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Abstract

The mechanical properties of a deformed workpiece are sensitive to the initial mi-
crostructure. Often, the initial microstructure is random in nature and location specific.
To model the variability of properties of the workpiece induced by variability in the
initial microstructure, one needs to develop a reduced order stochastic input model for
the initial microstructure. The location-dependence of microstructures dramatically in-
creases the dimensionality of the stochastic input and causes the “curse of dimension-
ality” in a stochastic deformation simulation. To quantify and capture the propagation
of uncertainty in multiscale deformation processes, a novel data-driven bi-orthogonal
Karhunen-Loeve (KL) decomposition strategy is introduced. The multiscale random
field representing random microstructures over the workpiece is decomposed simul-
taneously into a few modes in the macroscale and mesoscale. The macro modes are
further expanded through a second-level KL expansion to separate the random and
spatial coordinates. The few resulting random variables are mapped to the uniform
distribution via a polynomial chaos (PC) expansion. As a result, the stochastic input
complexity is remarkably simplified. Sampling from the reduced random space, new
microstructure realizations are reconstructed. By collecting the properties of work-
pieces with randomly sampled microstructures, the property statistics are computed. A
high-dimensional multiscale disk forging example of FCC nickel is presented to show

the merit of this methodology, and th&ext of random initial crystallographic texture
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1. Introduction

For polycrystalline materials (e.g. metals, alloys, etc.), macroscale properties are
sensitive to the underlying microstructure. In this work, we are interested in model-
ing the variability of properties of the workpiece in a deformation process induced by
variability in the initial microstructure. To accurately evaluate the properties of a given
microstructure at a given material point, homogenization strategy over a statistical vol-
ume element (SVE) [1, 2, 3] has been widely applied. In the context of polycrystalline
materials, an SVE is a microstructure containing finite number of grains (see Fig. 1)
with features (grain and texture distribution) that satisfy certain statistical constraints.
Given a number of correlated realizations of the microstructure, a stochastic data-driven
model of the microstructure is produced that when coupled with uncertainty quantifi-
cation methods (e.g. Monte Carlo or sparse grid methods) can be used to compute
the distribution of properties at the material point. However, in order to investigate the
variability of macroscopic properties in a workpiece due to microstructure randomness,
we need to exploit the stochastic space of initial microstructures in the workpiece and
not simply at a material point.

Microstructure uncertainty at a material point has been extensively studied using a
variety of methods. In [4, 5] the principle of maximum entropy (MaxEnt) was used to
describe the microstructure topology of binary and polycrystalline materials. A set of
correlation functions or grain size moments were given as the prescribed constraints.
Realizations of microstructures were then sampled from such MaxEnt distribution and
interrogated using appropriate physical model, e.g. a crystal plasticity finite element
method (CPFEM) [6] for polycrystals. The Monte Carlo (MC) method was adopted
to find the error-bars offeective stress-strain response of FCC aluminum. In [7], the

orientation distribution function (ODF) was adopted to describe the polycrystalline mi-



crostructure. A number of ODF samples were given as the input data. Karhunen-Loéve
expansion (KLE) [8, 9] was utilized to reduce the input complexity and facilitate the
high-dimensional stochastic simulation. An adaptive version of sparse grid collocation
strategy [10, 11] was used to find the stress-strain curve with error bars and the convex
hull of elastic modulus of FCC aluminum after deformation. Mechanical response vari-
ability and thermal properties due to both orientation and grain size uncertainties were
studied in [12, 13]. A nonlinear model reduction technique based on manifold learn-
ing [14] has been introduced to find the surrogate space of the grain size feature while
grain orientations were reduced by KLE. Critical stress distribution after deformation
was constructed for FCC nickel [12] anéfective thermal conductivity distribution

was explored for crystals with ortho-symmetry [13]. Recently, variability of fatigue
resistance, measured by strain-based fatigue indicator parameters (FIPs) [15] of two-
phase nickel-based superalloys was studied with the assistance of principal component
analysis (PCA) [16]. Distributions of FIPs, as well as their convex hulls showing the
extreme values, of microstructures sharing identical statistical features with given sam-
ples under cyclic loading were extracted. Convergence with increasing dimensionality
of the reduced-order representation was also shown.

To quantify the &ect of microstructures on macro-properties and probe the un-
certainty propagation throughftirent length scales, a multiscale simulator needs to
be adopted. Each point of the workpiece is associated with a microstructure in the
mesoscale, the deformation of which is controlled by the local deformation gradient
estimated in the macroscale. Mechanical propgrésponse of the point are evalu-
ated via proper (e.g. crystal plasticity) constitutive model applied on the deformed
microstructure. Since microstructures are random, properties of the workpiece are also
random. In general, microstructures are location-specific (meaning that microstruc-
tures associated with fiérent spatial points may haveidirent distributions) [17]. As
a result, the stochastic input to the probabilistic multiscale forging simulation will be
extremely high dimensional, which prevents one from quantifying the uncertainties of
interested properties. This problem is usually referred to as the “curse of dimensional-
ity”. Conventional model reduction schemes that only locally decompose input com-

plexity within a single scale and cannot see the correlation between macroscale points



are not sticient for reducing the multiscale stochastic input. To this end, we intro-
duced a bi-orthogonal KLE strategy [18, 19], which decomposes the multiscale random
field into a few modes in both the macro- and meso-scales [20]. Mean and standard
deviation of elastic moduli, i.e. Young’s modulus, shear modulus, and bulk modulus,
over the product were investigated given texture (orientation distribution) uncertainty
of FCC copper microstructures. However, this earlier work limited its stochastic in-
put to two prescribed random variables. In this work, we will build the bi-orthogonal
KLE on the basis of a given set of microstructure datafddent types of macroscale
inner products are discussed. A second-level KLE is conducted to further reduce the
dimensionality of the stochastic space after bi-orthogonal decomposition. The optimal
dimensionality of the final reduced-order space will be determined based on the energy
proportion captured by the principal components in the two-step decomposition. A
non-intrusive strategy is used to project the reduced random variables to the space of
random variables with known probability distributions. Low order statistics of equiv-
alent stress, strain, and strength fields of disks after forging are studied by repeatedly
calling the deterministic solver using microstructures sampled in the reduced space.
We use Monte Carlo (MC) sampling to construct the stochastic solution.

The rest of the paper is organized as follows. In Section 2, the representation of
microstructure and the multiscale forging simulator are introduced. Theory and formu-
lation of the bi-orthogonal KL decomposition, followed by a second-level KLE to fur-
ther decompose the resulting spatial-random coupled modes, will be enunciated in Sec-
tion 3. The reduced microstructure representations are mapped to a multi-dimensional
uniform distribution via polynomial chaos expansion (PCE) so that sampling of mi-
crostructures becomefiieient. The detail of this procedure is presented in Section 4.
Problem definition and generation of initial samples are described in Section 5. Sec-
tion 6 shows an example of stochastic multiscale modeling of nickel disk forging. Prop-
ertiegresponse variability of the product will be investigated. Finally, conclusions and

discussion are given in Section 7.



2. Multiscale Modeling of a Forging Process

To study the variability of mechanical properties induced by microstructure un-
certainty in forging disks, a multiscale framework which couples finite element (FE)
large deformation simulator with crystal plasticity constitutive model is introduced as
the deterministic solver. Each point in the macroscale is linked to a mesoscale poly-
crystalline microstructure described by its grain size and orientation features. The me-
chanical properties and response of the material under deformation are evaluated in the

microstructure domain and returned to the workpiece.

2.1. Multiscale Forging Solver

An updated Lagrangian implicit FE model for the analysis of large deformation
forging processes is employed for the multiscale simulation. This model, seamlessly
integrating kinematic, contact, and constitutive modules, is suitable for forging problem
of any material subjected to various die shapes. A crystal plasticity model is used in this
work. Each point (§ectively, Gauss integration point) of the macroscale workpiece is
represented by a polycrystalline microstructure whose deformation is controlled by the
local deformation gradierk, while the mechanical propertjessponse (e.g.fkective
stress, strain, strength, etc.) at that point are evaluated in the mesoscale and returned
to the workpiece after homogenization [21]. The multiscale framework is summarized
below.

Macroscale: Let X be a material particle in the initial configuratidy andx =
X(X, th+1) be its location at timé,, ;. The total deformation gradient defined as

IX(X, ths1)

F(X, thr1) = Vox(X, the1) = IX

(1)

can be expressed as the producEgfat the previous time stefp= t, and the relative
deformation gradiert,:
F = Fr Fn. (2)

The equilibrium equation dt= t,,; is expressed in the reference configuratiiyn
as
Vo (Poon+fr =0, (3)



whereV, denotes the divergence #),. f. can be represented as
f, = detF,b, (4)

whereb is the body force defined on the current configuration. The material behavior
is obtained from the deformation of the microstructure through homogenization. The
function (-), denotes the homogenized property over the microstructure. Therefore,
(Pr)n is the homogenized first Piola-KirchiidPK) stress expressed per unit area of
B, and given as:

(Pryn = (detFSTFS Ty, = detF(T)nF; T, (5)

whereF; is the mesoscale relative deformation gradient, which equals the macroscopic
F, under Taylor hypothesis for macro-meso linkid )y is the homogenized Cauchy

stress defined as the volume average of the mesoscaleBtress

(Mh=T = if TdV. (6)
V Bml

An incremental quasi-static problem is solved to determine the displacement field
u(xn, thy1) that satisfies Eq. (3) and boundary conditions. The solution of the deforma-
tion problem proceeds incrementally in time starting from the initial configuraipn
The weak form of the governing equation in the presence of die contact can be written
as:

G(Un1, 1) = Gp(Une1, 0) + Ge(Uny1, §) = 0, 7

where the first term is the virtual work of the workpiece:

ol
Py - —2 gv
Bn( h ax

(f t_-ﬂdS+f E-de), (8)
38n+1 Bn+1

and the second term is the contact virtual work:

Go(Un.1. 0)

Ge(Uns, @) = | (~ten- T +ter - G)dS, 9)
%85

whereti is the virtual displacements the traction anth is the body force of the bulk;

98BS c 08B, is the surface corresponding to regions of the body that may potentially



come into contact with the digcy andter are the normal and tangential tractions at
the die due to contact (and friction). The contact work is calculated in the reference
configuratiorB,. Newton-Raphson iterative scheme along with a line search method is
used to solve this non-linear system. The linearization of the weak form &-1§-th

iteration becomes

< . 0G
G, a) + 0 hd _y®y = o, (10)
n+l
The increment of internal wor&y, is computed by
~ ot
dGy, = . d(P, ) - aTdV (11)
8, n

The linearization of the homogenized PK-I stress is

d(Pryn = detF, (tr(dF:FM)(Tn
—  (Dn(dFR T+ @) R (12)

The homogenized Cauchy stré3sy, and its gradient with respect tif-, are evaluated
using the constitutive model in the mesoscale.

Mesoscale:As mentioned earlier, each Gauss point of the workpiece in the macroscale
corresponds to a polycrystalline microstructure, which is described by the sizes and ori-
entations of its constituent grains. According to the Taylor hypothesis, all grains of the
same microstructure are subject to the same deformation gr&dietich is identical
to the local deformation gradient at that point of the workpiece. The mechanical re-
sponse of each grain is computed using the crystal plasticity constitutive model [6, 22]
and averaged over the microstructure to represent the corresponding quantity in the
macroscale. In this paper, we are interested in FCC nickel polycrystals. For details of
the constitutive model, the reader is referred to [23]. We here only briefly review the
main algorithm.

The total deformation gradieft is multiplicatively decomposed into elastic and
plastic parts

F = F°FP, (13)

whereF€ is the elastic deformation gradient aRd is the plastic counterpart with



detFP being 1. The PK-II stress is computed by
T ee 1 e-eTre
T:LE:QL(F FE-1), (14)

where£LF is the fourth-order elasticity tensor represented in the sample coordinate sys-
tem and is the second-order identity tensor.

The resolved shear streg® on slip systemr is calculated as
7@ =T :89, (15)

whereS® = m® @ n® is the Schmid tensor defined by the tensor product of the
slip directionm) and slip normah© of slip systemu. If |7(®] is larger than the slip
resistance®, plastic flow on thea-th slip system occurs. The incremental plastic
shear straimvy® is therefore obtained according to flow rule and utilized to update the
slip resistance, deformation gradient, etc. The Taylor strain hardening law based on

dislocation density is adopted for the homogeneous evolution of slip resistance

Kk = ko + ayub+/p, (16)

where
1
O = —_ — '(‘Y)
p Ea (Lgb+k1\/ﬁ k2,0)|7 l, (7)

andq; is a constant representing an average of the junction strength over all existing
dislocation configurationg,is the shear strength, abds the magnitude of the Burgers
vector. The firsttermin Eq. (17) represents a geometric storage due to lattice incompat-
ibility, describing the grain boundary hardening.is the grain size parameter [12, 24].

The second term describes storage through a statistical measure of forest dislocation,
describing the dislocation interaction hardening inside grains. The last term represents
a dynamic recovery rate that renders dislocation segments inactive as they rearrange

themselves [22]. The parametégsandk; are given as

P B (18)

ayub’ Ks — Ko
wheref is the initial hardening ratep andks are the initial yield stress and saturation

strength, respectively. Substituting Egs. (17) and (18) into Eq. (16), we can derive at



the hardening rate as

2,2
: afub Ks— K (@)

={—1" " 49 . 19
‘ {ZLg(K—Ko)+ °(Ks—xo)}zw v 49

Therefore, the slip resistancetat t,,; is updated as

Kn+1l = Kn + KA. (20)

An iterative algorithm is designed to solve this system of nonlinear equations. Macro-
scopic quantities, such as stress and strain, are computed as the volume-average of the
mesoscale values over all grains (e.g. Eqg. (6)). The macroscopic von-Mises equivalent

stress and equivalent strain are calculated in the form of

Tetf = \/gf"f’, (21)

whereT’ is the deviatoric part of the homogenized Cauchy stfesnd

t — —
3_eff=f \/%D'Ddh (22)
0

in which D is the average rate of deformation. Grain orientations evolve accordingly

due to elastic deformation:
m(w) — Fem(()a)’
n@ = F&Tn, (23)

The equivalent strength is evaluated as the average slip resistance of all slip systems

of all grains in the microstructure:

Nslip
_ 1
— ()
Keff—<n E K >h. (24)

slip =

The homogenized properties and response are returned to the macroscale for up-
dating the deformation and response fields of the workpiece. The verification of this

particular crystal plasticity constitutive model is discussed in [12].

2.2. Microstructure Representation
In the current work, the Taylor hypothesis is adopted for the macro-mesoscale
linking. Accordingly, a microstructure (Fig. 1(a)) can be simply described by an ar-

ray of topological and orientational features of constituent grains (Fig. 1(b)). For a



microstructure (e.g. FCC nickel) composedMfgrains, the firstM components of
the feature array are sizes of individual grains sorted in ascending order and the rest
3M components are the corresponding orientations described by Rodrigues parame-
ters [25], an axis-angle representation that consists of three components defined in
Eq. (25):

r= wtang, (25)

wherer = {ry,rp,r3} are the three Rodrigues componenmts:= {w;, w,, Wz} gives the
direction cosines of the rotation axis with respect to microstructure coordinateg; and

is the rotation angle.

Value

Figure 1: (a) A 3D polycrystalline microstructure with 20 grains. (b) The descriptor of the microstructure.
The first 20 components are the sizes of grains, and the last 60 components are the Rodrigues parameters

representing grain orientations.

The polycrystalline microstructure is usually a high-dimensional random field, which
makes the stochastic simulation intractable. For example, a 20-dimensional vector is
needed to store the grain size feature of a microstructure containing 20 grains. The
vector will end up to be 80-dimensional when Rodrigues parametrization orientations
are considered as well. The situation is even worse when the random field is also a
function of spatial locatiorx. If the correlation between microstructures afefient
points on macroscale is not explored, the dimensionality of the random field explodes.
For a random 2D workpiece discretized hy quadrilateral elements each of which
hasniy; Gauss points, the total dimensionality of the microstructure descriptor ends up
to be Mngnint, WwhereM is the number of grains in the microstructure. In the current

work, we assume the random source is only the grain orientations while the grain sizes

10



are fixed. The total dimensionality of the microstructure stochastic space is therefore
3Mngnint, Which is still very large. This is referred to as the “curse of dimensional-

ity”. A reduced-order surrogate microstructure model of the location dependent ran-
dom microstructure is needed. By sampling from the low-dimensional surrogate space,
uncertainty quantification of the product properties driven by random microstructures

becomes computationally feasible.

3. Two-Step Karhunen-Logve Decomposition of the Multiscale Random Microstruc-

ture Field

In our previous works on quantifying uncertainties in materials, a set of linear
and non-linear model reduction techniques were developed to facilitate the solution
of stochastic partial dierential equations (SPDESs) describing physical processes in
random media [14, 26, 27, 28]. These methods have been successfully applied to re-
duce the dimensionality of random microstructures at a given material point. However,
these techniques cannot be applied to location-dependent microstructures (Fig. 2), e.g.
reducing a random microstructure field of the foAtx, s, w), wheresis a mesoscale
coordinate and the macroscopic coordinates. A bi-orthogonal decomposition based
on KL expansion was introduced to address this problem in [20]. This algorithm was
originally developed for temporal-spatial coupled problems [18], in which the random
field , A(x, t, w), is a function of both timé and spatial coordinates Following cer-
tain modification, we have applied this idea to multiscale forging problem in [20]. In
the current work, we rebuild the bi-orthogonal KLE strictly on the basis of given data
and generalize the model to the scenario that the information of the inherent controlling
random variables is not known beforehand. The stochastic randomAffeld, w) is
decomposed to a set of mesoscale moBEs and macro (or spatial)-random coupled
modeaP(x, w). A second-level KLE is introduced to further separate random variables
o from the macroscale (spatial) modes. The optimal dimensionality of the reduced-
order space will be determined based on the number of principal components preserved
in the two-step KLE. Difterent selections of the inner product in the macroscale are dis-

cussed to determine which one is more appropriate for this problem. The algorithm of

11



bi-orthogonal decomposition (BOD) is summarized below.

Figure 2: Microstructure dependence on spatial location. &emdint locations, the microstructures may

have diferent features due to preprocessing.

3.1. Bi-Orthogonal Karhunen-Loeve Decomposition

Assume a random field defined on a probability spac@(F, p)
AX,Sw): SXMxQ - R, (26)

whereS is the macroscale spatial domaif is the microstructure spac, is the set

of elementary events anadl € Q is a random field that determines the uncertaintp of

(we call it controlling random variablep = {A,i = 1,..., m} can be the combination

of mindependent features, e.g., grain size, texture, etc., for describing a microstructure.
In the example shown latemis chosen to be 1 as crystallographic texture is the only
random source. The formulation presented in this section takes the general situation
whereA is the combination of various features. One can use the idea of Karhunen-

Loeve expansion to project this field to a set of bi-orthogonal bases in the form of

A(X,9) + A(X, S, w)
A9+ Y Y9 (x.0). (27)
i=1

A(X, S w)

in WhiChpi(h) are eigenvalues of the eigenvalue problem to be defined Iatéiri('arare
mesoscale modes strongly orthogonal in the meso-spacepard(@*, ... oM™
are spatial modes weakly orthogonal in macro-space for alittieatures. The su-

perscript b)) = 1,2, 3 denotes that we can construct the above expansion according to

12



certain type of inner products in the macroscalas the mean field defined by

A =(A):= fg A(X, s, w)p(w)dw, (28)

wherep(w) is the multivariate joint probability density @f. The definition ofA is not
unique. For example, in [19], this mean field is also averaged over the temporal domain
(analogous to the mesoscale space in the current setup), Ie@‘arﬁgnction of spatial
coordinatesA = K(x). We here do not average it over the meso domain to be con-
sistent with the previous work [20]. In practice, the random fig(d, s, w) is usually
given byN realizationgA;(x, S, wi)}i'\il' As a consequence, the mean field is computed
as the average of all given samples. For model reduction, the sum in Eq. (27) is usually
approximated by the first finite number of, sdyprincipal components (modes) that
capture most of the energy.

We denote by, () the inner product in the microstructure domain and By (h =
1,2, or 3) different types of inner products in the spatial domain [19], respectively, and
obtain

", ¥y = fM (9% (s)ds (29)

and

(@, @), = fs (@) - @My

h h . h h
@0, &)= [ @@
@0 = [ (@ 0 @ o) ax )

In this work, the microstructure features are given in the form of discrete vectors (i.e.
grain orientations) and the mesoscale coordinates can be considered as the indices of
the vector components. Therefore, the inner product in the mesoscdledtvely
computed by the dot product of the two vectors. The orthogonality requirements for
‘Pi(h) andd)i(h) are

(¥ ) = 6. (31)

and

", d’ﬁh)}h = bjj. (32)

13



The mesoscale modéiq(h) are strongly orthogonal to each other and the macroscale
modes®" are weakly, in an average sense, orthogonal.
By minimizing the distance (based on the norm defined in Eq. (30)) between the
Karhunen-Loéve expansion and the original random field, one ends up with
1
(s = —(A, &), (33)
(h)
Pi
and from the orthogonality condition, we obtain
1 R
— f Ax, s w)¥"(9)ds (34)
[ JIm
I

h
" (x, w) =

These last two Egs. (33) and (34) lead to the following eigenvalue problem
RO ICLCCTCER (35)
where the covariance matr&x" is
C(s9 = (A(x. 5 ), AKX, § ). (36)

In discrete form, the covariance can be written as

Nel  Nint 1 N R )
COy = Z{NZAj(x:;,s)]-
in=1lim=1 j=1
1 o -
[N QAT é)]vvimuinL
=1
1 N Ne Nint R ) R ) .
C(sy = T2 > Al 9AT (. W, 13
j=1 in=Lim=1
COsy = CH(s§-COs59), (37)

for different definition of macroscale inner products. In these equatibissthe num-
ber of realizationsng is the number of elements in macroscale (when a FEM dis-
cretization of the domain is createdy, is the number of integration points in each el-
ement|J; | is the Jacobian determinant of the elenien\‘f\/im is the integration weight
associated with the integration point andA is a matrix containing microstructural
features corresponding to integration points, ahdepresents global coordinates of

the integration poini, of element, in the macroscale.

14



The three types of covariance matrix defined in Eq. (37) (or equivalently, the in-
ner products in the macroscale Eq. (30)) lead to constructiondfefelit expansions
Eq. (27) according to dierent optimization of the random fiet throughh = 0, we
minimize the mean error; through= 1, we minimize the second-order moment of
the error (the Euclidian distance between the KL expansion and the random field); and
throughh = 2, we minimize the standard deviation error. The discussion of the three

types will be further enunciated later with a practical example.

3.2. A Second-Level KLE

With the bi-orthogonal KL expansion, we decompose the random Aiélds, w)
into a set of mesoscale mod&4} and spatial-random coupled modds}. The dimen-
sionality of the original stochastic microstructure space can be reduced by truncating
the bi-orthogonal KLE (Eqg. (27)) td terms, which capture most of the “energy” of the
given samples. The truncated bi-orthogonal KLE is given by Eq. (38).

d
A s 0) * A9+ > oM (9D (x, w). (38)
i=1

The mesoscale modes are known as the eigenvectors of the covariance matrix and
only depend on the mesoscale coordinaeslhe macroscale modes, on the other
hand, couple the random sour@ewith spatial coordinates, and they are still high-
dimensional random fields. To further reduce the dimensionality, the spatial-random
coupled modes resulting from the bi-orthogonal KL expansion need further decompo-
sition. A conventional strategy is to separate the random variabfesm the spatial

coordinatex using a polynomial chaos expansion (Eq. (39)),

o"(x,w) = > ¥ (), (39)
i

where’r(jh) (¢{(w)) are orthogonal polynomials of random variabdé®), which usually
follow well-known probability distributions. In the current problem, however, the com-
putation of location-specific cﬁﬁacientSyi(P(x) is very complicated ad)i(h)(x, w) are
random fields in terms of spatial coordinateand are known only in the form adfl

(equal to the number of initial samples) finite number of realizations derived from the

15



bi-orthogonal KLE. The PCE cannot be applied in a straightforward manner to these
macro-random coupled modes.

We hereby, propose two reasonable assumptions to simplify the problem and em-
ploy a second-level KLE to decompose the random variables from spatial coordinates.

The assumptions are:

e Theinherent controlling random variable€an be separated from the mesoscale
and macroscale coordinatesx), as well as the features of the microstructure
(i.e. the randomness is independent of the microstructure features, e.g. texture

and grain size have the same random source).

e The macroscale mode{sl)i(h)}, are independent from each other.

The first assumption is natural since it is the fundamental of the decomposition.
The second assumption is a strong assumption for arbitrary stochastic processes, since
we only have the weak orthogonality condition between macroscale modes (Eq. (32)).
However, it is important for the further decomposition of the spatial mabi€s, w)
and we will see later on in this paper that this assumption leads to accurate results.

Having the above two assumptions, we can next perform a second-level KLE on
each macro-random coupled malie Omitting the subscript), thei-th macro-mode

®@;(x, wj) can be expanded by

ri N
— 1 T . — 1
i) ~ B + Y 0B/ @), B = = ) o, (40)
j=1 i=1
where/lij andx//ij are thej-th eigenvalue and eigenvector, respectively, of the covariance
matrix,
< 1 < Ko\ (X _ &
R ; (@ - @) (@) - ). (41)

andr; is the number of largest eigenvalua$}2;1 that capture most of the energy of

the samples{.¢ij}rji:1, wherei = 1,...,d, are the reduced representations of the original
multiscale microstructures.
In this way, the macro-random coupled mofidg are decomposed into basis func-

tions depending on the macroscale coordinatesd uncorrelated random variables
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{¢ij}. Note that the dimensionality of the stochastic space is reduced for the second
time. The dimensionality of the final reduced random space of microstructures over
the macroscale is the sum of the principal dimensions that are preserved for represent-

ing macro-random modes:

r= Zd: ri, (42)
i=1

whered is the truncated dimensionality of the bi-orthogonal KLE (Eq. (38)). The
reduced stochastic space can then be constructed and equivalently mapped to well-
known probability distributions through polynomial chaos expansion introduced in the

next section.

4. Polynomial Chaos Expansion of Stochastic Reduced-Order Model

After obtaining reduced representatiOI{\:ﬂ;Ij rji:l, wherei = 1,...,d) of the multi-
scale microstructure samples, we next need to construct the reduced-order space and
map it to a probabilistic space from which new samples are easy to draw. Any sample
generated in the low-dimensional surrogate space can be recovered to spatiatbnodes
through Eq. (40) and further reconstructed to a new multiscale microstructure realiza-
tion in the original input space. Polynomial chaos expansion [9, 29, 30] is therefore
introduced to represerpf as a function of Gaussian or uniform random varialjleas
mentioned before, components{q&]"}rj;l are uncorrelated but not necessarily indepen-
dent. Although Rosenblatt transformation [31] can be used to decompose the problem
to a set of independent random variables, this is computationally expensive, especially
for high-dimensional problems. In this work, we assume the independence between
the components qfrpij}'j‘:l. It has been shown in various applications [32, 33, 28, 16]
that this assumption gives rather accurate results.

Following the independence assumptiombhfeach of them can be expanded on to

an one-dimensional polynomial chaos (PC) basis of degree
i) =Y Y@@, i=1...m, (43)
k=0

where the;“ij are i.i.d. random variables. The random basis functjati,_; are chosen

according to the type of random variam’éthat has been used to describe the random
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input. For example, if Gaussian random variables are chosen then the Askey based

orthogonal polynomialsr}‘} are chosen to be Hermite polynomialsgﬁfare chosento

be uniform random variables, the‘ri}(} must be Legendre polynomials [29].
Uniform-Legendre format is taken for the projection of the reduced-order random

variables as it lends very close reconstruction of the PDFs of reduced vadéhém

Section 6). The PC cdigcients are computed by

x _ Elolmi@)]

s —. (44)
" E[rke)]
When Uniform-Legendre is chosen, Eq. (44) becomes
K 2k+1 .
7= — f $lYHdL, j=1.....r, k=0,....p. (45)

A proper method is needed to evaluate these integrals. It is noted that the random
variable;i)ij does not belong to the same stochastic spa@é,md we only haveN
realizations ofpij. The distribution ofpij is not known. A non-linear mappirg: gij -
¢ij is thus needed which preserves properties suchrt(té) and ¢ij have the same
distribution. A non-intrusive projection based on empirical cumulative distribution
functions (CDFs) of samples developed in [33] is utilized to build the map. The integral
in Eqg. (45) is then computed using Gauss quadrature.

The non-linear mapping : { — ¢ can be defined as shown below for e#h

¢S, 1= FoloFy (46)
whereF¢i andF g denote the CDFs o;b.j andg—j, respectively. Here, the equalities,
«drig interpreted in the sense of distribution such that the probability density functions
(PDFs) of random variables on both sides are equal. The marginal C@I’Fsafnples
can be evaluated numerically from the available data. Kernel density estimation is used
to construct the empirical CDF aﬁij. Let {q)ij‘(s)}il be theN samples ofpij obtained
from Eq. (40). The marginal PDF oﬁfij is then:

j i(9)
= I

T

o 1N
%mwﬁg
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The marginal CDF oi)ij is obtained by integrating Eq. (47) and the inverse CDF can be
computed as well. Having the mai]'f), the coﬁicients;/ijk are subsequently computed
via Gauss quadrature.

After mapping the reduced space to uniform distribution random variables, the

Monte Carlo method can be used to sample new microstructure realizations.

5. Problem Definition and Initial Data Set

The problem of interest in this work is the variability of mechanical properties
of forged disks due to (initial) microstructure uncertainties. The very first task is to
generate initial correlated random microstructures of workpieces to be used as the input
to the stochastic simulation. The initial workpiece samples are a set of cylindrical
(rectangular in a R axisymmetric representation) ingots, each point of which is linked

to a distinct microstructure (Fig. 3).

Figure 3: Input to the multiscale deformation simulator.

We generate realizations of the preforms with correlated microstructure using a pre-
processing that deforms a set of raw ingots with random surfaces into regular cylinders.
The simulations are done within @2axisymmetric Lagrangian FE framework. The
ingots are discretized by 206 quadrilateral elements, each of which contains 4 Gauss
points for the integration in the element domain. Each Gauss point is linked to a mi-
crostructure consisting of 20 grains. One thousand raw ingots whose upper surfaces

(Fig. 4) are represented by degree 6 Bezier curves (Eq. (48)) are firstly created.
6

7(a.w) = 05x% {1 + 3 Bl (a)] : (48)
i=1
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where

¢1(a) = (1 - a)° + 6a(l - a)°,
¢2(a) = 15a%(1 - @)*,

¢3(a) = 20a%(1 - @)°,

¢a(a) = 152%(1 - @)?,

¢s(a) = 6a°(1 - a),

vs(@) = a®,

wherea = x/L is the normalizex-coordinatef;(w) are Bezier cofficients, which are

i.i.d. randomly sampled from the uniform distributi@f(—0.1, 0.1). At the beginning,

we assume all the microstructures to be identical (same grain sizes and texture). The

only difference between ingot samples is the random shape of the upper surface. All

raw ingots are then used as an input to a deterministic flat-die forging process, during

which, their wavy surfaces are flattened under strainvate0.01s™ (Fig. 4). Since

all workpieces go through distinct deformation processes due to their unique surface

shapes, the resultant microstructures will vary from point to point and from sample to

sample. The resultant microstructures after pre-processing are collected as the data-

base of the following stochastic simulation. They will be adopted to build the reduced-

order model. In the next step stochastic simulation, new microstructure samples will

be sampled and assigned to a regular-shaped workpiece. The flattened workpieces in

the pre-process are abandoned. The information about the generation of the random

microstructure samples is totally blind to the following stochastic forging simulation.
Since the crystal plasticity constitutive model adopted here only updates grain ori-

entations while leaving grain size untouched, the uncertainty source of the stochastic

simulation is the texture of microstructures, which has been proven to have fjesat e

on the mechanical response and properties of polycrystals [12]. The dimensionality

of the input isng X Nint X Nfeature = 60 X 4 x 60 = 14400, whereg is the num-

ber of elements in the macroscale discretizatign,is the number of Gauss points of

an element, andsearre is the dimensionality of the random feature that describes a

microstructures (20 set of 3-dimensional Rodrigues parameters in here). In what fol-
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Figure 4: Left: Initial ingot with random upper surface and identical microstructures. Right: Flattened ingot

having various resultant microstructures.

lows, the vectoA(X, S, w) is written as a scalak(x, s, w) since the only random source

is grain orientation. The number of features that describe a microstructure is there-
fore beingm = 1, leading to the fact thak(x, s, w) is a scalar for a specifix, s and

w. Consequently, the reduced macroscale m¢dgx, w)}id=1 and reduced represen-
tations{qsij (w)}?:yi = 1,...,d are also scalars for a specificandw. We will adopt

the aforementioned two-step KLE to reduce the dimensionality of the stochastic input
space driven by the 1000 sets of microstructure samples. The information of how these
samples are generated is blind to the model reduction process. The reduced random
variables will be mapped to standard multivariate uniform distributiig-(1, 1)) fol-

lowing the PC expansion through the non-intrusive projection. New samples will be
drawn from the reduced space and reconstructed to be the input to the multiscale phys-
ical simulator. Monte Carlo simulation is employed to solve the underlying stochastic
equations in conjunction with the multiscale deterministic forging solver.

The procedure of the complete uncertainty quantification is illustrated in Fig. 5
and summarized below. (a) to (b): Given a number of initial ingot samples, compute
the separated mesoscale and macro-random coupled modes using the bi-orthogonal
KLE. (b) to (c): Project the macro-random coupled modes to low-dimensional space
through a second-level KLE. (c) to (d) Map the reduced stochastic space to a known
(e.g. uniform) distribution using PCE. (d) to (c): Generate new samples in the known

low-dimensional distribution, and find their counterparts in the reduced surrogate space
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Figure 5: Procedure of the stochastic multiscale simuldtioguantifying variability of properties of forging

disks due to microstructure uncertainty.

through PCE. (c) to (b) Recover macroscale modes via KLE. (b) to (a): Reconstruct
physical representation (microstructures of the workpiece) of new samples using bi-
orthogonal KLE after obtaining the macroscale modes. (a) to (e): Perform multiscale
forging simulations to obtain the properties of the reconstructed samples. Repeating
(d)-(c)-(b)-(a)-(e) multiple times, the statistics of properties of the products can be

evaluated.

6. Numerical Examples

We will next validate the bi-orthogonal decomposition strategy for reducing the
complexity of stochastic multiscale input. Examples comparing reconstructed features
and initial sample features, as well as their corresponding properties after forging, are

demonstrated.
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6.1. Construction and validation of the reduced-order model

As described in the previous section, 1000 sets of preforms with correlated mi-
crostructures (textures) that resulted from the same preprocess are the input to the
stochastic simulation. The variability of mechanical properties of the products is in-
duced by the randomness of these initial microstructures. Since each macropoint of
the workpiece associates with a 20-grain microstructure, the total dimensionality of the
input is 14400 according to the calculation in the previous section. It is impossible to
explore such a high dimensional space and investigate the variability of corresponding
properties of products. The bi-orthogonal decomposition, followed by a second-level
KLE, is applied to the 1000 14400-dimensional samples. We will determine the opti-
mal dimensionality of the reduced space by the proportion of energy captured by the
first few principal components.

In bi-orthogonal KLE, the random energy of tkeh macro-random coupled mode
is defined by [19]

EV(w) := fs PPN (x, w) - D (x, w)dx, (49)
The expectation of the random energy is therefore
EV = (EM). (50)

Since the mean featufedefined by Eg. (28) has been extracted from the centerized
samplesA, which are the data base of the expansion, the inner product Eq. (30) defined
with h = 0 should be 0. As a resulh = 0 is not appropriate for constructing the
covariance matrix and performing model reduction. The covariance matrix vkein
is identical with the one whelm= 2, due to Eq. (37). Therefore, we seléct 1 as the
inner product in the macroscale for the current work.

Computing the energy expectation for all spatial modes, the energy spectrum is
plotted in Fig. 6 forh = 1. The energy proportion captured by the fidsinodes is
defined as =

P () = ZL?E%,“’ (51)

where the mean energies are sorted in descending order.
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Figure 6: The energy and eigenvalue spectrum of initial samples. The valsaxid is the total energy

proportion captured by the firgtprincipal components.

It is observed that the first few energy components capture most of the total energy.

The energy spectrum overlaps with the eigenvalue spectrum defined by

Z'dzlp'(h)
PO ) = S (52)
I
Eigenvalu Z ;\11 p(jh)

To effectively reduce the complexity while preserving most of the features of the
initial samples, we truncate the bi-orthogonal KLE expansion keeping only the first
3 modes, which captures almost 95% of the total energy. This truncation strategy is
similar to that in conventional KLE.

Remark 1: Note that if the mean feature is defined as [19]

1
M

the bi-orthogonal decomposition givedfdrent results. In this case the first type of

A(x) = fM (A% s w))ds (53)

macroscale inner product is not zero any more, and the second type cova@lf(x6)
becomes small. The micro and macro modes becoffereit from the ones presented
earlier.

Remark 2: The overlap of the eigenvalue and energy spectrums in Fig. 6 is a result of

the current problem setup. Indeed, combining Egs. (49) and (50), we obtain
ED - fs PP (@D (x, ) - P (x, w)) dix. (54)
Whenh = 1, and considering the orthogonality, we obtain
EiY = o, @) = o,
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The energy level of th&-th mode, in general, does not reflect the magnitude of the
corresponding eigenvalue. In another words, a mode that possesses large energy does
not necessarily correspond to a large eigenvalue. An example is shown in Fig. 7 for
the case thah is defined by Eg. (53) and = 2. This outcome is consistent with the
results provided in [19]. These facts complicate the performance of the bi-orthogonal
decomposition. Therefore, alternative setupsi(tol and Eq. (28)) are not used in the

current work.
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Figure 7: The eigenvalue and mean energy of the bi-orthogonal KLE. Both quantities are normalized with

respect to their maximum values.

The reduced spatial modés;, ®,, @3} are presented by 1000 realizations of 240-
dimensional vectors, because the mesoscale modes have been segregated. The next
task is to separate the random variables from spatial coordinates using a second-level
KLE, which results in further reduction of the random space. For @a¢h= 1, 2, 3),
we perform an independent KLE and keep the largesdmponents that capture more
than 95% of the total energy df;. The energy spectrum of the three modes are plotted
in Fig. 8. The number of preserved componentsare 2,r, = 3,r3 = 3, respectively.

The dimensionality of the final reduced space is therefere; +r, +r3 = 8.

Remark 3: It is interesting to note that thefiierences between large eigenvalues and
small eigenvalues of the macro-modegeduces asincreases. To capture 95% of the

total energy, only the largest 2 eigenvalues is enougtbfowhile for @, andd; three
eigenvalues are needed. We also examined the macro-modes that correspond to lower
energy in the bi-orthogonal KLE and discovered that 7, 9, 35, and 108 principle com-

ponents are needed to capture 95% energy of macro mode®ftmd, respectively.
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Figure 8: The eigenvalue spectrum of three macro-random coupled modes. The vplaofs the total

energy proportion captured by the fissprincipal components. Only the first 50 dimensions are shown.

The increase of the dimensions (e.g. number of principal components) that are neces-
sary to capture the same proportion of the total energy is dramatic, when the energy
captured by the macro-modésdecreases. For this reason, keeping a small number of
®@; is of great importance to reduce the stochastic space. In the current exdragie,

is the optimal choice.

As we discussed before, the reduced surrogate space of input after two-step KLE
needs to be projected to a well-shaped equivalent space through PCE. Therefore, new
samples can be easily drawn. Legendre polynomials are selected as we will map the
reduced-order random variables to uniform distributi®f{s-1, 1). The order of the PC
basis is set to be 12, which gives accurate estimation to the distributions of the reduced
representations. We plot and compare the PDFs of initial reduced representations and
new samples in Figs. 9-11. The distributions of the initial reduced representations
qbij,i =1,...,d,j=1,...,r are computed from the histogram of the given 1000 initial
samples derived by the two-step KLE. On the other hand, 10000 new samples are
randomly sampled from the uniform distribution and mapped to the surr¢barﬁace
via PCE. A great consistence of the two curves is observed and thus the PCE on reduced
random variables is successful.

To check the performance of the multiscale model reduction, we compare a recon-
structed sample with its original realization. An 14400-dimensional afagpntain-

ing the texture information of all initial microstructures over a workpiece realization
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Figure 9: Marginal PDFs of initial low-dimensional representations (i.e. random variabiesj),: 1,2,
corresponding to the first spatial mode (the reduced representations obtained after two-step KLE on the
1000 given texture samples) and identified random variables obtained using PCE (reconstructed through PCE
on 10000 randomly generated samples from uniform distribution). The distributions are constructed through

kernel density based on data.

is projected to the 8-dimensional uniform distribution through the two-step KLE-PCE
process. These 8 reduced variables withif, (L) are then mapped back to a 14400-
dimensional texture array through the inverse PCE and KLE. We first compare the re-
stored spatial modes from the reduced variables with the initial modes obtained through
bi-orthogonal KLE on the original sample. The 3 modes capturing most energy are
shown. Itis observed in Fig. 12 that the resto{@qﬁzl are close to the original ones.

We further reconstruct the texture realization in the physical space based on the
restored spatial modes through Eq. (38). The restored texture is compared with the
original one and a relative error defined as
AiOriginaI B A;?estorﬁ

AiOriginaI ’

is computed. In Eq. (55M is the dimensionality of the texture array of the entire

1 M

£=—
Mi:l

(55)

workpiece (hereM = 14400),AiOriginal andA{QeSmredare the Rodrigues parameters of

the original and restored samples, respectively. Notice that each orientation is described
by 3 Rodrigues parameters. In the current setup, we put them all in an 1-dimensional
array. Figure 13 (a) shows the reconstructed and original texture of the microstructure
associated with one macropoint (for a single microstructure). The relationship between

the two samples throughout the entire workpiece is depicted in Fig. 13(b). We observe

27



Figure 10: Marginal PDFs of initial low-dimensional representations (i.e. random variabée;’;); 1,23,
corresponding to the second spatial mdge(the reduced representations obtained after two-step KLE on

the 1000 given texture samples) and identified random variables obtained using PCE (reconstructed through
PCE on 10000 randomly generated samples from uniform distribution). The distributions are constructed

through kernel density based on data.

a nearly straight line in the original-restored texture plot, meaning that the two samples
are almost identical. The deviation of the restored samples from the original one is
small. The great consistence of the reconstructed and original samples is obtained.

The relative error is- 4.26%.

6.2. Stochastic multiscale forging simulation

After establishing the connection between the microstructure space and the reduced
surrogate space, we are ready to draw random samples for the investigation of the
mechanical properties of workpieces whose microstructures are statistically similar to
the given data. The mean and standard deviation of the equivalent strain, stress, and
strength fields of the forged workpiece are of interest. Titexéve strain and stress are
evaluated using Egs. (21) and (22). Tlieetive strength is measured by the average of
the slip resistances over all slip systems of all grains in a microstructure (Eq. (24)). The
mean and standard deviation fields computed based on 4032 MC samples randomly
generated from the reduced-space are plotted in Figs. 14 and 15. The fields computed
directly from the 1000 initial samples are also plotted (in the same figures) in com-
parison with the reconstructed results. The mean fields of properties computed from

reconstructed samples are close to the ones computed from the initial samples. This
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Figure 11: Marginal PDFs of initial low-dimensional representations (i.e. random variabée;’;); 1,23,
corresponding to the third spatial modg (the reduced representations obtained after two-step KLE on the
1000 given texture samples) and identified random variables obtained using PCE (reconstructed through PCE
on 10000 randomly generated samples from uniform distribution). The distributions are constructed through

kernel density based on data.

is consistent with the bi-orthogonal decomposition setup. The standard deviation of
the properties of reconstructed samples, however, shows deviation from that computed
using the initial samples. This is because the limited number of given samples are not
enough to represent the entire random microstructure space (especially the higher order
statistics). On the other hand, the reconstructed samples are generated from the surro-
gate space which is built toffeciently represent the complete microstructure space.
Random samples from the reduced-order model reveal features that cannot be captured
by the given initial samples. The gaineffieiency in sampling in the low-dimensional
surrogate microstructure space is prominent.

A convergence test is also conducted using 8064 random MC samples. The com-
parison of the mean and standard deviation between 4032 and 8064 samples are plotted
in Figs. 16 and 17. The relativeftirence of quantities between the two sets of sim-
ulations defined asPgps4 — P4032)/Psoss, WherePy is the quantity evaluated usiryg
MC samples, is plotted in Fig. 18. From thdtdrence we see that the mean fields of
the two simulations are almost the same. The relative error of standard deviation fields
is larger than that of the mean field. The largest error is aroudtl O

In order to test the convergence of the bi-orthogonal decomposition model reduc-

tion scheme, we next keep more components in the second-level KLE so that they
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Figure 12: Comparison of reconstructed and initial spatial modes of a single texture sample. The original
modes are obtained by projecting a initial texture sample to eigenbasis through bi-orthogonal KLE. The
reconstructed modes are recovered from the low-dimensional representations via PCE and second-level KLE.

The dimensionality of the reduced representation®Qf®,, and®s are 2, 3, and 3, respectively.
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Figure 13: (a) The reconstructed and original texture of the microstructure at a single macropoint. (b)
The comparison between the reconstructed texture and its original realization of the entire workpiece. The

reconstructed texture is obtained from a 8-dimensional representation.

capture 99% energy of the macro-modes. The dimensionality of the reduced space be-
comes =ri+ry+r3 =3+ 7+8=18. The reconstructed macro-modes are obviously
closer to their original samples as shown in Fig. 19. Similarly, the reconstructed texture
has smaller errog = 0.0398, comparing with the original sample (Fig. 20).

The mean and standard deviation dfleetive strain, stress and strength fields are
plotted in Fig. 21. The relative fierence of fields defined aB{s — Pg)/P1s, where
Pq4 is the quantity evaluated fromt-dimensional reduced space, is shown in Fig. 22.
It is observed that keeping 18 reduced variables gives very similar results as keeping

8 low-dimensional representations, since the total energy captured by the two cases is
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Figure 14: Mean field of the properties of the forged product. Upper: results extracted from 1000 initial
samples; lower: results evaluated through 4032 MC samples randomly generated from the 8-dimensional

reduced space. (ajfective strain, (b) ective stress, (c)fBective strength.

close. The number of samples used here is 8064.

The distributions of properties of any point on the solid can also be computed. In
Fig. 23, we plot the equivalent strain, stress, and strength distributions, as well as the
convex hull of these three quantities, at a single spot of the workpiece, where the equiv-
alent strain is large. All distributions and the convex hull [34] are evaluated according
to the results of 4032 randomly generated samples from the 8-dimensional reduced

space in the MC simulation just discussed.

7. Conclusions

A multiscale model reduction scheme based on the bi-orthogonal KLE, conven-
tional KLE and PCE was presented. The basic idea is to decompose the multiscale
random field into a few orthogonal modes irffdrent (macro and meso) scales and
separate the inherent random variable from the two scale coordinates. A non-intrusive

projection strategy is employed to map the reduced representations after the two-step
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Figure 15: Standard deviation field of the properties of the forged product. Upper: results extracted from
1000 initial samples; lower: results evaluated through 4032 MC samples randomly generated from the 8-

dimensional reduced space. (&getive strain, (b) ective stress, (c)ffective strength.

KLE to a multivariate uniform distribution. The reconstructed realizations show agree-
ment with the initial microstructure samples that are given as the known information.

In the context of polycrystalline processes, the multiscale random field is location-
dependent high-dimensional random microstructure features, which is reduced to a
low-dimensional surrogate space. By sampling in the reduced surrogate space, we can
equivalently exploit the original high-dimensional microstructure space. Properties of
a continuum workpiece subjected to forging are evaluated by a multiscale solver which
couples FE large deformation simulator with crystal plasticity constitutive model. The
mean and standard deviation of the equivalent strain, stress, and strength of the fi-
nal product are computed using MC and ASGC methods. It is seen that the reduced
model captures most features of the full model making feasible to perform large scale
stochastic multiscale simulation. Future studies will focus on the model reduction of
realistic microstructures described by pixels rather than statistical features as in the

present work. Moreover, a more robust strategy of decomposing macro-random modes
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Figure 16: Convergence test of the mean field of the properties of the forged product. Upper: results extracted
from 4032 MC samples randomly generated from the 8-dimensional reduced space; lower: results evaluated
through 8064 MC samples randomly generated from the 8-dimensional reduced spad&ci& estrain,

(b) effective stress, (c)fEective strength.

after bi-orthogonal KLE is of interest.
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Figure 17: Convergence test of the standard deviation field of the properties of the forged product. Upper:
results extracted from 4032 MC samples randomly generated from the 8-dimensional reduced space; lower:
results evaluated through 8064 MC samples randomly generated from the 8-dimensional reduced space. (a)
effective strain, (b) fective stress, (c)ffective strength.
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Figure 18: Relative dierence of the mean and standard deviation field of the properties of the forged product
computed by 8064 and 4032 MC samples drawn from the 8-dimensional reduced space. Ufgrencei
of mean fields; lower: dierence of standard deviation fields. (#eetive strain, (b) fective stress, (c)

effective strength.
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Figure 19: Comparison of reconstructed and initial spatial modes of a single texture sample. The original
modes are obtained by projecting a initial texture sample to eigenbasis through bi-orthogonal KLE. The
reconstructed modes are recovered from the low-dimensional representations, with higher dimensions, via
PCE and second-level KLE. The dimensionality of the reduced representatidns ©f, and®3 are 3, 7,

and 8, respectively.
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Figure 20: (a) The reconstructed and original texture of the microstructure at a single macropoint. (b)
The comparison between the reconstructed texture and its original realization of the entire workpiece. The
reconstructed texture is obtained from a 18-dimensional representation.
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Figure 21: The mean and standard deviation fieldgfe€ve strain, stress, and strength computed based on

random microstructures reconstructed from 18-dimensional reduced-order representations.
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Figure 22: The relative error of mean and standard deviateldsfiof dfective strain, stress, and strength

computed based on random microstructures reconstructed from 8-dimensional and 18-dimensional reduced-

order representations.
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Figure 23: Variability of properties at one single point of the forged disk with random microstructures. (a)
A convex hull showing the envelope of the three properties. (b) Equivalent stress distribution. (c) Equivalent

strength distribution. (d) Equivalent strain distribution.
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