
Capacity of Byzantine Consensus with
Capacity-Limited Point-to-Point Links ∗

Guanfeng Liang and Nitin Vaidya
Department of Electrical and Computer Engineering, and

Coordinated Science Laboratory
University of Illinois at Urbana-Champaign

gliang2@illinois.edu, nhv@illinois.edu

March 31, 2011

∗This research is supported in part by Army Research Office grant W-911-NF-0710287 and
National Science Foundation award 1059540. Any opinions, findings, and conclusions or recom-
mendations expressed here are those of the authors and do not necessarily reflect the views of the
funding agencies or the U.S. government.



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
31 MAR 2011 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2011 to 00-00-2011  

4. TITLE AND SUBTITLE 
Capacity of Byzantine Consensus with Capacity-Limited Point-to-Point 
Links 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
University of Illinois at Urbana-Champaign,Department of Electrical and
Computer Engineering,Coordinated Science 
Laboratory,Urbana,IL,61801 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

13 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



1 Introduction

In our previous work [5, 4, 6], we investigated the capacity of the broadcast version of the Byzantine
agreement problem [3] in networks where communications links are capacity limited. In this report,
we are going to study capacity of the consensus version of the Byzantine agreement problem.

The Byzantine consensus problem considers n nodes, namely P1, ...,Pn, of which at most f
nodes may be faulty and deviate from the algorithm in arbitrary fashion. Each node Pi is given an
input value vi, and they want to agree on a value v such that the following properties are satisfied:

• Termination: every fault-free Pi eventually decides on an output value v′i ,

• Consistency: the output values of all fault-free nodes are equal, i.e., for every fault-free node
Pi, v′i = v′ for some v′,

• Validity: if every fault-free Pi holds the same input vi = v for some v, then v′ = v.

1.1 Models

In this report, we use the similar network and adversary models as in our previous work [4].

1.1.1 Network Model

We assume a synchronous network modeled as a fully-connected directed graph G(V,E), where
V is the set of n nodes and E is the set of n(n − 1) directed links. Each directed link eij = (Pi,Pj)
is associated with a capacity cij, which specifies the maximum amount of information that can be
transmitted on that link per unit time. That is, for any period of duration t and a link eij, up to tcij
bits can be sent from node Pi to Pj on link eij, but no more than tcij. The capacity of some links
may be 0, which implies that these links do not exist.

1.1.2 Adversary Model

We assume that the adversary has complete knowledge of the network topology, the algorithm,
the state of all nodes, the input values, and no secret is hidden from the adversary. The adversary
can take over up to f processors at any point during the algorithm, where f < n/3. These nodes
are said to be faulty. The faulty nodes can engage in any kind of deviations from the algorithm,
including sending false messages, collusion, and crash failures.

1.2 Capacity of Consensus

Our goal in this work is to design algorithms that can achieve optimal throughput of consensus.
When defining throughput, the input value vi at each node Pi referred in the above definition

of consensus is viewed as an infinite sequence of information bits. We assume that the information
bits have already been compressed, such that for any subsequence of length l > 0, the 2l possible
sequences are sent by the sender with equal probability. Thus, no set of information bits sent by the
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sender contains useful information about other bits. This assumption comes from the observation
about “typical sequences” in Shannon’s work [7].

At each node Pi, we view the output value v′i as being represented in an array of bits. Initially,
none of the bits in this array at a node have been agreed upon. As time progresses, the array is
filled in with agreed bits. In principle, the array may not necessarily be filled sequentially. For
instance, a node may agree on bit number 3 before it is able to agree on bit number 2. Once a node
agrees on any bit, that agreed bit cannot be changed.

We assume that a consensus algorithm begins execution at time 0. In a given execution of
a consensus algorithm, suppose that by time t all the fault-free nodes have agreed upon bits 0
through b(t) − 1, and at least one fault-free node has not yet agreed on bit number b(t). Then, the
consensus throughput is defined as1 limt→∞ b(t)

t .

Capacity of consensus in a given network G(V,E), denoted as Ccon(G), is defined as the supremum
of all achievable consensus throughputs.

2 Upper Bound

In this section, we prove an upper bound of the consensus capacity of any network G(V,E).
Let us first define some notations. For any subset of nodes S ⊂ V such that |S| ≤ f , denote
ΓS = {γ : γ ⊂ V\S and |γ| = n− |S|− f }, i.e., ΓS is the set of the

( n−|S|
n−|S|− f

)
subsets of n− |S|− f nodes that

do not include nodes in S. For every γ ∈ ΓS, denote IS(γ) =
∑

Pj∈γ,Pi∈S cj,i as the incoming capacity
to the set of nodes in S from nodes in γ, and I∗S = minγ∈ΓS IS(γ) be the minimum over all γ ∈ ΓS.

We prove the following upper bound of the consensus capacity:

Theorem 1 For any network G(V,E), the capacity of consensus satisfies

Ccon(G) ≤ I∗ � min
S⊂V,|S|≤ f

I∗S. (1)

Proof: Suppose on contrary that Ccon(G) > I∗. Then there must exist a consensus algorithm A
that achieves consensus on b(t) > tI∗ bits during some period [0, t], with no more than tcij bits
transmitted over link eij for all Pi,Pj ∈ V.

Without loss of generality, assume that I∗ = IS(γ) for S = {P1, · · · ,P|S|}, and γ = {P|S|+1, · · · ,Pn− f }.
Now consider the state machine G′(V′,E′) illustrated in Figure 1. G′(V′,E′) is a subgraph of
G(V,E), with node i ∈ V′ representing Pi ∈ V, and links between nodes in {1, · · · , |S|} and nodes
{n − f + 1, · · · , n} removed from E. The remaining links have the same capacity as in G(V,E). So
nodes in {1, · · · , |S|} receive nothing from nodes {n− f +1, · · · , n}, and nodes {n− f +1, · · · ,Pn} receive
nothing from nodes in {1, · · · , |S|}. In this state machine, every node i runs the correct code that
node Pi in network G(V,E) should run according to algorithm A. Nodes in {1, · · · , |S|} are all given
the same input value y of b(t) bits, and all the other nodes are given the same input value x of b(t)
bits.

Now consider the following two scenarios in G(V,E):

1As a technicality, we assume that the limit exists.
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Figure 1: State machine for the proof of Theorem 1.

1. Nodes in S are fault-free and given input value y; P|S|+1, · · · ,Pn− f are fault-free and given input
value x; Only Pn− f+1, · · · ,Pn are faulty. The f faulty nodes behave as nodes n − f + 1, · · · , n
in G′(V′,E′) by not sending anything to nodes in S and ignoring any incoming information
received from nodes in S.

2. P|S|+1, · · · ,Pn are fault-free and given input value x. Only the |S| ≤ f nodes in S are faulty and
behave as nodes 1, . . . , |S| in G′(V′,E′) by not sending anything to Pn− f+1, · · · ,Pn and ignoring
any incoming information received from Pn− f+1, · · · ,Pn. According to the validity property,
the output value of P|S|+1, · · · ,Pn is x.

Given that algorithm A solves consensus of b(t) bits by time t, the nodes will reach consensus correct
by time t in both scenarios. It is not hard to see that the information observed by P|S|+1, · · · ,Pn− f in
both scenarios is the same as the information observed by node |S|+ 1, · · · , n − f in G′(V′,E′). As a
result, they cannot distinguish between the two scenarios and must decide on the same value. So in
scenario 1, P|S|+1, · · · ,Pn decide on the output value x. Then according to the consistency property,
nodes in S will also decide on the same output value x – the input value of P|S|+1, · · · ,Pn− f .

Now let us fix y in scenario 1 and vary x. Notice that in scenario 1 nodes in S receive no more
than tI∗ bits. Since we assume that b(t) > tI∗, according to the pigeonhole principle, there must be
two values x1 � x2 such that the resulting tI∗ bits received by nodes in S are identical. As a result,
nodes in S must decide on the same output value when P|S|+1, · · · ,Pn− f are given the input value
x1 or x2. However, as we discussed above, output value of nodes in S equals to the input value
of P|S|+1, · · · ,Pn− f . So nodes in S cannot decide on the same output value when P|S|+1, · · · ,Pn− f are
given two different input values x1 and x2, which leads to a contradiction. �

3 Capacity of Complete 4-Node Networks

In this section, we prove by construction that the upper bound from Theorem 1 is tight for complete
4-node networks: 4-node networks in which all directed links have capacity > 0.
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For the clarity of presentation, we use notations slightly different from the previous sections.
We rename the four nodes as A, B, C and D, instead of P1, · · · ,P4. We denote by XY the directed
link from node X to node Y. When it is clear from context, we use XY to also represent the capacity
of the directed link XY. We use the notation X̂Y to represent the pair of directed links XY and YX,
as well as the sum capacity of this pair of links, i.e., X̂Y = XY + YX.

For a 4-node network G with at most 1 faulty node, Theorem 1 states that Ccon(G) is no more
than the minimum of the sum capacity of any two incoming links to a node, i.e.,

Ccon(G) ≤ I∗ = min{BA + CA,BA +DA,CA +DA,AB + CB,AB +DB,CB +DB,
AC + BC,AC +DC,BC +DC,AD + BD,AD + CD,BD + CD}. (2)

We are going to present an algorithm for complete 4-node networks that achieve consensus
throughput arbitrarily close to the upper bound specified by Theorem 1, i.e., it can achieve con-
sensus throughput of R bits per unit time for all R < I∗. Before we present our capacity achieving
algorithm, we first prove the following theorem.

Theorem 2 For any positive value R < I∗, at least three of ÂB, ÂC, ÂD, B̂C, B̂D, ĈD are > R.

Proof: Consider any subset of three nodes, say {A,B,C}. We have

ÂB + ÂC + B̂C = (AB + BA) + (AC + CA) + (BC + CB) (3)
= (BA + CA) + (AB + CB) + (AC + BC) (4)
> 3R. (5)

The inequality follows the fact that BA+CA,AB+CB,AC+BC are all ≥ I∗ > R. It then follows that
at least one of ÂB, ÂC, B̂C is > R.

Without loss of generality, assume that ÂB > R. For the two subsets of nodes {A,C,D} and
{B,C,D}, according to the same argument, at least one of {ÂC, ÂD, ĈD} and one of {B̂C, B̂D, ĈD} are
> R. There are two cases:

• ĈD ≤ R: It follows that one of {ÂC, ÂD} and one of {B̂C, B̂D} are > R. So at least three pairs
of links that are > R.

• ĈD > R: In this case, we have

ÂC + ÂD + B̂C + B̂D = (AC + CA) + (AD +DA) + (BC + CB) + (BD +DB) (6)
= (CA +DA) + (CB +DB) + (AC + BC) + (AD + BD) (7)
> 4R. (8)

So at least one of ÂC, ÂD, B̂C, B̂D is > R. Again, we have three pairs of links that are > R.

This proves the theorem.
�

Then the corollary below immediately follows.
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Corollary 1 There must be a subset of three nodes, say {X,Y,Z}, such that X̂Y, X̂Z > R.

Without loss of generality, we can assume that ÂB and B̂C are > R. Now we can describe our
consensus algorithm. The discussion in this section is not self-contained, and relies heavily on the
material in [4, 6] – please refer to [4, 6] for the necessary background.

In our consensus algorithm, the sequence of information bits at each node are divided into
generations of Rc bits (the choice of c will be elaborated later), and consensus is achieved one
generation after another using the proposed algorithm. Denote X(g) as the input value at node X
for the g-th generation. X(g) is represented as a vector of R packets, each of which consists of c bits.
Similar to [4, 6], we require node X to generate coded packets from X(g) such that every subset of
R coded packets consist linearly independent combinations of the R original packets.

The proposed consensus algorithm has five modes of operation, named Undetected 2=, Unde-
tected 1=1�, Undetected 2�, Detected, and Identified. The Undetected modes operate when no failure
has been detected yet. The Detected mode operates after failure is detected and the location of the
faulty node has been narrowed down to a set of 2 nodes. The Identified mode operates after the
faulty node has been located. Similar to our broadcast algorithm in [4, 6], repeated (and pipelined)
execution of our algorithm will be used to achieve throughput approaching the capacity. At time
0 (the first generation), the network starts in mode Undetected 2=.

Before describing the operations in different modes, we introduce some terminologies to sim-
plify the description.

1. “Node X checks the consistency of the packets it has received”:

Node X tries to find the unique solution for every subset of R coded packets it has received.
If every such subset has a unique solution, and the solutions of all such subsets are identical,
then node X determines these packets to be consistent, otherwise they are inconsistent. Node
X reliably broadcasts a 1-bit notification indicating whether it finds the received packets
consistent or not, using an existing error-free Byzantine broadcast algorithm (e.g. [1, 2]).

2. If X̂Y ≥ R, “the pair of nodes (X,Y) check directly”:

Nodes X and Y each generates XY and YX coded packets from X(g) and Y(g), and exchange
these packets over links XY and YX. Then node X checks if the packets received on link YX
are consistent with its own input value X(g), if yes, it reliably broadcasts (using an existing
error-free Byzantine broadcast algorithm) a 1-bit notification “=” or “�” indicating whether
the packets received from Y are consistent with X(g) or not. Similar action is taken by node
Y. If both notifications from X and Y are “=”, then we say X(g) ≡ Y(g); otherwise we say
X(g) � Y(g).

Since X̂Y > R, it can be concluded that if both nodes X and Y are fault-free, X(g) ≡ Y(g) if
and only if X(g) = Y(g), i.e., the result of the checking reflects the relationship between X(g)
and Y(g) correctly.

3. “The pair of nodes (X,Y) check through node Z”:

Nodes X and Y each generates XY,XZ and YX,YZ coded packets from X(g) and Y(g), and
send these packets over links XY, XZ, YX and YZ. Node Z forwards as many coded packets
received from node X as possible to node Y, and forwards as many packets received from
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node Y as possible to node X. Then each of nodes X, Y and Z first checks the consistency of
the packets have received from the other two nodes, according to the description in point
1. If any one of the three nodes finds the received packets inconsistent, failure is detected.
Otherwise, node X then checks if the unique solution of the received packets equals to its
own input value X(g). Then it broadcasts a 1-bit notification “=” or “�” indicating whether
the packets received from Y and Z are consistent with X(g) or not. Similar action are taken

at node Y. If both notifications from nodes X and Y are “=”, we say X(g) Z
= Y(g); otherwise

we say X(g)
Z
� Y(g).

It is not hard to show that

XY + YX +min{XZ,ZY} +min{YZ,ZX} (9)
= XY + YX +min{XZ + YZ,XZ + ZX,ZY + YZ,ZY + ZX} (10)
= min{XY + YX + (XZ + YZ), XY + XZ + (YX + ZX), (11)

YX + YZ + (XY + ZY), (YX + ZX) + (XY + ZY)} (12)
≥ R. (13)

The inequality follows from the fact that (XZ + YZ), (YX + ZX) and (XY + ZY) all > R.

So if all three nodes X, Y and Z are fault-free, X(g) Z
= Y(g) if and only if X(g) = Y(g), i.e.,

the result of the checking through node Z reflects the relationship between X(g) and Y(g)
correctly.

4. “The pair of nodes (X,Y) check value X′(g) and Y(g) through node Z”:

As we will see later, this operation is performed only when it has been determined that the
input of node X (or Y) is different from the inputs of other nodes. Then all node X has to do is
to make sure the packets it receives are consistent with the other nodes. In this case, node X
first solves the packets it has received for a unique solution X′(g). Then it checks X′(g) with
node Y through node Z according to the operation in point 3, as if X′(g) is its own input.

3.1 Mode Undetected 2=

For the g-th generation, the algorithm operates in this mode if no failure has been detected so far,
and the inputs at nodes A, B and C appear to be identical so far, i.e., A(h) ≡ B(h) and B(h) ≡ C(h) for
all h < g. The first generation operates in this mode too. Mode Undetected 2= proceeds in rounds
as described below:

1. The two pairs of nodes (A,B) and (B,C) check directly.

2. If [A(g) ≡ B(g) and B(g) � C(g)] or [A(g) � B(g) and B(g) ≡ C(g)]:

The algorithm aborts the current generation, switches to mode Undetected 1=1�, and restarts
the current generation with the new mode. Following generations will also operate in the
new mode.
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3. If A(g) � B(g) and B(g) � C(g):

The algorithm aborts the current generation, switches to mode Undetected 2�, and restarts
the current generation with the new mode. Following generations will also operate in the
new mode.

4. If A(g) ≡ B(g),B(g) ≡ C(g):

The pair of nodes (A,C) check through node D.

(a) If A(g)
D
� C(g):

It contradicts with the condition A(g) ≡ B(g),B(g) ≡ C(g). So failure is detected. A full-
broadcast similar to the extended round 3 in [6] is performed to diagnose the system.
The location of the faulty node will be either narrowed down to a subset of 2 nodes,
or correctly identified by the fault-free nodes. Then the algorithm switches to mode
Detected or Identified, for the following generations. In particular, if the faulty node is
narrowed down to a subset of 2 nodes, then switch to mode Detected; If the faulty node
has been identified, then switch to mode Identified.

(b) If A(g) D
= C(g):

Node B sends BD coded packets generated from B(g) to node D on link BD. Node D
checks the consistency of the packets it has received from nodes A, B and C.

i. If node D finds the packets consistent, it broadcasts this finding and:
Nodes A, B and C decide on the output of the current generation as A(g), B(g) and
C(g), respectively. Node D decides on the unique solution of the received packets.

ii. Otherwise, failure is detected. Then the full-broadcast is performed to diagnose the
failure, and the system switches to mode Detected or Identified according to the
outcome of the diagnosis.

Theorem 3 (Correctness of Mode Undetected 2=) If the fault-free nodes decide on an output for the
g-th generation in mode Undetected 2=, then the decided outputs are identical and equal to the input of this
generation at the fault-free nodes in set {A,B,C}.

Proof: As we have seen, in mode Undetected 2=, the nodes can decide on an output only if

A(g) ≡ B(g), B(g) ≡ C(g) and A(g) D
= C(g). It is not hard to see that, at least one of the sets {A,B},

{B,C}, and {A,C,D} consists of only fault-free nodes. Then no matter which node is faulty, there are
at least 2 fault-free nodes in the set {A,B,C}, and they must have identical input values for the g-th
generation. So in Step 4(b)i, the fault-free nodes in {A,B,C} decide on identical outputs.

In addition, in the case node D is fault-free, it receives at least R coded packets from the fault-
free nodes in the set {A,B,C} by 2 and the fact that R < I∗, of which the unique solution is the input
of the fault-free nodes in {A,B,C}. As a result, if node D does not detect a failure, its output value
of the g-th generation equals to the input of the other fault-free nodes. �
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3.2 Mode Undetected 1=1�

For the g-th generation, the algorithm operates in this mode if no failure has been detected, and
either (1) A(h) ≡ B(h) for all h ≤ g and B(h) � C(h) for some h ≤ g; or (2) B(h) ≡ C(h) for all h ≤ g
and A(h) � B(h) for some h ≤ g.

Without loss of generality, let us assume A(h) ≡ B(h) for all h ≤ g and B(h) � C(h) for some
h ≤ g. Mode Undetected 1=1� proceeds as follows:

1. The pair of nodes (A,B) check directly.

2. If A(g) � B(g):

The algorithm aborts the current generation, switches to mode Undetected 2�, and restarts
the current generation with the new mode. Following generations will also operate on the
new mode.

3. If A(g) ≡ B(g):

The pair of nodes (A,B) check through node C. Notice that no more communication on over
links ÂB is needed since they can use the packets they have exchanged directly in step 1 for
the purpose of checking through node C.

(a) If A(g)
C
� B(g):

It contradicts with the condition A(g) ≡ B(g). So failure is detected. Then the full-
broadcast is performed to diagnose the failure, and the system switches to mode De-
tected or Identified according to the outcome of the diagnosis.

(b) If A(g) C
= B(g):

Denote C′(g) as the unique solution of the packets node C has received from nodes A
and B. As we will show in the proof of Theorem 4, C′(g) ≡ B(g). Then the pair of nodes
(A,C) check A(g) and C′(g) through node D.

i. If A(g)
D
� C′(g):

It contradicts with the condition A(g) ≡ B(g) and C′(g) ≡ B(g). So failure is de-
tected. Then the full-broadcast is performed to diagnose the failure, and the system
switches to mode Detected or Identified according to the outcome of the diagnosis.

ii. If A(g) D
= C′(g):

Node B sends BD coded packets generated from B(g) to node D. Node D then checks
the consistency of the packets it has received.
A. If node D finds the packets consistent:

Nodes A, B and C decide on A(g), B(g) and C′(g) respectively. Node D decides
on the unique solution of the received packets.

B. Otherwise, failure is detected. Then the full-broadcast is performed to diagnose
the failure, and the system switches to mode Detected or Identified according
to the outcome of the diagnosis.
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Theorem 4 (Correctness of Mode Undetected 1=1�) If the nodes decide on an output for the g-th
generation in mode Undetected 1=1�, then the decided outputs are identical and equal to the input of this
generation at the fault-free node(s) in set {A,B} .

Proof: In mode Undetected 1=1�, the nodes can decide on an output only if A(g) ≡ B(g), A(g) C
=

B(g) and A(g) D
= C′(g). Notice that the number of coded packets exchanged between nodes B and

C in step 3 is
BC +min{AC,CB} = min{BC + AC,BC + CB} > R. (14)

The inequality is due to BC + AC > R and BC + CB > R. So B(g) ≡ C′(g). Similar to the proof of
Theorem 3, after nodes (A,C) check A(g) and C′(g) through node D, it can be sure that the values
A(g),B(g),C′(g) are identical at the fault-free nodes in set {A,B,C}. Then the rest follows the same
proof of Theorem 3. �

3.3 Mode Undetected 2�

For the g-th generation, the algorithm operates in this mode if no failure has been detected,
A(h) � B(h) for some h ≤ g, and B(h) � C(h) for some h ≤ g. Mode Undetected 2� proceeds as
follows:

1. The pair of nodes (A,C) check through node B and node D.

2. If A(g)
B
� C(g) and A(g)

D
� C(g):

In this case, if nodes A and C are both fault-free, then A(g) � C(g) must be true. Otherwise,
if node A is faulty, then nodes B and C are both fault-free and C(h) � B(h) for some h ≤ g;
Similar if node C is faulty. So no matter which node is faulty, it can now be concluded with
certainty that the fault-free nodes do not all have identical input value. So the algorithm can
decide on a default value and terminate.

3. If A(g) B
= C(g) and A(g)

D
� C(g); or A(g)

B
� C(g) and A(g) D

= C(g):

Failure is detected. Then the full-broadcast is performed to diagnose the failure, and the
system switches to mode Detected or Identified according to the outcome of the diagnosis.

4. If A(g)
B
= C(g) and A(g)

D
= C(g): Node B forwards as many packets received from nodes A

and C as possible to node D on link BD. Node D forwards as many packets received from
nodes A and C as possible to node B on link DB. Then nodes B and D check the consistency
of the packets they have received.

(a) If both nodes B and D find the received packets consistent:
Nodes A and C decide on A(g) and C(g) respectively. Nodes B and D decide on the
unique solution of the received packets.

(b) Otherwise, failure is detected. Then the full-broadcast is performed to diagnose the
failure, and the system switches to mode Detected or Identified according to the outcome
of the diagnosis.
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Theorem 5 (Correctness of Mode Undetected 2�) If the nodes decide on an output for the g-th gener-
ation in mode Undetected 2�, then the decided outputs are identical and equal to the input of this generation
at the fault-free node(s) in set {A,C} .

Proof: In mode Undetected 2�, the nodes can decide on an output only if A(g) B
= C(g) and

A(g) D
= B(g). Similar to the proof of Theorem 4, when nodes (A,C) check through node B, node B

exchanges > R packets with each one of nodes A and C. If we denote B′(g) as the unique solution
of the packets node B has received, it follows A(g) ≡ B′(g) and B′(g) ≡ C(g). Then the rest follows
the same proof of Theorem 3. �

3.4 Mode Detected

The algorithm operates in this mode if failure has been detected and the location of the faulty node
is narrowed down to a subset of two nodes. Without loss of generality, assume that the faulty node
has been narrowed down to the set {B,D}. It is worth noting that in this case, all fault-free nodes
know that nodes A and C must be fault-free.

1. The pair of nodes (A,C) check through node B and node D.

2. If A(g)
B
� C(g) and A(g)

D
� C(g):

In this case, fault-free nodes A and C must have different input values. So the algorithm can
decide on a default value and terminate.

3. If A(g) B
= C(g) and A(g)

D
� C(g); or A(g)

B
� C(g) and A(g) D

= C(g):

Failure is detected. Then the full-broadcast is performed to diagnose the failure, and the
system switches to mode Identified according to the outcome of the diagnosis.

4. If A(g) B
= C(g) and A(g) D

= C(g):

Nodes A and C decide on A(g) and C(g) respectively. Nodes B and D decide on the unique
solution of the packets received from nodes A and C. The fault-free node of {B,D} has received
enough (R) packets since AB + CB,AD + CD > R.

The proof of correctness of this mode is trivial. So we do not include it in this report.

3.5 Mode Identified

The algorithm operates in this mode if failure has been detected and the location of the faulty node
is narrowed down to a specific node. Without loss of generality, assume that the faulty node has
been identified as node B. In this case, nodes A, C and D are sure that they are fault-free.

1. The pair of nodes (A,C) check through node D.
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2. If A(g)
D
� C(g):

In this case, fault-free nodes A and C must have different input values. So the algorithm can
decide on a default value and terminate.

3. If A(g) D
= C(g):

Nodes A and C decide on A(g) and C(g) respectively. Node D decides on the unique solution
of the packets received from nodes A and C.

The proof of correctness of this mode is trivial. So we do not include it in this report.

3.6 Throughput Analysis

The throughput analysis of the proposed Byzantine consensus algorithm for complete 4-node
networks are similar to the one for our Byzantine broadcast algorithms in [4, 6]. It is not hard to see
that, in every generation, the usage of each link for communications of data packets is within the
limit of link capacity. Communication overhead includes: reliable broadcast of 1-bit notifications,
dropping existing generations when the algorithm switches between modes, and the diagnosis
process after failure is detected.

Similar to [6], each reliable broadcast of 1-bit notifications uses a constant number of bits
on each link, independent of Rc – the number of bits to agree per generation. Since there are a
constant number of 1-bit notifications per generation, the reduction in capacity from the notification
overhead can be made arbitrarily close to 0 by increasing c. Besides, there will be at most 4 mode
transitions and 2 diagnosis process throughput the infinite time horizon. So the reduction in
capacity from mode transitions and full-broadcast diminishes to 0 as time goes to∞.

Similar to [6], the proposed consensus algorithm can achieve any throughput R < I∗ in complete
4-node networks by pipelining. Together with Theorem 1, we then can conclude that Ccon = I∗ for
complete 4-node networks.
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