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Encoding scheme minimizes
errors in photonic converters
Mylene Arvizo, James Calusdian, Ken Hollinger, and
Phillip E. Pace

A new scheme with an inherent integer Gray code property reduces
photonic analog-to-digital converter errors while enhancing resolution.

Digitizing wideband radio frequency (RF) signals directly at the
antenna is important in defense systems such as electronic war-
fare digital receivers and electronic signal intelligence collectors.
It can eliminate the need for down-conversion to intermediate
frequencies that cause spurious signals at the output of the re-
ceiver’s analog-to-digital converter (ADC). Digitization also can

Figure 1. Robust symmetrical number system photonic analog-to-digital converter with greater than 1 bit per interferometer. FPGA: Field pro-
grammable gate array. K1, K2, K3: Amplifiers to supply gain and offset voltages. CW laser: Continuous wave laser. G: Post-detection amplifier
gain. Mod., mi : Modulus. RSNS: Robust symmetrical number system.

hide any low power signals of interest. Integrated optical
ADCs that use a parallel arrangement of wideband (bandwidth
>50GHz) Mach-Zehnder modulators (MZMs) provide a solu-
tion by efficiently coupling the high-frequency RF energy into
the optical domain without requiring down-conversion.1 Using
mode-locked lasers for sampling (pulse repetition frequency
>300Gb/s) and having wideband photodetectors at the MZM
output allows direct digitization of the high-frequency signals.2

Traditionally, each MZM in the parallel arrangement folds
the RF input signal symmetrically, with each subsequent fold-
ing period doubled.3 The electrical output from each detec-
tor is then quantized with a single comparator. When the
detector output voltage crosses the comparator’s matching
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Figure 2. Digital-to-analog converter output using the prototype
device with a triangular input. This is an oscilloscope trace. C1: Trace
one on the scope. Pk-Pk: Peak-to-peak. Ch1: Channel one. Wfm: Wave-
form.

threshold voltage, the comparator output changes from a logic 0
to a logic 1. Together, the comparators represent the RF voltage
in a binary format with one-bit per MZM/detector combination.
Unfortunately, the achievable resolution is limited to 3 or 4 bits
because of the MZM device capacitance.

We have developed a new modular preprocessing technique
based on the robust symmetrical number system (RSNS) that
can both increase the devices’ resolution and minimize encod-
ing errors.4, 5 The RSNS is composed of N � 2 moduli mi that are
co-prime (that is, the greatest common divisor is one). The RSNS
preprocessing folds the signal in accordance with the modulus
mi . Instead of one comparator at each MZM detector’s output,
we used a parallel array of mi comparators to analyze the
detector’s output amplitude.

Figure 1 shows the RSNS photonic ADC for N D 3 with
mi 2 f3; 4; 5g, as well as integer values within each modulus
(or comparator states), including a left shift. An example of the
decimal output h from a field programmable gate array is also
shown.6 For this example, the length of paired terms without
ambiguities (dynamic range) is OM D 43, and the position begins
at the decimal value of h D 61 (not shown). The paired terms in
each vector change one at a time at the next code position, result-
ing in an integer Gray (reflected binary) code property. That is,
only one comparator changes state between any two code
transitions.

The input signal’s novel folding and the mi comparators at
the detector output extend the photonic MZM resolution be-
yond 1 bit per interferometer. The inherent Gray code property

also makes it particularly attractive for error control. With the
RSNS preprocessing, encoding errors resulting from comparator
thresholds not being crossed simultaneously are eliminated, and
interpolation circuitry can be removed.

We built a prototype device following this design. The input
was a triangular waveform and the output was provided as in-
put to a digital-to-analog converter (see Figure 2). To increase the
resolution of a photonic ADC—while minimizing the encoding
errors—we introduced a new technique based on a robust sym-
metrical number system encoding. We designed and constructed
a prototype ADC to evaluate the concept’s feasibility. Instead
of one comparator at each detector’s output, we used several
comparators. The comparator states, when considered together,
change one at a time at the next code position (integer Gray code
property) and make the concept particularly attractive for error
control. As a result, the RSNS has the important property that the
largest nonlinearity is always less than a least significant bit. Our
next step is to build a wideband, high-resolution device capable
of achieving 12 bits of resolution over a 10GHz bandwidth.
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