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Preface 

The model of disease transmission in a large population described in this technical report was 
developed for Project CB07MSB100 of the Joint Science and Technology Office (JSTO) of the 
Department of Defense (DoD) Chemical and Biological Defense (CBD) Program. JSTO is also the 
Chemical/Biological Technologies (CB) Directorate in the Research and Development (RD) Enterprise 
of the Defense Threat Reduction Agency (DTRA). Project CB07MSB1 00 is titled Predicting Effects 
Due to Infectious/Contagious Diseases for JEM. 

This project was initiated by Mr. Charles Fromer and Mr. Richard (Rick) Fry of the Information Systems 
Capability Development Division (RD-CBI). It was funded under DTRA Contract Number HDTRA1-07-
C-0066 to Applied Research Associates, Inc. (ARA), with subcontractor Sandia National Laboratories 
(Sandia). Mr. Fry was the first Contractor Officer's Representative (COR) for this contract. On 28 
October 2008, Mrs. Stephanie Hamilton of RD-CBI became the COR and on 10 July 2009, Dr. 
Christopher Kiley, also of RD-CBI, was named COR for the remainder of the contract. The target 
application for the product of this contract is the Joint Effects Model (JEM) under the auspices of the 
Joint Project Manager of Information Systems (JPM IS) of the Joint Program Executive Office for 
Chemical and Biological Defense (JPEO-CBD). 

The integration of the model described in this technical report into a Contagion Model for JEM is 
described in the final report for this contract. 
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1. Component Overview 

The secondary infection small-world network model is written using object-oriented principles. 
Modelers who add new disease models into the secondary infection model collection should "extend" 
the Epidemic class and implement the required interfaces. 

Programmers who use the Secondary Infection small world network models in their programs will 
interface with the models via the Secondary Infection SWN.DLL. 

The current secondary infection model collection includes three disease models: influenza, plague, and 
smallpox. 

Figure 1-1. Class hierarchy for the secondary infection models 

)> Authors: Ms. Karen Cheng, Dr. David Crary, Dr. Darren R. Oldson 

)> Contact: Ms. Karen Cheng, kcheng@ara.com, 703-816-8886 x 138 

)> Company: Applied Research Associates, Inc. 

)> Creation Date: February 28, 2010 

Given basic properties known about the disease, the population (the number of susceptible 
individuals, and the number initially infected}, the Secondary Infection SWN.dll estimates the number 
of people daily who are in the following compartments: 

• Susceptible [S] 
• Exposed [E) 
• Infectious [I] 
• Removed [R] 
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It additionally has routines to return the following : 

• Maximum day of the outbreak 

• The duration of the outbreak 

• The number of total infections throughout the outbreak 

1.1. Introduction 
Mathematical models for the investigation of the spread of infectious disease have a long history [1] . 
The most well known of these models are the so-called compartmental models, which are identified by 
the acronyms that indicate the compartments included in the model, such as SIR (susceptible­
infectious-recovered), SIS (susceptible-infectious-susceptible) , SEI R (susceptible-exposed-infectious­
recovered) and variants of these. These models can be described by coupled differential equations, 
with the number of equations equal to the number of unique compartments in the model, which can be 
solved analytically in certain cases [2,3], and also have been well studied using stochastic simulation. 
These models have traditionally been solved under idealized hypotheses. The most important of these 
hypotheses, for this study, is the assumption of uniform mixing; that is, any individual in the population 
under study have the same probability of contacting any other individual. 

More recently, two related advances have been made which have impacted the field of epidemic 
modeling. The first of these is the development by Eubank et at. [4] of large scale simulations that use 
realistic estimates of population mobility, based on transportation, census and land use data. From 
these data, a realistic, dynamic contact graph is created that represents the person-to-person contact 
network. This contact network is constrained by realistic assumptions about the transportation 
infrastructure, as well as demographics consistent with distributions in census data. The population 
mixing implied by this contact graph replaces the uniform mixing assumption of the traditional 
approach. 

Secondly, advances in the experimental and theoretical understanding of network structures that 
describe a wide range of systems in nature (such as social networks, disease transmissions, cellular 
chemistry networks, internet connections, world-wide-web structure, phone call networks) has provided 
new understanding of the classification of complex networks, understanding of their dynamics, and new 
tools for network diagnostics. In particular, advances in computing speed and computerized data 
acquisition have provided researchers with large datasets with which to investigate the properties of 
complex, real-world networks. 

As a result of this theoretical research, it has become evident that the vast majority of network 
structures encountered in real data are one of two types, scale-free and small-world . Referring to the 
components of a graph as "nodes" and "connections" (or "edges"), scale-free networks show a power­
law distribution of connections per node. Small-world networks, on the other hand, show an 
anomalously small average distance between nodes (measured as the least number of connections 
required to traverse from one node to another) compared with the size of the graph. 

The realistic networks developed by Eubank et a/. show both scale-free and small world properties. 
The fundamental structure used by Eubank et a/. in this investigation is a bipartite graph (a graph with 
two types of nodes); in this case the nodes are people and places. 

This bipartite graph can be projected onto two different contact graphs, which are easier to interpret in 
terms of the relationships between persons or places than the original bipartite graph. One of these 
contact graphs is person-centric, where nodes represent persons and edaes renresent contacts (in 
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space and time) between those persons. The second of these graphs is location-centric, where nodes 
represent locations, and edges represent a person traveling between those two locations during the 
course of the simulation. It is remarkable that in the simulation of Eubank et a/. the person-centric and 
location-centric graphs show different well-defined structures, with the person-centric graphs having 
small-world network structure, and the location graph well represented by a scale-free network. 

It is the observation that a realistic contact network of disease spread shows small-world structure, that 
provides the motivation for this study. In particular, it is natural to ask if it is possible to replace the 
complicated, computationally expensive simulation of Eubank et a/. with a simpler model, based on a 
small world network, which reproduces the essential features of the full simulation without the 
computational expense, cost and complexity of deriving the network for each population studied? 
Moreover, is it possible to derive equations that allow the computation of the simpler model's 
parameters, which would provide an inexpensive and fast way to model outbreaks in various 
geographical locations, for which no detailed model exists? This capability would solve one of the main 
problems encountered in using a detailed epidemic models based on realistic contact networks, 
namely, that model can only be used to describe an outbreak where detailed data on the contact 
network exist. 

This paper describes our methodology for our approach, and our results show that the answers to 
these questions appear to be "yes". The features of this approach are described in the sections below. 

The Secondary Infection software is structured as a software library SWN.dll that provides the following 
outputs: 

);;> Estimates the number of people in the following compartments on a daily basis: 

o Susceptible [S] 
o Exposed [E] 
o Infectious [I] 
o Removed [R] 

The library also gives the following high level summaries of an outbreak: 

);;> Maximum day of the outbreak 

);;> The duration of the outbreak 

);;> The number of total infections throughout the outbreak 

3 
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2. Definitions, Acronyms, and Abbreviations 
~ Susceptible. Susceptible to infection by the particular disease in the study. 

~ Exposed. Exposed to the particular disease in the study; infected but not yet infectious. 

~ Infectious. Infected by the particular disease in the study and able to infect others. 

~ Removed. Either recovered or died from the disease in the study; not able to be infected or to 
infect others. 

4 
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3. Engineering Methodology 

3.1. Background on Small World Networks 
As discussed above, in an abstract sense, networks (such as the social networks) can be represented 
as a graph of "nodes" and "connections" (or "edges"). For social networks of interest here, the nodes 
represent people. The connections between adjacent nodes (nodes separated by one edge) represent 
contacts between people. 

The small world network models two types of contacts, 'short range', such as the contact between 
members of a family, or neighbors, and long range contacts such as occur in random encounters 
between people. More specifically, the 'small world' property refers to a network with a small number 
of shortcuts introduced in an otherwise regular, local underlying network structure. This considerably 
reduces the average 'distance' between any two nodes in a network, where here distance refers to the 
shortest path between two nodes, measured by the number of connections traversed. In a relationship 
network of people, for example, small world networks capture the well-known phenomena of strangers 
being linked by a web of mutual contact. Most people are only acquainted with a small number of other 
people, but most strangers can be linked though a small number of mutual acquaintances. This 
phenomenon has become well known recently through the widespread use of social networking sites, 
such as Facebook and Linkedln, but the idea dates back to a 1929 hypothesis by the Hungarian author 
Frigyes Karinthy. 

We originally implemented an SIR (Susceptible, Infectious, Removed) model on a network similar to the 
work done by Saramaki and Kaski [5] (disease models are discussed in more detail in Section 3.2). In 
this case, the underlying network was a ring , as shown in Figure 3-1 . We refer to the number of local 
network connections in the underlying network by the letter Z, in this case Z=2. A long range 
connection is shown by a line traversing the center region of the ring. Later we extended this model to 
use square local network with Z=4, as shown in Figure 3-2. This value for Z is plausible, since the 
average family size in the U.S. is 3.14 (U.S. Census Bureau: factfinder.census.gov). The extended 
model also includes an Exposed [E] category. 

Removed e 
Infectious 0 
Susceptible 0 

Probability of infecting 
random individual (p1) 

Figure 3-1. SIR Small World Network with Z = 2 
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Figure 3-2. Small World Network where lattice parameter Z = 4 

Saramaki and Kaski derived a set of coupled differential equations and solved analytically under certain 
assumptions to give a solution to the number of persons in each of the S, E, I and R compartments as a 
function of time. We have implemented the same model as a stochastic simulation. The benefits of 
using this type of simulation are: 

• We do not need to make simplifying assumptions of the probabilities Ps and N (the susceptible 
population) which were required for the analytic solution of Saramaki and Kaski. 

• We can easily implement countermeasures in our simulations to study their effects. 

A major drawback of large-scale simulations is that they require a long time to run. In our case, 
however, because the model is simple, it does not require long run times. There is a stochastic nature 
to the runs but our studies have found that there is not significant variance between the runs (e.g., a 
small number of runs produce a good representative average). 

3.2. Small-World Network Methodology. 
As discussed above, the epidemic model used in this study is an SEIR model. In an SEIR each 
individual in the population at risk is in one of four "compartments" during the progression of the 
disease. These compartments are specified by the letters SEIR, where S is susceptible (that is, not 
exposed to the disease), E is exposed but not infectious, I is infectious, and R is removed (either died 
or recovered) . 

In SEIR models, an individual, once exposed, moves between these compartments according to certain 
probability distributions. In fact, the specification of the contact between people producing new 
exposures, plus the specification of the probability with which an individual moves between 
compartment after exposure, provides a full specification of the model. In our case, the contact 
between people is modeled with a regular network where the lattice parameter, Z = 4 (see Figure 3-3). 
The way individuals move between compartments is specified by an algorithm that involves two 
parameters for disease transmission, Ps and Pb where Ps = probability of infecting a nearest neighbor 
and Pi = probability of infecting a random individual. 

6 
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The algorithm is described as follows: at every time step of duration ~t. every infectious individual in the 
network: 

1. Infects its nearest neighbors, if susceptible, with probability Ps per neighbor. 

a. When infected, the individual enters the Exposed category and remains there on for a 
period of time (specified by the mean and standard deviation of length of time exposed). 
Once this time period is up, the individual enters the Infectious category. 

2. With probability Pi> tries to infect one randomly chosen individual, succeeding if the individual is 
susceptible. 

a. When infected, the randomly chosen individual enters the Exposed category and 
remains there on for a period of time (specified by the mean and standard deviation of 
length of time exposed). Once this time period is up, the individual enters the Infectious 
category. 

3. With probability p, recovers and can no longer be infected or infect others. 

a. The individual enters the Recovered category. 

3.3. Advantages of approach 
Traditional models of epidemics rely on deriving transmission rates from historical data. There are 
various limitations to this approach. Embedded in this transmission rates are the original conditions 
(population size, initial number of infected) and conditions that occurred as the epidemic progressed 
(containment measures, prophylaxis) and it is unclear whether these historical transmission rates are 
valid in other contexts. The small world network model allows us to take advantage of the models 
obtained from realistic complex simulations such as EpiSims [4]. The problem with complex 
simulations is typically they are time-consuming to run , and obtaining the data for other cities is costly. 

A large advantage of the small world network is that it naturally scales the results to different initial 
conditions such as different number of initially infected, or different population size. 

7 
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Figure 3-3. The small world network scales the epidemic duration realistically relative 
for different values of 10 . 

This scaling is shown in Figure 3-3 above. The small-world network model is able to scale the duration 
of an outbreak for different values of the number of initial infected, /0 . A higher /0 value should result in 
an earlier epidemic. The Bombardt SEIR model, currently used in AMedP-8, cannot scale the duration 
of the outbreak because the formulation is based on transmission functions derived from the original 
outbreak (the outbreak may only increase marginally in duration for an increased /0 due to the 
consequence that there are more people coming out of the R compartment). The heights in these plots 
should not be compared because the small world network plots were fit to EpiSims which have no 
outbreak mitigation efforts, whereas the Bombardt model is fit to a historical outbreak where there were 
likely to be outbreak containment efforts, such as quarantine. 

By studying how the small world network disease model changes with population density, and thereby 
creating a formula for how the parameters Ps and Pi scale with population density, we are theoretically 
able to apply the model created by EpiSims [4] for Portland to other cities . The assumption underlying 
this capability is that disease behavior itself does not change from city to city, it is the population 
characteristics that do. This assumption (that disease models remain consistent) is also used in the 
majority of disease modeling tools, such as DoD's Hazard Prediction and Assessment Capability 
(HPAC). 

Because our model is a simulation, it is easy for us to model tradeoffs of preventive measures. 

8 
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3.4. Model methodology 
Our model depends on eight parameters. They are: 

Population specific: N, /0 

N= total number in population 

10= number initially infected 

Disease specific: IJe;, Oe;, IJ;,, a;, 

Jle;, Oe; = Mean and standard deviation of length of time exposed 

Jl;, , a;, = Mean and standard deviation of length of time infectious 

Network specific: Ps , Pi 

Ps= Probability per day of spread to nearest neighbor 

Pi= Probability per day of Jump' to non-neighbor 

The time development of an epidemic for a specific disease is known once 10 , Ps. and Pi are known. 

Therefore there are two modes to our model, a data fitting mode, and a disease forecasting mode. 

The data fitting model, as described in 3.5 below, is used by disease model developers, whereas the 
forecasting mode is used by programs such as the Joint Effects Model (JEM) to forecast the number of 
people who will become ill from a particular disease. 

3.5. Selection of disease parameters 
We had Sandia National Laboratories perform EpiSims [4] runs of influenza, plague, and anthrax for 
eight different locations in Portland Oregon, for two different numbers of initially infected, 100 and 1000. 
Fortunately, Portland has many interesting geographical features such as varied population densities 
and a major river that runs through the city. These eight points were chosen above and below the river, 
and in different local population densities. Figure 3-4 shows the points chosen for our study. 

9 
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LandScan Data: Portland, Oregon Area 
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Figure 3-4. LandS can data for the Portland, Oregon area, including the points of initial 
infections 

The data fitting mode proceeds as follows : 

We performed a literature search to set all of the disease specific parameters: J.le;, ae;, J.l;,, a;,_ In our 
case, we used the same values as were used in EpiSims [4]. 

We also know N (the susceptible population) because we know the population being modeled. 

We then proceed to determine fit the key parameters of our model , Ps and Pi. by the following process: 

1. An exhaustive search of Ps and Pi to fit the model, where the range of Ps and Pi is [0, 1], with a 
step size of 0.02 

2. For each curve generated using the small-world network model, we record 

a. Ps and pi value 

b. Peak value of I curve 

c. Peak time (days) 

10 



A Small-World Network Model of Disease Transmission 

3. For each epidemic curve from the full simulation, the peak value and peak time in days is 
matched with values recorded in the table, according to specific filter 

a. Peak value must be within certain percentage limits (we used 10%) 

b. Peak time must be with certain days (we used 3 days) 

This results in a subset of Ps and Pi values that meet the criteria. 

4. From these values of Ps and Pi> we perform a maximum likelihood estimation to choose the best 
Ps and Pi from the group 

5. We then used the Ps and pi obtained and performed a forecast of the outbreak 

6. We visually compared the results against "EpiSims" outbreak (reproduced by Sandia National 
La bo rato ries) 

3.5.1. Data fitting for Smallpox 

Figure 3-5 and Figure 3-6 below for smallpox, 10 equal to 100 and 1000, show the resulting subset of Ps 
and Pi values that meet the criteria for smallpox (step 4 in the process above). Note that we are only 
displaying three out of the eight points in the graph because otherwise the plot is not readable (but the 
analysis remains valid when all eight points are displayed). 

Example Fit: Smallpox, 10=100 
Smallpox: 100 initial infections 

~ 
o Point 2 p

1 
= 0.586, constant for 

Point 3 
o Point 5 

10=1 00 

<0 
ci p1 does not show dependence 

on Ps 
<D 
ci 

Q' 
~~~ Other dependencies are 

not clear on this plot. 
... 
ci 

II 
N 
ci 

0 
ci 

I 

0 .0 0.2 0.4 0.6 0 .8 1.0 

Ps 

Figure 3-5. Smallpox, 10=1 00 
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Example Fit: Smallpox, 10=1000 
Smallpox: 1000 initial infections 

0 .2 0.4 0 .6 0.8 

Ps 

o Point 2 P1 = 0.440 for 10=1 000 
1 Point 3 
o Point 4 Shows same structure as 

1.0 

10=100 plot 

Dependence with population 
density at location of 
initial infection? 

Figure 3-6. Smallpox lo=1000 

From these values, we try to evaluate whether or not the parameters Ps and pj seem to be affected by 
location population density. Clearly from these graphs above, pj is showing no dependence and 
appears to be constant at 0.440. 

Our next question was whether or not there was a formula for a dependence on the parameter Ps on 
local population density. The plots Figure 3-7 and Figure 3-8 below show the analysis of Ps for all eight 
points. There did not appear to be a linear relationship between the Ps values and local population 
density. When the error bars are taken into consideration, it appears that Ps is well described by a 
constant value of 0.825 for 100 initial infections and 0.721 for 1000 initial infections. 
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Does P5 Depend on Population Density at Point of 
Infection For Smallpox? 
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Figure 3-7. Smallpox, 10 = 100 

Does P5 Depend on Population Density at Point of 
Infection For Smallpox (Continued)? 
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Figure 3-8. Smallpox, lo = 1000 
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Using these values for Ps and Pb we wanted to visually validate our model. So we ran our model with 
those parameters and compared to the original EpiSims data [4] as reproduced by Sandia National 
Laboratories. Figure 3-9 below shows the results. 

Our model fits this complex curve surprisingly well, despite a bit of overshooting magnitude of the 
epidemic. It captures the complex shape of the multiple waves in the data, something that is not 
possible in traditional SEIR models. 

3.5.2. 
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Figure 3-9. Smallpox Data 

Data fitting for Influenza (Flu) 

Point 2, 
10=1000 

Figure 3-10 and Figure 3-11 below show the resulting subset of Ps and pj values that meet the criteria 
for influenza (step 4 in the data fitting process on page 1 0). Note that we are only displaying three out 
of the eight points in the graph because otherwise the plot is not readable (but the analysis remains 
valid when all eight points are displayed). 

In the case of influenza, it appears that the parameters, Ps and Pb are interchangeable. This is possibly 
consistent with the fact that influenza is highly transmissible; thereby it spreads to random contacts just 
as easily as to near neighbor contacts. 
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A Small-World Network Model of Disease Transmission 

Flu Data 
Flu: 100 initial infections 
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Figure 3-10. Flu, /0 = 100 
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Figure 3-11. Flu, lo=1000 
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Because no significant dependence on number of initially infected is apparent, we use the median 
value for the number of initial infections. 

For 100 initial infections, Ps = 0.484 and pj = 0.556. 

For 1000 initial infections, Ps= 0.407 and pj = 0.591. 

Since we only have two points for /0 , 100 and 1000, we assume a linear relationship between these 
values to determine Ps and pj for a given /0 . 

Using these values for Ps and pj. we visually validate our model. Figure 3-12 below shows how our 
model is an extremely close fit to the EpiSims output (as implemented by Sandia National 
Laboratories) . 

3.5.3. 
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Figure 3-12. Flu Data 

Data fitting for Plague 

Figure 3-13 and Figure 3-14. Pneumonic Plague 10 = 1000 below, show the resulting subset of Ps and pj 
values that meet the criteria for plague (step 4 in the data fitting process on page 10). Note that we are 
only displaying three out of the eight points in the graph because otherwise the plot is not readable (but 
the analysis remains valid when all eight points are displayed). 

Plague shows yet a different structure where pj shows a strong dependence on p5 • 

We use the media values of Ps and pj. given by: 

Ps = 0.263 and pj = 0.462 for 10=100 

Ps = 0.232 and pj = 0.482 for 10=1 00 
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Pneumonic Plague, 10=100 
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Figure 3-13. Pneumonic Plaque, lo = 100 

Pneumonic Plague, 10=1000 
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Figure 3-14. Pneumonic Plague lo = 1000 
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Using these values for Ps and Pi, we visually validate our model. Figure 3-15, Below, shows how our 
model is an extremely close fit to the EpiSims output (as implemented by Sandia National 
Laboratories). 
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Figure 3-15. Plague Data 

3.6. Assumptions and Limitations 
Our small world network model is very simple by design. It fits itself to the data given, and scales 
realistically to different, but related scenarios. Since we are using a simulation, we are not constrained 
by approximations used in finding analytic solutions to this problem, as in previous studies. However, 
the models underlying the simulation have the following limitations. 

Our small world network model implements a square graph structure, where each node in the square 
represents a person. Because we have chosen a square, there is an implicit assumption that each 
person is connected closely, on average, to four people. Close connections generally represent family 
members, and possibly co-workers. As discussed above, the average family size is actually 3.14 , so in 
the future, we could break links in our square to more closely represent this actual figure for family size 
to determine whether or not the fitting is improved. 

Another assumption we make when fitting our model to data, is that the disease behaves the same at 
different time periods of the year. The problem with addressing this limitation is mostly one of limited 
data available. If the disease behaved differently in different time periods of the year, it could be 
caused by various factors such as environmental changes that enable more or less aggressive disease 
transmissions, changes in peoples' behaviors (for example, if people stay home more in the winter 
because it is too cold), or changes in the disease's ability to survive in different temperatures. These 
factors would have to be known and then included in the model. 
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The model takes as input a susceptible population number, N. The model does not have any spatial 
awareness built into it. It returns the number of people that will be infected on each day. The model 
does not currently specify which people a simulation should select to infect (however, the simulation 
that uses the model is free to implement whatever heuristic or model it chooses to) . 

3.7. Model Uncertainties 
The small world network model is a simulation with a stochastic element. Therefore, there is 
uncertainty in each run of the model. In fitting our models to data, we generally averaged ten 
instantiations of the small world network model. Our studies of the model have shown that there is 
variation between runs; however, they are not very significant. 

3.8. Recommendations for Future Work 
)> Experiment with changing the number of nearest neighbors by randomly breaking links in our 

underlying square network structure 

)> Fit model to real outbreaks 

)> Do further studies on relationship of model parameters to number of initially infected 

)> Do further studies on relationship of model parameters Ps and Pi to density of initial infected 
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4. Summary 
The secondary infection small world network model is a fast running simulation that can be 
incorporated into external programs to return 

• The number of people in the Susceptible [S] compartment on a daily basis 

• The number of people in the Exposed [E] compartment on a daily basis 

• The number of people in the Infectious [I] compartment on a daily basis 

• The number of people in the Recovered [R] compartment on a daily basis 

• Maximum day of the outbreak 

• The duration of the outbreak 

• The number of total infections throughout the outbreak 

In this report we have described the benefits of the small world network model and how we fit our 
models to a complex simulation model created by Sandia National Laboratories based on EpiSims [4] 
in the Portland, Oregon area. 
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