

GP 1.45e-06 3.15 1.70e-01 1.22
RBF 2.55e-3 2.31e1 7.14 1.04e1

As mentioned in Section 6, the ability of our proposed method in seeking the
modes of the underlying density d(m) can be observed in Figures 7.1 and 7.2. Again,
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Fig. 7.2. The GP predictor together with its uncertainty given by 95% credibility envelope
versus the exact. Crossed are the points in the training set M found by the greedy algorithm.

this is important for our purpose that high probability density regions should be
captured as much as possible.

7.2. Two-dimensional example. We consider the following mixture of four
anisotropic Gaussian

d(m) ∝
4∑
i=1

ci exp

(
−1

2
[m−mo

i ]
THo

i [m−mo
i ]

)
,

where the local means are given by

mo
1 = [−1.5,−1.5]T ,mo

2 = [1.5, 1.5]T ,mo
3 = [−2, 2]T ; mo

4 = [5,−5]T ,

the local inverse covariance matrices read

Ho
1 =

[
10 0
0 1

]
, Ho

2 =

[
1 0
0 10

]
, Ho

3 =

[
3 1
1 3

]
, Ho

4 =

[
2 −1.5
−1.5 2

]
,

and the coefficients ci are randomly generated as

c1 = 0.25, c2 = 0.3, c3 = 0.38, c4 = 0.07.

A GP predictor with 553 function counts after 5 greedy cycles is presented in Figure
7.3(b), whereas the true function is shown in Figure 7.3(a). An adaptive RBF with
553 LHC sampling points is shown in Figure 7.3(c). As can be seen, the GP predictor
outperforms the adaptive RBF. To further confirm this, we compute different discrete
error norms over 90,000 uniform grid points and present the results in Table 7.3. The
errors of the GP predictor are orders of magnitude smaller than those of the adaptive
RBF.
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(a) Exact

(b) Adaptive GP predictor (c) Adaptive RBF predictor

Fig. 7.3. A mixture of four anisotropic Gaussians in 2D example; 7.3(a) the exact function,
7.3(b) a GP predictor with 553 function counts after 5 greedy cycles, and 7.3(c) an adaptive RBF
predictor with 553 LHC sampling points.

7.3. Ten-dimensional examples. The first example in this subsection is the
mixture of two Gaussians in 10-dimensional space:

d(m) = c1N (mo
1,Σ

o
1) + c2N (mo

2,Σ
o
2) ,

Table 7.3
GP predictor error versus RBF predictor error over a uniform grid of 90,000 points.

Method MSE `1-norm `2-norm Hellinger norm

GP 3.10e-6 4.91 5.28e-1 2.19
RBF 1.36e-4 1.52e1 3.5 9.23
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where

c1 = 0.8, c2 = 0.2,

m1 = −2× ones(10, 1),m2 = 2× ones(10, 1),

Σo
1 = diag[0.1629, 0.1812, 0.0254, 0.1827, 0.1265, 0.0195, 0.0557,

0.1094, 0.1915, 0.1930],

Σo
2 = diag[0.0315, 0.1941, 0.1914, 0.0971, 0.1601, 0.0284, 0.0844,

0.1831, 0.1584, 0.1919],

where ones(10, 1) is a 10 × 1 column vector with all elements equal to 1, and diag
puts a vector on the main diagonal the zero matrix of corresponding size. The domain
of interest is the hypercube [−3, 3]10. The GP predictor requires three greedy cycles
with 679 function evaluations to capture the two modes. In order to compare the
exact function d(m) and its adaptive GP predictor, we sample both of them using
DRAM [28]; an efficient MCMC toolbox. Table 7.4 shows the sample means from one
million MCMC simulations. Here, it is not our attempt to run enough simulations
until the MCMC converges, but to show how well the response surface emulates the
exact one. As can be seen, the sample means after one million MCMC simulations
are the same up to three digits, though they are by no means close to the exact mean
−1.2× ones(10, 1).

Table 7.4
The sample means of GP predictor and the exact function up to one million MCMC simulations.

mean GP predictor exact d(m)

m1 -1.9941 -1.9923
m2 -1.9894 -1.9923
m3 -2.0007 -1.9996
m4 -1.9880 -1.9880
m5 -1.9961 -1.9957
m6 -1.9995 -1.9997
m7 -2.0005 -2.0018
m8 -2.0003 -2.0006
m9 -1.9911 -1.9847
m10 -1.9891 -1.9902

Now, if we take 679 LHC points for the RBF approach, all the function values
evaluated at these points are machine zero, and hence the RBF method would give a
zero response surface, which is by no means close to the exact function. This is, as
discussed, a manifestation of the curse of dimensionality.

Similarly, we consider the mixture of two 10-dimensional Cauchy distributions:

d(m) = c1C (mo
1,σ

o
1) + c2C (mo

2,σ
o
2) ,
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where

C
(
mo
j ,σ

o
j

)
=

10∏
i=1

σoji

π
[(
σoji
)2

+
(
mi −mo

ji

)2] ,
c1 = 0.65, c2 = 0.35,

m1 = zeros(10, 1),m2 = 2× ones(10, 1),

σo1 = [0.4074, 0.4529, 0.0635, 0.4567, 0.3162, 0.0488, 0.1392,

0.2734, 0.4788, 0.4824],

σo2 = [0.0315, 0.1941, 0.1914, 0.0971, 0.1601, 0.0284, 0.0844,

0.1831, 0.1584, 0.1919],

where zeros(10, 1) is the zero vector of dimension 10 × 1. Similar to the Gaussian
case, the domain of interest is the hypercube [−3, 3]10. The GP predictor requires
three greedy cycles with 1386 function evaluations to capture the two modes. Table
7.5 compares the sample means obtained from the GP predictor and the exact d(m)
using one million MCMC simulations. The result is reasonable though it is not as
good as the Gaussian case. Similar to the Gaussian case, if we use the adaptive
RBF method with 1386 LHC points, d(m) is machine zero at these points, and hence
yielding a zero response surface! In fact, for both Gaussian and Cauchy cases, we
have tested that d(m) is close to machine zero even for 100,000 LHC points. Again,
the curse of dimensionality is in action. This observation also suggests that all the
discrete norms that we have used above for low dimension examples be useless in high
dimensional problems because they are most likely zero.

Table 7.5
The sample means of GP predictor and the exact function from one million MCMC simulations.

mean GP predictor exact d(m)

m1 2.0002 1.9761
m2 2.0007 1.8883
m3 1.9305 1.8976
m4 1.9980 1.9321
m5 1.9996 1.9424
m6 1.9991 1.9962
m7 1.9970 1.9428
m8 1.9984 1.9161
m9 1.9979 1.9236
m10 2.0002 1.8985

7.4. Inverse shape electromagnetic scattering example. In this section,
we consider two dimensional transverse magnetic (TM) polarization in the context
of electromagnetic scattering due to a scatterer in the free space. The governing
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equations read

∂Hx

∂t
+
∂Ez
∂y

= 0 in Ω× (0, T ),

−∂Hy

∂t
+
∂Ez
∂x

= 0 in Ω× (0, T ),

Ez = EIz in ∂ΩS × (0, T ),

Hx = Hy = Ez = 0 in Ω× {0} ,

where Hx, Hy and Ez denotes the x − y components of the magnetic field and z
component of the electric field with appropriate normalization [29], respectively. Here,
EI = cos (8 (t− x)) is the incident electric field, and ΩS the scatterer satisfying
Ωs ⊂ Ω ⊆ R2.

Next denoting

H⊥ =

[
−Hy

Hx

]
, E = Ez,

and using the perfect matched layer (PML) proposed in [1], the above TM equations
become

∂H⊥
∂t

+∇E = L in Ω× (0, T ), (7.1a)

∂E

∂t
+∇ ·H⊥ = M in Ω× (0, T ), (7.1b)

∂P

∂t
= S,

∂Q

∂t
= R in Ω× (0, T ), (7.1c)

E = −EI in ∂ΩS × (0, T ), (7.1d)

E = 0, H⊥ = 0 in Ω× {0} , (7.1e)

P = 0, Q = 0 in Ω× {0} , (7.1f)

where

P = [Px, Py]
T
, L = AH⊥ + BP, S = DH⊥,

Q = [Qx, Qy]
T
, R = GQ + FH⊥, M = CTQ,

A =

[
−2σx 0

0 −2σy

]
, B =

[
σx 0
0 −σy

]
, C =

[
−dσx

dx
dσy

dy

]
,

D =

[
−σx 0

0 σy

]
, G =

[
−σx 0

0 −σy

]
, F =

[
1 0
0 −1

]
,

with σx and σy, the defining damping property of the PML layer, given by

σx =

 0 |x| < 1
15(x− 1)2 x ≥ 1
15(x+ 1)2 x ≤ −1

, σy =

 0 |y| < 1
15(y − 1)2 y ≥ 1
15(y + 1)2 y ≤ −1

.

A typical truncated domain [−1, 1]
2

(fine mesh) together with the PML domain
(coarse mesh) is shown in Figure 7.4. The object in the middle of the domain is
a scatterer. We also show a typical scattered electric field solution in Figure 7.5.
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Fig. 7.4. A typical mesh of the PML and truncated domains together with a scatterer.

Fig. 7.5. An example of scattered electric field.

The forward problem can be stated as follows. Given a scatterer’s shape, the goal
is to compute the scattered fields, in particular, at the observation points denoted as
small circles in Figure 7.5.

In the inverse problem, on the other hand, the task is to reconstruct the scatterer’s
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shape, ΩS , given scattered field data, possibly polluted by noises, at K observation
points. It is not necessary to have the scattered data for all the fields, but we assume
it is so for convenience. We choose to solve the inverse problem statistically using a
Bayesian framework whose details can be found in [15,35]. Assuming i.i.d. Gaussian
noise with zero mean and variance σ2 at all observation points, the likelihood model
is chosen as

πlike ∝

exp

{
− 1

2σ2T

K∑
k=1

∫
T

∫
Ω

[(
E − Eobsk

)2
+
(
H⊥ −Hobs

⊥k
)T (

H⊥ −Hobs
⊥k
)]
δ(x−xk)dΩdt

}
,

where quantities with superscript “obs” are the observed data and x = [x, y]T . The
Dirac delta function δ(·) is defined as

δ(x−xk) =

{
1 x = xk,
0 otherwise.

We begin the prior modeling by defining the admissible shape space. In this
paper, the shape parametrization is restricted as

r =

ns∑
i=1

mi cos ([i− 1]θ)

where (r, θ) are polar coordinates of the shape, and mi the ith shape parameter. As-
sume a priori that the unknown shape is smooth so that the following spline smoothing
can be employed [57]:

πprior ∝ exp

{
−κ

2

∫ 2π

0

(
d2r

dθ2

)2

dθ

}
.

The solution to the statistical inverse problem is the following posterior density,
after ignoring the normalized constant (which is not required by Markov chain Monte
Carlo methods),

d (m) = πlike × πprior.

Denote J = − log d (m), then we have

J =
1

2σ2T

K∑
k=1

∫
T

∫
Ω

[(
E − Eobsk

)2
+
(
H⊥ −Hobs

⊥k
)T (

H⊥ −Hobs
⊥k
)]
δ(x−xk)dΩdt

+
κ

2

∫ 2π

0

(
d2r

dθ2

)2

dθ.

One of the key ingredients of our approach is the Hessian (or its approximation) of
J . For large-scale PDE-based inverse problem such as the inverse scattering example
considered in this section, efficient method for computing the Hessian is vital and we
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adopt an adjoint approach to fulfill this goal. To begin, we form the Lagrangian

L = J +

∫
T

∫
Ω

h⊥ ·
(
∂H⊥
∂t

+∇E −AH⊥ −BP

)
dΩdt

+

∫
T

∫
Ω

e

(
∂E

∂t
+∇ ·H⊥ −CTQ

)
dΩdt+

∫
T

∫
Ω

p ·
(
∂P

∂t
−DH⊥

)
dΩdt

+

∫
T

∫
Ω

q ·
(
∂Q

∂t
−GQ− FH⊥

)
dΩdt+

∫
T

∫
∂ΩS

λ
(
E + EI

)
dsdt

+

∫
Ω

hI ·H⊥dΩ +

∫
Ω

pI ·PdΩ +

∫
Ω

qI ·QdΩ +

∫
Ω

eIEdΩ.

The first order Karush-Kuhn-Tucker optimality system can be derived as follows:

• Taking the first variation of the Lagrangian with respect to h⊥, e,p,q and
arguing that the variations of h⊥, e,p,q are arbitrary in Ω× (0, T ) yield the
forward equations (7.1a)– (7.1c).
• Taking the first variation of the Lagrangian with respect to λ and arguing

that the variation of λ is arbitrary in ∂ΩS × (0, T ) yield the forward PEC
condition (7.1d).
• Taking the first variation of the Lagrangian with respect to eI ,hI ,pI ,qI and

arguing that the variations of eI ,hI ,pI ,qI are arbitrary in Ω×{0} yield the
forward initial conditions (7.1e)–(7.1f).
• Taking the first variation of the Lagrangian with respect to H⊥, E,P,Q and

arguing that the variations of H⊥, E,P,Q are arbitrary in the corresponding
domains yield the following adjoint equations together with the final and
boundary conditions

∂h⊥
∂t

+∇e = L∗ in Ω× (0, T ), (7.2a)

∂e

∂t
+∇ · h⊥ = M∗ in Ω× (0, T ), (7.2b)

∂p

∂t
= −BTh⊥,

∂q

∂t
= GTq− eC in Ω× (0, T ), (7.2c)

e = 0 in ∂ΩS × (0, T ), (7.2d)

e = 0, h⊥ = 0 in Ω× {T} , (7.2e)

p = 0, q = 0 in Ω× {T} , (7.2f)

where

L∗ =
K∑
k=1

(
H⊥ −Hobs

⊥k
)
δ(x−xk) −ATh⊥ −DTp− FTq,

M∗ =
K∑
k=1

(
E − Eobsk

)
δ(x−xk).

Other adjoint variables are found to be

λ = −h⊥ · n in ∂ΩS × (0, T ),

eI = e, hI = h⊥, pI = p, qI = q in Ω× {0} .
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• Taking derivatives of the Lagrangian with respect to the shape parameters
mi can be done using the shape gradient and Hessian methods as in [19].
Here, we assume that the obstacle is star-like around the origin and hence
simpler route is possible (see [12] and references therein). The derivatives of
the Lagrangian with respect to mi turns out to be

Gi =
∂L
∂mi

= −
∫
T

∫ 2π

0

[
h⊥ · ∇

(
E + EI

)]
r cos ([i− 1] θ) dθdt. (7.3)

The reduced gradient computation at a particular shape m is now ready. One
first solves the forward system (7.1a)–(7.1f) for the forward states and forward PML
variables. The adjoint system (7.2a)–(7.2f) is then solved for the adjoint states and
adjoint PML variables. The reduced shape gradient is now available by evaluating
the right hand side of equation (7.3). It is clear that one forward and one adjoint
solves are needed for the shape gradient computation.

In order to compute the product of the shape Hessian and a vector of shape
variation, we first compute the forward variation, involving one incremental forward
(linearization of the forward equations) solve, and then the adjoint variation, involving
one incremental adjoint (linearization of the adjoint equations) solve, corresponding
to that shape variation vector. The shape Hessian-vector product is the total variation
of the shape gradient (7.3). More specifically, the variation δr due to variation δm is
given by

δr =

ns∑
i=1

δmi cos ([i− 1]θ) .

The ith component of the product of the shape Hessian and vector δm can be shown
to be

δGi =−
∫
T

∫ 2π

0

∇
[
h⊥ · ∇

(
E + EI

)]
· er cos ([i− 1] θ) δr dθdt

−
∫
T

∫ 2π

0

[
h⊥ · ∇

(
E + EI

)]
δr cos ([i− 1] θ) dθdt

−
∫
T

∫ 2π

0

[
δh⊥ · ∇

(
E + EI

)]
r cos ([i− 1] θ) dθdt

−
∫
T

∫ 2π

0

[h⊥ · ∇δE] r cos ([i− 1] θ) dθdt,

where e = [cos θ, sin θ]T , and the variations in the forward states, δE and δH⊥, satisfy
the following incremental forward equations

∂δH⊥
∂t

+∇δE = δL in Ω× (0, T ),

∂δE

∂t
+∇ · δH⊥ = δM in Ω× (0, T ),

∂δP

∂t
= δS,

∂δQ

∂t
= δR in Ω× (0, T ),

δE = −∇
(
E + EI

)
· e δr in ∂ΩS × (0, T ),

δE = 0, δH⊥ = 0 in Ω× {0} ,
δP = 0, δQ = 0 in Ω× {0} ,
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where

δP = [δPx, δPy]
T
, δL = AδH⊥ + BδP, δS = DδH⊥,

δQ = [δQx, δQy]
T
, δR = GδQ + FδH⊥, δM = CT δQ.

Similarly, the variations in the adjoint states, δe and δh⊥, satisfy the following incre-
mental adjoint equations

∂δh⊥
∂t

+∇δe = δL∗ in Ω× (0, T ),

∂δe

∂t
+∇ · δh⊥ = δM∗ in Ω× (0, T ),

∂δp

∂t
= −BT δh⊥,

∂δq

∂t
= GT δq− δeC in Ω× (0, T ),

δe = −∇e · e δr in ∂ΩS × (0, T ),

e = 0, δh⊥ = 0 in Ω× {T} ,
δp = 0, δq = 0 in Ω× {T} ,

where

δL∗ =

K∑
k=1

δH⊥δ(x−xk) −AT δh⊥ −DT δp− FT δq,

δM∗ =
K∑
k=1

δEδ(x−xk).

During the Newton iterations in which the shape is updated, we generate a new
corresponding mesh for the (incremental) forward and (incremental) adjoint solves.
To simplify the implementation and to avoid difficulties for the mesh generator, we
allow the shape parameters to vary only in the hyper-rectangle defined by

mL = 0.15
[
1,−1,−1/2, . . . ,−1/2(ns−1)

]T
,

mU =
[
0.27, 0.15, 0.15/2, . . . , 0.15/2(ns−1)

]T
.

(7.4)

As a consequence, we fix the time step and hence avoid interpolating the solutions in
time during the optimization process.

We use a 2nd-order nodal discontinuous Galerkin method [29] for spatial dis-
cretization and the classical 4th-order Runge-Kutta for temporal discretization of the
(incremental) forward and (incremental) adjoint equations. The mesh has 4,494 tri-
angles and the total number of nodal unknowns, for both H⊥ and E, is 80,892. The
observation data Eobs and Hobs

⊥ are synthesized by solving the forward solver T = π
using 4474 time steps. The exact shape that we would like to invert for is governed
by

x = cos(t) + 0.65 cos(2t)− 0.65, y = 1.5 sin(t), t ∈ [0, 2π].

This exact shape and the corresponding electric field at T = π are shown in Figure
7.5. For convenience, we compute the observations at all time steps and add an i.i.d.
zero mean Gaussian noise with σ = 0.05. The regularization parameter κ is chosen
to be 1/

(
σ2T

)
.
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For the first greedy cycle, we use the circle with radius of 0.236 as the initial guess
for the optimization solver. For other greedy cycles, the initial guesses are computed,
as in Section 6, from the test set Ma containing 10000 LHC points distributed within
the bound mL ≤m ≤mU .

Next, we use DRAM, an efficient MCMC package in [28], to sample our Gaussian
process predictor with one million MCMC simulations. Figure 7.6 shows the result
for 29 training points and one global Gaussian approximation after one greedy cycle.
Figure 7.7 shows the result for 62 training points and six local Gaussian approxima-
tions after ten greedy cycles. Here, we plot the sample posterior mean and its 99.99%
credibility envelope together with the exact shape and the deterministic solution. As
can be seen, the posterior mean predicts well the left side of the kite but worse on
the right. This is expected since the incident wave is from left to right. The credi-
bility region responses similarly, namely, the uncertainty is less on the left and grows
gradually as we move to the right. Nevertheless, the uncertainty is large, even on
the left side, at the center of the concave part of the kite. This is anticipated since
non-convex regions are not easy to be reconstructed [38]. It is interesting to observe
that within the bounds of interest (7.4), the approximations with one and ten greedy
cycles are not very different. It suggests that there be a single dominant mode of the
Bayesian posterior density which is already captured by the first greedy cycle. One
can also see that the sample mean is almost identical to the deterministic solution.
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Fig. 7.6. The sample posterior mean from one million MCMC simulations together with its
99.99% credibility envelope versus the exact and the deterministic solutions. The Gaussian predic-
tor is obtained after one greedy cycle accounting for 29 training points and one global Gaussian
approximation.
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Fig. 7.7. The sample posterior mean from one million MCMC simulations together with its
99.99% credibility envelope versus the exact and the deterministic solutions. The Gaussian pre-
dictor is obtained after ten greedy cycle accounting for 62 training points and one global Gaussian
approximation.

It should be pointed out that a million MCMC simulations is chosen randomly,
but it turns out that the MCMC already converges. To see this, we perform two mil-
lion MCMC simulations and show again the sample posterior mean together with its
99.99% credibility envelope versus the exact and the deterministic solutions in Figures
7.8 and 7.9. The results look almost unchanged compared to those in Figures 7.6 and
7.7. To further confirm the convergence, we plot two dimensional marginal chains
for the Gaussian process predictor obtained after ten greedy cycle using one million
MCMC simulations in Figures 7.10 and 7.11, and two million MCMC simulations in
Figures 7.12 and 7.13. As can be observed, the marginal chains (only the first eight
parameters are shown) converge and look almost indifferent for both MCMC runs.

To see the efficiency of the Gaussian response surface method, we compare the
CPU time taken for two million MCMC simulations for one greedy cycle case in
Table 7.6. The offline time is defined as the time taken to build the Gaussian process
response surface. It turns out that it took about 33 hours, while there would have
been no offline cost if we had used the exact Bayesian posterior density. However, the
offline time was paid off when we performed the MCMC simulations. In particular,
the MCMC simulations required almost one hour for the GP response surface, but it
would have taken 528141 hours if we had used the exact posterior density!

8. Conclusions. We have developed an adaptive Hessian-based non-stationary
Gaussian process response surface method to approximate a probability density func-
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Table 7.6
CPU time taken for two million MCMC simulations.

Gaussian process predictor exact posterior density

offline time 33 hours 0 hours
online time 0.96 hours 528141.75 hours

tion (pdf) that exploits its structure, in particular the Hessian of its negative loga-
rithm. Of particular interest to us are expensive-to-evaluate pdfs, e.g., those arising
from the Bayesian solution of large-scale inverse problems. Our method can be con-
sidered as a piecewise adaptive Gaussian approximation in which a Gaussian tailored
to the local Hessian of the negative log probability density is constructed for each
sub-region in high dimensional parameter space. The task of efficiently partition-
ing the parameter space into sub-regions is done implicitly through Hessian-informed
membership probability functions. The Gaussian process machinery is then employed
to glue all local Gaussian approximations into a global analytical response surface
that is far cheaper to evaluate than the original expensive probability density. The
resulting response surface is also equipped with an analytical variance estimate that
can be used to assess the uncertainty of the approximation. One of the key com-
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Fig. 7.8. The sample posterior mean from two million MCMC simulations together with its
99.99% credibility envelope versus the exact and the deterministic solutions. The Gaussian predic-
tor is obtained after one greedy cycle accounting for 29 training points and one global Gaussian
approximation.
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ponents of our proposed approach is an adaptive sampling strategy for exploring the
parameter space efficiently during the computer experimental design step, which aims
to find training points with high probability density. The detailed construction and
an analysis of the method have been presented. We have demonstrated the accuracy
and efficiency of the proposed method on several example problems, including inverse
shape electromagnetic scattering in 24-dimensional parameter space.

Ongoing research aims to address the following:

1. The Gaussian process predictor is not guaranteed to be non-negative every-
where (even though it seems to be the case for all examples considered in this
paper). How to enforce the positiveness of the predictor in our framework
remains an open question, though one may use an approach proposed in [52].

2. Rigorous analysis of the quality of the Gaussian process predictor is clearly
an important direction for future work.

3. The size of the random set Ma is quite arbitrary. Intuitively, the larger it is,
the better our predictor. Thus, the question that needs to be addressed is
how to choose Ma as a function of the dimension of the parameter space.

4. Constructing the full Hessian for local Gaussian approximation is prohibitively
expensive for practical inverse problems in high dimensional parameter spaces.
However, often, one can make accurate low rank approximations of the Hes-
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Fig. 7.9. The sample posterior mean from two million MCMC simulations together with its
99.99% credibility envelope versus the exact and the deterministic solutions. The Gaussian pre-
dictor is obtained after ten greedy cycle accounting for 62 training points and one global Gaussian
approximation.
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sian for ill-posed inverse problem; scalable algorithms can be constructed for
this task [22] and theoretical justification of the compactness of the Hessian
can be provided in certain cases [12,13].

5. We have concentrated on the detailed development and analysis of the pro-
posed method, and on its verification for several examples. We have compared
our approach only to the popular adaptive radial basis function method. Our
future work should carry out extensive comparisons with other existing meth-
ods as well.

6. The adaptive Hessian-based non-stationary Gaussian process response surface
method is designed for problems involving thousands of parameters or more.
Ongoing research is to apply the method to such high-dimensional problems
as well.
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