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Abstract

The problem of approximating convex bodies by polytopes is an important and well studied prob-
lem. Given a convex body K in Rd, the objective is to minimize the number of vertices (alternatively,
the number of facets) of an approximating polytope for a given Hausdorff error ε. Results to date
have been of two types. The first type assumes that K is smooth, and bounds hold in the limit as
ε tends to zero. The second type requires no such assumptions. The latter type includes the well
known results of Dudley (1974) and Bronshteyn and Ivanov (1976), which show that in spaces of
fixed dimension, O((diam(K)/ε)(d−1)/2) vertices (alt., facets) suffice. Our results are of this latter
type.

In our first result, under the assumption that the width of the body in any direction is at least
ε, we strengthen the above bound to eO(

p

area(K)/ε(d−1)/2). This is never worse than the previous
bound (by more than logarithmic factors) and may be significantly better for skinny bodies. Our
analysis exploits an interesting analogy with a classical concept from the theory of convexity, called
the Mahler volume. This is a dimensionless quantity that involves the product of the volumes of a
convex body and its polar dual.

In our second result, we apply the same machinery to improve upon the best known bounds for
answering ε-approximate polytope membership queries. Given a convex polytope P defined as the
intersection of halfspaces, such a query determines whether a query point q lies inside or outside P ,
but may return either answer if q’s distance from P ’s boundary is at most ε. We show that, without
increasing storage, it is possible to reduce the best known search times for ε-approximate polytope
membership significantly. This further implies improvements to the best known search times for
approximate nearest neighbor searching in spaces of fixed dimension.

1 Introduction

Approximating convex bodies by polytopes is a fundamental problem, which has been extensively studied
in the literature. (See (6) for a recent survey.) The problem is to determine the minimum number of
vertices n (alternatively, the minimum number of facets) of an approximating polytope for a given error
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ε > 0. Error is commonly measured through the Hausdorff distance (6). Given a convex body K in
d-dimensional space, we say that a polytope P ε-approximates K if the Hausdorff distance between K
and P is at most ε. Throughout this paper, we will restrict attention to the Hausdorff metric and to
Euclidean space of constant dimension d.

Although much work has been done on the optimization problem of finding the “best” approximating
polytope for a specific input according to various criteria (see, for example, (9; 13; 17; 22)), our interest
is in establishing bounds on the combinatorial complexity of approximating general convex bodies. Ap-
proximation bounds are typically expressed as the number n of vertices or facets of a convex polytope
needed to achieve a certain approximation error ε for a given convex body K. Results are of two common
types. In both cases, it is shown that there exists ε0 > 0, and the bounds hold for all ε ≤ ε0. In the first
type, which we call nonuniform bounds, the value of ε0 depends on K (for example, on K’s maximum
curvature). Such bounds are often stated as holding “in the limit” as ε approaches zero, or equivalently
as n approaches infinity. In the second type, which we call uniform bounds, the value of ε0 is independent
of K.

As an example of a nonuniform bound, consider the following result due to Gruber (14). Let ∂K
denote K’s boundary. For a point x ∈ ∂K, let κ(x) denote the Gaussian curvature at x, and let dσ(x)
denote the ordinary differential surface element at x. Under certain smoothness conditions on K, Gruber
showed that there exists an approximating polytope with n vertices, where

n = O

(
1

ε(d−1)/2

∫
∂K

√
κ(x)dσ(x)

)
,

as ε → 0. The constant hidden in the O-notation depends only on dimension. This bound also applies
to the number of facets n in an approximating polytope. Recently, Clarkson (10) has extended these
results and shown a similar bound on the triangulation complexity for more general manifolds that may
not represent the boundary of a convex body. Other examples of nonuniform bounds can be found in
(15; 21; 26; 27).

In contrast, examples of uniform bounds include Dudley (12) and Bronshteyn and Ivanov (5). These
bounds hold without any smoothness assumptions, and they hold even for polytopes. Dudley showed
that, for ε ≤ 1, any convex body K can be ε-approximated by a polytope P with O((diam(K)/ε)(d−1)/2)
facets. Bronshteyn and Ivanov showed the same bound holds for the number of vertices. These bounds
are tight up to constant factors (e.g., when K is a ball). Again, constants hidden in the O-notation
depend only on d. These results have many applications, for example, in the construction of coresets (1).
In this paper, we consider only uniform bounds.

1.1 Our Results

We present two main results, which arise by replacing the approximation bounds of both Dudley and
Bronshteyn and Ivanov with bounds that are more sensitive to the local geometry of the convex body.
Our first result shows that the existing bounds can be significantly improved for the case when K has
directional width smaller than the diameter along some directions, that is, when K is skinny. It seems
intuitive that skinny bodies should be easier to approximate, but we are unaware of any uniform bounds
in the literature that capture this fact. Under the reasonable assumption1 that the width of the body
in any direction is at least ε, we show that it is possible to construct an ε-approximating polytope P
in which the number of facets2 is Õ(

√
area(K)/ε(d−1)/2), where area(K) denotes the surface area of K.

Although we do not include it here, a similar bound can be proved for the number of vertices. Since
area(K) is bounded by O(diam(K)d−1), our bound is as good as Dudley’s for fat convex bodies (up to
logarithmic factors), and it is superior for skinny ones. These results are presented in Section 4, with
the main result given in Theorem 4.1.

Our second result involves approximate polytope membership queries. Given a convex polytope
P , defined as the intersection of halfspaces, an ε-approximate polytope membership query determines

1Without this assumption it is impossible to achieve area-based bounds. For example, given a fat d-dimensional convex
body, embed it in dimension d+2 and take its Minkowski sum with a ball of radius δ � ε. The surface area of the resulting
body can be made arbitrarily small as a function of δ, but clearly the complexity of any approximating body is not smaller
than for the original body. Conversely, if the body is of width less than ε in some direction, then by projecting the body
onto a hyperplane orthogonal to this direction, we can reduce the problem to a convex approximation problem in one lower
dimension. This can be repeated until the body’s width is sufficiently large, after which our bounds apply.

2Throughout, we treat ε as an asymptotic quantity and use eO to indicate that logarithmic factors in ε are ignored.
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whether a query point q lies inside or outside P , but it may return either answer if q’s distance from P ’s
boundary is at most ε. Polytope membership queries find applications in many geometric areas, such
as linear programming queries, ray shooting, nearest neighbor searching, and the computation of convex
hulls (7; 8; 18; 20; 23). In dimension d ≤ 3, it is possible to build a data structure of linear size that can
answer such queries in logarithmic time (11). In higher dimensions, however, all exact data structures
with roughly linear space take Õ(n1−1/bd/2c) query time (19), which, except in small dimensions, is little
better than brute-force search.

Assuming that P has unit diameter, a straightforward application of Dudley’s method allows such
queries to be answered in O(1/ε(d−1)/2) storage and query time (by a brute-force enumeration of the
approximating halfspaces). We recently showed that there is a very simple hierarchical search algorithm
that achieves the same storage bound but improves the query time to O(1/ε(d−1)/4), thus reducing the
exponent by half (2). In this paper, we show that, with the same storage bounds, it is possible to again
reduce the exponent in the query time by half, to O(1/ε(d−1)/8). We also present a space-time tradeoff
that improves query times to the square root of the previous bounds throughout the spectrum. The
results are summarized in Figure 1(a).
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Figure 1: The multiplicative factor in the exponent of the 1/ε term for (a) polytope membership queries
and (b) approximate nearest neighbor (ANN) queries. The O(1) term in the exponent corresponds to a
constant that does not depend on d.

It is notable that the improvement involves no change to the simple data structure of (2), just a
better analysis of its complexity. These results are presented in Section 5, and the main results is given
in Theorem 5.1. As shown in (2), these results provide immediate improvements to the best space-time
tradeoffs for approximate nearest neighbor searching (see Figure 1(b)).

1.2 Overview of Methods

Our results stem from a locally sensitive approach to convex approximation. Our area-based bound on
the complexity of convex body approximation comes about through a consideration of the complexity
of approximating small patches on the boundary of the convex body, called caps. Given a halfspace
H whose bounding hyperplane intersects K, we define a cap to be the portion of ∂K that is contained
within H. The width of the cap is the maximum distance between any point on the cap and the bounding
hyperplane of H, and an ε-cap is a cap of width ε. A set of points is said to stab all ε-caps if every
ε-cap has a nonempty intersection with the set. Bronshteyn and Ivanov (5) observed that the convex
hull of any set of points that stabs all ε-caps yields an ε-approximation of K. Assume that K has unit
diameter, and let S be the (d − 1)-dimensional sphere of radius 3 centered at the origin, which we call
the Dudley hypersphere. (Any sufficiently large constant radius suffices.) We may associate any ε-cap C
with the surface patch on S consisting of points whose closest point on ∂K lies on C; we call this the
Voronoi patch of C.
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Our key geometric observation is that the product of the area of any ε-cap and its associated Voronoi
patch must be large. Intuitively, if the surface area of the ε-cap is small, then its curvature must be
high, and so its associated Voronoi patch must have relatively large area. We exploit this observation to
efficiently stab all the ε-caps using a two-pronged strategy. We stab ε-caps that have large surface area
by selecting points randomly on the boundary of K using density proportional to the surface area. We
stab the ε-caps that have small surface area by selecting points randomly on the Dudley hypersphere
(again using density proportional to the surface area), and then choosing their nearest neighbor on ∂K.
We will see in Section 4 that this allows us to stab all the ε-caps with Õ(

√
area(K)/ε(d−1)/2) points.

Our approach to answering polytope membership queries for a convex body K is based on a quadtree
search, where the basic problem involves approximating the intersection of the boundary of K with a
single quadtree box. Our improved bounds for polytope membership queries follow as a consequence of
establishing improved bounds for such approximations, whenever the diameter of the quadtree box is at
least

√
ε. Roughly speaking, we show that if A1 denotes the area of ∂K ∩ b, and A2 denotes the area

of the associated Voronoi patch, then ∂K ∩ b can be ε-approximated using O(
√

A1A2/ε(d−1)/2) facets.
From this it is not hard to show that for a box b of diameter

√
ε, if Dudley’s method uses m facets to

ε-approximate ∂K ∩ b, then O(
√

m) facets suffice. We then exploit this fact in presenting an improved
analysis of the search algorithm of (2).

The geometric underpinnings needed to show that the product of areas is bounded is presented in
Section 3. We introduce a dual notion of cap, called a dual cap, and we explore the relationship between
the areas of surface caps and their Voronoi patches. We demonstrate an interesting parallel between
these concepts and a classical notion from the theory of convexity, called the Mahler volume (4; 25).
The Mahler volume of a convex body is a dimensionless quantity that involves the product of the body’s
volume and the volume of its polar body. We demonstrate that caps and their Voronoi patches exhibit
a similar polar relationship.

The improvements presented here do not arise simply by a more careful application of the analysis
given in (2). The analysis given there relied on a direct application of Dudley’s and Bronshteyn and
Ivanov’s bounds. The key to the improvements of this paper is the development of uniform bounds that
are sensitive to local geometry. Sensitivity to local geometry has been applied in asymptotic contexts
(under the assumption of smoothness) by Gruber (14) and Clarkson (10). It has also been applied for
uniform bounds, but only in the two-dimensional setting by Rote (24). The techniques developed here
provide powerful tools for analyzing the complexity of approximating arbitrary convex bodies on a local
level, and we believe that these techniques will be of wider applicability.

2 Preliminaries

Let K denote a convex body in Rd, that is, a nonempty, closed, bounded convex set. Let ∂K denote
K’s boundary. Given δ > 0, we say that a convex body is δ-smooth if at each point q ∈ ∂K there exists
a ball of radius δ that lies entirely within K and contains q on its boundary. We say that K is smooth
if it is δ-smooth for some δ > 0. If K is smooth, then for any q ∈ ∂K, there is a unique supporting
hyperplane for K containing q, which we denote by h(q).

Given any bounded set X in Rd, which for us will be a convex body, we use vol(X) to denote its
d-dimensional Hausdorff measure. Given a (d− 1)-dimensional manifold Y in Rd, for example, a surface
patch on a convex body, we let area(Y ) denote its (d−1)-dimensional Hausdorff measure. Given a convex
body X in Rd, we use area(X) as a shorthand for area(∂X). We say that a polytope P ε-approximates
K if the Hausdorff distance between K and P is at most ε.

Let H be a halfspace whose bounding hyperplane intersects K. The intersection K ∩H is called the
cap generated by H. Since we are interested in the surface of K, henceforth we will use the term cap
in a nonstandard sense as the portion of the boundary of the cap that coincides with ∂K (in essence,
the outer skin of the cap). Let q denote a point of the cap of maximum distance from ∂H. By local
maximality, h(q) and ∂H are parallel to each other, and the distance between them is called the width
of the cap. A cap of width ε is called an ε-cap. We refer to q as the cap’s apex, and K ∩ ∂H as the cap’s
base, which we denote by Γq. By smoothness, for each q ∈ ∂K, there is a unique ε-cap having q as its
apex, which we denote by Cq (see Fig 2(a)).

Given any point q external to K, the dual cap3 generated by q is the topological closure of the
3The term “dual cap” arises from the observation that, given an inclusion-reversing dual transformation, if we let K∗
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q

K

Γq

Dq

(b)

q
h(q)

K

(a)

h(q′)

H
ε

Cq

Γq

q′
ε

Figure 2: Caps and dual caps.

intersection of all halfspaces that contain K but not q. As before, since we are interested in the surface
of K, henceforth we use the term dual cap, denoted by Dq, to refer to the portion of the boundary of the
dual cap that coincides with ∂K (which can be visualized as the subset of points of ∂K illuminated by
a light source at q). Let q′ be the closest point of K to q (see Fig 2(b)).

The distance from q to q′ is called the width of the dual cap. A dual cap of width ε is called an
ε-dual cap. The point q is the dual cap’s apex, and h(q′) ∩ conv({q} ∪ K) is the dual cap’s base, which
we denote by Γq.

q

Dq

(b)(a)

Vor(Dq) ∩H(q)

S
K

X

Vor(X) ∩ S

S

h(q′)
q′

H(q)

K

Figure 3: Voronoi cells: (a) associated with a surface patch X and (b) a dual cap Dq and the associated
Voronoi cell on H(q).

Given a surface patch X ⊆ ∂K, let Vor(X) denote the set of points exterior to K whose closest point
on ∂K lies within X. Let S denote the (d−1)-dimensional sphere of radius 3 centered at the origin, which
we call the Dudley hypersphere. (The name is inspired by the sphere used in polytope approximation
construction (12). The value 3 can be replaced by any constant that is at least a constant factor larger
than 1 + ε.) Throughout, we assume that K has been scaled and translated to lie within the ball of unit
radius centered at the origin. It follows that the distance from any point of S to its closest point of K is
at least 2. Given a cap or dual cap X, Vor(X) ∩ S is the surface patch consisting of points of S whose
closest point on ∂K lies within X (see Figure 3(a)).

Because we are interested in the local geometry of K’s boundary, it will be useful to limit the diameter
of caps and dual caps. Given δ > 0, define Bδ(q) to be a closed Euclidean ball of radius δ centered at
q. Define the δ-restriction of Cq, denoted C δ

q , to be Cq ∩Bδ(q). Similarly, define the δ-restriction of Dq,
denoted D δ

q , to be Dq ∩ Bδ(q).

3 Caps, Dual Caps, and Areas

In this section we present the principal geometric underpinnings of our approximation results. In par-
ticular, we consider the relationship between the surface areas of both restricted and unrestricted ε-dual
caps and the surface areas of their associated Voronoi patches on S. As mentioned in the introduction,
an ε-dual cap of small area must have high curvature, and hence its Voronoi patch on the Dudley hyper-
sphere should be large. We will establish this relationship for dual caps by providing a lower bound on
the product of the areas of the ε-dual cap Dq and its associated Voronoi patch, Vor(Dq) ∩ S. Analogous

and q∗ be the respective duals of K and q, the dual cap of K generated by q is the dual of the cap of K∗ generated by q∗.

5



results can be shown for caps, but dual caps suffice for our purposes. Our analysis will reveal an interest-
ing similarity between these products and the Mahler volume of a convex body (4; 16; 25). In Section 3.1
we start with the simpler unrestricted case, and in Section 3.2 we extend this to the restricted case.

3.1 Area Product Bounds: Unrestricted Case

In this section we limit attention to unrestricted dual caps. Rather than dealing with spherical patches,
it will be easier to start with hyperplane patches and then generalize to the spherical case. Given a point
q external to K, let q′ be the closest point on ∂K to q, and recall that h(q′) is the unique supporting
hyperplane at q′. Let H(q) be a hyperplane that is parallel to h(q′), tangent to the Dudley hypersphere
S, and on the same side of K as h(q′) (see Figure 3(b)). We call this the Dudley hyperplane for q. We
prove two bounds regarding the product of the area of dual caps and their Voronoi patches, one for the
Dudley hyperplane and one for the Dudley hypersphere.

Lemma 3.1 Let 0 < ε ≤ 1. Let K be a smooth, convex body that lies within a unit ball in Rd, and let q
be a point at distance ε from K. Let Dq denote the ε-dual cap generated by q. Then there is a constant
c, depending only on dimension, such that:

(i) area(Dq) · area(Vor(Dq) ∩ H(q)) ≥ c · εd−1, where H(q) is the Dudley hyperplane for q,
(ii) if K is ε-smooth, then area(Dq) · area(Vor(Dq) ∩ S) ≥ c · εd−1, where S is the Dudley hypersphere

for K.

Before considering Vor(Dq)∩H(q), it will be helpful to define a body that is related to the polar dual
of the base Γq. The parallel hyperplanes h(q′) and H(q) can each be identified with Rd−1, by taking the
origin to be located at the orthogonal projection of q onto each hyperplane. (In the case of h(q′) this is
q′.) The coordinate axes for both are taken to be any consistent set of d − 1 orthonormal vectors lying
parallel to these hyperplanes. Since Γq is the intersection of a (d − 1)-dimensional hyperplane with a
bounded convex set that contains q′ (the convex hull of K ∪ {q}), we may view it as a convex body in
Rd−1 that contains the origin. Let ‖v‖ denote the Euclidean length of v ∈ Rd−1. For each v ∈ Γq, we
define hv to be a halfspace in Rd−1 containing the origin whose bounding hyperplane is orthogonal to v
and at distance ε/‖v‖ from the origin (on the same side of the origin as v).

Define Γ̂q =
∩

v∈Γq
hv, which we treat as a subset of H(q). This body is bounded, convex, and

contains the origin. Rather than analyzing Vor(Dq) ∩ H(q) directly, we will focus on Γ̂q. First, we show
that Γ̂q is a subset of Vor(Dq) ∩ H(q).

q

h′(q′)
ε

p′

(b)

ℓ ≥ 1

t′x w

ℓε/t′x

hv

K ′

ε/t′x

q

h′(q′)
q′

ε

H ′(q)
p′

t

t′

(a)

ℓ ≥ 1

w

K ′

Dq

Vor(Dq) ∩H ′(q)

H ′(q)

Tq

Vor(Tq) ∩H ′(q)

tq′
t′

Figure 4: Proof of Lemma 3.2.

Lemma 3.2 Given the preconditions of Lemma 3.1, Γ̂q ⊆ Vor(Dq) ∩ H(q).
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Proof : Consider any point w ∈ ∂K \Dq. It suffices to show that w cannot be the closest point of ∂K to
any point p ∈ Γ̂q. It will simplify matters to consider the problem in a 2-dimensional setting. Consider
the unique plane Φ containing the points q, q′, and w. For the sake of visualization, we identify this
plane with R2 so that q′ is the origin and the axes are positioned so that q lies on the y-axis at distance ε
above q′ (see Figure 4(a)). Let K ′, h′(q′) and H ′(q) denote the respective intersections of K, h(q′), and
H(q) with this plane, and let p′ denote the orthogonal projection of p onto Φ. Without loss of generality,
we may assume that w lies in the positive-x halfplane. Let t be the point of tangency of ∂K ′ with respect
to q in this halfplane. Let t′ denote the point at which the line qt intersects h′(q′).

Clearly, any point of ∂K ′ can be closest to some point of Γ̂q only if it lies on the upper hull of K
(that is, the portion of ∂K ′ visible from a point at y = +∞). Throughout, we restrict attention to the
portion of the upper hull of K ′ that lies in the positive-x halfplane.

Given a point u ∈ Φ, let ux and uy denote its coordinates relative to the above coordinate system. Let
v denote the horizontal vector from q′ to t′, whose length is clearly t′x. By viewing v as a vector in Rd−1

on the plane h(q′), it contributes a halfspace hv to the body Γ̂q, which is bounded by a hyperplane that
is orthogonal to v (and hence orthogonal to Φ) and lies at distance ε/t′x from the orthogonal projection
of q onto H ′(q) (see Figure 4(b)).

To complete the proof, we will show that w is not the closest point on ∂K ′ to p′. To see why this
suffices, observe that the squared Euclidean distance from p to any point on Φ can be decomposed into
two components, one parallel to Φ and one orthogonal to Φ. The orthogonal component is the same for
all points on Φ, and so may be ignored when comparing distances. The parallel component is determined
by the distances to p′. Thus, if w is not the closest point on ∂K ′ to p′, then w is not the closest point
of ∂K to p.

Since K ′ is convex and smooth, there is a support-based condition for any point u ∈ ∂K ′ to be the
closest point on ∂K ′ to a point p′ /∈ K ′. In particular, the line segment up′ must be perpendicular to
the (unique) supporting hyperplane to K ′ at u. To apply this, consider the convex body conv({q}∪K ′),
and let Tq denote the surface patch on this boundary consisting of the union of closed line segments
joining q to its points of tangency on K ′. (We just show the right-side tangent in Figure 4(b).) Based
on the support-based criterion given above, is easy to see that, with respect to the body conv({q} ∪K),
Vor(Tq)∩H(q) is the same as Vor(Dq)∩H(q). (Vor(Tq)∩H(q) is shown as a solid line segment on H(q)
in Figure 4(b). Although Tq is not smooth, it can be made so by taking its Minkowski sum with a ball
of infinitesimally small radius.)

To show that w is not the closest point on ∂K ′ to p′, we will show that ‖qp′‖ < ‖wp′‖. To this
end, consider a ray in Φ emanating from q in the direction of an outward normal to the segment qt.
The absolute value of the slope of the line qt is ε/t′x, and therefore, the slope of this ray is t′x/ε. Let `
denote the distance from q to H(q). Since each point of K is at distance at least 2 from H(q), we have
` ≥ 2 − ε ≥ 1, it follows that this ray intersects H ′(q) at a distance of `ε/t′x from the y-axis, which is to
the right of the point at which hv’s bounding hyperplane intersects H ′(q). Since p ∈ hv, p′ lies to the
left of this ray. It is easy to see, however, that, restricted to the positive-x halfplane, any point lying to
the left of the ray is closer to q than to any point lying below the line qt. Since w /∈ Dq, it lies below qt,
and therefore, we achieve the desired conclusion that w is not the closest point on ∂K ′ to p′. ut

In order to bound the product of the areas of Γq and Γ̂q, we will demonstrate the relationship between
Γ̂q and the polar dual of Γq, and then apply a well known result from the theory of convexity, called
the Mahler volume. First, we recall some facts about the polar transform. Given a vector v ∈ Rd other
than the origin, define polar(v) to be the halfspace that contains the origin whose bounding hyperplane
is orthogonal to v and at distance 1/‖v‖ from the origin (on the same side of the origin as v). Generally,
given r > 0, define polarr(v) to be the halfspace at distance r2/‖v‖ (see Figure 5(a)). Given a convex
body K that contains the origin in its interior, define polarr(K) to be the intersection of the halfspaces
polarr(v), for all v ∈ K (see Figure 5(b)). Clearly, polarr(K) is a scaled copy of polar(K) by a factor of
r2.

The bodies polar√ε(K) and Γ̂q are bounded by the same set of halfspaces, and so we have:

Lemma 3.3 Given a smooth convex body K and an exterior point q, Γ̂q = polar√ε(Γq).

Given the above results, we can now prove the first part of Lemma 3.1. Recall that 0 < ε ≤ 1.
Since Γq is a subset of the orthogonal projection of Dq onto the plane h(q′), area(Γq) ≤ area(Dq). By
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Figure 5: The generalized polar transform and polar body.

Lemmas 3.2 and 3.3, we have

area(Vor(Dq) ∩ H(q)) ≥ area(Γ̂q) = area(polar√ε(Γq)).

As observed earlier, polarr(Γq) is a scaled copy of polar(Γq) by a factor of r2. Since this is a (d − 1)-
dimensional set, we have area(polar√ε(Γq)) = εd−1 ·area(polar(Γq)). By known inequalities on the Mahler
volume (16), there is a constant c depending only on d such that area(Γq)·area(polar(Γq)) ≥ c. Combining
these observations, we have

area(Dq) · area(Vor(Dq) ∩ H(q))

≥ area(Γq) · (εd−1 · area(polar(Γq)))

≥ c · εd−1,

which establishes Lemma 3.1(i).
In order to establish the second part of Lemma 3.1, we need to assume that K is sufficiently smooth.

If not, Γq might have very small area (much smaller than εd−1), but the entire surface area of the Dudley
hypersphere is bounded above by a constant. If K is ε-smooth, then it is easy to show that Γq contains
a (d − 1)-dimensional ball (centered at q′) of radius at least ε/

√
3.

Consider the area of Γ̂q. Each of its bounding halfspaces hv is defined by a hyperplane whose distance
from the origin is ε/‖v‖. By smoothness, along any direction, there exists a vector v ∈ Γq of length at
least ε/

√
3, so the associated bounding hyperplane hv for Γ̂q is at distance at most ε/(ε/

√
3) =

√
3 from

the origin on H(q). The projection of any differential element on H(q) lying within a constant distance
of the origin undergoes a constant factor decrease4 when projected onto to the Dudley hypersphere.
Thus, for some constant factor c′, we have area(Vor(Dq) ∩ S) ≥ c′ · area(Vor(Dq) ∩ H(q)). Combining
this with Lemma 3.1(i) establishes Lemma 3.1(ii).

3.2 Area Product Bounds: Restricted Case

In this section we generalize the results of the previous section to the case of restricted dual caps.
(As before, analogous results hold for restricted caps, but these results are not needed here.) Recall
that, given a parameter δ > 0, the δ-restricted cap C δ

q and the δ-restricted dual cap D δ
q come about by

intersecting the standard cap and dual cap, respectively, with a ball of radius δ centered at q. Restriction
complicates the simple relationship between Γ̂q and the polar body. Although the analysis of the section
is structurally similar to that of the previous section, there are added technical complications.

As before, we start by considering the intersection of the Voronoi region with the Dudley hyperplane
H(q) and then generalize to the Dudley hypersphere S.

Lemma 3.4 Let 0 < ε ≤ 1 and 3ε ≤ δ ≤ 3
√

ε. Let K be a smooth, convex body that lies within a unit
ball in Rd, and let q be a point at distance ε from K. Let D δ

q denote the δ-restriction of the ε-dual cap
generated by q. Then there is a constant c, depending only on dimension, such that:

4Consider a differential element dv on H(q). The corresponding vector with respect to the center of the Dudley

hypersphere is of length x =
p

9 + ‖v‖2, and it is at angle θ = arctan(‖v‖/3) with respect to vertical. Projecting this

element onto the Dudley hypersphere results in a scaling by (3/x) cos θ. Since ‖v‖ ≤
√

3, we have x ≤ 2
√

3 and cos θ ≥
√

3/2.
Therefore, the projection of this differential element onto the Dudley sphere is at least (3/4)dv, which implies that the
projection results in a constant-factor decrease in the surface area.
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Figure 6: The definitions of Γδ
q and Γ̂δ

q . (The figure is not drawn to scale.)

(i) area(D δ
q ) · area(Vor(D δ

q ) ∩ H(q)) ≥ c · δ2(d−1), where H(q) is the Dudley hyperplane for q,

(ii) if K is ε-smooth, then area(D δ
q ) ·area(Vor(D δ

q )∩S) ≥ c ·δ2(d−1), where S is the Dudley hypersphere
for K.

Define Γδ
q to be the δ-restricted base of the dual cap, by which we mean the intersection of the base

with a ball of radius δ centered at q. Because q lies at distance ε above h′(q), Γδ
q is the intersection of

Γq and a (d − 1)-dimensional ball of radius δ′ =
√

δ2 − ε2, centered at q′ (see Figure 6(a)). As before,
we define an intermediate convex body upon which to base our analysis. Recall that h(q′) and H(q)
can each be identified with Rd−1 by taking the origin to be located at the orthogonal projection of q
onto each hyperplane. We may therefore view Γδ

q as a convex body in Rd−1 that contains the origin.
For each v ∈ Γδ

q , we define a halfspace hv in Rd−1 as follows. If ‖v‖ ≥ δ/3, then hv is the halfspace
containing the origin whose bounding hyperplane is orthogonal to v and at distance δ/6 from the origin
(see Figure 6(b)). If ‖v‖ < δ/3, then hv is the (d− 1)-dimensional halfspace containing the origin whose
bounding hyperplane is orthogonal to v and at distance ε/(2‖v‖) from the origin (see Figure 6(c)).

Define Γ̂δ
q =

∩
v∈Γδ

q
hv, which we treat as a subset of H(q). Note that, when ‖v‖ < δ/3, the

hyperplane bounding hv in this definition is closer to the origin than that given in the definition of
Γ̂q from the previous section. This body is bounded, convex, and contains the origin. Analogous to
Lemma 3.2 we have the following.

Lemma 3.5 Given the preconditions of Lemma 3.4, Γ̂δ
q ⊆ Vor(D δ

q ) ∩ H(q).

Proof : Consider any point w ∈ ∂K \ D δ
q . If w /∈ Dq, then the proof follows from the same argument

given in Lemma 3.2 (with a suitable adjustment of constants). Thus, it suffices to consider only the case
where w ∈ Dq \ Bδ(q).

As in the earlier proof, define the plane Φ containing the points q, q′, and w, and define K ′, h′(q′),
H ′(q), t, and t′ as done there. As before, it suffices to show that w is not the closest point on K ′ to the
orthogonal projection of p onto Φ, which we denote by p′. Let v denote the horizontal vector from q′ to
t′. By viewing v as a vector in Rd−1 on the plane h(q′), it contributes a halfspace hv to the body Γ̂q,
which is bounded by a hyperplane that is orthogonal to v (and hence orthogonal to Φ).

We consider two cases, depending on t′x, the length of v. In the first case, assume that t′x ≥ δ/3 (see
Figure 7(a)). We assert that wx > δ/3. As mentioned earlier, we may assume that w /∈ Bδ(q). Let σw

and σt denote the absolute values of the slopes of the lines q′w and qt, respectively. Since w ∈ Dq and
K ′ is convex, the line q′w must intersect the line qt, which implies that σw ≤ σt. Since σt = ε/t′x, and
t′x ≥ δ/3 ≥ ε, we have σw ≤ 1. Since w /∈ Bδ(q), we have wx ≥ δ/

√
2 > δ/3, as desired.

Having established that wx > δ/3, consider the vector v. Since it is of length t′x ≥ δ/3, Γ̂q
δ is a subset

of the halfspace hv (in H(q)) whose bounding hyperplane is orthogonal to v and at distance δ/6 from the
origin (the orthogonal projection of q onto H(q)). Since p′ ∈ Γ̂q

δ , it follows that it lies within distance
δ/6 of the y-axis. In contrast, w lies at more than twice this distance from the y-axis. It follows directly
that p′ is closer to q′ than to w, and thus, w cannot be the closest point to p′ on ∂K ′.

In the second case, assume that t′x < δ/3. Let t′′ be the intersection of the line qt with ∂Bδ(q), and let
q′′ be the point on the y-axis horizontal from t′′ (see Figure 7(b)). Let σ′′ be the absolute slope of the line
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Figure 7: Proof of Lemma 3.5.

q′t′′. By convexity, and the fact that w /∈ Bδ(q), it follows that w lies below the line q′t′′. We assert that
σ′′ ≥ σt/2. It is easy to see that this is equivalent to the inequality q′y − q′′y ≥ (qy − q′′y )/2, or equivalently
qy − q′y ≤ (qy − q′′y )/2. By similar triangles, this latter inequality is equivalent to ‖t′ − q‖ ≤ ‖t′′ − q‖/2.
Clearly, ‖t′′ − q‖ = δ. Since 3ε ≤ δ and t′x < δ/3, we have

‖t′ − q‖ =
√

t′x
2 + ε2 ≤

√(
δ

3

)2

+
(

δ

3

)2

<
δ

2
=

‖t′′ − q‖
2

.

This establishes that σ′′ ≥ σt/2, as desired.
Observe that σt = ε/t′x. Given that σ′′ ≥ σt/2 = ε/(2t′x), consider a ray emanating from q′ that is

orthogonal to q′t′′. Letting ` denote the distance from q to H(q), by similar triangles we see that this
ray intersects H ′(q) at a distance from the y-axis of (` + ε)σ′′ ≥ (` + ε)ε/(2t′x). As observed in the proof
of Lemma 3.2, ` ≥ 1, and so this ray intersects H ′(q) to the right of the point where the hyperplane
defining hv intersects H ′(q), whose distance from the y-axis is ε/(2‖v‖) = ε/(2t′x). Since p ∈ Γ̂δ

q , it lies
to the left of this point. It is easy to see, however, that, restricted to the positive-x halfplane, any point
lying to the left of the ray is closer to q′ than to any point that lies below the line q′t′′. Since w is such
a point, we achieve the desired conclusion that w is not the closest point on ∂K ′ to p′. ut

In order to bound the product of the areas of Γδ
q and Γ̂δ

q , we proceed as in the preceding section by
demonstrating the relationship between Γ̂δ

q and the polar dual of Γδ
q .

Lemma 3.6 Given the preconditions of Lemma 3.4, polarr(Γδ
q ) ⊆ Γ̂δ

q , where r ≤ min(
√

ε/2, δ/5).

Proof : Recall that polarr(Γδ
q ) =

∩
v∈Γδ

q
polarr(v) and Γ̂δ

q =
∩

v∈Γδ
q

hv, where hv was defined earlier. For

each v ∈ Γδ
q , polarr(v) and hv are halfspaces with parallel supporting hyperplanes (both on the same

side of the origin), which may differ only with respect to their distances from the origin.
We consider the two cases arising in the definition of hv. If ‖v‖ ≥ δ/3, then hv is at distance δ/6 from

the origin and polarr(v) is at distance r2/‖v‖ ≤ (δ/5)2/(δ/3) ≤ δ/6, which is at least as close. On the
other hand, if ‖v‖ < δ/3, then hv is at distance ε/(2‖v‖) and polarr(v) is at distance r2/‖v‖ ≤ ε/(2‖v‖),
which is also at least as close. Since each bounding halfspace of polarr(Γδ

q ) is as close to the origin as its
parallel bounding halfspace of Γ̂δ

q , it follows that polarr(Γδ
q ) ⊆ Γ̂δ

q . ut

Given the above results, we can now prove the first part of Lemma 3.4 in a manner analogous to the
proof of Lemma 3.1.
Proof : (of Lemma 3.4)
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Recall that Let 0 < ε ≤ 1 and δ ≤ 3
√

ε. Since Γδ
q is a subset of the orthogonal projection of D δ

q onto
the plane h(q′), area(Γδ

q ) ≤ area(D δ
q ). Let r = δ/5. Since δ ≤ 3

√
ε, r ≤ 3

√
ε/5 ≤

√
ε/2. Thus, r satisfies

the conditions of Lemma 3.6. By applying both Lemmas 3.5 and 3.6, we have

area(Vor(D δ
q ) ∩ H(q)) ≥ area(Γ̂δ

q ) ≥ area(polarr(Γ
δ
q )).

As observed earlier, polarr(Γδ
q ) is a scaled copy of polar(Γδ

q ) by a factor of r2 = (δ/5)2. Since this is a
(d − 1)-dimensional set, we have area(polarr(Γδ

q )) = (δ/5)2(d−1) · area(polar(Γδ
q )). As before, applying

the inequality from (16) on the Mahler volume, there is a constant c′ depending only on d such that
area(Γδ

q ) · area(polar(Γδ
q )) ≥ c′. Combining these observations, we have

area(D δ
q ) · area(Vor(D δ

q ) ∩ H(q))

≥ area(Γδ
q )

((
δ

5

)2(d−1)

area(polar(Γδ
q ))

)

≥ c′

52(d−1)
· δ2(d−1).

Setting c = c′/(52(d−1)) completes the proof of Lemma 3.4(i). The second part is established by the same
argument used in the proof of Lemma 3.1(ii). ut

4 Polytope Approximation

In this section we consider how the results of the previous section5 can be applied to polytope approx-
imation. Our main result is presented in the following theorem, which establishes a uniform bound
on the complexity of convex approximation based on area, rather than diameter. As mentioned in the
introduction, this bound is never significantly worse that Dudley’s, but may be significantly better for
skinny convex bodies. The proof appears later in this section.

Theorem 4.1 Let K ⊂ Rd be a convex body such that the width of K in any direction is at least ε.
There exists an ε-approximating polytope P with number of facets

O(r log r), for r =

√
area(K)

ε(d−1)/2
.

(This can be adapted to show that there exists an approximating polytope with O(r log r) vertices
instead of facets.) Note that given that an approximating polytope P with O(r log r) facets exists, then
a polytope with at most O(r log2 r) facets can be constructed using (9). In order to prove the above
theorem, we start by stating a lemma that connects dual caps and polytope approximation. The proof
follows from the works of Dudley (12) and Bronshteyn and Ivanov (5). An analogous lemma relates caps
and polytope approximation.

Lemma 4.2 Let N be any set of points on ∂K that stabs the set of all ε-dual caps of K. Then the
polytope defined by tangent planes constructed at the points of N is an ε-approximation of K.

In order to use ε-nets to stab all dual caps, we need to show that the range spaces of dual caps have
constant VC-dimension. Throughout, S denotes the sphere of radius 3 centered at the origin.

Lemma 4.3 Let K ⊂ Rd be a convex body contained within the unit ball centered at the origin. All the
following range spaces (X, R) have VC-dimension at most d + 1.

5The results of Section 3 rely on the assumption that K is ε-smooth. Given a general (non-smooth) convex body, we
can apply a simple reduction to the smooth case, as follows. First, we dilate K by performing a Minkowski sum with a
Euclidean ball of radius ε/2. Let K′ be the result. Observe that the Hausdorff distance between K′ and K is ε/2 and K′ is
(ε/2)-smooth. Under our assumption that the width of K in any direction is at least ε, this dilation does not increase the
surface area of K by more than a constant factor. Next, we apply the results of this section and subsequent approximations,
but with the parameter ε set to ε/2. The combination of the two error bounds (ε/2 from dilation and ε/2 from subsequent
approximations) results in a total error of ε. The modification of the ε term only affects the constant factors.
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(1) X = ∂K and R is the set of ε-dual caps.
(2) X = S and R is the set of Voronoi cells of the ε-dual caps.

Proof : First, we consider an additional range space define by X = ∂K and R is the set of ε-caps. An ε-
cap only contains the points that the corresponding halfspace contains, and therefore has VC-dimension
upper bounded by the VC-dimension of d-dimensional halfspaces, which is d + 1. The range space (1)
is then equivalent to d-dimensional halfspaces by point-hyperplane duality. To prove the lemma for (2),
note that the Voronoi mapping defines a bijection between ∂K and S, and therefore this range space is
combinatorially identical to the previous one. ut

Proof : (of Theorem 4.1)
Without loss of generality, we may assume that K has been uniformly scaled to lie within a unit

ball centered at the origin and that ε has been scaled accordingly (because the ratio area(K)/ε(d−1) is
unaffected by uniform scaling). By Lemma 4.2, if we can stab all ε-dual caps of K with O(r log r) points,
then we have an ε-approximating polytope with the same number of facets. We distinguish between two
types of ε-dual caps. A dual cap D is of type 1, if area(D) ≥

√
area(K) · ε(d−1)/2, and otherwise it is of

type 2.
We use different strategies for stabbing the two types of dual caps. For dual caps of type 1, we use

standard machinery to build a (1/r)-net N1 of size O(r log r) in the range space (1) of Lemma 4.3. The
net N1 stabs all dual caps of type 1 because of their sufficiently large area.

From Lemma 3.1, for a type-2 dual cap D we have area(Vor(D) ∩ S) = Ω(ε(d−1)/2/
√

area(K)). In
order to stab type-2 dual caps, we build an O(1/r)-net N2 for the range space (2) of Lemma 4.3. The
net N2 stabs the Voronoi cells of all type-2 dual caps. We then select the nearest neighbor on ∂K for
each point of N2, obtaining a set N ′

2. The set N ′
2 stabs all dual caps of type 2, which concludes the

proof. ut

5 Polytope Membership Queries

Consider a convex polytope K ⊂ [−1, 1]d. In polytope membership queries, we are given a query point
q, and are to determine whether q lies inside K subject to an error bound ε. Points within distance ε of
the boundary of K may be reported as either inside or outside of K. A simple and natural algorithm,
called SplitReduce, was presented in (2) for preprocessing K in order to answer such queries efficiently.
Although an initial analysis was given in (2), the complexity of the resulting data structure remains a
challenging problem. In this section, we show that, without increasing storage, it is possible to improve
the query time bounds to essentially the square root of those given in (2).

Before describing the algorithm, we need a definition. We say that P is an ε-approximation of K
within a quadtree box Q if, for any point x ∈ Q, the following holds: (a) if x ∈ K, then x ∈ P , and (b)
if x is at distance at least ε from K, then x 6∈ P . Note that this definition implies that, for any query
point x ∈ Q, we can correctly answer ε-approximate polytope membership queries with respect to K by
checking whether x ∈ P .

The SplitReduce algorithm is presented below. It is given the polytope K ⊂ [−1, 1]d, the approxima-
tion parameter ε, and the desired query time t. The initial quadtree box is Q = [−1, 1]d.

SplitReduce(Q):

1. Let P be an ε-approximation of K within Q.
2. If the number of facets |P | ≤ t, then Q stores the hyperplanes bounding P .
3. Otherwise, split Q into 2d quadtree boxes and invoke SplitReduce on each such box.

The output of SplitReduce(Q) is a quadtree whose leaf cells induce a subdivision of Q. Each leaf cell
Q̂ stores a set of halfspaces of size at most t whose intersection approximates K within Q̂. Let t(Q̂)
denote the size of this set. The storage of this quadtree is defined as the total number of halfspaces
stored over all the leaf cells. A query is answered by performing a point location in the quadtree followed
by a brute force inspection of the halfspaces in the resulting leaf node. Because cells of diameter ε are
not subdivided, the height of the quadtree, and hence the time for point location, is O(log(1/ε)). For
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the sake of analysis, let us make the simplifying assumption that the number t(Q̂) of facets computed in
Step 1 is minimum. (If instead, Clarkson’s approximation algorithm is used (9), the query time increases
by a negligible factor of O(log(1/ε)).)

The main result of this section is the following space-time tradeoff for SplitReduce.

Theorem 5.1 Given a polytope K of diameter 1, an approximation bound ε > 0 and a real constant α ≥
2, it is possible to answer ε-approximate polytope membership queries in time t = 1/ε(d−1)/(2α) log(1/ε) ≥
1 from a data structure of space

O

(
(1/ε)(d−1)

“

1− 1
2blog2 αc − blog2 αc−1

α

”

)
.

In order to establish the tradeoff, we first show how to generalize Lemma 4.2 to the technically more
challenging context of approximating K within a box Q.

Lemma 5.2 Let K be a convex body (of arbitrary diameter). Let Q be a quadtree box that intersects
∂K. Let E be the portion of ∂K that is within distance

√
ε of Q. Let N be any set of points that stab the

set of all
√

ε-restricted ε-dual caps contained within E, and let P be the polytope defined by the tangent
planes constructed at the points of N . Then P is an ε-approximation of K within Q.

Proof : Let x be any point in Q. Since P is defined by the planes tangent to K, it follows that if x ∈ K
then x ∈ P . Next suppose that x is at distance at least ε from K. We will show that x 6∈ P , which
will prove the lemma. Consider the line segment joining x to the point in K ∩ Q that is closest to it.
By continuity, there must be a point q on this segment that is at distance exactly ε from K. Since Q is
convex, this segment and, hence, q must be contained in Q. Consider the

√
ε-restricted dual cap whose

apex is q. Note that this dual cap is contained within E, and so there is a point of N that stabs it.
Clearly, the tangent plane at this point separates q from K, and hence x from K. Thus x 6∈ P , which
completes the proof. ut

As in (2), we start by analyzing the low space case. Theorem 5.1 can then be proved by induction.
Our key idea is to use the machinery we developed in Section 3. The proof of the following lemma is
similar to the proof of Theorem 4.1, but using Lemma 3.4 (with δ set to

√
ε) instead of Lemma 3.1.

Recall that S is the Dudley hypersphere, which we defined as the (d− 1)-dimensional sphere of radius 3
centered at the origin.

Lemma 5.3 Let K, Q and E be as in Lemma 5.2, such that K is ε-smooth and Q is of diameter at least√
ε. Further, let E be contained within a ball of unit radius centered at the origin. Then it is possible to

ε-approximate K within Q by a polytope with number of facets

O(r log r), for r =

√
area(E) · area (Vor(E) ∩ S)

ε(d−1)/2
.

Proof : By Lemma 5.2, if we can stab the set of all
√

ε-restricted ε-dual caps contained within E
with O(r log r) points, then we have an ε-approximating polytope within Q with O(r log r) facets. To
prove this lemma, we distinguish between two types of such dual caps. A dual cap D is of type 1, if
area(D) ≥

√
area(E)/area(Vor(E) ∩ S) · ε(d−1)/2, and otherwise it is of type 2.

By a straightforward generalization of Lemma 4.3, it follows that both types of restricted dual caps
are of constant VC-dimension. We use different strategies for stabbing the two types of dual caps. For
dual caps of type 1, we use standard machinery to build a (1/r)-net N1, of size O(r log r) for the range
space (1) of Lemma 4.3, considering only the portion E of ∂K. The net N1 stabs all dual caps of type
1 because of their sufficiently large area.

It follows from Lemma 3.4 that for a type-2 dual cap D, we have

area (Vor(D) ∩ S) = Ω

(
ε(d−1)/2

√
area (Vor(E) ∩ S)

area(E)

)
.

In order to stab type-2 caps, we build an O(1/r)-net N2 of size O(r log r) for the range space (2) of
Lemma 4.3, considering only Vor(E)∩ S. The net N2 stabs the Voronoi cell of all type-2 caps. We then
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select the nearest neighbor on ∂K for each point of N2, obtaining a set N ′
2. The set N ′

2 stabs all caps of
type 2, which concludes the proof. ut

The following lemma will be useful in establishing the storage bounds. Throughout the remainder of
the analysis, Q will denote a quadtree box, and T will denote the quadtree produced by SplitReduce(Q)
for some choice of parameters t ≥ 1 and ε < diam(Q). Given T , let T ′ denote the subtree of T induced
by cells of diameter at least

√
ε diam(Q)/2. Let L1 denote the leaf cells of T ′ that are not subdivided

further (i.e., they are leaf cells of T ), and let L2 denote the remaining leaf cells of T ′. Observe that if Q̂

is any cell of L2, then the diameter of Q̂ is at most
√

ε diam(Q), since otherwise its children would have
diameter more than

√
ε diam(Q)/2, and Q̂ would not be a leaf cell of T ′.

Lemma 5.4

(i)
∑

bQ∈L1
t(Q̂) = O((diam(Q)/ε)(d−1)/2).

(ii) |L2| = O

((
log t

t

)2

·
(

diam(Q)
ε

)(d−1)/2
)

.

Proof : The proof of (i) follows from the proof of Lemma 2.2 in (2). For completeness, we provide
a short sketch. Dudley’s approximation yields an ε-approximation to K ∩ Q as the intersection of
O((diam(Q)/ε)(d−1)/2) halfspaces. In Dudley’s construction, each of these halfspaces is responsible for
approximating a region of K’s boundary of diameter O(

√
ε diam(Q)). By a simple packing argument,

each halfspace is useful in this manner for only a constant number of cells Q̂ ∈ L1, which establishes
assertion (i).

To prove (ii), let Q̂ be any cell of L2. Recall that
√

ε diam(Q)/2 ≤ diam(Q̂) ≤
√

ε diam(Q). Let
ε̂ = ε/(4 diam(Q)). For the remainder of this proof, we take the center of Q as the origin and assume
that we have scaled space so that Q has diameter 1. Note that in this scaled space

√
ε̂ ≤ diam(Q̂) ≤ 2

√
ε̂.

As usual, we let S denote the Dudley hypersphere, defined as the (d− 1)-dimensional sphere of radius 3
centered at the origin. Let K̂ be the Minkowski sum of K and a ball of radius ε̂ (thus, K̂ is ε̂-smooth).
Let Ê denote the portion of ∂K̂ that is within distance at most

√
ε̂ of Q̂. Note that Ê is contained

within the unit ball centered at the origin.
The intuition underlying our approach for bounding the number of cells in L2 is to show that

area(Vor(Ê) ∩ S) must be large. Since the area of S is a constant, we will show that this implies
that there cannot be too many cells in L2. In order to show that area(Vor(Ê)∩S) is large, we will apply
Lemma 5.3 and show that otherwise we could have approximated K within Q̂ to the desired accuracy
with fewer than t facets and Q̂ would then not have been subdivided further. We now make these ideas
precise.

We first prove that area(Vor(Ê)∩S) = Ω((t/ log t)2 · ε̂(d−1)/2). For the sake of contradiction, suppose
that area(Vor(Ê) ∩ S) ≤ c · (t/ log t)2 · ε̂(d−1)/2 for a suitable constant c. Clearly, the conditions of
Lemma 5.3 are satisfied with K̂, Q̂, Ê, and ε̂ in place of K, Q,E, and ε, respectively. Therefore, K̂ can
be ε̂-approximated within Q̂ by a polytope with m facets, where

m ≤ c1r log r, for r =

√
area(Ê) · area

(
Vor(Ê) ∩ S

)
ε̂(d−1)/2

,

where c1 is the constant hidden in the O-notation of Lemma 5.3. Note that an ε̂ absolute error in the
space after scaling corresponds to ε̂·diam(Q) = ε/4 absolute error prior to scaling. Thus, prior to scaling,
m facets suffice to provide an ε-approximation of K within Q̂. To compute m, observe that

area(Ê) ≤ c2 diam(Q̂)d−1 ≤ c2 2d−1 ε̂(d−1)/2,

where c2 is some constant. By our assumption, area(Vor(Ê) ∩ S) ≤ c · (t/ log t)2 · ε̂(d−1)/2. Substituting
these upper bounds on areas, we obtain

r ≤
√

c2 2d−1 ε̂(d−1)/2 · c (t/ log t)2 ε̂(d−1)/2

ε̂(d−1)/2

≤
√

2d−1c2c ·
t

log t
.
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Recalling that m ≤ c1r log r, it is easy to see that we can make m < t by choosing c to be sufficiently
small. Therefore, Q̂ should not have been subdivided further, which contradicts the fact that Q̂ ∈ L2.
Thus area(Vor(Ê) ∩ S) = Ω((t/ log t)2 · ε̂(d−1)/2) = Ω((t/ log t)2 · (ε/diam(Q))(d−1)/2).

Since the area of S is a constant and any point of S can be contained in Vor(Ê) for at most a constant
number of cells Q̂ ∈ L2, it follows that the cardinality of L2 is O((log t/t)2 · (diam(Q)/ε)(d−1)/2), which
completes the proof. ut

We are now ready to present our improved analysis of the low space case.

Lemma 5.5 The output of SplitReduce(Q) for

t ≥
(

diam(Q)
ε

)(d−1)/8

log
(

diam(Q)
ε

)
≥ 1

is a quadtree with storage O((diam(Q)/ε)(d−1)/2).

Proof : Let T denote the quadtree produced by the algorithm. We will show that
∑

t(Q̂) over all leaf
cells Q̂ of T is O((diam(Q)/ε)(d−1)/2), which will establish the desired storage bound. Recall T ′, L1, and
L2 as defined just before Lemma 5.4. By Lemma 5.4(i),

∑
bQ∈L1

t(Q̂) = O((diam(Q)/ε)(d−1)/2).

Next, consider the set L2 of cells. Let Q̂ be any cell of L2. Recall that
√

ε diam(Q)/2 ≤ diam(Q̂) ≤√
ε diam(Q). Since t ≥ (diam(Q)/ε)(d−1)/8, it follows that t ≥ (diam(Q̂)/ε)(d−1)/4 ≥ 1 for ε ≤

diam(Q)/4 (if ε > diam(Q)/4 then the lemma holds trivially).
Lemma 2.2 in (2) states that the output of SplitReduce(Q̂) for t ≥ (diam(Q̂)/ε)(d−1)/4 ≥ 1 is a

quadtree with storage O((diam(Q̂)/ε)(d−1)/2). Therefore, the storage for the subtree rooted at Q̂ is at
most O((diam(Q̂)/ε)(d−1)/2) = O((diam(Q)/ε)(d−1)/4). Also, by Lemma 5.4(ii), |L2| = O((log t/t)2 ·
(diam(Q)/ε)(d−1)/2) = O((diam(Q)/ε)(d−1)/4), where we have used the lower bound on t given in the
statement of the lemma. It follows that the total storage for the subtrees rooted at cells of L2 is at most
O((diam(Q)/ε)(d−1)/4 · (diam(Q)/ε)(d−1)/4) = O((diam(Q)/ε)(d−1)/2). This completes the proof. ut

Using Lemma 5.5 as the base case, we now extend the space-time tradeoff to other query times.

Theorem 5.6 Let α ≥ 2 be a constant. The output of SplitReduce(Q) for

t ≥
(

diam(Q)
ε

)(d−1)/(2α)

log
(

diam(Q)
ε

)
≥ 1

is a quadtree with storage

O

(diam(Q)
ε

)(d−1)
“

1− 1
2blog2 αc − blog2 αc−1

α

”

 .

Proof : Let k = blog2 αc. Our proof proceeds by induction on a constant number of steps k. The base
case k = 1 corresponds to Lemma 5.5. Next, assume that the theorem holds for 1, . . . , k − 1, that is, for
α < 2k. We need to prove that the theorem holds for 2k ≤ α < 2k+1.

Let T denote the quadtree produced by the algorithm with 2k ≤ α < 2k+1. Recall T ′, L1, and L2 as
defined just before Lemma 5.4. By Lemma 5.4(i),

∑
bQ∈L1

t(Q̂) = O((diam(Q)/ε)(d−1)/2), and thus the
storage for the leaf cells of L1 satisfies the bound of the theorem.

We next consider the set L2 of cells. Let Q̂ be any cell of L2. Recall that
√

ε diam(Q)/2 ≤ diam(Q̂) ≤√
ε diam(Q). It follows that

t ≥

(
diam(Q̂)

ε

)(d−1)/(2α′)

log

(
diam(Q̂)

ε

)
≥ 1
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where α′ = α/2 for ε ≤ diam(Q)/16 (if ε > diam(Q)/16, then the theorem holds trivially). Therefore,
we can use the induction hypothesis to obtain the following storage for each cell Q̂ ∈ L2:

O

(diam(Q̂)
ε

)(d−1)(1− 1
2k−1 − k−2

α′ ) = O

((
diam(Q)

ε

)(d−1)( 1
2−

1
2k − k−2

α ))
.

Also, by Lemma 5.4(ii), |L2| = O((log t/t)2 · (diam(Q)/ε)(d−1)/2) = O((diam(Q)/ε)(d−1)( 1
2−

1
α )), where

we have used the value of t given in the statement of the theorem. It follows that the total storage for
the subtrees rooted at cells of L2 is at most

O

((
diam(Q)

ε

)(d−1)(1− 1
2k − k−1

α ))
.

This completes the proof. ut

Recalling that the time for locating the leaf cell containing the query point is O(log(1/ε)), Theorem 5.1
follows as an immediate consequence.
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