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

In this work, a novel, high modulus sulfonated polymer is utilized as an ionomer for ionic liquid containing micro
ionic actuators (ionogel) is presented. The ionic polymer is composed of onetoone ratio 4,6bis(4hydroxyphenyl)
N,Ndiphenyl1,3,5triazin2amine and 4,4′biphenol with bis(4fluorophenyl) sulfone (DPAPS:BP). The ionogel 
maintains a relatively higher modulus (700 MPa for 120 wt% of ionic liquid) compared to other widely used 
ionomers. High modulus of ionogel enables to realize thin films through solution casting. As an initial demonstration 
of a microionic actuator, an ionic micro cantilever (200 m x 33 m x 5 m) has been micromachined by using 
focused ion beam (FIB) milling on the substrate. The micro cantilever performance under DC actuation is tested 
using optical profilometer and a maximum tip displacement is 42 m at 1.6V was obtained.  
 
© 2011 Published by Elsevier Ltd. 
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 

Electroactive polymers (EAPs) are smart materials, which exhibit large mechanical strain 
(displacements) in response to electrical stimulation. Ionic electroactive polymers (iEAPs) are a subclass 
of EAPs where the bending actuation is achieved through the movement of cation and anion pairs inside 
the polymer matrix as a result of electrical stimulation. The cationanion pairs are introduced into the 
polymer matrix through ionic liquids (ILs). ILs are molten organic salts. Due to their high ionic 
conductivity and large electrochemical potential window (up to 5.7 V between platinium electrodes) [1], 
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ILs are widely used in applications such as lithium batteries [2], dye synthesized solar cells [3], actuators 
[4] and electric double layer capacitors [5]. Melting point of ILs may range from 96 °C to 800 °C [6]. 
Most research fields emphasized above require room temperature operation. Therefore, room temperature 
ionic liquids (RTILs) are generally desired. For this research, 1methyl3butylimidazolium 
tetrafluoroborate ([BMIm][BF4]), an imidazolium based RTIL, has been utilized. 

ILs act as electrolytes within the ionomer membranes and enhance the electrochemical response of the 
actuators. For example, the ionic conductivity is increased within the ionomer membrane, which may 
improve the bending strain and response time [7]. The polymer matrix endows the IL with dimensional 
and mechanical stability while preserving the electrical conductivity of the IL and any loss of the material 
due to the outflow of IL. These kind of hybrid materials where ILs are confined within an ionomer 
membrane are defined as ionogels [8]. Ionogels can be configured as soft sensors and actuators, which are 
promising for applications such as artificial muscles [9], soft robotics [10], and energy harvesting [11]. 
They require low voltages, typically 15 V, which is limited by the electrochemical potential window of 
the IL and electrode type. The ionogel actuator configuration is achieved via placing ionogel between two 
electrode layers. In this work, 50 nm gold layers are embossed on top and bottom surfaces of the ionogel 
membranes to act as electrodes.  

When an electric field is applied through the electrodes, cations drift and diffuse towards cathode, 
whereas anions drift and diffuse towards anode. For RTIL, there is generally a molecular volume 
difference between the cation and anion. For [BMIm][BF4], the BMIm+ molecular volume is larger than 
BF4

 The accumulation of cation and anions at cathode and anode respectively causes a net volume 
difference, which in turn causes bending of the ionogel. Figure 1(a) schematically illustrates the bending 
mechanism in ionogels. 

Despite the fact that ILs enhance the actuator performance acting as electrolytes within the ionomer, 
endowing high amounts of IL within the membrane dramatically decreases the elastic modulus of the 
films. Using solution casting methods, it is very challenging to realize sufficiently thin films out of these 
ionogels that can be used for the development of microelectromechanical systems (MEMS) scale sensors 
and actuators. NafionTM is one of the most widely used ionomer in literature that is manufactured by 
DuPont. For NafionTM, the elastic modulus versus IL uptake has been investigated experimentally and 
theoretically by Davidson [12]. The theoretical relation between elastic modulus and IL uptake can be 
mathematically expressed with 21 awaE   relation, where E is the elastic modulus in MPa, w is the 
ionic liquid uptake in weight percent and a1, a2 are coefficients for slope and intercept respectively. For 
example, the elastic modulus of NafionTM is around 40 MPa for 60 weight % of uptake. 

In this work, we have developed a novel ionomer [13], which is composed of onetoone ratio 4,6bis(4
hydroxyphenyl)N,Ndiphenyl1,3,5triazin2amine and 4,4′biphenol with bis(4fluorophenyl) sulfone 
(DPAPS:BP). The elastic modulus of DPAPS:BP:[BMIm][BF4] ionogel is measured as 700 MPa for 120 
weight % of endowed [BMIm][BF4]. When compared to NafionTM, this ionomer can form robust thin 
films due to its higher elastic modulus with endowed ionic liquid. Thin films of 5–7 µm have been 
realized via solution casting DPAPS:BP with [BMIm][BF4]. The chemical structure of DPAPS:BP is 
shown in Fig. 1(b). 

a)   b)  
Figure 1: (a) The bending due to molecular volume difference between anion and cation, which 
accumulate at anode and cathode side. [7] (b) The chemical structure of DPAPS:BP [13] 
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Another challenge related to iEAPs is fabricating microstructures using these hybrid materials. Most of 
the traditional MEMS manufacturing techniques such as lithography and wet etching are not applicable 
with ionogels since the endowed IL within the ionomer tends to outflow when dipped into another 
solution. To overcome this manufacturability issue, focused ion beam (FIB) milling, was used to fabricate 
a 200 m x 33 m cantilever on 5 m thick DPA PS:BP containing 150 wt % [BMIm][BF4]. The FIB 
milling is discussed in the next section. This work demonstrates a free standing cantilever utilizing IL 
containing iEAP as a microactuator and should be viewed as an initial work towards more widespread 
application iEAPs as new materials for polymer based MEMS. 

 


FIB milling is a topdown fabrication method, where finely focused, high energy (momentum) Gallium 
ions (Ga+) strike on substrate surface and mill out the material in the region of impact. For milling, FEI 
Quanta 200 3D FEG Dual Beam Electron Microscope has been used. This model gives the ability to 
observe the cutting during milling since it has dual beam. For [BMIm][BF4] containing DPAPS:BP, the 
critical parameters are redeposition and cutting time. Redeposition is the deposition of the removed 
material on the milled region as shown in Fig. 2(a). The redeposition depends on dwell time (0.1 µs – 
4.8 ms) and the ion beam current (3 – 20 nA). These two parameters have to be finely tuned in order to 
obtain a cleanly cut cantilever while keeping reasonable cutting time and cost. If these parameters are 
slightly changed, a redeposition run (cutting time: 15 mins, dwell time: 2.4 µs, ion current: 20 nA) or a 
damaged run (cutting time: 20 mins, dwell time: 4.8 µs, ion current: 20 nA) are observed as shown in Fig. 
2 (a) and (b) respectively. Figure 2(c) shows the cleanly cut cantilever. The overall cutting time is 50 mins 
with 2.4 µs of dwell time and 7 nA of ion beam current. These are finely tuned parameters for this 
ionomerIL combination. The obtained cantilever dimensions are a 200 x 33 x 5 m. This fabrication 
method with FIB is also feasible to fabricate arrays and different shaped actuators on the thin film of 
ionogels.  

 
Figure 2:(a) High deposition run (b) High current run, and (c) The cleanly cut and released cantilever. 
 


After the fabrication of the microionic cantilever, the electromechanical performance is tested. The 
film with the cantilever pattern on is mounted between two conductive plates. After careful wire bonding, 
the cantilever is released at the edge of two plates. A potential difference is applied incrementally between 
the two electrodes of the ionogel. The tip deflection is measured using a white light interferometer (Zygo 
100 New View profilometer). Figure 3(a) shows the Zygo image at 1.6 V applied voltage. Figure 3(b) 
shows the deflection of the cantilever along its length for 3 actuation voltages. The solid lines are smooth 
fit to the deflection data obtained. Unlike high modulus materials, ionogels are very soft and upon release 
are very difficult to obtain as cantilevers with smooth surface. This explains some of the observed 
discrepancy between the smooth fits and the measured data. The maximum tip deflection is measured as 
42 µm at 1.6 Volts.  

a c

b
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
Figure 3.(a) Optical profilometer image of the ionogel cantilever actuated at 1.6 V  (b) Deflection profile 
along the length of the cantilever for 3 different actuation voltages. The experimental data (dots) are fitted 
to a smooth mathematical function (solid lines) to show the curvature of the cantilever. 


A high modulus ionomer, DPAPS:BP, has been investigated as a novel ionomer for IL containing i

EAPs. The higher modulus enables to realize thin film actuators, which can be used for micro sensors and 
actuators applications. An ionogel microcantilever has been fabricated using FIB etching and is shown as 
a viable method for micromachining IL containing iEAPs. Electromechanical characterization of the 
cantilever showed a maximum tip deflection of 42 µm at 1.6 Volts. The ionomer performance is 
promising for further investigation. 
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