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ABSTRACT  
 
The calculations given in this work demonstrate that the trimmed state for a dynamical model of 
the REMUS 100 autonomous underwater vehicle is readily found using a numerical zero-finding 
procedure based on Newton-Raphson iteration. This work also presents approximate analytical 
expressions for the trimmed state that can be used as a starting point for the numerical procedure. 
The procedure should be applicable to a range of hydrodynamic parameters corresponding to 
other configurations of the REMUS 100 vehicle and to similar vehicles from other vendors. 
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Trim Calculation Methods for a Dynamical Model of 
the REMUS 100 Autonomous Underwater Vehicle  

 
 

Executive Summary  
 
 
Survey-class autonomous underwater vehicles (AUVs) are used to investigate the seabed 
and the water column with high resolution and navigational accuracy. The Royal 
Australian Navy (RAN) is in the process of acquiring AUVs for use in mine 
countermeasures, Rapid Environmental Assessment and Advance Force operations. AUVs 
are potentially major components of acquisition projects SEA 1778 Phase 1 Deployable 
MCM – Organic Mine Countermeasures and JP 1770 Phase 1 Rapid Environmental Assessment. 
They may also be components of off-board mission systems that will be acquired as part of 
future projects SEA 1180 Phase 1 - Patrol Boat, Mine Hunter Coastal and Hydrographic Ship 
Replacement Project and SEA 1000, Future Submarine. 
 
The DSTO acquired two commercial AUVs in 2007, in collaboration with the Directorate 
General of Maritime Development and the RAN. One of the AUVs was a REMUS 100, 
manufactured by Kongsberg Hydroid Incorporated of the USA. Many navies have one or 
more REMUS 100 vehicles in their inventory and the number of REMUS 100s that has been 
produced is of the same order as the number of all other commercial AUVs in existence, 
combined. Although the DSTO vehicle has been extensively tested, its high value 
precludes testing in waters where currents are strong, or shallow and wave-driven, since 
the vehicle might be damaged, lost or destroyed. However, operating areas in which such 
conditions occur are potentially of high military value and there is considerable interest in 
being able to predict the limiting conditions for use of the vehicle. As a consequence, the 
DSTO has begun to investigate techniques by which the dynamics of the vehicle may be 
simulated with appropriate fidelity, using so-called ‘low-level’ simulation models based 
on estimates of the governing equations of motion for the vehicle. 
 
Accurate low-level simulations of vehicle behaviour rely on well-behaved numerical 
implementations. One component of such implementations is the ‘trim’ state of the model, 
which, for a given speed, is the combination of vehicle orientation and control settings in 
which the unperturbed vehicle will maintain straight-line, level flight in a state of dynamic 
equilibrium. The trim state is used to analyse the stability of the numerical model – its 
response to perturbations away from the trim state – and to initialise simulations. 
 
This work describes a robust, parametric process to estimate the trim state of a dynamical 
model of the REMUS 100 AUV based on equations of motion originally developed by 
Prestero [1] and extended by Sgarioto [2]. The method is based on direct solution of the 
governing equations of motion, using an iterative Newton-Raphson zero-finding 
algorithm. The algorithm is initialised using second-order analytical approximations to the 
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Prestero-Sgarioto equations of motion. The relative accuracy of the analytical expressions 
is better than 1% at speeds near the cruising speed of the vehicle, but decreases by 1 to 2 
orders of magnitude at lower speeds. Other methods of initialisation were also 
investigated and a reduced set of analytical expressions was found to be effective as a 
starting point for the iterative calculation. 
 
A parametric investigation showed that the iterative algorithm was convergent for speeds 
from 1 knot to at least 6 knots; in comparison, the physical vehicle operates within a range 
of speeds between 2 knots and 5 knots. The variation of the trimmed state conformed to 
expectations over the latter range. Unexpected behaviour was seen at lower speeds, but 
this did not originate from a failure of the trim calculation.  
 
In summary, this work has resulted in a procedure for finding the trimmed state of the 
Prestero AUV dynamics model using a straightforward numerical method with a 
parametric initialisation procedure. With appropriate parameters, the method should be 
applicable to variations of the REMUS vehicle; for example, extended versions, and to 
other REMUS-like vehicles.  
 
References cited in this section: 
 

1. Prestero, T. “Verification of a Six-Degree-of-Freedom Simulation Model for the 
REMUS Autonomous Underwater Vehicle”, MSc/ME Thesis, Massachusetts 
Institute of Technology, Sept. 2001. 
 

2. Sgarioto, D. “Steady State Trim and Open Loop Stability Analysis for the 
REMUS Autonomous Underwater Vehicle”, Defence Technology Agency, New 
Zealand Defence Force, DTA Report 254, March 2008.  

 
 



UNCLASSIFIED 
 

UNCLASSIFIED 

Authors 
 

 
 

Raewyn Hall 
Maritime Operations Division 
 
Raewyn graduated from Sydney University in 2005 with honours in 
Aeronautical (Space) Engineering and a Bachelor of Science. Her 
engineering honours thesis focussed on aircraft flight dynamics, 
guidance and model predictive control. She joined the Maritime 
Operations Division in 2006 doing operations analysis and modelling 
in a variety of areas such as amphibious operations and anti-
submarine warfare. She currently splits her time between the 
Maritime Concepts and Capabilities Group and modelling AUV 
dynamics for the Littoral Unmanned Systems Group. 

____________________ ________________________________________________ 
 

 
Stuart Anstee 
Maritime Operations Division 
 
Stuart Anstee is a member of the Littoral Unmanned Systems Group, 
which investigates the application of unmanned vehicles to mine 
warfare and hydrography. In his career at DSTO, he has worked on 
the design, modelling and assessment of high-frequency sonars, 
analysis tools for sonar imagery and operations research. His current 
interests include assessment of autonomous vehicle systems, the 
hydrodynamics and control of underwater vehicles, autonomous 
mission planning and investigation of sensors for mine warfare and 
hydrography. 

____________________ ________________________________________________ 
 



UNCLASSIFIED 
 

UNCLASSIFIED 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page is intentionally blank 
 
 



UNCLASSIFIED 
 

Contents 
 

1. INTRODUCTION............................................................................................................... 1 

2. THE REMUS 100 MODEL................................................................................................. 1 
2.1 The REMUS 100 Vehicle.......................................................................................... 1 
2.2 Simulation Model ..................................................................................................... 2 

2.2.1 Notation .................................................................................................... 2 
2.2.2 Mathematical Representation ................................................................ 4 

2.3 Coordinate Transformations................................................................................... 4 
2.3.1 Earth and Body Reference Frames ........................................................ 4 
2.3.2 Body and Stability Reference Frames ................................................... 5 

2.4 Equations of Motion................................................................................................. 6 
2.5 External Forces and Moments................................................................................. 7 

3. ESTIMATION OF TRIM ................................................................................................... 8 
3.1 Definition of Trim .................................................................................................... 8 
3.2 Trim Variables........................................................................................................... 8 
3.3 Decision Variables.................................................................................................... 9 
3.4 Trim Estimation by Numerical Iteration.............................................................. 9 

3.4.1 Newton-Raphson Iteration..................................................................... 9 
3.4.2 Implementation...................................................................................... 10 
3.4.3 Performance of the Newton-Raphson Iteration ................................ 10 
3.4.4 Convergence Sensitivity ....................................................................... 11 

3.5 Estimation of the Starting Point for the Iteration ............................................. 12 
3.5.1 Empirical and Analytical Starting Points........................................... 12 
3.5.2 Simplified Analytical Starting Point ................................................... 13 
3.5.3 Results and Discussion ......................................................................... 13 

4. PARAMETRIC STUDY.................................................................................................... 14 
4.1 Vehicle Orientation Angles .................................................................................. 14 
4.2 Propulsion Variables.............................................................................................. 15 
4.3 Control Inputs ......................................................................................................... 16 

5. CONCLUSION .................................................................................................................. 17 

6. REFERENCES .................................................................................................................... 18 

APPENDIX A: REMUS 100 MODEL PARAMETERS .................................................. 19 
A.1. Mathematical Symbols.................................................................. 19 
A.2. Case Study Parameters .................................................................. 20 

APPENDIX B: ALGORITHM IMPLEMENTATION ................................................... 23 

UNCLASSIFIED 
 



UNCLASSIFIED 
 

B.1. Interface Function .......................................................................... 23 
B.2. Iteration Algorithm........................................................................ 24 

B.2.1 Jacobian matrix calculation............................................. 24 
B.3. Trim function MATLAB script .................................................... 26 

B.3.1 Main Trim Function ‘trim.m’ .......................................... 26 
B.3.2 Equations of Motion Function ‘eom.m’.......................... 28 
B.3.3 Hydrodynamics Coefficients script file ‘coeffs.m’ ........ 31 

APPENDIX C: ANALYTICAL TRIM ESTIMATION USING FORCE BALANCE 
CONDITIONS .......................................................................................... 34 
C.1. Senses of Motion ............................................................................ 34 
C.2. Approximation to Nearly Level Motion .................................... 35 
C.3. Derivation of Analytical Approximations................................. 37 

C.3.1 Propulsion Subsystem..................................................... 37 
C.3.2 Manoeuvre Subsystem.................................................... 37 

C.4. Comparison of Numerical and Analytical Trim Estimates .... 38 

APPENDIX D: CONVERGENCE SENSITIVITY ANALYSIS .................................... 43 

 
 

UNCLASSIFIED 
 



UNCLASSIFIED 
 

GLOSSARY 
 
AUV  Autonomous Underwater Vehicle 

GPS  Global Positioning System 

INS  Inertial Navigation System 

LBL  Acoustic Long Baseline navigation system 

RAN   Royal Australian Navy 

  

UNCLASSIFIED 
 



UNCLASSIFIED 
 

UNCLASSIFIED 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page is intentionally blank 
 
 



UNCLASSIFIED 
DSTO-TR-2676 

1. Introduction  

 Survey-class autonomous underwater vehicles (AUVs) are used to investigate the seabed 
and the water column with high resolution and navigational accuracy. The Royal Australian 
Navy (RAN) is in the process of acquiring AUVs for use in mine countermeasures, Rapid 
Environmental Assessment (REA) and Advance Force operations. AUVs are potentially major 
components of acquisition projects SEA 1778 Phase 1 Deployable MCM – Organic Mine 
Countermeasures and JP 1770 Phase 1 Rapid Environmental Assessment. They may also be 
components of off-board mission systems that will be acquired as part of future project SEA 
1180 Phase 1 - Patrol Boat, Mine Hunter Coastal and Hydrographic Ship Replacement Project and 
SEA 1000, Future Submarine.  
 
The DSTO acquired two commercial AUVs in 2007, in collaboration with the Directorate 
General of Maritime Development and the RAN. One of the AUVs was a REMUS 100, 
manufactured by Kongsberg Hydroid Incorporated of the USA. Although this vehicle has 
been extensively tested, its high value precludes its inclusion in trials where currents are 
excessively strong or waters are shallow and wave-driven, since damage or loss of the vehicle 
might result. As a consequence, the DSTO has begun to investigate techniques by which the 
dynamics of the vehicle might be simulated in extreme environments. High-fidelity 
simulations of vehicle behaviour rely on well-behaved numerical models. A starting point for 
such models is the ‘trim’ state of the vehicle, corresponding to the control state in which it will 
maintain straight-line, level flight in a state of dynamic equilibrium. 
 
This report describes analytical and numerical methods that may be used to trim a non-linear, 
six degree-of-freedom simulation model describing the dynamics of a REMUS 100 AUV. The 
convergence properties of the trim calculation and the nature of the trim state are also 
examined as a function of the model parameters. 
 
 
 

2. The REMUS 100 Model 

2.1 The REMUS 100 Vehicle 

 The REMUS 100 is a slender, torpedo-shaped vehicle, as shown in Figure 1. It is 
approximately 1.6 to 1.72 m long, has a diameter of 19 cm and weighs 36 to 40 kg in air, 
depending on configuration. It is designed to execute pre-programmed missions in order to 
collect sonar imagery of the seafloor, operating at ground speeds from 2.5 to 4.5 knots.  
 
The main payload sensor is side-scan sonar, which is typically used to gather imagery of the 
sea floor. The vehicle has a suite of other sensors, including a pressure sensor, a conductivity 
sensor, a thermometer, an acoustic long-baseline (LBL) transceiver, upward and downward-
pointing acoustic Doppler current profilers and a GPS receiver, all of which may optionally be 
used to aid an inertial navigation system (INS). 
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GPS Antenna 

Figure 1: One configuration of the REMUS 100 vehicle 

 
The vehicle is under-actuated, with control provided by paired fins and a motor-driven 
propeller. Fused1 horizontal fins control the vehicle’s pitching motion and fused vertical fins 
control the vehicle’s yawing motion. The control system also continuously varies the torque 
and rate of rotation of the coreless electric motor that drives the propeller to control the 
vehicle’s forward thrust and hence its speed. The control system alternates pitching and 
yawing motions to control rolling motions induced by the torque from the propeller. 
 
 
2.2 Simulation Model 

 This work is based on a six degree-of-freedom, medium-fidelity model of the vehicle 
dynamics that was originally developed by Prestero [1] and extended by Sgarioto [4]. The 
model implements slender body equations of motion, with the variation of external forces 
acting on the vehicle determined by hydrodynamic coefficients. The model equations are 
given in this section and the coefficients are recorded in Appendix A. 
 
2.2.1 Notation 

 The notations used in this report to describe rigid-body dynamics follow the conventions 
of the Society of Naval Architects and Marine Engineers (SNAME) used in [1] and [2] and 
reproduced in Table 1. Euler angles (, , ) describe the orientation of the body-fixed axes (x, 
y, z) relative to some Earth-fixed reference frame (X, Y, Z). 
 
The sense of the axes is right-handed; hence x is positive forward, y is positive to starboard, z 
is positive down,  is positive nose-up,  is positive clockwise and  is positive to starboard. 
 
 

                                                      
1 Fused in this context means ‘forced to move in unison’ 

Propeller 

ADCP Array 

Control  
Fins Side-scan Sonar  

Transducers LBL Transducer 
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Table 1: Symbols used to describe rigid-body dynamics in the body-fixed reference frame 

Degree of Freedom External Forces and 
Moments 

Corresponding 
Rates of Change 

Corresponding 
Displacements 

Surge X U x 
Sway Y V y 
Heave Z W z 
Roll  K P  
Pitch M Q  
Yaw N R  
 
The variables and their respective axes are shown in Figure 2. The axes of the Earth-fixed 
reference frame (X, Y, Z) are displayed with a different font to that used later for the 
components of linear external force X, Y, Z. 
 

 
Figure 2: REMUS simulation model frames of reference. The position and orientation of the vehicle are 

described with reference to an Earth-fixed frame, while rates of translation and rotation are 
expressed relative to a frame attached to the body of the vehicle. 

Y, θ 

X, φ 

Z, ψ 

Heave: w 
Yaw rate: r 

Sway: v 
Pitch rate: q 

Surge: u 
Roll rate: p 

Earth-fixed Reference Frame 

Body Fixed Reference Frame 

z 

up 
n 

 
Additional symbols describing the state of the propulsion system are given in Table 2. 
 

Table 2: Symbols used to describe the state of the propulsion system 

Name Symbol 
Propeller rotation rate N 
Propeller inflow velocity up 
Control Torque  
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2.2.2 Mathematical Representation 

 The vehicle’s ‘state’ at any instant in time is described mathematically by a state vector, 
incorporating its rates of translation and rotation, its absolute orientation and position, and 
the status of its propulsion system: 
 
    (2.2.1a) ,][ T

punrqpwvu ZYXΞ

 
where ‘T’ denotes  the transpose operator. 
 
The velocity components of the vehicle can also be described relative to the water flow as (V, 
α, β) (see Section 2.3.2), giving rise to the alternative state vector 
 
    (2.2.1b) .][ T

punrqpV ZYXΞ

 
The vehicle’s control state is likewise described by a control input vector, 
 

          (2.2.2)  .T
rs u 



 
This vector comprises the elevator angle δs, the rudder angle δr and the mechanical torque the 
motor exerts around the propeller axis, . 
 
The mathematical model of the vehicle is implemented in the form of a function which takes 
the vehicle state and the control input in the form of vectors  and u and predicts the rate of 
the change of each of the vehicle state variables in the form 
 
         (2.2.3)  .),(),()( tttft uΞΞ 
 
The components of the rate of change equations are given in Section 2.4. 
 
 
2.3 Coordinate Transformations 

2.3.1 Earth and Body Reference Frames 

 The equations in Section 2.4 describe the vehicle state in the body-fixed frame of reference. 
Thus, transformations are necessary to move between body-fixed and earth-fixed coordinate 

systems. The linear velocity components  in the earth-fixed reference frame are 
related to the body-frame velocity components  by: 

),,( ZYX 
,,( vu )w

  

     (2.3.1) 
)cossincossin(sin

)sinsincoscossin(coscos







w

vuX
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     (2.3.2) 
)cossinsinsincos(

)sinsinsincos(coscossin







w

vuY

       (2.3.3)  coscossincossin wvu Z
 
The rate equations for the earth-fixed Euler angles ),,(   are similarly expressed in terms of 
the body-fixed rates of turn  by: ),,( rqp
 
 sin tan cos tanp q r             (2.3.4) 

 cos sinq r             (2.3.5) 

 sin cos cos cosq r             (2.3.6) 
 
2.3.2 Body and Stability Reference Frames 

 For convenience of interpretation, the vehicle state is projected into the so-called ‘stability’ 
reference frame; that is, the reference frame attached to the body of water surrounding the 
vehicle, which in the absence of current is identical to the earth-fixed reference frame. In this 
case, the body-axis velocity components (u, v, w) are replaced by the forward speed, angle of 
attack and sideslip angle (V, α, β), defined by 
 

 222 wvuV           (2.3.7) 

  uw1tan           (2.3.8) 

  Vv1sin            (2.3.9) 
 
Equivalently,  
 
  coscosVu           (2.3.10) 
 sinVv           (2.3.11) 
  cossinVw           (2.3.12) 
 
The rates of change of the stability variables are given in terms of the rates of change of 
quantities expressed in the body-frame by the following equations: 

 cos cos sin sin cosV u v w               (2.3.13) 

 



cos

sincos

V

uw  
         (2.3.14) 

 1
cos cos sin sin sinv u w

V
                (2.3.15) 
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2.4 Equations of Motion 

 The following equations describe the motion of the vehicle and the behaviour of its 
propulsion system in a body-fixed frame of reference. 
 
The equations of motion for quantities driven by external forces are: 
 

       (2.4.1)  gm u vr wq z pr q X        






       (2.4.2)  gm v wp ur z qr p Y       

       (2.4.3)  2 2
gm w uq vp z p q Z       

 
The quantity  is the vertical offset between the centre of buoyancy and the centre of mass in 

the body frame of reference. It is typically positive, indicating that the centre of gravity is 
below the centre of buoyancy. 

gz

 
The components  of the external linear forces are given in Section   ZYX &, 2.5. 

 
The equations of motion for quantities driven by external moments are: 
 
    yy xx zz gI q I I rp mz u vr wq M             (2.4.4) 

    xx zz yy gI p I I qr mz v wp ur K             (2.4.5) 

  zz yy xxI r I I pq N            (2.4.6) 

 
The components    of the external moments are given in Section NMK &, 2.5. 

 
The propulsion system equations are: 
 
 nnQnKQnJ nnnm          (2.4.7) 

  uwuududnnTum pppfpfnnpf )1(
0

       (2.4.8) 

 
where are damping coefficients defined by:  ff dd &

0

 
)1)(1)(1(

2
0

ppp

uu

f wa

X
d







 

 
2)1()1)(1( pppp

uu

f waa

X
d







 

 
Refer to Table 9 of Appendix A.2 for the values of these parameters. 
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2.5 External Forces and Moments 

 The external forces acting on the rigid body of the vehicle are composed of hydrostatic 
forces, hydrodynamic forces and forces due to the control surfaces and propeller; that is, 
 
 .      (2.5.1) ext hydrostatic lift drag controlF F F F F    
 
After expansion, the individual components of the external forces obey the following 
equations: 
 

 
nnT

rXvrXqXwqXuXuuXBWX

nnp

rrvrqqwquuu

)1(

sin)( 22







 
 (2.5.2) 

 
ruupqwp

urrvrrvvuv

uYpqYwpY

urYrYvYrrYvvYuvYBWY

r





2

sincos)(



  
  (2.5.3) 

 
.

coscos)(

2
suuuwqq

wwrpvpuqqw

uZuwZqqZ

wwZrpZvpZuqZqZwZBWZ

s






  
 (2.5.4) 

 
Similarly, the moment expansions are: 
 
 nnQppKpKWzK nnpppg  ||sincos      (2.5.5) 

 
suuqqww

uqrpvpuwqwg

uMqqMwwM

uqMrpMvpMuwMqMwMWzM

s





2

sin



  
  (2.5.6) 

 
.2

ruurr

vvurpqwpuvrv

uNrrN

vvNurNpqNwpNuvNrNvNN

r


  
   (2.5.7) 

 
Refer to Appendix A for definitions of the coefficients and their values. 
 
After substituting the force and moment expressions (2.5.2) to (2.5.7) into the equations of 
motion (2.4.1) to (2.4.8), we obtain the full set of non-linear equations expressed as a function 
of the vehicle states and state-rates. It is then possible to recast the equations into state-space 
form. This is the form in which it is easiest to simulate the motion of the vehicle and calculate 
its trim state. 
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3. Estimation of Trim 

3.1 Definition of Trim 

 A trimmed vehicle is one that, when unperturbed, maintains a state of dynamic 
equilibrium in level, straight-line motion; that is, if it experiences no perturbations, it will 
maintain a fixed velocity and orientation, without requiring adjustments to the control input 
settings.  Finding the trim state of a body is a complex problem, due to the variety of external 
forces and moments acting upon it; they are illustrated in Figure 3. 

Rudder 


B 

W 
 

Figure 3: A representation of the external forces and moments acting on a REMUS AUV 

 
In order to maintain a constant speed, depth and heading, all the forces and moments acting 
about all axes must be balanced, that is, they must sum to zero. The vehicle must also have 
zero rates of rotation about all three axes. 
 
 
3.2 Trim Variables 

 The independent variable in the trim calculation is chosen to be the speed of the vehicle 
through the water, V. The trim calculation consists of estimating the control parameters - 
elevator angle, rudder angle and propeller torque - which result in a vehicle orientation in 
which all the forces and moments acting on the vehicle are balanced.  
 
In dynamic equilibrium, the rates of change of all components of the state vector  except 

horizontal position are zero; that is, all components of Ξ  other than  and  are zero. We 
refer to the remaining components of Ξ  by a vector Ω  of rates of change given by 

 X Y


 

  .],,,,,,,,,,,[ T
punrqpV   ZΩ

 
Note that the condition  implies that the vehicle is not turning so the body-
frame rotation rates are zero, that is, 

0  
.0 rqp  

 
The object of the trim calculation is to drive the components of  to zero. Ω
 
 

Drag 

Vwater  
Thrust  

Lift 

Weight 

Buoyancy Elevator Torque 
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3.3 Decision Variables 

 A set of decision variables must be chosen to facilitate the trim calculation. In this case, for 
a required forward speed V, the variables chosen are 
 
  .],,,,,,,,[ T

rspun x
  
This set does not include the linear velocities (u, v, w), because the information they represent 
is present in the values of (V, α, β); inclusion of (u, v, w) results in an over-determined system. 
 
 
3.4 Trim Estimation by Numerical Iteration 

 The trim calculation is the problem of finding those values of the decision variables that 
drive the absolute value of the trim variables to zero. One approach to this problem is to use 
numerical iteration based on the equations of motion. 
 
3.4.1 Newton-Raphson Iteration 

 If the individual components of  are differentiable and monotonic in the neighbourhood 
of the trim point, we can proceed via Newton-Raphson iteration. In the multivariate case, the 
calculation is initialised with some reasonable decision vector value  and the iteration 

proceeds as 
0x

 
         (3.4.1) )(1

1 kkk xΩJxx 
 

  
where J is the Jacobian matrix 
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J        (3.4.2) 

 
Although analytical calculation of the elements of the Jacobian matrix is possible, doing so is 
laborious; in this work, individual elements of the matrix were estimated using the first-order 
approximation 
 

  .),...,,...,(),...,,...,(
1

11 njnj
j

i xxxxxxx
xx

ΩΩ 






    (3.4.3) 
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The convergence of the algorithm is measured by comparing the difference between the 
current trim vector and the previous trim vector, referred to as the ‘error’, ε 
 
   

k
kk xx 1          (3.4.4) 

 
The iteration was terminated when error was less than a desired tolerance value, ,tol  

 
 tol  .          (3.4.5) 

 
In the following sections of this work, the first-order approximation to the partial derivatives 
in the Jacobian matrix was calculated with a uniform perturbation value of  
 
          (3.4.6) .001.0x
 
The iteration was terminated when the absolute difference between successive estimates fell 
below 
 
          (3.4.7) .10 10tol
 
Alternatively, the iteration was deemed to have failed to converge if the number of iterations 
reached 100. 
 
3.4.2 Implementation 

The trim method described above was implemented as an algorithm in MATLAB code as the 
function ‘trim.m’. It takes the following inputs:- 

 Desired trim speed V and 
 Initial trim state estimate x0 (optional) 

 
The function outputs are:- 

 The trim state vector x, 
 The number of iterations required to reach to error tolerance, and 
 The final error ε. 

 
The trim function calls a function ‘eom.m’ that implements the state-space form of the 
equations of motion. The implementation is detailed in Appendix B. 
 
3.4.3 Performance of the Newton-Raphson Iteration 

 As a case study, Sgarioto [2] reports the trim state for of the REMUS 100 model using 
parameters given in Appendix A, at the representative forward speed value of V = 4 knots. 
The values derived by Sgarioto were calculated using a commercial optimisation software 
package called SNOPT. For comparison, the Newton-Raphson iteration algorithm described 
in Section 3.4.1 was initialised using the starting value given by Sgarioto [2]: 
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  (3.4.8) 0 0 0 0 0 0 0 0 0 0[ , , , , , , , , ] [0,0,0,0,76 ,0.9 ,39 ,0,0].T
p s rn u V V V       x

 
The results from both processes are shown in Table 3. The agreement is sufficient to imply 
that the Newton-Raphson iteration described in the previous section is effective.  
 

Table 3: Comparison of the calculations of Sgarioto [2] and this work for a speed V = 4 knots 

Variable Symbol SNOPT Newton-Raphson 
Body-frame surge velocity U 2.0575 ms-1 2.0577 ms-1 

Body-frame sway velocity V 0.001 ms-1 0.0010 ms-1 

Body-frame heave velocity W -0.021 ms-1 -0.0209 ms-1 
Earth-frame roll  -2.42° -2.4178° 
Earth-frame pitch  -0.583° -0.5833° 
Propeller rotation rate N 1418 RPM 1418 RPM 
Propeller inflow rate up 1.42 ms-1 1.421 ms-1 
Angle of attack  -0.58° -0.5826° 
Angle of sideslip  0.028° 0.0285° 
Control torque  74 Nm 74.01 Nm 
Elevator angle s -2.15° -2.145° 
Rudder angle r -0.11° -0.111° 
 
 
3.4.4 Convergence Sensitivity 

 In order to test the robustness of the algorithm, a sensitivity analysis of the trim 
convergence behaviour was conducted with respect to the hydrodynamic coefficients. As 
there are over 50 hydrodynamic coefficients in the REMUS 100 model, it was not possible to 
report on the sensitivity of the convergence to all the parameters. Instead, five coefficients that 
Sgarioto identified as having significant effects on the longitudinal (x-z plane) stability of the 
REMUS model [2] were considered: uuuuuuuw XNMM

rs
,,,   and  These coefficients 

depend on the physical configuration of the vehicle, particularly its length. 

.uwZ

 
Appendix D describes a parametric analysis on the effect of the individual variation of each of 
the coefficients. This was done by running the trim algorithm for a forward speed of 4 knots 
with the value of each coefficient scaled to 50%, 75%, 100%, 125% and 150% of its original 
value, as stated in Appendix A.1. 
 
In summary, the results show that the algorithm converged to a trim condition for all of the 
modified coefficient values. The number of iterations did not change for the majority of the 
runs, although in a few cases, the trim algorithm converged slightly faster than it did with the 
original coefficient values. This suggests that the algorithm should be robust enough to trim 
different REMUS 100 configurations and other similar AUV models. 
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3.5 Estimation of the Starting Point for the Iteration 

 The convergence of the Newton-Raphson zero-finding algorithm expressed by equation 
(3.4.1) can only be guaranteed for a restricted class of functions and starting points for the 
iteration [3]. For example, the algorithm may fail to find the global minimum if the starting 
point is close to a local minimum. In the present case, the existence of local minima is difficult 
to predict, particularly because the parameters of the model depend on the configuration of 
the vehicle being modeled. This suggests that it is important to select an appropriate starting 
point for the iteration in order to guarantee convergence to the global minimum. This section 
considers methods by which a starting point for the iteration can be derived. 
 
3.5.1 Empirical and Analytical Starting Points 

 Sgarioto [2] derived equation (3.4.8) for the starting point of the numerical solution of the 
trim equations empirically, by a process of trial and error that was based on repeatedly 
integrating the non-linear equations of motion described in Section 2.4 and observing the 
dynamics of the vehicle as they evolved over long spans of time. Equation (3.4.8) is an 
appropriate starting point for the Newton-Raphson iteration for forward speeds from 1 knot 
to 6 knots, with convergence properties shown as the ‘Empirical’ curves in Figure 4.  
 
Although it was successful in this case, equation (3.4.8) was derived for a particular set of 
model parameters and it may not be appropriate for different values of the model parameters. 
 
It is possible to derive more widely applicable initial conditions from first principles. By 
applying a set of steady, level flight assumptions to the vehicle force balance equations and 
approximating the equations by neglecting terms smaller than second order in small 
quantities, it is possible to obtain analytical expressions for the trim state of the vehicle. The 
derivation and form of these analytical expressions are described in Appendix C.  
 
Although the analytical approximations of the trimmed state given as expressions (C.2.15) to 
(C.3.8) in Appendix C are not sufficiently accurate for use in trim-based calculations over the 
full range of vehicle speeds2, they are appropriate starting points for iterative refinement. The 
convergence properties that result from using these expressions as the starting points for the 
Newton-Raphson iteration are shown as the ‘Analytical’ curves in Figure 4. 
 

                                                      
2 The approximations were found to predict all trim state variables within 1% of the iterative 
benchmark values for forward speeds above 2.9 knots; as the vehicle speed decreased, the 
approximation became increasingly inaccurate, with some decision variables diverging more than 25% 
from the iterative solution (see Appendix C.4 for details of the comparison). 
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Figure 4: Comparison of Algorithm Convergence for various initial estimate cases, showing the number 

of iterations required to reach convergence, as defined by expressions (3.4.4) and (3.4.5).  

 
3.5.2 Simplified Analytical Starting Point 

Sgarioto’s expression (3.4.8) for the starting point retains only propulsion-related terms. An 
equivalent expression can be derived from the analytical approximations for the trimmed 
state given in Appendix B. Substituting the parameters given in Appendix A into equations 
(C.3.1), (C.3.2) and (C.2.15), propulsion-related variables can be approximated as 
 

    .0,0,058.036,69.0,72,0,0,0,0,,,,,,,, 2
0000000000

TT
rsp VVVVun  x  

            (3.5.2) 
 
The resulting convergence properties are shown as the ‘Analytical – Propulsion Only’ curves 
in Figure 4.  
 
3.5.3 Results and Discussion 

 Figure 4 compares the convergence behaviour of the Newton-Raphson algorithm using 
the three methods of initialisation proposed in previous sub-sections. Initialisation using the 
analytical expressions given in Appendix B results in the fastest convergence at all forward 
speeds, but the difference between the fastest and slowest options is at most 40% or 4 
iterations; therefore it is practically insignificant. However, the analytical expressions were 
derived from first principles and should be valid for any reasonable set of vehicle parameters; 
therefore they are to be preferred. 
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4. Parametric Study 

 This section describes a parametric study of the trim state of the REMUS 100 model as the 
forward speed V varies. The objective of this study was to assess whether the results of the 
iterative trim calculation are credible. 
 
The trim algorithm developed in Section 3.4 was used to calculate the trim states of the 
REMUS 100 model for forward speed values from one knot up to six knots, a superset of the 
working range of the vehicle, which is approximately 2 knots to 5 knots. The results are 
plotted in Figure 5 to Figure 7 and discussed in the following sections. 
 
 
4.1 Vehicle Orientation Angles 

 The trimmed vehicle orientation angles are plotted in Figure 5. The angles of attack and 
sideslip are equivalent measures of the vertical and lateral velocity components, v and w. 
 
The angle of attack required for trim at 1 knot is about 5° nose-down and decreases non-
linearly towards zero as forward speed increases. This decrease in magnitude is expected3.  
 
A similar trend of decreasing magnitude is visible in the sideslip angle but on a smaller scale 
to the trend in the angle of attack. This is because the same mechanisms are at work, but the 
forces exerted on the lateral axis in trimmed flight are smaller. The small amount of sideslip 
that is required to balance the lateral forces arises from cross-coupling effects brought on by a 
non-zero trimmed roll angle. The rudder and elevator fins of the REMUS vehicle are rigidly 
coupled and unable to provide direct compensation for the torque exerted by the rotation of 
the propeller, so the REMUS vehicle has a non-zero roll angle at all working speeds. 
 
The variation of pitch angle   with forward speed is almost identical to the variation of the 
angle of attack . The difference is so small that it is not possible to differentiate them on the 
scale shown in the figure. This behaviour is consistent with a state of steady level flight with 
minimal sideslip. 
 
The roll angle  is approximately -0.2° at one knot forward speed and increases with speed to 
almost -5.5° at 6 knots. The increase in roll angle causes an increase in righting moment that 
balances the increasing propeller torque.  
 

                                                      
3 The lifting force produced by a slim, nearly level body is approximately proportional to the product of 
the angle of attack and the forward speed squared. Thus, lift increases as the square of the speed of the 
vehicle; consequently a smaller angle of attack is required to balance the positive buoyancy of the 
vehicle. 
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Figure 5: Variation of trimmed angle of attack/pitch angle (top), sideslip angle (middle) and roll angle 
(bottom) with forward speed 

 
 
4.2 Propulsion Variables 

 As expected, the propulsion system variables - propeller rotational rate and propeller 
inflow speed – show an approximately linear relationship to the forward speed.  In order to 
produce a greater forward speed, more thrust is required. This is produced by a higher 
propeller rotation rate, which pulls water through the propeller at a faster rate or a higher 
inflow speed. This is illustrated in Figure 6. The propeller speed increases at a rate of about 
285 RPM per knot of increase in speed. The inflow speed increases at a rate of about 0.29 ms-1 
per knot of increase in speed. 
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Figure 6: Variation of propulsion system state variables propeller rotation rate (top) and propeller 

inflow speed 

 
 
4.3 Control Inputs 

 The behaviour of the control inputs with forward speed is illustrated in Figure 7. As with 
the propeller rotation rate and the propeller inflow speed, the torque generated by the 
propeller motor increases approximately linearly as the speed increases, rising from 
approximately 21 Nm at 1 knot to about 111 Nm at 6 knots.  
 
The angle of the rudder fin r  has a trimmed value of -0.15° at a forward speed of 1 knot. The 
magnitude of this angle decreases exponentially as forward speed increases, levelling out at 
approximately -0.11° for speeds greater than 2.5 knots. 
 
The control system of the DSTO REMUS 100 vehicle is typically able to maintain a state of 
near-equilibrium around a trimmed condition for speeds exceeding 2.5 knots. At lower 
speeds, the control system may lose its capacity to control depth and the vehicle begins to 
‘porpoise’. The modelled behaviour of the trimmed elevator fin angle is in agreement with 
expectation for speeds over 2 knots. However, the model predicts that the elevator fin angle 
reaches a minimum value of -6.5° at 1.5 knots and decreases at lower speeds, which is not 
intuitive; possibly downward body lift force dominates fin lift force at low speeds. 
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Figure 7: Variation of trimmed control input settings elevator fin angle (top), rudder fin angle 
(middle) and propeller motor mechanical torque (bottom) with forward speed. 

 
In summary, the numerical trim algorithm converges over a wider range of speeds than those 
at which the physical vehicle operates. The predicted behaviour of the trimmed vehicle states 
is in agreement with expectation for speeds over two knots. The predicted behaviour of the 
trimmed elevator fin angle at speeds under 2 knots is not intuitive, but it is beyond the range 
that can be checked by reference to the behaviour of the physical vehicle. 
 
 
 

5. Conclusion 

 The calculations given in this work demonstrate that the REMUS 100 vehicle dynamics 
model described by Prestero [1] and extended by Sgarioto [4] is readily trimmed using a 
numerical zero-finding procedure based on Newton-Raphson iteration. This work also 
presents analytical approximations to the trimmed state that can be used as a starting point for 
numerical procedure. With suitable parameters, the procedure should be adjustable to model 
different REMUS 100 configurations and vehicles of similar size and shape. 
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Appendix A:  REMUS 100 Model Parameters 

A.1. Mathematical Symbols 

Table 4: Symbols used to describe rigid-body dynamics in the body-fixed reference frame 

Degree of Freedom External Forces and 
Moments (units) 

Corresponding Rates 
of Change (units) 

Corresponding 
Displacements 

(units) 
Surge X  (N) u  ( m.s-1) x  (m) 
Sway Y  (N) v  ( m.s-1) y  (m) 
Heave Z  (N) w  ( m.s-1) z  (m) 
Roll  K  (N.m) p  ( rad.s-1)   (rad) 
Pitch M  (N.m) q  ( rad.s-1)   (rad) 
Yaw N  (N.m) r  ( rad.s-1)   (rad) 
 

Table 5: Symbols used to describe the stability reference frame variables 

Name Symbol Units 
Vehicle speed V m.s-1 
Angle of attack α rad 
Sideslip angle β rad 
 
 

Table 6: Symbols used to describe the state of the propulsion system 

Name Symbol Units 
Propeller rotation rate n rad.s-1 
Propeller inflow velocity up m.s-1 
Control Torque  N.m 
 
 

Table 7: Symbols used to describe the Newton-Raphson Algorithm 

Symbol Name 
Ξ Vehicle state vector 
u Control input vector 
x Decision variable vector 
Ω Trim variable vector 
J Jacobian matrix 
ε Error (difference between current and previous Newton-Raphson estimate) 
εtol Error tolerance 
Δx Newton-Raphson perturbation size 
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A.2. Case Study Parameters 

 Hydroid has manufactured several different variants of the REMUS 100 AUV. The 
parameters used by Prestero [1] and extended by Sgarioto [4] are not applicable to the DSTO 
REMUS 100, which is longer, heavier and fitted with additional equipment. However, they are 
suitable as a basis for comparison between different approaches to calculation and they are 
repeated here for reference. 
 

Table 8: General vehicle and environmental parameters 

Parameter Description Value Units 
G Gravitational constant 9.81 kg.m.s-2 

 Density of sea water 1030 kg.m-3 

M Mass of vehicle 30.48 kg 
Ixx Vehicle moment of inertia around x-axis 0.177 kg.m2 

Iyy Vehicle moment of inertia around y-axis 3.45 kg.m2 

Izz Vehicle moment of inertia around z-axis 3.45 kg.m2 

zg z-coordinate of vehicle centre of gravity 19.6 mm 
W-B Buoyancy of vehicle 0.34 kg (0.75 lb) 

 
 

Table 9: Propulsion system parameters 

Parameter Description Value Units 
mf Mass of propeller control volume 0.51965 kg 
Kn Thruster motor damping coefficient 0.5 kg.m2.s-1 

Jm Thruster motor moment of inertia 1 kg.m2 

ap Axial flow parameter  0.25  
wp Thruster wake fraction number 0.2  
p Propeller thrust reduction factor 0.1  

0f
d  Linear damping coefficient 6.604  

fd  Quadratic damping coefficient 16.51  
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Table 10: Non-linear drag, lift and thruster coefficients   

Parameter Description Value Units 

uuX  Axial drag coefficient – resisting forward motion -2.972 kg.m-1 

Kpp Coefficient of moment resisting roll -0.13 kg.m.rad-2 

Yvv Coefficient of drag resisting sway -1310 kg.m-1 
Yrr Cross-flow drag coefficient – resisting yaw  0.632 kg.m.rad-2 
Zww Coefficient of drag resisting heave -1310 kg.m-1 
Zqq Cross-flow drag coefficient – resisting pitch -0.632 kg.m.rad-2 
Mww Coefficient of moment resisting heave 3.18 kg 
Mqq Coefficient of moment resisting pitch -188 kg.m2.rad-2 
Nvv Coefficient of moment resisting sway -3.18 kg 
Nrr Coefficient of moment resisting yaw -94 kg.m2.rad-2 
Yuv Drag resisting sway due to forward and sway motion -28.6 kg.m-1 
Zuw Drag resisting heave due to forward and yaw motion -28.6 kg.m-1 

Muw Coefficient of moment resisting pitch due to forward 
and yaw motion 

24 kg 

Nuv 
Coefficient of moment resisting yaw due to forward 
and sway motion 

-24 kg 

 

Table 11: Thruster coefficients 

Parameter Description Value Units 

nnT  Thrust coefficient 6.279 × 10-4 kg.m.rad-2 

nnQ  Torque coefficient -1.121× 10-5 kg.m2.rad-2 

 

Table 12: Added mass coefficients 

Parameter Description Value Units 

uX   Axial added mass -0.93 kg 

vY  Crossflow added mass -35.5 kg 

rY  Crossflow added mass 1.93 kg.m.rad-1 

wZ   Crossflow added mass -35.5 kg 

qZ   Crossflow added mass -1.93 kg.m.rad-1 

pK   Rolling added mass -0.0704 kg.m2.rad-1 

wM   Crossflow added mass -1.93 kg.m 

qM   Crossflow added mass -4.88 kg.m2.rad-1 

vN   Crossflow added mass 1.93 kg.m 

rN   Crossflow added mass -4.88 kg.m2.rad-1 
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Table 13: Added mass cross term coefficients 

Parameter Description Value Units 
Xuq Drag coefficient for forward and pitching motion -35.5 kg.rad-1 

Xqq Drag coefficient for pitching motion -1.93 kg.m.rad-2 
Xvr Drag coefficient for sway and yawing motion 35.5 kg.rad-1 
Xrr Drag coefficient for yawing motion -1.93 kg.m.rad-2 
Yur Sway coefficient for forward and yawing motion 5.22 kg.rad-1 
Ywp Sway coefficient for heave and rolling motion 35.5 kg.rad-1 
Ypq Sway coefficient for rolling and pitching motion 1.93 kg.m.rad-2 
Zuq Heave coefficient for forward & pitching motion -5.22 kg.rad-1 
Zvp Heave coefficient for sway and rolling motion -35.5 kg.rad-1 
Zrp Heave coefficient for heave & rolling motion 1.93 kg.m.rad-2 
Muq Pitch mom. coeff. for forward & pitching motion -2 kg.m.rad-1 
Mvp Pitch mom. coeff. for sway & rolling motion -1.93 kg.m.rad-2 
Mrp Pitch mom. coeff. for yaw & rolling motion 4.86 kg.m2.rad-2 
Nur Yaw mom. coeff. for forward and yawing motion -2 kg.m.rad-1 
Nwp Yaw mom. coeff. for heave and rolling motion -1.93 kg.m.rad-2 
Npq Yaw mom. coeff. for rolling and pitching motion -4.86 kg.m2.rad-2 

 
 
 

Table 14: Control surface non-linear coefficients 

Parameter Description Value Units 

ruuY   Sway force coefficient for rudder displacement 9.64 kg.m-1.rad-1 

suuZ   Lift coefficient for elevator displacement -9.64 kg.m-1.rad-1 

suuM   Pitch moment coefficient for elevator displacement -6.15 kg.rad-1 

ruuN   Yaw moment coefficient for rudder displacement -6.15 kg.rad-1 
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Appendix B:  Algorithm Implementation 

 The trim method described in Section 3.4 was implemented as an algorithm in MATLAB 
code, accessible via the function ‘trim.m’. The trim function takes as inputs the desired forward 
speed V and the initial trim state estimate x0 and outputs the trim estimate as vector x, the 
number of iterations required to reach convergence and the final error ε. The trim function 
calls a function ‘eom.m’, which implements the state-space form of the equations of motion, 
through an interface function ‘f’. The eom function and a function ‘coeff’ that it invokes were 
written by Dr Daniel Sgarioto and are used with the permission of the New Zealand Defence 
Technology Agency (DTA). 
 
 
B.1. Interface Function 

 The trim function is generic, but some implementation-specific adjustments were required 
to use the DTA routines. A sub-function ‘f’ was created to interface between the input and 
output vectors of the trim function and the variables employed by the state rates function eom. 
The sub-function converts the stability axis variables (V, α, β) to body velocities (u, v, w), via 
the transformations (2.3.10) to (2.3.12), and translates variables between the trim input and 
output formats and the internal format used by eom. This process is represented in a flow 
diagram shown in Figure 8. 
 



















V

















w

v

u





























































m

s

r

p

p

Q

u

n

w

v

u







0

0

0

0

0

0

0



















































s

r

p

p

u

n

V
























































































V

u

n

Z

Y

X

r

q

p

w

v

u

p

p













































p

p

u

n

Z

r

q

p

V

























 
Figure 8: Flow diagram for interface function, f 
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B.2. Iteration Algorithm 

 The Newton-Raphson method is implemented in the function ‘trim.m’. The algorithm is 
designed to trim the equations contained within the interface function ‘f’. The algorithm is 
split loosely into three sections: algorithm initialisation, the Newton-Raphson iteration and 
post-processing and display. The Newton-Raphson iteration consists of a while-loop which 
continues to apply the Newtown-Raphson method while the total difference between the 
current and previous trim estimates is greater than a preset error tolerance value. There is also 
a loop break condition if the number of iterations exceeds 100; this is included to stop the 
algorithm from running indefinitely in the event that a trim point can not be found. A flow 
diagram representation of the algorithm is shown in Figure 9. 
 
B.2.1 Jacobian matrix calculation 

The Jacobian matrix is calculated within the state rates interface function f. The process is 
implemented as a for-loop which cycles through each trim variable. Within each iteration, all 
the partial derivatives with respect to the trim variable in question are calculated; that is, one 
column of the Jacobian matrix is calculated at each iteration. A flow diagram representation of 
the Jacobian generation loop is shown separately within Figure 9. 
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Newton-Raphson Method
Generate Jacobian

for k=1: length(x)

 uxx ,pp f

xp(k) = x(k) + Δx

J(k) = (xp – x)/Δx

Reset xp=x

START

Input Δx , ε

Input x0 , V

while error>ε

)(1 xJxx fnew


END

if
count>100

error = Σ |xnew– x|

count = count+1

Output Xtrim

x = xnew

x = x0

Initialisation

count = 1, error = 1

Yes

No

Yes

No

Generate Jacobian, J

 uxx ,f

 
Figure 9: Trim algorithm flow diagram with the Jacobian generation process shown as an inset 
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B.3. Trim function MATLAB script 

B.3.1 Main Trim Function ‘trim.m’ 

function   [x_trim, iterations, error] = trim(V_knots, X0) 
  
% Setup global variables 
global m Minv W B zg Ixx Iyy Izz w_prop tau Jm m_f Kn Xuu Xudot Yvdot 
Nvdot Zwdot Mwdot Zqdot Mqdot Yrdot Nrdot Xwq Xqq Xvr Xrr Yvv Yrr Yuv Yur 
Ywp Ypq Yuudr Zww Zqq Zuw Zuq Zvp Zrp Zuuds Kpp Mww Mqq Muw Muq Mvp Mrp 
Muuds Nvv Nrr Nuv Nur Nwp Npq Nuudr Ndr Kpdot Tnn Qnn df0 df nd  
global V 
  
% Define trim conditions 
V = V_knots*0.514444; % m/s 
  
% Calculate hydro coefficients for desired speed 
coeffs 
 
%Decision variables 
  
% Trim input vector indices 
x_ind = [18 19 10 11 13 16 14 15 17]; 
% x = [alpha beta phi theta n_prop u_prop delta_s delta_r Qm] 
  
% Trim output vector for generating Jacobian 
xd_ind = [1 2 3 4 5 6 9 10 11 12 13 14 15 16 17]; 
% x_dot = [u v w p q r Z phi theta psi n_prop u_prop V alpha beta] 
  
if nargin<2, 
    % Initial trim estimate 
    %X0 = [alpha0 beta0 phi0 theta0 n_prop0 up0 delta_s0 delta_r0 Qm0] 
    X0 = [ 0 0 0 0 72*V 0.7*V 0 0 36*V ]; % Analytical - prop only   
end 
   
dx = 0.001; % perturbation size 
x_t = X0'; % initialise trim state vector 
error=100; % initialise error 
tol = 1e-10; % error tolerance 
counter = 1; % initialise while loop counter 
  
%% Main Loop ----------------------------------------------------------- 
  
while error > tol 
     
% Generate Jacobian -----------------------------------------------------    
    for i = 1:length(x_t) 
        x_tp = x_t;% reset trim vector 
        x_tp(i) = x_t(i) + dx; %perturb i_th element in trim vector 
         
        fx_tp = f(x_tp,x_ind,xd_ind);% Calculate perturbed x_dot 
        fx_t = f(x_t,x_ind,xd_ind);% Calculate unperturbed x_dot 
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        J(:,i) = (fx_tp-fx_t)./dx;%calculate i_th column of Jacobian 
    end 
%------------------------------------------------------------------------     
    x_t_old = x_t;%save old trim state 
    x_t = x_t - J\fx_t;% calculate new trim state 
     
    error = sum(abs(x_t-x_t_old)); % calculate error between new and old 
trim states 
    counter = counter+1;% advance counter 
     
    if counter>100 % Break if calculated more than 100 iterations 
        break 
    end 
end 
%%----------------------------------------------------------------------- 
 
% Final trim state 
x_trim = x_t; 
  
%calculate (u,v,w) 
u_t = V.*cos(x_t(1))*cos(x_t(2)); 
v_t = V.*sin(x_t(2)) ; 
w_t = V.*sin(x_t(1))*cos(x_t(2)); 
alpha_t = x_t(1); 
beta_t = x_t(2); 
phi_t = x_t(3); 
theta_t = x_t(4); 
np_t = x_t(5); 
up_t = x_t(6)  ;
Q_t = x_t(9); 
ds_t = x_t(7); 
dr_t = x_t(8); 
  
save trim_state_1knots u_t v_t w_t alpha_t beta_t phi_t theta_t np_t up_t 
Q_t ds_t dr_t 
 
%% Display output 
iterations = counter - 1; 
fprintf('\nNo. of interations: %3.0i\n',iterations) 
fprintf('final error: %1.2e\n',error) 
fprintf('\nTRIM STATE\n') 
fprintf('--------------\n') 
fprintf('u = %6.4f m/s\n',u_t) 
fprintf('v = %6.4f m/s\n',v_t) 
fprintf('w = %6.4f m/s\n',w_t) 
fprintf('alpha = %6.4f deg\n',x_t(1)*180/pi) 
fprintf('beta = %6.4f deg\n',x_t(2)*180/pi) 
fprintf('phi = %6.4f deg\n',x_t(3)*180/pi) 
fprintf('theta = %6.4f deg\n',x_t(4)*180/pi) 
fprintf('n_prop = %6.4f RPM\n',x_t(5)*60/2/pi) 
fprintf('u_prop = %6.4f m/s\n',x_t(6)) 
fprintf('Q = %6.4f Nm\n',x_t(9)) 
fprintf('delta_s = %6.4f deg\n',x_t(7)*180/pi) 
fprintf('delta_r = %6.4f deg\n',x_t(8)*180/pi) 
fprintf('--------------\n') 
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%%----------------------------------------------------------------------- 
  
function xdot = f(x,x_ind,xd_ind) 
% Function to manipulate the variables passed to and from the equation of 
% motion function - eom.m 
  
X = zeros(19,1); % initialise vehicle state vector 
X([x_ind]) = x; % insert trim states into appropriate elements of vehicle 
state vector 
  
Xdot = eom(X); % calculate vehicle state rate vector 
  
xdot = Xdot([xd_ind]); % extract appropriate elements vehicle state rates 
vector for Jacobian 
 
%%----------------------------------------------------------------------- 
 

B.3.2 Equations of Motion Function ‘eom.m’ 

 function  [xdot] = eom(x) 
 
% Extracts of code taken from  
% Daniel Sgarioto, New Zealand Defence Technology Agency 
% Nov 2006 
 
global m Minv W B zg Ixx Iyy Izz w_prop tau Jm m_f Kn Xuu Xudot Yvdot 
Nvdot Zwdot Mwdot Zqdot Mqdot Yrdot Nrdot Xwq Xqq Xvr Xrr Yvv Yrr Yuv Yur 
Ywp Ypq Yuudr Zww Zqq Zuw Zuq Zvp Zrp Zuuds Kpp Mww Mqq Muw Muq Mvp Mrp 
Muuds Nvv Nrr Nuv Nur Nwp Npq Nuudr Ndr Kpdot Tnn Qnn df0 df nd  
  
global V 
  
% Mass Matrix 
M(1,1) = m - Xudot; 
M(1,5) = m*zg; 
M(1,6) = 0; 
% 
M(2,2) = m - Yvdot; 
M(2,4) = -m*zg; 
M(2,6) =  - Yrdot; 
% 
M(3,3) = m - Zwdot; 
M(3,4) = 0; 
M(3,5) =  - Zqdot; 
% 
M(4,2) = -m*zg; 
M(4,3) = 0; 
M(4,4) = Ixx - Kpdot; 
% 
M(5,1) = m*zg; 
M(5,3) =  - Mwdot; 
M(5,5) = Iyy - Mqdot; 
% 
M(6,1) = 0; 
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M(6,2) =  - Nvdot; 
M(6,6) = Izz - Nrdot; 
% 
Minv = inv(M); 
 
% Get state variables 
alpha = x(18); 
beta = x(19); 
  
% Forward speed constraint---- 
u = V.*cos(alpha)*cos(beta); 
v = V.*sin(beta) ; 
w = V.*sin(alpha)*cos(beta); 
%------------------------------ 
p = x(4); 
q = x(5); 
r = x(6); 
  
xpos = x(7); 
ypos = x(8); 
zpos = x(9); 
  
phi = x(10); 
theta = x(11);  
psi = x(12); 
  
nprop = x(13); 
delta_s = x(14); 
delta_r = x(15); 
up = x(16); 
Qm = x(17); 
  
ua = (1 - w_prop)*u; 
Uc = [0 0]; 
%% 
% Hydrodynamic Thrust & Torque 
% 
T = Tnn*abs(nprop)*nprop; 
Q = Qnn*abs(nprop)*nprop; 
%Qm = x(17); defined above 
    
% Begin EOM 
% 
c1 = cos(phi); c2 = cos(theta); c3 = cos(psi); s1 = sin(phi); s2 = 
sin(theta); s3 = sin(psi); t2 = tan(theta); 
% 
% Set total forces from equations of motion 
% 
Xf = -(W-B)*sin(theta) + Xuu*u*abs(u) + (Xwq-m)*w*q + (Xqq)*q^2 ... 
    + (Xvr+m)*v*r + (Xrr)*r^2 - m*zg*p*r + (1 - tau)*T; 
% 
Yf = (W-B)*cos(theta)*sin(phi) + Yvv*v*abs(v) + Yrr*r*abs(r) + Yuv*u*v... 
    + (Ywp+m)*w*p + (Yur-m)*u*r - (m*zg)*q*r + (Ypq)*p*q ... 
    + Yuudr*u^2*delta_r ; 
% 
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Zf = (W-B)*cos(theta)*cos(phi) + Zww*w*abs(w) + Zqq*q*abs(q)+ Zuw*u*w ... 
    + (Zuq+m)*u*q + (Zvp-m)*v*p + (m*zg)*p^2 + (m*zg)*q^2 ... 
    + (Zrp)*r*p + Zuuds*u^2*delta_s ; 
% 
Kf =  - (zg*W)*cos(theta)*sin(phi) ... 
    + Kpp*p*abs(p) - (Izz-Iyy)*q*r - (m*zg)*w*p + (m*zg)*u*r + Q; 
% 
Mf = -(zg*W)*sin(theta) + Mww*w*abs(w) ... 
    + Mqq*q*abs(q) + (Mrp - (Ixx-Izz))*r*p + (m*zg)*v*r - (m*zg)*w*q ... 
    + (Muq)*u*q + Muw*u*w + (Mvp)*v*p ... 
    + Muuds*u^2*delta_s ; 
% 
Nf = Nvv*v*abs(v) + Nrr*r*abs(r) + Nuv*u*v ... 
    + (Npq - (Iyy-Ixx))*p*q + (Nwp)*w*p + (Nur)*u*r ... 
    + Nuudr*u^2*delta_r ; 
% 
FORCES = [Xf Yf Zf Kf Mf Nf]' ; 
% 
xdot = ... 
    
[Minv(1,1)*Xf+Minv(1,2)*Yf+Minv(1,3)*Zf+Minv(1,4)*Kf+Minv(1,5)*Mf+Minv(1,
6)*Nf 
    
Minv(2,1)*Xf+Minv(2,2)*Yf+Minv(2,3)*Zf+Minv(2,4)*Kf+Minv(2,5)*Mf+Minv(2,6
)*Nf 
    
Minv(3,1)*Xf+Minv(3,2)*Yf+Minv(3,3)*Zf+Minv(3,4)*Kf+Minv(3,5)*Mf+Minv(3,6
)*Nf 
    
Minv(4,1)*Xf+Minv(4,2)*Yf+Minv(4,3)*Zf+Minv(4,4)*Kf+Minv(4,5)*Mf+Minv(4,6
)*Nf 
    
Minv(5,1)*Xf+Minv(5,2)*Yf+Minv(5,3)*Zf+Minv(5,4)*Kf+Minv(5,5)*Mf+Minv(5,6
)*Nf 
    
Minv(6,1)*Xf+Minv(6,2)*Yf+Minv(6,3)*Zf+Minv(6,4)*Kf+Minv(6,5)*Mf+Minv(6,6
)*Nf 
    c3*c2*u + (c3*s2*s1-s3*c1)*v + (s3*s1+c3*c1*s2)*w + Uc(1) 
    s3*c2*u + (c1*c3+s1*s2*s3)*v + (c1*s2*s3-c3*s1)*w + Uc(2) 
    -s2*u + c2*s1*v + c1*c2*w 
    p + s1*t2*q + c1*t2*r 
    c1*q - s1*r 
    s1/c2*q + c1/c2*r] ; 
% 
xdot(13,1) = (1/Jm)*(Qm - Q - (Kn*nprop)); 
% 
xdot(14,1) = (1/m_f)*(T - df0*up - df*abs(up)*(up - ua)); 
% 
ydotV = xdot(1,1)*cos(alpha)*cos(beta) + xdot(2,1)*sin(beta) + 
xdot(3,1)*sin(alpha)*cos(beta); 
% 
ydotA = (xdot(3,1)*cos(alpha) - xdot(1,1)*sin(alpha))/(V*cos(beta)); 
% 
ydotB = (1/V)*(-xdot(1,1)*cos(alpha)*sin(beta) + xdot(2,1)*cos(beta) - 
xdot(3,1)*sin(alpha)*sin(beta)); 
% 
xdot(15:17,1) = [ydotV ydotA ydotB]; 
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B.3.3 Hydrodynamics Coefficients script file ‘coeffs.m’ 

% REMUS Hydrodynamic Coefficients 
% Daniel Sgarioto, DTA 
% Nov 2006 
global V scale 
% Vehicle Parameters 
% 
U0=V; 
m = 30.48; 
g = 9.81; 
% 
W = m*g; 
B = W + (0.75*4.44822162); 
L = 1.3327; 
% 
zg = 0.0196; 
% 
Ixx  = 0.177; 
Iyy  = 3.45; 
Izz  = 3.45; 
% 
cdu = 0.2; 
rho = 1030; 
Af = 0.0285; 
d = 0.191; 
xcp = 0.321; 
Cydb = 1.2; 
% 
mq = 0.3; 
% 
cL_alpha = 3.12; 
Sfin = 0.00665; 
xfin = -0.6827; 
% 
gamma = 1; 
a_prop = 0.25; 
w_prop = 0.2; 
tau = 0.1; 
Jm = 1; 
% 
l_prop = 0.8*0.0254; 
d_prop = 5.5*0.0254; 
A_prop = (pi/4)*(d_prop^2); 
m_f = gamma*rho*A_prop*l_prop; 
% 
Kn = 0.5; 
% 
% Most are Prestero's estimates, but revised values of some linear 
% coefficients are due to Fodrea. Thruster coeffs based on results 
reported by Allen et al. 
% 
Xwq= -35.5; 
Xqq= -1.93  ;
Xvr= 35.5; 
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Xrr= -1.93; 
Yvv= -1310.0; 
Yrr= 0.632; 
Yuv= -28.6  ;
Yur= 5.22; 
Ywp= 35.5; 
Ypq= 1.93; 
Yuudr= 9.64; 
Zww= -1310.0; 
Zqq= -0.632  ;
Zuw= -28.6; 
Zuq= -5.22; 
Zvp= -35.5  ;
Zrp= 1.93; 
Zuuds= -9.64; 
Kpp= -0.130; 
Mww= 3.18; 
Mqq= -188; 
Muw= 24.0; 
Muq= -2.0; 
Mvp= -1.93; 
Mrp= 4.86; 
Muuds= -6.15; 
Nvv= -3.18; 
Nrr= -94.0; 
Nuv= -24.0; 
Nur= -2.0; 
Nwp= -1.93; 
Npq= -4.86; 
Nuudr= -6.15*scale; 
Kpdot= -0.0704; 
% 
Xuu = -0.5*rho*cdu*Af; 
Xu = -rho*cdu*Af*U0; 
% 
% Added Mass Coeffs 
Xudot= -0.93; 
% 
Yvdot= -35.5; 
Yrdot= 1.93; 
% 
Zwdot= -35.5; 
Zqdot= -1.93; 
% 
Mwdot= -1.93; 
Mqdot= -4.88; 
% 
Nvdot= 1.93; 
Nrdot= -4.88; 
% 
% Added Mass Terms 
% 
Zwc = -15.7; 
Zqc = 0.12; 
% 
Mwc = -0.403; 
Mqc = -2.16; 
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% 
% Added Mass Coupling Terms 
Xqa = Zqdot*mq; 
Zqa = -Xudot*U0; 
Mwa = -(Zwdot - Xudot)*U0; 
Mqa = -Zqdot*U0; 
% 
% Body Lift Contribution 
% 
Zwl = -0.5*rho*(d^2)*Cydb*U0; 
% 
Mwl = -0.5*rho*(d^2)*Cydb*xcp*U0; 
% 
% Fin Contribution 
% 
Zwf = -0.5*rho*cL_alpha*Sfin*U0; 
Zqf = 0.5*rho*cL_alpha*Sfin*xfin*U0; 
% 
Mwf = 0.5*rho*cL_alpha*Sfin*xfin*U0; 
Mqf = -0.5*rho*cL_alpha*Sfin*(xfin^2)*U0; 
% 
% Dive Plane Coeffs 
Zw = Zwc + Zwl + Zwf; 
Zq = 2.2; 
% 
Mw = -9.3; 
Mq = Mqc +Mqa +Mqf; 
% 
% Steering Coeffs 
Yv = Zw; 
Yr = 2.2; 
% 
Nv = -4.47; 
Nr = Mq; 
% 
% Control Surface Coeffs 
Zds = -rho*cL_alpha*Sfin*(U0^2); 
Mds = rho*cL_alpha*Sfin*xfin*(U0^2); 
% 
Ydr = -Zds/3.5  ;
Ndr = Mds/3.5; 
% 
% Thruster Coeffs 
Tnn = 6.279e-004; 
Tnu = 0;  
% 
Qnn = -1.121e-005; 
Qnu =  0; 
% 
Tnu0 = (1/(a_prop + 1))*Tnu; 
Qnu0 = (1/(a_prop + 1))*Qnu; 
% 
df0 = (-Xu)/((1 - tau)*(1 + a_prop)*(1 - w_prop)); 
df =  (-Xuu)/((1 - tau)*(1 + a_prop)*a_prop*((1 - w_prop)^2)); 
% 
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Appendix C:  Analytical Trim Estimation using Force 
Balance Conditions 

 Sgarioto [2] derived the initial conditions (3.4.8) for numerical solution of the trim 
equations empirically. It is possible to derive more accurate initial conditions from first 
principles. Consider the equations of motion described in Section 2.4. In the trimmed 
condition, we require that 0 rqp , 0 rqp   and .0 wvu   Consequently, the 
sums of forces and moments are zero, that is, 
 
 and 0 ZYX .0 NMK  
 
When the vehicle is in a trimmed state, the force and moment equations simplify, giving 
 
 0)1(sin)(  nnTuuXWBX nnpuu      (C.1) 

 0sincos)( 2  ruuvvuv uYvvYuvYBWY
r

      (C.2) 

 0coscos)( 2  suuuwww uZuwZwwZBWZ
s
     (C.3) 

 
and 
 
 0sincos  nnQWzK nng        (C.4) 

 0sin 2  suuwwuwg uMwwMuwMWzM
s
      (C.5) 

 .02  ruuvvuv uNvvNuvNN
r

       (C.6) 

 
The equations of motion (2.4.7), (2.4.8) for the thruster also simplify, giving 
 
 nnQnK nnn           (C.7) 

   2)1(
0

nTuwuudud nnpppfpf        (C.8) 

  

where 
   0

2
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f
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X V
d

a w
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   p
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   1 1 1

u u

f

p p

X
d

a w p




  
. 

  
 
C.1. Senses of Motion 

 For convenience, we adopt a number of sign conventions to simplify the absolute value 
quantities appearing in Equations (C.1) to (C.8). In the trimmed condition, we assume that: 
 

 The vehicle is moving forward; that is, .uu   

 The axial water inflow velocity to the propeller is positive; that is, .pp uu   
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 The propeller is rotating clockwise (positive); that is, .nn   

 The vehicle is passively stable in roll and the roll moment counteracts the torque due 
to the motion of the propeller; thus, it is negative: .0  

 The vehicle is positively buoyant and the buoyancy of the vehicle is counteracted by a 
downward lift force, which is generated by swimming the vehicle nose-down; that is, 

.0  
 Because the vehicle is slightly nose-down and moving forward, the body-frame 

vertical velocity is negative (upward); that is, 0w and .ww   

 From (C.6) and the coefficient values in Appendix A, we can show that the sign of v  is 
opposite to the sign of .r  Using this and the signs of  and  we previously identified, 
we can show from (C.2) that .0v   

 It follows that .0r   
 From (C.5) and the coefficients in Appendix A and noting that ,0w  we can show 

that .0s  

 
 
C.2. Approximation to Nearly Level Motion 

 Equations (C.1) to (C.8) are non-linear and do not have an obvious general solution. 
However, if we assume that a vehicle in the trimmed condition will be nearly horizontal and 
will have its body axis oriented nearly parallel to the direction of motion, then approximations 
can be made that allow the equations to be solved. 
 
The relationship between body-frame velocity and Earth-frame velocity or ground speed is 
given by the inverse of transformation (2.3.1) to (2.3.3), which is 
 

  .
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            (C.2.1) 
 
In the trim state, the rate of climb in the Earth frame is zero; hence, the true speed V in the 
stability frame is also the forward speed. Without loss of generality, we can define 
 

           (C.2.2) ,
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in which case Equations (C.2.1) become 
 
  coscosVu           (C.2.3) 
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 )sincoscossin(sin  Vv       (C.2.4) 
 ).sinsincossin(cos  Vw       (C.2.5) 
 
We assume that roll, pitch and (without loss of generality) yaw angles will all be small; that is, 
in radians, 
 
 .1,,   
 
Then to lowest order in angular quantities, we have 
 
        (C.2.6) VooVu ~)()(1( 22  
  VoVv ~))((          (C.2.7) 
 .~))((  VoVw          (C.2.8) 
 
Note also that  ., uwv 
 
Adopting the sense conventions from Section C.1 and dropping terms beyond second order in 
v, w,  and , equations (C.1) to (C.3) become 
 
 22 )1()(0 nTVXWB nnpuu         (C.2.9) 

 ruuvvuv VYvYVvYBW
r

 
22)(0       (C.2.10) 

 .]5.05.01)[(0 222222
suuuwww VZVZVZBW

s
    (C.2.11) 

 
Equations (C.4) to (C.6) become 
 
 20 nQWz nng           (C.2.12) 

 suuwwuwg VMVMVMWz
s

 
2222 )(0      (C.2.13) 

 .0 22 vNNVvVN vvruuuv r
         (C.2.14) 

 
Equations (C.7) and (C.8) become quadratic equations, that is, 
 
 2nQnK nnn            (C.2.15) 

 .0))1(( 22

0
 nTuVwddud nnppffpf      (C.2.16) 
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C.3. Derivation of Analytical Approximations 

C.3.1 Propulsion Subsystem 

 We previously approximated the forward body velocity by the forward speed, that is, u  
V. In order to proceed, we need to be able to relate forward speed to propeller rotation rate. In 
(C.2.9), we note that the term related to buoyancy is much smaller than the term due to 
hydrodynamic drag at normal operating velocities, since we expect that 
 
 .1but    )1(),1(),1( 2  oVoXoWB uu   

 
Dropping the buoyancy term, the approximate propeller revolution rate is determined by 
 

 .
)1(

2

2

nnp

uu

T

VX
n


         (C.3.1) 

 
In (C.3.1) and following equations, an overbar indicates an estimated quantity. 
 
The estimated control torque   follows directly from Equation (C.2.15). The axial flow 
velocity also follows as the positive root of Equation (C.2.16), that is,

   .)1(    where4
2

1
0

22 VwddbnTdbb
d

u pffnnf
f

p    (C.3.2) 

 
C.3.2 Manoeuvre Subsystem 

 Estimation of the propeller revolution rate enables estimation of roll, pitch and control 
surface angles. From (C.2.12), the estimated roll angle is 
 

 .2n
Wz

Q

g

nn          (C.3.3) 

 
Substitution of estimated roll as a known parameter in (C.2.10) enables expression of the 
rudder angle in terms of the sideslip velocity, as 
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Substitution of (C.3.4) in (C.2.14) results in a quadratic expression as following; the sway 
velocity estimate will be the positive root. 
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The rudder angle follows from (C.2.14), as  
 

  .
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VN uvvv
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
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         (C.3.6) 

 
Similarly, substitution of the estimated roll in (C.2.11) allows expression of the elevator angle 
in terms of pitch, as 
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Substituting (C.3.7) in (C.2.13) yields a quadratic expression for the pitch estimate, as 
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   (C.3.8) 

 
The pitch estimate is the negative root of the quadratic. The estimated elevator angle follows 
directly from (C.3.7). 
 
Together, the equations in this section approximate the state of the vehicle in a trimmed 
condition. 
 
 
C.4. Comparison of Numerical and Analytical Trim Estimates 

 Physical intuition suggests that the accuracy of equations (C.3.1) to (C.3.8) should improve 
with increasing forward speed. In order to compare the present approach to estimating the 
trim conditions with the iterative approach adopted in Section 3.4, we substitute the 
coefficient values from Appendix A into the equations and evaluate them.  
 
In order to compare with the case-study of Sgarioto [2], we set V = 4 knots and take the 
buoyancy force as 0.75 pounds weight, that is, 0.75 × 0.45 × 9.81 = 3.3 N. The results are shown 
in Table 15. By inspection, the state variables estimated with the analytical approximation are 
mostly in agreement with the ‘benchmark’ values estimated by Sgarioto or using the Newton-
Raphson method described in Section 3.4, to two or three significant figures. 
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Table 15: Comparison of numerical (SNOPT) and analytical approximations to the trim state 

Variable Symbol Numerical 
Benchmark 

Analytical 
Approximation 

Body-frame surge velocity u 2.0575 ms-1 2.0577 ms-1 
Body-frame sway velocity v 0.001 ms-1 0.0010 ms-1 
Body-frame heave velocity w -0.021 ms-1 -0.0209 ms-1 
Earth-frame roll  -2.42 -2.4107 
Earth-frame pitch  -0.583 -0.5825 
Propeller rotation rate N 1418 rpm 1416 rpm 
Propeller inflow rate up 1.42 ms-1 1.4197 ms-1 
Angle of attack  -0.58° -0.5825 
Angle of sideslip  0.028° 0.0284 
Control Torque  74 Nm 73.9089 Nm 
Elevator angle s -2.15° -2.1452 
Rudder angle r -0.11° -0.1108 
 
For a broader comparison, analytical trim approximations were calculated for forward speeds 
from 1 to 6 knots and compared against values obtained from the iterative Newton-Raphson 
algorithm developed in Section 3.4. The results are illustrated in Figure 10 to Figure 12. The 
relative percentage differences between the results of the two solution methods are plotted in 
Figure 13 to Figure 15 for further clarification. 
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Figure 10: Comparison of the iterative solution and analytical approximation for the trim-state angles 

of attack or pitch (top), sideslip (middle) and roll (bottom) 
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Figure 11: Comparison of iterative and analytical solutions for the propulsion system variables - 

propeller rotation rate (top) and propeller inflow speed (bottom) versus forward speed 
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Figure 12: Comparison of the iterative and analytical solution for the control inputs - elevator angle 

(top), rudder angle (middle) and torque (bottom) versus forward speed 
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Figure 13: Relative differences between iterative and analytical solutions for the trim-state angle of 
attack/pitch angle (top), sideslip angle (middle) and roll angle (bottom) versus forward 
speed 
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Figure 14: Relative differences between iterative and analytical solutions for the trim-state propulsion 

system variables - propeller rotation rate (top) and propeller inflow speed (bottom) versus 
forward speed 
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Figure 15: Relative differences between the iterative solution and analytical approximation for the trim-
state control inputs - elevator fin angle (top), rudder fin angle (middle) and mechanical 
motor torque (bottom) versus forward speed 
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Appendix D:  Convergence Sensitivity Analysis 

 In order to test the robustness of the numerical trim-estimation algorithm, a sensitivity 
analysis of the convergence behaviour was conducted with respect to the values of the 
hydrodynamic coefficients.  
 
The robustness of the algorithm to different vehicle models was tested by altering the values 
of five primary hydrodynamic coefficients:    ,uwM ,

suuM  ,
ruuN  uuX  and . This set 

consists of coefficients which Sgarioto previously identified as having a significant impact on 
the longitudinal (x-z plane) stability of the REMUS model [2]. Each of the parameters is also 
sensitive to the physical dimensions of the vehicle.  

uwZ

 
A parametric analysis was performed by varying each of the five coefficients individually. 
This was done by running the trim algorithm for a forward speed of 4 knots with the value of 
the coefficient at 50%, 75%, 100%, 125% and 150% of the original value provided in A.1. The 
performance of the algorithm was compared using the number of iterations it took in each 
case to reach the preset error tolerance. It should be noted that, while speed of convergence 
has been used here as a measure of robustness, a comprehensive analysis would employ 
methods that consider the complete topology of the characteristic surface. 
 
It was found that all the cases resulted in convergence to a trim solution and that in most cases 
the same number of iterations was required to converge as for the benchmark case. In a few 
cases, convergence occurred after one less iteration than the benchmark. 
 
The trim variable results are summarised for each coefficient in Table 16 to Table 20 along 
with the corresponding number of iterations taken to reach convergence. As the values of the 
many trim variables did not change significantly compared to the original numerical 
benchmark solution, the trim variable results are listed as a percentage difference from the 
original solution. For example, the percentage difference in the angle of attack when the 
coefficient is reduced to 50% of its original value is calculated as follows: 
 

100_
%100

%50%100 






differencepercent  

 
As expected, the results show that only the variables associated with the mode of motion 
affected by the coefficient in question will change. For example, Table 16 shows that , a 

coefficient linking the elevator’s surface deflection to the vehicle’s pitching motion 
significantly affects only the pitch angle (and angle of attack) and the elevator trim angle. The 
results from varying Zuw and Muw show similar patterns, as expected because these coefficients 
are related to the same modes of motion as  

suuM 

.
suuM 
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Table 16: Relative changes in trim state values due to variation of  
suuM 

suuδM Scale Factor 50% 75% 100% 125% 150% 

Angle of attack  28.99% 11.71% 0 -8.37% -14.63% 
Sideslip angle 0.08% 0.03% 0 -0.02% -0.04% 
Roll angle 0.08% 0.03% 0 -0.02% -0.04% 
Pitch angle 28.93% 11.68% 0 -8.36% -14.60% 
Propeller rotation 0.04% 0.01% 0 -0.01% -0.02% 
Prop inflow speed 0.02% 0.01% 0 -0.01% -0.01% 
Elevator angle -41.95% -17.70% 0 13.29% 23.56% 
Rudder angle 0.08% 0.03% 0 -0.02% -0.04% 
Mechanical torque 0.04% 0.01% 0 -0.01% -0.02% 
# of iterations 6 6 7 7 7 

 

Table 17: Relative changes in trim state values due to variation of  uwZ

uwZ Scale Factor 50% 75% 100% 125% 150% 

Angle of attack -18.12% -8.43% 0 7.37% 13.85% 
Sideslip angle -0.05% -0.02% 0 0.02%  0.04% 
Roll angle -0.05% -0.02% 0 0.02%  0.04% 
Pitch angle -18.08% -8.42% 0 7.36% 13.82% 
Propeller rotation -0.02% -0.01% 0 0.01%  0.02% 
Prop inflow speed -0.01% -0.01% 0 0.00%  0.01% 
Elevator angle -18.16% -8.45% 0 7.39% 13.87% 
Rudder angle -0.05% -0.02% 0 0.02%  0.04% 
Mechanical torque -0.02% -0.01% 0 0.01%  0.02% 
# of iterations 7 7 7 7 6 

 

Table 18: Relative changes in trim state values due to variation of  uwM

uwM Scale Factor 50% 75% 100% 125% 150% 

Angle of attack -24.97% -11.34% 0 9.51% 17.54% 
Sideslip angle -0.06% -0.03% 0 0.02% 0.05% 
Roll angle -0.07% -0.03% 0 0.02% 0.05% 
Pitch angle -24.92% -11.32% 0 9.49% 17.50% 
Propeller rotation -0.03% -0.01% 0 0.01%   0.02% 
Prop inflow speed -0.02% -0.01% 0 0.01%   0.01% 
Elevator angle 41.20% 18.14% 0 -14.45% -26.13% 
Rudder angle -0.07% -0.03% 0 0.03%  0.05% 
Mechanical torque -0.03% -0.01% 0 0.01%  0.02% 
# of iterations 7 7 7 7 6 

 
The axial drag coefficient uuX  affects the trim values of the sideslip angle, the roll angle, 

propeller rotation, propeller inflow speed, rudder angle and the mechanical torque.  
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able 19: Relative changes in trim state values due to variation of axial drag uuXT   

uuX Scale Factor 50% 75% 100% 125% 150% 

Angl -0.05% -0.03% e of attack 0 0.04% 0.00% 
Sideslip angle 49.62% 24.75% 0 -  -  24.63% 22.75%
Roll angle 49.88% 24.94% 0 -24.95% 0.00% 
Pitch angle 0.03% 0.02% 0 -0.02% -0.05% 
Propeller rotation 29.19% 13.36% 0 -11.77% 0.00% 
Prop inflow speed 35.05% 12.99% 0 -8.33% 0.00% 
Elevator angle -0.06% -0.04% 0 0.05% 0.00% 
Rudder angle 49.62% 24.75% 0 -24.63% 18.17% 
Mechanical torque 29.12% 13.32% 0 -11.73% 0.00% 
# of iterations 7 7 7 7 7 

 
h  links the rudder de ion; thus, the 

able 20: Relative changes in trim state values due to variation of 

ruuN  flection to the vehicle’s yawing motT e coefficient 

rudder trim angle and the sideslip angle are affected by altering the value of this coefficient. 
 

ruuN   T

ruuδN Scale Factor 50% 75% 100% 125% 150% 

Angle 0 0 of attack .00% .00% 0 0.00% 0.00% 
Sideslip angle 35.86% 15.68% -0 12.52% -22.75% 
Roll angle 0.00% 0.00% 0 0.00% 0.00% 
Pitch angle 0.08% 0.03% 0 -0.03% -0.05% 
Propeller rotation 0.00% 0.00% 0 0.00% 0.00% 
Prop inflow speed 0.00% 0.00% 0 0.00% 0.00% 
Elevator angle 0.00% 0.00% 0 0.00% 0.00% 
Rudder angle -28.28% -12.42% 0 9.98% 18.17% 
Mechanical torque 0.00% 0.00% 0 0.00% 0.00% 
# of iterations 7 7 7 7 7 

 

n the basis of this analysis, which has considered changes to individual coefficients, the trim-
 
O
finding algorithm has been shown to be robust (i.e. has found a solution) to 50% variations in 
five of the hydrodynamic coefficients that are expected to have most effect on trim-state 
values. 
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