

AFRL-RZ-WP-TR-2011-2105

META II: PROBABILISTIC, COMPOSITIONAL, MULTI-
DIMENSION MODEL-BASED VERIFICATION (PROMISE)

Grit Denker, Linda Briesemeister, Daniel Elenius, Shalini Ghosh, Ian Mason,
and Ashish Tiwari

SRI International

Devesh Bhatt, Haftay Hailu, Gabor Madl, Siamak Nikbin, and Srivatsan Varadarajan

Honeywell Aerospace

Guenther Bauer and Wilfried Steiner

TTTech Computertechnik AG

Xenofon Koutsoukos and Tihamer Levendovszky

Vanderbilt University

OCTOBER 2011
Final Report

Approved for public release; distribution unlimited.
See additional restrictions described on inside pages

STINFO COPY

AIR FORCE RESEARCH LABORATORY
PROPULSION DIRECTORATE

WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7251
AIR FORCE MATERIEL COMMAND

UNITED STATES AIR FORCE

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or permission to
manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the USAF 88th Air Base Wing (88 ABW) Public
Affairs (AFRL/PA) Office and is available to the general public, including foreign nationals.
Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RZ-WP-TR-2011-2105 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH THE ASSIGNED DISTRIBUTION STATEMENT.

*//Signature// //Signature//

RYAN HISEROTE, Project Engineer JACK U. VONDRELL, Chief
Mechanical Energy Conversion Branch Mechanical Energy Conversion Branch
Energy/Power/Thermal Division Energy/Power/Thermal Division
Propulsion Directorate Propulsion Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

*Disseminated copies will show “//Signature//” stamped or typed above the signature blocks.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)

October 2011 Final 18 October 2010 – 18 October 2011
4. TITLE AND SUBTITLE

META II: PROBABILISTIC, COMPOSITIONAL, MULTI-DIMENSION MODEL-
BASED VERIFICATION (PROMISE)

5a. CONTRACT NUMBER

FA8650-10-C-7078
5b. GRANT NUMBER

5c. PROGRAM ELEMENT
NUMBER

62303E
6. AUTHOR(S)

Grit Denker, Linda Briesemeister, Daniel Elenius, Shalini Ghosh, Ian Mason,
and Ashish Tiwari (SRI International)
Devesh Bhatt, Haftay Hailu, Gabor Madl, Siamak Nikbin, and Srivatsan Varadarajan
(Honeywell Aerospace)
Guenther Bauer and Wilfried Steiner (TTTech Computertechnik AG)
Xenofon Koutsoukos and Tihamer Levendovszky (Vanderbilt University)

5d. PROJECT NUMBER

DM30
5e. TASK NUMBER

01
5f. WORK UNIT NUMBER

 DM300106

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025-3493

Honeywell Aerospace
Honeywell International Inc.
1885 Douglas Drive North
Golden Valley, MN 55422-2935

TTTech Computertechnik AG
Schoenbrunner Strasse 7, A-1040
Vienna, Austria

Vanderbilt University
1025 16th Avenue South
Nashville, TN, 37212

 REPORT NUMBER

P19918FR

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

Air Force Research Laboratory
Propulsion Directorate
Wright-Patterson Air Force Base, OH 45433-7251
Air Force Materiel Command
United States Air Force

AGENCY ACRONYM(S)

AFRL/RZP
11. SPONSORING/MONITORING
 AGENCY REPORT NUMBER(S)

AFRL-RZ-WP-TR-2011-2105

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

Report contains color. PA Case Number: 88ABW-2011-5400; Clearance Date: 11 Oct 2011.

14. ABSTRACT

Research efforts were conducted under this task order to emphasize unique technologies in support of achieving the
program goals associated with the META Program. The contractor focused on technologies and technological
breakthroughs addressing probabilistic verification of cyber physical system aspects. Collaboration with Honeywell
International Inc.,Aerospace, TTTech Computertechnik AG, and Vanderbilt University was facilitated to optimize
technology development. The contractor team developed various probabilistic verification tools for component and tools
for compositional verification. These verification tools were integrated with an early design flow tool. All tools and
verification methods were demonstrated in various cyber physical (sub-) systems.

15. SUBJECT TERMS

cyber physical systems, verification, probabilistic verification, compositional verification, integrated design flow and
verification

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT:

SAR

18. NUMBER
OF PAGES

 130

19a. NAME OF RESPONSIBLE PERSON (Monitor)

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

 Ryan Hirsote
19b. TELEPHONE NUMBER (Include Area Code)

N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

i
Approved for public release; distribution unlimited

TABLE OF CONTENTS

Section Page

LIST OF FIGURES ... iii
LIST OF TABLES ... vi
1. INTRODUCTION ... 1
2. SUMMARY .. 2
3. COMPOSITIONAL VERIFICATION OF HYBRID DYNAMICAL SYSTEMS 3

3.1 Introduction .. 3
3.2 Methods, Assumptions, and Procedures ... 3
3.3 Results and Discussion ... 4

3.3.1 HybridSAL Relational Abstractor ... 5
3.3.2 Generating Contracts for Open Systems .. 6

3.4 Conclusions .. 6
4. PROBABILISTIC FAILURE ANALYSIS .. 8

4.1 Introduction .. 8
4.2 Methods, Assumptions, and Procedures ... 10

4.2.1 Description of System Architecture ... 10
4.2.2 Failure Modes and Mitigation Strategies ... 15

4.3 Results and Discussion ... 16
4.3.1 Probabilistic Consistency Engine .. 16
4.3.2 PCE Models and Results .. 16
4.3.3 Interpretation of PCE Results: Comparison of Plots and Discussion 19
4.3.3 Theoretical Analysis .. 23

4.4 Conclusion ... 26
4.5 Recommendations .. 27

4.5.1 Voting and Hybrid Faults .. 27
4.5.2 Analysis of Curvatures of Plots ... 29

5. NETWORK INTEGRATION ANALYSIS FOR FAULT AND TIMING REQUIREMENTS
 ... 30
5.1 Introduction .. 30

5.1.1 High-Level Problem Description ... 31
5.1.2 System Requirements and Analysis Objectives ... 31

5.2 Methods, Assumptions, and Procedures ... 33
5.2.1 Network Architecture Abbreviations and Descriptions 33
5.2.2 Model of Fault Tolerance Constructs for Network Hardware Components 34
5.2.3 Fault Types... 39
5.2.4 Probabilistic Fault Analysis: Failure Introduction and Propagation 44
5.2.5 Analysis Tool Chain Overview .. 47
5.2.6 Brake-by-wire Case Study ... 49
5.2.7 Equational Logic, Rewriting Logic, and Maude .. 52

5.3 Results and Discussion ... 54
5.3.1 Network Specification in Maude ... 54
5.3.2 BBW Network Specification in Maude ... 58
5.3.3 Fault Analysis in Maude .. 59

ii
Approved for public release; distribution unlimited

TABLE OF CONTENTS (CONCLUDED)	
	
	

5.3.4	Performance	Analysis	Using	Time‐Triggered	and	Rate‐Constrained				
																													Communication	Paradigm	 	 	 															 	 	 								66

5.3.5 Integration of Tools in a Graphical User Interface .. 76
5.4 Conclusions .. 79

6. INTEGRATING VERIFICATION INTO EARLY DESIGN FLOW.................................... 80
6.1 Introduction .. 80
6.2 Methods, Assumptions, and Procedures ... 80

6.2.1 High-Level Integration Concepts ... 80
6.2.2 Integrating HybridSAL with Design Flow .. 82
6.2.3 Scalable, Multi-Component Static Verification Integrated with Design Flow .. 86

6.3 Results and Discussion ... 90
6.3.1 Integrating HybridSAL with Design Flow .. 90
6.3.2 Scalable, Multi-Component Static Verification Integrated with Design Flow .. 94

6.4 Conclusions .. 99
7. REFERENCES ... 101
LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS .. 103
APPENDIX 1 .. 106

iii
Approved for public release; distribution unlimited

LIST OF FIGURES

Figure Page

1. Property-preserving Abstraction and Compositionality are solutions to tackling the
complexity of CPSs... 3

2. Relational Abstraction is Compositional .. 4
3. HybridSAL Supports both Qualitative and Relational Abstraction. ... 5
4. Verification Workflow Using HybridSAL Relational Abstractor .. 5
5. Aircraft Environmental Control System (ECS) Integrated Throughout the Airplane 8
6. Fourth-generation Aircraft ECS .. 9
7. Fifth-generation Aircraft Power and Thermal Management System (PTMS) 9
8. ECS Schematic Diagram... 10
9. Dual Cabin Air Compressor (CAC) Subsystem ... 11
10. Distributed Control System Architecture .. 12
11. Control Algorithm Architecture .. 12
12. Supervisory Control Chart .. 13
13. CAC Controller Algorithm Simulink Diagram .. 15
14. Modeled CAC Architecture .. 17
15. Component Failures and System Failures and Their Relationships 18
16. Comparison of System Failure Probabilities of Different CAC Architectures 20
17. Comparison of System Failure Probability of Different CAC Architectures (zoomed in

version of Figure 16, in the x=0-2 range) ... 21
18. System Failure and Component Failure Probability Plots for two-cac architecture 22
19. SPIDER Architecture .. 28
20. System Centric View .. 31
21. Hierarchy of System Requirements .. 32
22. Analysis Trade-offs ... 33
23. Multicast ... 35
24. Path Redundancy .. 36
25. Standard- and High-integrity Host Tx and Rx .. 37
26. Standard and High integrity ES Tx ... 37
27. Standard and High-integrity ES Rx .. 38
28. Standard and High-integrity SW ... 39
29. Ethernet Frame Format ... 41
30. Introduction and Resolution of Inconsistency Errors ... 43
31. Introduction and Resolution of Inconsistency Errors ... 44
32. Fault Analysis ... 45
33. Network Architecture Tradeoff Analysis Tool Chain .. 48
34. Tool Chain Inputs ... 48
35. High-level Overview of BBW System Design ... 49
36. Detailed View of BBW System including replication (1/2) with dataflows from pedal to

brakes in black and brakes to lights in blue .. 50
37. Detailed View of BBW System including replication (2/2) with dataflows of brake light

problem in green and brakes engaged in black ... 51
	

iv
Approved for public release; distribution unlimited

LIST OF FIGURES (CONTINUED)

38. BBW Network Supporting Dataflows from pedal to the brakes, and from the brakes to the
lights. ... 59

39. BBW Network Topology ... 67
40. Virtual Link 1 of the BBW Case Study shown in dashed arrows ... 67
41. TT Schedule for VL 1 - VL 5 of the BBW Case Study ... 69
42. TT Schedule with Five Additional Frames (VL IDs 1-5), BBW VL IDs 1-5 are Translated to

VL IDs 6-10 .. 70
43. TT Schedule with 15 Additional Frames (VL IDs 1-15), BBW VL IDs 1-5 are Translated to

VL IDs 16-20 .. 70
44. TT Schedule with 35 Additional Frames (VL IDs 1-35), BBW VL IDs 1-5 are Translated to

VL IDs 36-40 .. 71
45. TT Schedule with 95 Additional Frames (VL IDs 1-95), BBW VL IDs 1-5 are Translated to

VL IDs 96-100 .. 71
46. Plot of the VL IDs (x axis) Versus their End-to-end Transmission Latencies (y axis) 72
47. Plot of the VL IDs (x-axis) Versus their End-to-end Transmission Latencies (y axis)

Considering 15 Additional Dummy Frames ... 73
48. Plot of the VL IDs (x axis) Versus their End-to-end Transmission Latencies (y axis)

Considering 35 Additional Dummy Frames ... 73
49. Plot of the VL IDs (x axis) Versus their End-to-end Transmission Latencies (y axis)

Considering 95 Additional Dummy Frames ... 74
50. Graphical User Interface with Example .. 76
51. Analyzing Dataflow “bbw6” ... 78
52. Graph for Fault Propagation over Dataflow “bbw6” .. 78
53. Fault Propagation at Connection 74 of “bbw6” .. 79
54. The High-level Requirements Interface in CyPhy .. 81
55. Vanderbilt Verification Manager .. 82
56. CAC Control Overview .. 83
57. Flow Control Internals .. 84
58. Case Study in ESMoL ... 85
59. META Workflow .. 85
60. Sample Hybrid Automaton ... 86
61. Relative Costs of Detecting Errors in Various Life Cycle Phases .. 87
62. Multi-component Analysis of Design Properties .. 89
63. CyPhy - HiLiTE Integration Interfaces and Artifacts ... 90
64. Overall architecture of HybridSAL Integration .. 91
65. Sample Simulink/Stateflow Model ... 92
66. Hybrid Automata Model of the Saturation Block ... 93
67. Hybrid Automata Model of the CAC Case Study .. 94
68. CyPhy Captures Relationship between Simulink Models .. 95
69. CyPhy can Generate HiLiTE Inputs to Run Offline, or Directly Invoke HiLiTE 96
70. Verification Results are fed back into the design tool .. 96
71. Computation in a Model that is susceptible to Divide-by-Zero Overflow Defect 97
72. Model that Tunes a Parameter Impacting Defects in Other Models 97

v
Approved for public release; distribution unlimited

LIST OF FIGURES (CONCLUDED)

73. FlightModesTest Example Model... 98
74. ModesSelectionParameters Limits the Input ranges for FlightModesTest 99
75. Value of mode will be 3 only if the value of iSignal03 is greater than 2 99

vi
Approved for public release; distribution unlimited

LIST OF TABLES

Table Page
1. Relational Abstraction of Various Classes of Dynamics can be automatically generated 4
2. Failure Types for Each Component, How Failures are Detected, and What Effect They Have

and How They are Mitigated .. 15
3. Component Failure Probabilities for Different Prior Weights .. 23
4. Legend and Description of Abbreviations Used in Network Design 33
5. Failure Protection Mechanism of Components ... 46
6. Dataflows in BBW system .. 51
7. Truth Table for Example Full Disjunctive Normal Form ... 64

	

1
Approved for public release; distribution unlimited

1. INTRODUCTION

The challenge in designing reliable and adaptable cyber-physical systems (CPSs) is rooted in the
complexity of systems that combine a range of functions covering closed- and open-loop control
modules. Control modules operate in the context of failure-prone sensors and actuators,
integrated computing and hardware platforms, networked systems of systems, and physical
environments. Verification methods for CPSs must address the broad range of mathematical
models for computational and physical entities.

Verification techniques are computation-cost prohibitive if applied uniformly to each detail of a
large, complex CPS design. It becomes necessary to decompose the verification space into
appropriate abstractions, and trade-off specificity for tractability in principled ways, or
approximate with probabilistic approaches in order to verify large-scale designs

The main technological verification barriers to realizing a “correct-by-construction” approach to
large-scale CPSs are as follows:

1. Probabilistic certification tools and

2. A composition framework to calculate system-level probabilistic certificates from
component-level certificates.

DARPA META PROMISE (PRObabilistic, Compositional MultI-Dimension Model-BaSEd
Verification) developed tools and a composition framework to address both challenges. The
PROMISE team is led by SRI International and includes Honeywell International Inc., TTTech
Computertechnik AG, and Vanderbilt University. PROMISE builds on the team's unique
expertise that combines a long history of successful applications of formal verification tools with
expertise and technology for aerospace safety design, certification and reliable and cost-effective
manufacturing.

The PROMISE verification framework enables verifying CPS-level behavior and safety
properties by using the composition of pre-certified components. By capturing the architectural
assumptions and patterns in the reasoning framework that provide design-level certificates, both
the depth and scalability of the analysis is significantly improved. This allows probabilistic
certification of aircraft-level design with minimal real-world testing. It also enables verifying
designs composed with heterogeneous architectural elements and networking configurations,
including the verification of integrated compositions of software-control algorithms and
electromechanical components, and the verification of mixed synchronous and asynchronous
designs on the aircraft-level integrated networks.

2
Approved for public release; distribution unlimited

2. SUMMARY

The main technological verification barriers to realizing a “correct-by-construction” approach to
large-scale cyber-physical systems (CPSs) are as follows:

1. Probabilistic certification tools and

2. A composition framework to calculate system-level probabilistic certificates from
component-level certificates.

DARPA META PROMISE (PRObabilistic, Compositional MultI-Dimension Model-BaSEd
Verification) developed tools and a composition framework to address both challenges. The
PROMISE team is led by SRI International and includes Honeywell International Inc., TTTech
Computertechnik AG, and Vanderbilt University.

The results concerning a compositional verification framework are presented in Section 3.
COMPOSITIONAL VERIFICATION OF HYBRID DYNAMICAL SYSTEMS. Section 4.
PROBABILISTIC FAILURE ANALYSIS and Section 5. NETWORK INTEGRATION
ANALYSIS FOR FAULT AND TIMING REQUIREMENTS present our probabilistic
verification tools. In Section 6. INTEGRATING VERIFICATION INTO EARLY DESIGN
FLOW we summarize our results concerning the integration of two of our verification tools into
the CyPhy design-flow environment.

3
Approved for public release; distribution unlimited

3. COMPOSITIONAL VERIFICATION OF HYBRID DYNAMICAL SYSTEMS

3.1 Introduction

Hybrid dynamical systems are formal models of complex systems that have both discrete and
continuous behavior. It is well known that the problem of verifying hybrid systems for properties
such as safety and stability is quite hard, both in theory and in practice. No automated, scalable,
and compositional tools and techniques exist for formal verification of hybrid systems.

3.2 Methods, Assumptions, and Procedures

We developed the concept of relational abstractions of hybrid systems. A relational abstraction
transforms a given hybrid system into a purely discrete transition system by summarizing the
effect of the continuous evolution using relations. The state space of system and its discrete
transitions are left unchanged. However, the differential equations describing the continuous
dynamics (in each mode) are replaced by a relation between the initial values of the variables and
final values of the variables. The abstract discrete system is an infinite-state system that can be
analyzed using standard techniques for verifying systems such as k-induction and bounded model
checking.

Relational abstractions can be constructed compositionally by abstracting each mode separately.
Abstraction and compositionality are crucial for achieving scalability of verification (see Figure
1).

Figure 1: Property-preserving Abstraction and Compositionality
are solutions to tackling the complexity of CPSs.

4
Approved for public release; distribution unlimited

3.3 Results and Discussion

We have developed techniques for constructing high-quality relational abstractions. The
details are technical and can be found in papers [1,2].

Table 1 illustrates the process of constructing relational abstraction using some very simple
examples.

Table 1. Relational Abstraction of Various Classes of Dynamics
can be automatically generated

Qualitative and predicate abstractions are techniques for abstracting a system that work by
simplifying the state space of the system. Specifically, they reduce the state space of the system
to a finite set of (qualitative) states defined by certain (qualitative) predicates (see Figure 2).

Figure 2: Relational Abstraction is Compositional

In contrast, relational abstraction does not simplify the state space, but only simplifies the
presentation of the dynamics by replacing hard-to-analyze differential equations by discrete
transitions. In principle, predicate and qualitative abstraction can be used on a relational

5
Approved for public release; distribution unlimited

abstraction of a system to further approximate the system, if needed. The original HybridSAL
tool implements qualitative abstraction. The new HybridSAL Relational Abstractor implements
relational abstraction (see Figure 3).

Figure 3: HybridSAL Supports both Qualitative and Relational Abstraction.

3.3.1 HybridSAL Relational Abstractor

We developed a tool for analyzing hybrid systems based on constructing relational abstractions.
The input to the tool is a specification of a hybrid system in the HybridSAL language.
HybridSAL is an extension of SAL (Symbolic Analysis Laboratory), which is a language and a
suite of tools for modeling and analyzing discrete state transition systems. HybridSAL extends
SAL by allowing specification of continuous dynamics in the form of differential equations.

The verification workflow for using the HybridSAL relational abstractor is shown in Figure 4.
The input model of the continuous or hybrid system is in HybridSAL. The relational abstractor
tool creates a SAL file that contains the relational abstraction of the input file. Subsequently, the
SAL file can be analyzed for safety properties by running a SAL model checking tool, such as
SAL infinite bounded checker or SAL k-induction prover.

Figure 4: Verification Workflow Using HybridSAL Relational Abstractor

We also developed an optional front end that generates HybridSAL models automatically from
Simulink via the Vanderbilt CyPhy environment.

6
Approved for public release; distribution unlimited

3.3.2 Generating Contracts for Open Systems

We developed an approach for generating contracts for open systems. This "certificate-based
approach" is based on the observation that verification is the same as searching for a certificate
of correctness. Hence, in this approach, verification is achieved by directly searching for
certificates of correctness (such as inductive invariants and Lyapunov functions) of systems.

The certificate-based approaches are turning out to be particularly effective in proving deep
properties of complex systems. Certificate-based methods work by fixing a template for the
“certificate of correctness”', and casting the verification problem as that of finding an appropriate
instantiation of the template. This search is accomplished using numeric or symbolic solvers that
reason about arithmetic constraints in the theory of reals.

For example, for verifying stability, the user can provide a template for the Lyapunov function
(say a quadratic Lyapunov function) and the solver can find a concrete quadratic function that
proves stability of the given system. The most commonly used solvers include those for sums-of-
squares (SOS) programming and real quantifier elimination. Numeric approaches, such as SOS
programming, have two limitations: first, they may give incorrect answers, and second, they
have their limitations when solving Boolean combination of constraints. We use symbolic
solvers in the form of real quantifier elimination. We extended the open source symbolic
nonlinear solver called Reduce/Redlog and integrated it with another open source solver called
Qepcad. The integrated solver is available for download from the Reduce/Redlog website; see
also [3]. The technical details of the extension, and further examples of using this extension to
apply the certificate-based approach for verification and synthesis of hybrid systems can be
found in [4].

The certificate-based approach for verification can also be used to generate contracts, or assume-
guarantee pairs for open systems. We illustrated the certificate-based approach for generating
contracts by considering a simple PI (proportional integral) controller. We formulated the
absolute always eventual region stability problem as the finding of a class of plants that a generic
PI controller can always eventually stabilize. We used real quantifier elimination methods to
solve this absolute region stability problem and find contracts for PI controller that guarantee
region stability. The class of plants found in our solution includes nonlinear and switched plant
models. For details, see the papers [4,5].

3.4 Conclusions

Compositional verification of complex systems is a challenging problem. We developed two
new approaches to enable compositional analysis of continuous and hybrid dynamical systems: a
certificate-based approach and an approach based on computing relational abstractions.

The certificate-based approach directly searches for certificates of correctness using constraint
solving. Certificates vary depending on the property. This approach can be used to create
assume-guarantee contracts for open components. It requires templates for the form of
certificates and form of assumptions. Relational abstraction replaces the differential equations in
the system description by sound abstract discrete transitions, thus enabling application of discrete
verification tools. The HybridSAL relational abstractor tool automatically computes such

7
Approved for public release; distribution unlimited

abstractions for linear hybrid systems. For nonlinear systems, both approaches require nonlinear
constraint solvers. We improved an existing state-of-the-art symbolic nonlinear solver, but
scalability continues to remain a challenge.

8
Approved for public release; distribution unlimited

4. PROBABILISTIC FAILURE ANALYSIS

4.1 Introduction

In illustrating a new probabilistic failure-analysis capability and tool, we provide examples of
verification requirements to exercise the tool. Our use case is from the area of Aircraft
Environmental Control Systems (ECS). We describe the electromechanical case study and
provide requirements for the verification of control and fault tolerance properties.

Figure 5 illustrates the key subsystems that interface with the ECS. The actual interfaces differ
depending whether the ECS pack utilizes bleed air or not. The main heat loads cooled by the
ECS are: cabin, cockpit, avionics and other ancillary loads. The cabin and cockpit are air-cooled
and the air temperature is independently controlled; avionics are liquid-cooled. The ECS also
cools its components: motors and motor controllers. The motor controllers are liquid cooled, and
the motors are air-cooled. There is a single temperature control in the current design with only
one temperature sensor that measures the return temperature of the coolant. The single-
temperature control provides several advantages, including a simple, lightweight design. The
trade-off is there is no independent cooling control for each controller or avionics box.

Figure 5: Aircraft Environmental Control System (ECS)
Integrated Throughout the Airplane

Figure 6 and Figure 7 detail the fourth- and fifth- generation ECSs.

9
Approved for public release; distribution unlimited

Figure 6: Fourth-generation Aircraft ECS

Figure 7: Fifth-generation Aircraft Power and Thermal Management System (PTMS)

10
Approved for public release; distribution unlimited

4.2 Methods, Assumptions, and Procedures

The case study will exercise a mix of different types of components and verification aspects,
including (i) software, electro-mechanical and pneumatic components, (ii) hybrid control, and
(iii) a mix of scenarios of failures and degraded modes of operation.

We model the inner part of the ECS architecture, the dual Cabin Air Compressor (CAC), through
inner-loop controls and supervisory modes. We utilize failure modes and probabilistic
verification to evaluate constraints on the design.

Component interactions are captured through higher-level operational modes and scenarios,
demonstrating the use of compositional verification and multi-dimensional trade-off analysis.

4.2.1 Description of System Architecture

The system description includes controller elements, plant, operational scenarios and potential
failure modes.

4.2.1.1 System Context and Architecture

Figure 8 shows the schematic diagram of the next-generation environment control system that
would be a part of the “more electric architecture” concept used in new aircraft. The dual CAC
subsystem shown by the dashed circle in the figure is used to deliver fresh air to the
cabin/cockpit and provide cabin pressurization. The subsystems outside the dual CAC condition
the air before sending it to the cabin/cockpit, and cool the aircraft avionics and ECS motor
controllers using a special coolant. The dual CAC subsystem is the main focus of the case study
– outlined by the dashed line in Figure 8 – because it possesses all the attributes of a cyber-
physical system such as control algorithms, interaction with the physical environment, data bus
communication, fault recovery, and degraded performance operation.

Figure 8: ECS Schematic Diagram

11
Approved for public release; distribution unlimited

Figure 9 is a schematic diagram of the dual CAC subsystem. The main functions of this
subsystem are to provide sufficient fresh air to the crew and passengers and to maintain cabin
and cockpit pressurization. Under normal operation, both compressors should work to provide
the same airflow rate, though not necessarily at the same speed. The flow control loops of the
system controller regulate the airflow rate to a predefined flow set point. The supervisory control
of the system controller determines the flow set point depending on whether the dual CAC
subsystem exhibits a failure in one of the compressors. In the case of a single CAC failure, the
flow demand for the second CAC is increased and the system is run in a degraded mode to
provide the minimum air supply.

Figure 9: Dual Cabin Air Compressor (CAC) Subsystem

4.2.1.2 System Control Elements and Algorithms

Figure 10 illustrates the distributed control system architecture for the dual CAC. In this
architecture, the individual motor controllers communicate to the system controller through a
controller area network (CAN) bus. Individual motor controllers are responsible for regulating
the speed of their respective motors based on the speed set point received from the system
controller. In addition to receiving speed set points, each motor controller receives start/stop
signals from the system controller through the same data bus. The individual motor controllers
send back many signals to the system controller, including actual speed, power, motor
temperature, controller temperature, and all fault conditions as determined by each motor
controller. The system controller monitors these signals to determine the overall state of the
system. The system controller is responsible for the overall performance of the system, while the
motor controllers are for the individual motors.

Figure 11 illustrates the control algorithm architecture and flow of signals. The system controller
consists of supervisory mode control, set point selection, and CAC 1 & 2 PI control modules.

12
Approved for public release; distribution unlimited

Figure 10: Distributed Control System Architecture

Figure 11: Control Algorithm Architecture

System	
Controller	

Motor1	
Controller	

Motor2	
Controller	

Motor	power	

CAN	BUS	

Sensor	signal	

Aircraft

13
Approved for public release; distribution unlimited

The system controller manages the system operation using different control software
components. These are classified as supervisory controls and primary control loops. In Figure 11,
the system controller consists of supervisory mode control, set point selection, and CAC 1 & 2 PI
control modules.

The supervisory controls component is designed utilizing a discrete event (DE) or finite state
machine (FSM)-based approach. The main control loops are based on continuous process
monitoring (sampled at the appropriate rate) of physical signals, such as airflow rate in this case.
The primary control loops are designed according to the inherent physical relationship between
the sensors and actuators.

The supervisor control specifies the operation modes of the system. For the dual CAC
subsystem, the main modes are STANDBY, STARTUP, NORMAL, SingleCAC, and
SHUTDOWN. The STANDBY mode is the default mode and is entered upon receipt of
electrical power to the controller. These modes are modeled using Stateflow as shown in Figure
12. The transitional conditions are not shown in the figure.

Figure 12: Supervisory Control Chart

 STANDBY: entered upon receipt of electrical power to the controller and when the
software starts running. This mode is also entered from the SHUTDOWN mode upon
completion of system shutdown. The mode is exited to the STARTUP mode upon receipt of
an ECS_Start command from the aircraft. During this mode, all signals are monitored but
no commands are issued. The system controller is also communicating with all the other
controllers (motor controllers) and the aircraft.

 STARTUP: entered from STANDBY upon receipt of an ECS_Start command from the
aircraft. This mode is exited to the NORMAL mode upon successful completion of startup.
If the startup is not successful, it exits to SHUTDOWN mode. During this mode, the
system controller sends a motor enable signal and initial speed to all motor controllers. It
also monitors the status signals from the motor controllers.

 NORMAL: entered from STARTUP upon successful completion of startup. This mode is
exited to either SingleCAC mode or SHUTDOWN mode. The mode exits to SingleCAC

14
Approved for public release; distribution unlimited

when failure of the other CAC is detected. The mode exits to SHUTDOWN mode when it
receives an ECS_Stop command from the aircraft or when it detects severe fault from any
of the components. During this mode, the system controller sends all the speed set points to
the motor controllers and also determines the flow set point to the primary control loops.
The system is running with all closed loop controls active.

 SingleCAC: entered from NORMAL upon detection of signal CAC failure. The mode is
exited to either NORMAL mode or SHUTDOWN mode. The mode exits to NORMAL when
the fault in the other CAC is removed and it is running. The mode exits to SHUTDOWN
mode when it receives an ECS_Stop command from the aircraft or when it detects severe
fault from any of the components. During this mode, the system controller sends the speed
set point to the motor controller and also determines the flow set point to the primary
control loop.

 SHUTDOWN: entered from STARTUP, NORMAL, and SingleCAC modes based on their
exit rules. The mode is exited to the STANDBY mode upon successful completion of
shutdown. During this mode, the system controller sends commands to motor controllers to
reduce the speed of motors to the minimum limit followed by the disable command.

The primary control loops are used to dynamically control the system operation by modulating
all available effectors (actuators). For the dual CAC subsystem, the flow control loops
dynamically control the airflow rate by comparing the flow set point (coming from the
supervisory control) and actual flow as measured by the flow sensors.

The primary control loops for the CAC flow control are implemented as a hybrid open loop and
closed loop control with respect to the flow sensor. The hybrid implementation gives faster
response with reduced transient. The open loop control is the feed-forward term scheduled as a
function of flight altitude. The closed loop is the feedback term that closes about the airflow
error. The airflow error is the difference between the desired flow rate and the actual flow rate
(as measured by the airflow sensors).

The type of fault that disrupts the closed loop control is failure in a flow sensor. The most critical
fault in a flow sensor is an open circuit and short circuit of the electrical terminals of the sensor.

Figure 13 shows a simplified version of the Simulink diagram for CAC controller. The actual
speed command to the compressor is based on the air flow error from the desired value (the
feedback term) and an ideal command (SPEED_FF) based on the known correlations. Speed
Feed Forward (Speed_FF) is used to change the output motor speed in a look-ahead mode (e.g.,
if we are climbing, set the value higher for higher altitude).

15
Approved for public release; distribution unlimited

Figure 13: CAC Controller Algorithm Simulink Diagram

The dual CAC subsystem contains two motor controllers (one for each compressor) that
communicate with the system controller through the CAN bus. Each motor controller modulates
the three-phase current from the inverter to control the speed of the motor to the desired value
(set point). The speed set point is determined by the system controller and communicated to
motor controllers. The motor controllers also monitor the temperature of both the motors and
motor controllers and communicate the data to the system controller.

4.2.2 Failure Modes and Mitigation Strategies

Table 2 specifies failure types for each component. For example, the flow sensor fails, giving a
zero reading. This results in the CAC generating too much pressure. The supervisory control
(SC) detects this situation, determines the speed of the affected CAC to be zero, and uses the
other CAC.

Table 2. Failure Types for Each Component, How Failures are Detected,
and What Effect They Have and How They are Mitigated

16
Approved for public release; distribution unlimited

A verification goal derived from this situation is that the SC model will work as designed and
will do the control changes in time to prevent damage due to overpressurization and without loss
of cabin pressure. A possible design trade-off for this situation is to use triple-redundant flow
sensors with validity bit and mid-vale select voting in software. This does not require any
mitigation by supervisory control. A variation of this scenario is when the flow sensor is stuck in
high or unstable (with high and low values alternating).

4.3 Results and Discussion

4.3.1 Probabilistic Consistency Engine

SRI’s Probabilistic Consistency Engine (PCE) is a tool that performs efficient inference with
probabilistic first-order rules, using the framework of Markov Logic Networks (MLN).

An MLN [6] is a statistical relational model to formalize first-order logic with probabilities. In an
MLN, all random variables are Boolean and all feature functions are Boolean formulas. The
formulas in the MLN have weights that are associated with their probabilities – given a
knowledge base (conjunction of formulas), the weights on the formulas are used to compute the
associated model probability in the KB. One can then compute the marginal probability of a
given formula F as the probability aggregate over the models where F evaluates to true. In
typical use, an MLN is used to infer the marginal probability distributions for (output) random
variables and formulas based on the distribution for the input random variables, over the space of
models defined by the formulas and their corresponding probabilities. The MC-SAT inference
algorithm computes these marginal probabilities by efficiently averaging the probabilities over a
sequence of models.

PCE [7] uses multi-sorted first-order logic for describing a network of formulas and weights to
build probabilistic relational models. PCE provides a language for representing MLNs and
implements an optimized version of the MC-SAT algorithm of Poon and Domingos for
probabilistic inference [8], to compute marginal probabilities of formulas. PCE uses a
combination of simulated annealing/SampleSAT and WalkSAT to implement the Markov Chain
Monte Carlo (MCMC). The object language of PCE consists of sorts, literals, constants, and
formulas. Sorts encode type information, rules are represented as universally quantified formulas
in both the observable and hidden predicates along with their associated weights, while facts are
represented as grounded instances of literals and formulas. Various probabilistic inference
problems can be represented as MLNs in the form of facts and weighted and unweighted rules.
The weight of a model is given by the weight of the formulas that hold in the model, and the
probability of a formula is the normalized sum of the weights of the models in which the formula
holds. PCE outputs the marginal probabilities for the atomic formulas and any query formulas.
PCE is order sorted since it also has subsorts.

4.3.2 PCE Models and Results

Figure 14 illustrates the components of the CAC architecture that we are modeling with formal
methods.

17
Approved for public release; distribution unlimited

Figure 14: Modeled CAC Architecture

Figure 15 gives example failure modes for each component. For instance, for the Motor
Controller component, we model two failure modes: failMotorController and
unstableMotorControl. For each CAC in the dual CAC system we model the failure modes
failCAC and highLoadCac. The red arrows in the figure illustrate how the failures affect each
other. If CAC #1 fails, then CAC #2 is put into highLoadCac mode and vice versa. When both of
the CACs fail, the system will fail. We model these relationships in more detail below.

 Aircraft

ECS
System Controller Engine

System Controller

Motor Controller 1 Motor Controller 2

CAN	Bus

CAN	Bus

Other
System

Controllers

18
Approved for public release; distribution unlimited

Figure 15: Component Failures and System Failures and Their Relationships

Let us consider the following different architectures for the CAC models:

 A1. One-cac: no redundancy, system has a single CAC

 A2. Two-cac: two cacs connected in parallel, system functions properly if any one CAC is
functiona,

 A3. Three-cac: three cacs connected in parallel, system functions properly if any one CAC
is functional

 A4. Voting-three-cac: three CACs connected via voting logic, system fails if at least two
out of three CACs fail

 A5. Three-cac-highload: three CACs connected in parallel, high load is put on third CAC if
two CACs fail, system functions properly if any one cac is functional

System

CAC	#2

CAC	#1		

Motor

Motor	Controller

Compressor

CAN	Bus

Cooling

failMotorController

failMotor
maxpowerMotor
overspeedMotor …

highLoadCac

f
a
i
l
C
o
o
l
i
n
g

failSyst

unstableMotorControl

failCompressor

failCANBus

failCac

highLoadC

failCac

Example Fault

19
Approved for public release; distribution unlimited

The architectures A2, A3, A4, A5 the corresponding Markov-Logic Networks (MLNs) (two-
cac1-complete.mln, three-cac1-complete.mln, voting-three-cac-complete.mln, and three-cac-hl-
complete.mln) and the corresponding trace outputs on running MCSAT on each MLN (two-
cac1-complete-mln.output, three-cac1-complete-mln.output, voting-three-cac-
complete.mln.output, and three-cac-hl-complete.mln.output) are provided in the Appendix 1. We
also show the dual-cac PCE models – cac-model1-demo.pcein is similar to the model in A2,
while cac-model2-demo.pcein is the more fine-grained model of the two-cac system. A4 is
similar to the traditional voting model, in which we enforce reliability through voting. Note that
A5 is different from that – in A5, we model the fact that if two of the three cacs fail, then the
third cac has a high load and fails with a higher probability. That is, in A5, two failed cacs in a
three-cac system "hammer" the third cac.

4.3.3 Interpretation of PCE Results: Comparison of Plots and Discussion

The results of running MC-SAT on the MLNs seem reasonable (from the output files). A quick
calculation shows that when the priors of the component failures are on the order of 10-2, the
system failure probability for the voting three-cac will be 3C2 x 10-4 + 3C3 x 10-6 ~ 10-4; this is
what we are getting in the results trace. For the regular three-cac model, the system failure
probability will be on the order of 10-6 if we assume iid. Note that in the results trace, we see that
the actual failure probability is somewhat higher than that. One intuitive explanation is that the
failures of the CACs are not iid – the failure of one CAC model influences the failure of another
via the highLoad rule.

We also did some sanity checking of the three-cac-highload model in A5 – basically instantiating
one CAC failure, two CAC failures, and three CAC failures via the MLN facts, and seeing what
happens to the system failure probabilities in each case. The output traces are given in the
Appendix (three-cac-hl-complete.output.1fail, three-cac-hl-complete.output.2fail, and three-cac-
hl-complete.output.3fail). The results are as expected – the system failure probability gets
progressively higher as more CACs fail.

A) Plot 1

For each of these architectures, we ran PCE to get the system failure probabilities for different
values of the component failure priors. We then generated the plot of the curves for the five
different architectures shown in Figure 16. The plot is in negative log-log scale (considering
log10) – a value x on the horizontal axis corresponds to a component prior probability of failure
of 10-x, while a value y on the vertical axis corresponds to the system marginal probability of
failure of 10-y. The part of the plot under the x=2 value on the x-axis is difficult to view in
Figure 16, for which we plot a zoomed-in version of Figure 16 with x range 0-2 in Figure 17.

Here are a few interesting observations about the plots in Figure 16:

1. The two-cac and the voting-three-cac model curves cross at around the component prior
probabilitity of 10-1, whereas the voting-three-cac and three-cac-highload model curves
cross around the component prior probability of 10-2. Something to explore here further
is if these crossover points are a function of the weight of the highload rule for the
different MLNs (set to 0.1 for now). For example, here is the highload rule for two-cac:

20
Approved for public release; distribution unlimited

add [c, d] failCac(c) and ~failCac(d) and (c ~= d) => highLoadCac(d) 0.1

We would like to further analyze theoretically why these crossovers happen for different
pairs of CAC architectures at the particular points on the plots in Figure 16. Some initial
symbolic analysis to that effect is given in this section. But someone using trade-off
decisions based on these curves can decide what architecture to choose for certain
component prior probabilities or desired system failure probabilities.

2. The negative log-log plots for the architectures other than one-cac are all linear with a

slope > 1 in the active region before the curves flatten out in the saturation region. This
corresponds to the super-linear power-law relation in the active region:

system_failure_prob = (component_failure_prior_prob)m, with m > 1

Figure 16: Comparison of System Failure Probabilities of Different CAC Architectures

21
Approved for public release; distribution unlimited

Figure 17: Comparison of System Failure Probability of Different CAC Architectures
 (zoomed in version of Figure 16, in the x=0-2 range)

For one-cac, the active region has the same form, with m < 1. Coming up with a closed-
form relation between the system failure probability and the component failure prior
probabilities would be an interesting result to try and derive for these architectures.
However, we would have to come up with a closed-form relation that would explain the
linear relation in the negative log-log scale in the active region as shown in Figure 16, as
well as the curvature for those plots in Figure 17.

3. The plots continue linearly for all architectures until reaching a saturation region, where
each curve flattens out or dips. These points correspond to very low prior probabilities of
failures for the components, and the resulting system marginal probability of failure
reveals very low values. In these low-probability saturation regions, the Markov chain in
MC-SAT probably does not converge to the stationary distribution. Here are the different
numbers of samples for which we ran MC-SAT in different ranges for system probability
of failure:

 500 million samples when the system failure probability is 10-3 or more

 1.5 billion samples when the system failure probability is between 10-6 and 10-3

 5 billion samples when the system failure probability is between 10-6 and 10-8

22
Approved for public release; distribution unlimited

Below the system failure probability of 10-8, the curves reach the saturation zone – we
will have to run PCE for more than 5 billion samples in that range. This also indicates
that there is work to be done in making PCE and related graphical model MCMC
sampling-based inference techniques more efficient for low probability estimates, so that
we do not have to run sampling for a very large number of iterations to estimate very low
probability events. Each run of MCSAT for the current models takes about 1 hour for 1
billion samples (for the low probability events).

B) Plot 2

Figure 18 shows the failure probabilities of the system as well as the various components of the
two-cac model. The y axis plots -log10 of the marginal failure probability for the system and the
marginal failure probabilities of the different components. The x axis plots -log10 of the prior
probability of failure of the different components.

The data used in plotting is also shown in Table 3, since some of the component-level values
overlap in the plots in Figure 18 and may not be clearly discernible.

Figure 18: System Failure and Component Failure Probability Plots for two-cac
architecture

23
Approved for public release; distribution unlimited

Table 3. Component Failure Probabilities for Different Prior Weights

4.3.3 Theoretical Analysis

Here, we do a theoretical analysis of some of the empirical results we observed earlier.

Analysis of Crossover Points in Figure 16.

Using iid assumptions (i.e., ignoring the highLoad rule), we were able to derive some theoretical
(symbolic) results about crossovers of the plots of the following architectures:

(A) 1-cac versus voting three-cac

Let ps = probability of system failure, pc = probability cac failure, p = probability of cac
component failure (for each of the four components of cac).

ps_voting = 3C2*(1-pc)*pc2 + 3C3 pc3 (1)
ps_1cac = pc (2)

They cross when pc = 3pc2 - 2pc3 (3)

 => pc = 0.5 (4)
=> -log10(pc) = 0.301. (5)

24
Approved for public release; distribution unlimited

Now, the CAC behaves normally if all of its four components behave normally. So, if probability
of component failure is p, then we have:

1-pc = (1-p)4 (6)
=> p = 1 - (1-pc)0.25 = 1 - (1-0.301)0.25 = 0.0856 (7)

=> the crossover point in the negative log10-log10 scale of system failure probability versus
component failure probability would be around 0.09 on the x axis.

In the actual results from PCE simulation (Figure 16) we see that the plots for the one-cac and
voting-three-cac models cross close to this value. So, we are getting results in PCE simulation
(with the highLoad rule for the voting-3-cac, no iid assumption) in the same ballpark as the
symbolic derivation with the iid assumption. Intuitively, this seems to make sense, since, in this
case, the iid assumption for the voting-3-cac may not give us too much divergence from the
actual crossover point with 1-cac as 1-cac does not have the highLoad rule.

(B) 2-cac versus voting-3-cac

ps_voting = 3C2*(1-pc)*pc2 + 3C3 pc3 (8)
ps_2cac = pc2 (9)

The solution for the crossover point (ps_voting = ps_2cac) is pc = 1, i.e., log(pc) = 0, as verified
by the following illustration:

25
Approved for public release; distribution unlimited

However, we do see that the curves cross at a value pc < 1 if we model using PCE (not iid
anymore, due to the highLoad rule). So, here the iid assumption is quite divergent from the
actual system behavior, which perhaps demonstrates the value of doing PCE-type modeling in
this domain to get around iid assumptions, i.e., being able to model non-iid faults like conditional
faults.

Analysis of Curvature in Figure 17.

Let ps = probability of system failure, pc = probability of cac failure, p = probability of CAC
component failure (for each of the four components of CAC), where pc = 1 – (1-p) 4.

Therefore, for the one-cac, two-cac, and voting-three-cac architectures, the probabilities of
system failures are given by:

ps_1cac = pc = 1-(1-p)4 (10)

ps_2cac = pc2 = (1-(1-p)4)2 (11)

ps_voting = 3C2*pc2(1- pc) + 3C3 pc3 = 3C2*(1-(1-p) 4)2 * (1-p)4 + 3C3 (1-(1-p)4)3 (12)

When we plot the above three equations in the negative log scale, we get the following result:

26
Approved for public release; distribution unlimited

Note that we get the curvatures in the higher probability ranges and linearity in lower probability
ranges from the theoretical calculation, similar to the PCE simulations in Figure 17. However, in
Figure 17, two-cac crosses voting-three-cac, whereas here (in the theoretical iid-based
calculation) we get one-cac crosses voting-three cac. This could be due to the iid assumption, as
we are not taking into account the interaction caused by the highLoad rule in voting-three-cac.

Another interesting analysis is one in which there straight lines in the low-probability ranges and
curves in the high-probability ranges. Here is an analysis of that for one-cac.

ps = 1-(1-p) 4 (13)

=> log ps (14)
= log(1-(1-p)4) = log(4p-6p2+4p3-p4) = log(4p) + log(1-1.5p+p2-0.25p3) (15)
~ log(4p) + (-1.5p + p2-0.25p3), when p << 1 (16)

When p << 1, the residual second term in the above equation can be ignored compared to the
first. This gives us a straight line in the “log(ps), log(p)” space with a slope close to 1.

For larger values of p, the residual second term in the above equation cannot be ignored
compared to the first – the residual gives the curvature in the plot for higher values of p.

4.4 Conclusion

Fault analysis using probabilistic methods is a promising approach for CPSs. In order to derive
error probabilities at the system level, it is often necessary to know component-level error
probabilities, and this is seldom practical. Our approach has the advantage that we can do trade-
off analyses to calculate component-level probabilities for which the required system-level
probabilities hold. This provides input regarding component requirements that guide the CPS
design.

27
Approved for public release; distribution unlimited

4.5 Recommendations

4.5.1 Voting and Hybrid Faults

In general, when components are more likely to fail than not, we do not want to take a vote. Most
of the components are likely to fail, giving well below (1- 10-1) in reliability. So, if we take a
vote of them, the vote winner will “fail” more often than the right answer. In this case, it is better
to simply go with one CAC (the one-cac model) and just live with the native probability of
failure.

This is where hybrid voting can be very useful. With the hybrid fault model of OMH or OMH-
File Transfer Protocol (FTP) or Scalable Processor-Independent Design for Extended Reliability
(SPIDER), we can reason about extremely high (benign or manifest) fault rates well beyond 10-1
and still have a system that performs well. In particular, the hybrid voting system should
outperform a single CAC everywhere along those curves.

Practically, what we will get is a system in which no number of manifest faults (e.g., powered-
down units) could confuse one or more good units. The good units should "know" they are good
and have real values and not get outvoted by "fail" even if there are hundreds of manifest
failures. The additional complexity in the voter to handle this hybrid voting is extremely small –
subject matter experts in several domains (spacecraft design, submarine design) say that in
practice, this small overhead is worth it for their respective cases.

In future work, we would like to investigate hybrid faults in PCE, using a SPIDER model. Here
are some properties of SPIDER:

 It is a fault-tolerant architecture developed at NASA Langley.

 SPIDER is a family of fault-tolerant, reconfigurable architectures providing mechanisms
for integrating inter-dependent applications of differing criticalities.

 Applications communicate via a reliable optical bus (ROBUS) – a TDMA (time-division
multiple access) bus providing basic fault-tolerant mechanisms of clock synchronization,
group membership, and interactive consistency.

 Fault-tolerance mechanisms have been formally proved correct using the PVS theorem
proving system.

 SPIDER architecture offers a robust foundation for safety and mission assurance.

SPIDER (see Figure 19) is a family of general-purpose fault-tolerant architectures useful for
recovering from transient failures. An instance of the SPIDER architecture consists of several
Processing Elements (PE) communicating over a ROBUS. There are two types of Fault
Containment Regions (FCRs) internal to the ROBUS – the BIUs and the Redundancy
Management Units (RMUs). The Bus Interface Units (BIUs) provide an interface to the PEs,
while the RMUs provide the necessary replication for Byzantine fault tolerance [9].

28
Approved for public release; distribution unlimited

Figure 19: SPIDER Architecture

Here are some advantages of SPIDER over its predecessors:

 Recovers from combinations of faults including asymmetric faults and has optimizations
for benign faults, e.g., fail-stop or symmetric faults

 Provides a generic interface to connect to any kind of processor, so that one is not locked
into a particular semiconductor technology

 Supports a wide range of fault-masking strategies such as dual-dual, triple modular
redundancy (TMR), or even multi-stage threshold voting

 Allows processing nodes to be grouped to provide differing degrees of fault tolerance for
different applications

 Provides dynamic reconfiguration where less important functions can be eliminated so that
critical functions continue to operate

 Provides a mechanism for dealing with transient faults to reduce the impact of temporarily
faulty components

 Scalable to accommodate large networks of input/output resources

Here is what we can do with PCE modeling in SPIDER:

 Model the static part of the SPIDER architecture using PCE

 Compute the probability of system failure when the individual components fail.

 Start with Byzantine (asymmetric) faults, and then model hybrid faults: Byzantine faults +
Manifest faults + Symmetric faults

 Consider different complexity of communication systems – start with the redundancy
management unit considered part of the BIU, and later model faults in the BIU and the
redundancy management unit (RMU) separately.

29
Approved for public release; distribution unlimited

4.5.2 Analysis of Curvatures of Plots

We would like to symbolically explain the curvature of the system probability versus component
probability plots that we observe in Figure 16 for other architectures (e.g., three-cac-highload).

30
Approved for public release; distribution unlimited

5. NETWORK INTEGRATION ANALYSIS FOR FAULT AND TIMING
REQUIREMENTS

5.1 Introduction

The broad goal of this subtask is to analyze the design of systems and network architecture in the
context of failures and performance and thereby augment verification and validation artifacts
through composable analysis tools and evaluation methodology. The rationale is that such
composable analysis tools, used early in the design process and systematically throughout the
different stages of that process, would be key enablers in reducing design costs, cost of change
due to varying requirements, and verification and validation (V&V) costs, and would also
increase reusability of network design with appropriate design changes for different ground
vehicles and aircrafts.

Given this objective, we provide an approach to analyze network system architectures in terms of
performance (latency/jitter/timing properties, bandwidth, buffer and other resources) and failure
(fault modes, propagation) in a conjoint manner. In the past, such system analyses were done
along one of those two dimensions in isolation due to the complexity of analyzing them together.
The rationale behind this task is the insight that the trade-offs in the network architecture design
space can be comprehensively explored only when both dimensions are systematically explored
in conjunction. Further, both fault and performance requirements are irrevocably linked such that
any design change in one dimension impacts the other. The linkage between these two
dimensions is not always completely understood and not formally characterized or analyzed.
This has led to point solutions in the network architecture design space whereby, though an
individual network architecture is designed to satisfy the requirements known at the time of
initial design, any subsequent changes to the requirements in the later stage forced the design to
be reworked ground up. Further, the need to integrate more applications on the same network or
to leverage new hardware/software enhanced capabilities or adhere to limitations of the available
technology since the time of initial design or even reusing the same network design for different
vehicles/aircrafts with different requirements forced network designers to go to the drawing
board and begin all over again with a new design. The analysis framework described here is
designed to reduce network change cost and redesign cost by composing the network
architectures to be systematically analyzed in terms of system requirements and thereby enabling
network reuse as well as reuse of analysis artifacts (and thereby V&V artifacts).

Here, we develop formal specifications of failure modes and their propagation based on the
underlying protection mechanisms existing in the network hardware and software that prevent
such failures, systematic evaluation and exploring trade-offs of system design with a set of
analysis tools, dataflow and fault-tolerance modeling (availability, integrity), synchronization
overheads characterization, hardware versus software trade-offs (implementing these services in
hardware versus software and partitioning them), and path and system redundancy and system
replication strategies.

31
Approved for public release; distribution unlimited

5.1.1 High-Level Problem Description

As shown in Figure 20, we envision a more system-centric view of the network architecture
where the focus is on integrating multiple different systems with varying criticality levels on a
common network like the Time-Triggered Gigabit Ethernet (TTGbE) network and enabling an
architecture that satisfies all the individual system requirements, including performance and fault
tolerance.

We choose TTGbE as our preferred network, as it gives a flexible way to represent different
types of networked architectures, including both synchronous and asynchronous systems. The
design and verification objectives are

 Performance (latency, jitter, bandwidth) requirements of each application/system are met.

 Fault tolerance requirements for each subsystem are met in the presence of failure of
network/host components.

 Emergent behavior that invalidates system assumptions and requirements is exposed.

Figure 20: System Centric View

5.1.2 System Requirements and Analysis Objectives

For each of the systems that are being integrated on to the TTE network, there are requirements
that need to be satisfied at different levels as indicated in Figure 21. At the top are the level 1
requirements, which are the functional requirements of the system. Below it are the level 2
requirements, which are derived workload (bandwidth) and timing (latency, jitter) requirements
of the network due to distributed architecture of the application –, for example, different
components of the closed-loop controls distributed on different nodes of the network. At the
lowest level (level 3) are the derived workload and timing requirements, responding to fault
tolerance needs of the system, such as probabilities of failure per flight hour being 10^-9 for
critical systems, 10^-7 for essential systems, 10^-5 for noncritical systems to accommodate some

32
Approved for public release; distribution unlimited

failures based on resulting hazards of flight safety being categorized as catastrophic, hazardous,
or major, respectively. For hazards that are categorized as minor or no effect, there may not be
explicit safety objectives in terms of probabilities. At this level, the integrity of individual
components (high versus standard and availability), path redundancy, and system redundancy
including hardware and/or software replication in the system architecture will be taken into
consideration. Note that there are additional constraint requirements on size, weight, power, and
other resources such as buffers, link utilization, and processor throughput. These requirements
are present at all three levels.

Figure 21: Hierarchy of System Requirements

The analysis tools for failure and performance developed in this task will be instrumental in
determining the ability of the underlying network to satisfy the different requirements and
resource constraints of the different systems and also to aid in comparing and contrasting
different network architectures for an understanding of the intrinsic trade-offs as illustrated in the
Figure 22.

	
	

33
Approved for public release; distribution unlimited

Figure 22: Analysis Trade-offs

“Co-optimization” along both dimensions with verification proofs over the general space of all
architecture is intractable. Our approach is analysis/verification for selected point(s) based upon
a project’s domain expertise. We also enumerate a large number of different points in the design
space in order to infer patterns of the network architecture that provide performance/fault-
tolerant properties, which can then serve as a template for future network design and/or evolution
of current network design. The latter part of extracting a pattern and building tools with reusable
templates for network architecture design is future work.

5.2 Methods, Assumptions, and Procedures

5.2.1 Network Architecture Abbreviations and Descriptions

Table 4 introduces abbreviations used in network architectures.

Table 4. Legend and Description of Abbreviations Used in Network Design

HI High Integrity, also referred to was COM(MANDER)/MON(ITOR) pair when 2 SI
components are paired up.

SI Standard Integrity

SW Switch; either COTS (supports only 802.3 Ethernet traffic) or TTE (which supports
traffic types TT, RC and 802.3 as Best Effort (BE)

ES End System; TTE or COTS controller;

HOST Host producer or consumer; processor with a partitioned operating system on which
the system or application software is hosted

TT Time Triggered Traffic (only on TTE Hardware)

RC Rate-Constrained Traffic (only on TTE Hardware)

34
Approved for public release; distribution unlimited

BE Best-Effort Traffic (only on TTE Hardware)

Rx Receive

Tx Transmit

VL Virtual link: logical connection from a single Tx ES to one or multiple Rx ESs

COTS Commercial Off-The-Shelf (non-TTE Hardware)

FCS Frame Check Sequence inserted into Ethernet message at Tx PHY and CRC is
performed at the Rx PHY. Sometimes used synonymously with CRC.

CRC Cyclic Redundancy Check, which is performed on the FCS of Ethernet message at
Rx PHY. Sometimes used synonymously with FCS.

PHY Physical media (link, interface, port). Representing the Ethernet links between any
pair of ESSW and SWSW.

BUS Physical media (link). Represents the PCI/CP Bus link between a pair of
HOSTES

5.2.2 Model of Fault Tolerance Constructs for Network Hardware Components

Fault tolerance for a real-time safety-critical system is the ability of a system to continue normal
operation despite the presence of hardware or software faults. The two key properties of the
system we describe in this section from the perspective of fault tolerance are Integrity and
Availability. Integrity is the absence of improper system alteration; it is the ability of a system to
detect faults in its own operation and to reach a failsafe state or safe-output states in the event of
failure and inability to recover. One such valid state is fail silence whereby the system either
produces correct service or no service. Availability is a measure of the delivery of correct service
with respect to the vacillation of correct and incorrect service, and it is measured by the fraction
of time that the system is ready to provide the service and is in functioning condition. The
instantaneous availability measure of a system is the probability that the system will be
functioning correctly at any given time.

In this section we describe the different constructs in the network architecture and associated
models for providing fault tolerance to different systems/applications on the network. This
includes the network hardware components that support integrity (high vs. standard) and
availability (path redundancies/multi-channel and/or system redundancies/replication). While the
descriptions below make a clear distinction of fault-tolerant constructs that augment integrity vs.
availability, we also describe scenarios in which the system redundancy construct helps augment
integrity (in addition to availability). Lastly, we also briefly discuss the constructs being
implemented in hardware vs. software and the inherent performance tradeoffs of the two
implementations.

5.2.2.1 Multiple Receivers through Multicast Model for Availability

Figure 23 shows an example of a network architecture that is connected from a single producer
(Host Tx) to four consumers (Host Rx). The underlying VL connecting ES Tx to ES Rx 1, 2, 3
and 4 is a multicast VL through the two different switches SW. Note that ES Rx 1 and ES Rx 2
are just one switch hop away from the source, while ES Rx 3 and ES Rx 4 are two switch hops
away from the source.

35
Approved for public release; distribution unlimited

Multicast can be used to increase the availability of the receivers in the system (i.e. the
destination set of consumers), which is the availability set that—in the presence of loss of any of
the consumers—ensures the reliability of the overall system is still satisfied because the
remaining consumers can still keep the system operational. Note that the multicast approach only
improves the availability at the destination and not for the source. If there is a loss of source,
then the whole system fails. Also note that loss of any of the switches or any of the links
connecting ES and SW can potentially result in some or all of the ES Rx 1, 2, 3 or 4 not being
connected to the source ES Tx. Thus, the system may have partial or complete failure if a link or
switch is lost.

Multicast may also be used without intending to improve availability. For instance, the producer
can direct the traffic to a single consumer in the system and also to another consumer external to
the system. An example scenario is when the external consumer is monitoring the health of the
system or, more specifically, the producer. In this way, the system can be coupled. Another
example is if the producer is actuating 2 different types of actuators or a single sensor is driving
2 different types of controls.

Figure 23: Multicast

5.2.2.2 Multiple Channels through Path Redundancy Model for Availability

Figure 24 shows an example of a network architecture that is connected from a single producer
(Host Tx) to two consumers (Host Rx). The underlying VL connecting ES Tx to ES Rx 1 and 2
is a multicast VL through one switch SW but there are three redundant independent paths
between them; each pair (ES Tx, ES Rx 1) and (ES Tx, ES Rx 2) is connected via three
independent switches. It is critical that the path be independent; that is, there are no common
switches or shared links between the different paths. We call this triple-path redundancy or three-
channel network. ES Tx would transmit an identical message redundantly over 3 ports to 3
different switches. Each ES Rx 1 and ES Rx 2 receive redundant identical messages from 3
different switches and it picks the first arriving message and subsequently discards the other
redundant messages received.

36
Approved for public release; distribution unlimited

Figure 24: Path Redundancy

Path redundancy increases the availability of a message. It protects against losses that can occur
in paths, meaning that there is no loss of message at the receiver despite loss of the switches
and/or links between the ESs and SWs. Observe that, if in the above example there was only one
Rx ES (instead of two), then path redundancy would not have protected against Rx ES
availability; therefore, Rx ES fails, then the overall system fails. Thus, in the above example,
multicast increases the availability of receivers while path redundancy increases switch
availability and links-on-the-path availability. Like multicast, path redundancy also does not
increase the availability of the source. If the source fails, the whole system fails.

5.2.2.3 Integrity Model for all Network Components

High Integrity (HI) Components are replicated Standard Integrity (SI) Components functioning
as a single unit that uses “cross comparisons across replicated components” to fail-silently (i.e.,
when components do NOT agree), then, the combined unit (containing replicated components) is
externally quiet and does not allow faults to propagate downstream. Therefore, high integrity
components do not wrongly influence other components. By providing each SI component pair
with identical inputs, using the same internal states and processing, and maintaining time
synchronization, the pair’s outputs will match exactly unless there is a fault. The different
components in a network are Host Tx, ES Tx, SW, ES Rx and Host Rx, and each of them can be
instantiated in the network architecture in isolation as standard integrity or replicated with input
and/or output cross compare for high integrity.

Figure 25 (A) and (B) are the SI and HI Host Tx components. The output comparison operator +
controls the host access to the ES Tx via the bus. Figure 25 (C) and (D) are the SI and HI Host
Rx components and the input exchange operator + controls access from the EX Rx via the
physical link.

37
Approved for public release; distribution unlimited

Figure 25: Standard- and High-integrity Host Tx and Rx

Figure 26 (A) and (B) show SI and HI ES Tx components for a single channel/path. The input
exchange operator + controls access from the Host Tx via the bus. The output comparison
operator + controls access to the network (SW) via the physical link. Figure 26 (C) and (D) show
SI and HI ES Tx components but for multiple channels/path redundancy. Notice that in the HI
components for multiple channels in Figure 26 (D), the output comparison operator is done
independently per channel.

Figure 26: Standard and High integrity ES Tx

38
Approved for public release; distribution unlimited

Figure 27 shows SI and HI ES Rx and conceptually but reverses the flow direction for SI and HI
ES Tx indicated in Figure 26. The operators input exchange + controls access from the network
(SW) via the physical link (PHY) and output comparison + controls access to the Host Rx via the
bus are included. In Figure 27 (C) and (D) there is an additional operator “x” that represents
Integrity checking mechanism for TT & RC; RM indicates redundancy management for TT &
RC traffic arriving over multiple channel/redundant path. These mechanisms are described later
in details on fault introduction and propagation and underlying mechanisms that exist to mitigate
them (5.2.4 Probabilistic Fault Analysis: Failure Introduction and Propagation). Figure 28 below

shows SI and HI components for a switch. Though SW has some commonality and quite a lot of
differences compared to ES Tx in terms of functional behavior, the integrity mechanisms
behavior (namely, input exchange + operator and output compare + operator) is quite similar to
that of ES Tx in Figure 26. For one, the operators + controls access from/to network (to other ES
or SW) via the PHY is comparable. Secondly, the Figure 28 (B) and (D) indicates switch
multicast (in order to support VL multicast) as opposed to ES Tx in Figure 26 (B) and (D) where
they represent path redundancy/multiple channels.

Figure 27: Standard and High-integrity ES Rx

39
Approved for public release; distribution unlimited

Figure 28: Standard and High-integrity SW

5.2.2.4 Replication through System Redundancy Model for Availability and/or Integrity

We have just started working on specifying the descriptions for system redundancies based on
replications strategies, characterizing their failure modes, and modeling different network
architectures that support different forms of system redundancies. At this time, this work is too
preliminary to report. For the time being, we enumerate the references to background material
and related literature [10,11,12,13,14,15].

5.2.3 Fault Types

Below we list the current assumptions. Future work could remove these limiting assumptions.

 Wash-outs due to multiple faults are not considered at this time

 Faults can be canceled out due to multiple faults

 Single faults are a source of failure being considered at this time

 One faulty component is being evaluated at a time in the system. Future work will
provide analysis methods for multiple faults.

 Temporal Considerations are being ignored

 While the time at which faults occur and the duration at which the fault persists are
both important, at this initial stage, our analysis ignores the temporal aspect and
assumes that all faults are propagated instantaneously.

Borrowing terminology and descriptions from [16], we consider six types of faults: (i) Silent (ii)
Omission (iii) Comission (babbling) (iv) Untimely (late, early) (v) Invalid (SA/DA – Ethernet
Src/Dest Address, Length/Type, Msg, SN Sequence Number, Frame Check Sequence) and (vi)
Inconsistent.

40
Approved for public release; distribution unlimited

Silent

 Failure Mode: Receiver does not receive messages permanently. This is an error when a
node fails to respond when it should have.

 Possible Causes: Faulty Transmitter or Faulty Receiver or Faulty Link/channel. Note in the
case of faulty link/channel, messages may get through other channels or path if there is
more than 1 path/channel in the architecture

Omission

 Failure Mode: Receiver does not receive messages temporarily (transiently or
intermittently). This is an error when a node fails to respond when it should have.

 Possible Causes: Faulty Transmitter or Faulty Receiver or Faulty Link/channel; these can
happen because of a faulty sender that produces Byzantine messages (that can cause
asymmetric/incongruent/inconsistent receiver states) or to a faulty channel that selectively
relay the messages to only a subset of nodes or a faulty receiver; in the case of a faulty
link/channel, messages may get through other channels or paths if there is more than one
path/channel in the architecture.

Commission

 Failure Mode: Receiver receives more messages than it should have and the error is
temporary (transient or intermittent) or permanent. This is an error when a node responds
when it should NOT have.

 Possible Causes: Faulty Transmitter or Faulty Receiver; this can happen because of a
babbling node (faulty transmitter) or when logic in the transmitter or receiver is “latched”
on to a valid state-generating spurious messages. The impact of this is an increased
message rate that thereby takes up more bandwidth.

Untimely

 Failure Mode: Transmitter sends a message early or late or the receiver receives message
early or late. The error can be transient or permanent. This is the timeliness property of
themessage when the message is not sent/received at the proper time.

 Possible Causes: Faulty Transmitter or Faulty Receiver. This can happen because of a
faulty sender or receiver, which buffers the message and unduly delays it by holding on to
the message and dispatching it later. Alternatively a node does not buffer a message and
dispatch it at proper later time but instead sends the message immediately and thereby too
early.

41
Approved for public release; distribution unlimited

Figure 29: Ethernet Frame Format

Invalid

 Failure Mode: Invalid Ethernet messages and the error is temporary (transient or
intermittent) or permanent.

 Possible Causes: Faulty Transmitter, Faulty Link or Faulty Receiver. This can happen
because of an error in the message introduced at the transmitter or receiver (PHY or MAC
layer), or on the link (bit errors/packet errors).

 Preamble, Static Frame Delimiter (SFD) and Inter Frame Gap (IFG) are used for MAC
layer framing and NOT considered part of the Ethernet message as shown in Figure 29.

 Invalid message can be introduced in any (one or more) of the following fields in an
Ethernet message:

 Destination Address (DA): Virtual Link Identification (VLID) is the lower 16 bits of
the 48 bits address with a fixed upper 32 bits (critical traffic marker) for all TT and
RC frames. BE frames can be any value for the 48 bits as long as the value does not
match the critical traffic marker of upper 32 bits. Note that for TT, RC and BE only
valid DAs are allowed to be transmitted or received with appropriate configurations
in Tx ES, Switch and Rx ES (valid DA at appropriate port).

 Source Address (SA): Bits 5, 6, and 7 of the 48 bits address indicate the
channel/redundant path the frame was transmitted on/received from for all TT & RC
frames. BE frames can be any value in the 48 bits.

 Ethernet length/Type: Typically this field can be used as Type field (e.g. 0x800 for
IPV4, 0x806 for ARP, etc.) or as length field (value < 0x600), which indicates the
actual length of the Ethernet data payload (46-1500B) following this field in the
Ethernet frame. For our analysis, to simplify, we will use this solely to indicate the
length.

 Data: This is the Ethernet payload in which the application message is encapsulated.

 Sequence Number (SN): This is the optional SN, which, when present, will be the
byte preceding the Frame Check Sequence. This is required for RC Redundancy
Management (RM) but not for TT RM. For our analysis we consider SN only for RC
and not for TT & BE.

 Frame Check Sequence (FCS): This is for TT, RC, and BE the Cyclic Redundancy
Check (CRC) code, based on a CRC32 polynomial, added into the FCS by the

42
Approved for public release; distribution unlimited

transmitter (only ES-Tx or SW-Tx). The transmitter computes the CRC over the
complete Ethernet frame (DS, SA, Length/Type, Data, Optional SN) and adds this
into the FCS at the end of the frame before sending to the PHY. The receiver when
receiving from the PHY, computes the CRC on the Ethernet frame as the first thing
and compares it against the included FCS in the message and processes it further only
if it matches (or drops it otherwise). Note that the CRC/FCS check protects (i.e.,
prevents it from being propagated) probabilistically against link errors introduced
between the transmitter & receiver (e.g. bit flips), but DOES not protect message
errors introduced in the logic before the FCS addition at the transmitter or after the
FCS check in the receiver. There is also a non-zero probability that FCS may not
protect against link error (bit flips in link).

Inconsistent

 Fault Mode: Transient or Permanent faults that cause asymmetric/incongruent/inconsistent
receiver states (i.e., divergence in receiver states). Different receivers detect different
failure modes (or no failure mode at all). Orthogonal to consistent failure mode is seen
when receivers all conclude on the same or identical failure mode (or no failure mode at
all).

 Possible Causes: This can happen because of a faulty sender that produces Byzantine
messages (selective transmission or dumbness) or sends to a faulty channel that selectively
relays the messages to only a subset of nodes or a faulty receiver that selectively
hears/receives (selective deafness) messages. Note in the case of faulty link/channel, these
messages may get through other channels or path if there is more than 1 path/channel in the
architecture. In case of HI/replication of identical hardware, the probability of the failure of
the link is much smaller than the probability of the failure of a processor

 Four subcategories in which inconsistencies can occur or creep in for a single Virtual Link
(VL) are illustrated in Figure 30 and Figure 31. The figures show where each of the
inconsistencies listed below can occur either as part of the input (i/p) or output (o/p) of a
component.

1. Path redundancy: Inconsistency between multiple channels or paths at one receiver
(can be introduced at source/transmitter)

2. Multiple receivers due to switch multicast: Inconsistency between multiple receivers
on one channel or path

3. High integrity sender/receiver: Inconsistency between the COM & MON on the high-
integrity device.

4. System-level redundancy: Inconsistency between redundant systems, i.e., between 2
sets of one-to-many producer-to-consumer(s) systems

43
Approved for public release; distribution unlimited

Figure 30: Introduction and Resolution of Inconsistency Errors

44
Approved for public release; distribution unlimited

Figure 31: Introduction and Resolution of Inconsistency Errors

5.2.4 Probabilistic Fault Analysis: Failure Introduction and Propagation

As shown in Figure 32, we analyze faults in a probabilistic fashion, end-to-end on arbitrary
topologies and network architectures, for all faults that are defined in previous section. The fault
analysis would take into account faults introduced at each component including (i) types of faults
introduced and (ii) their probability of occurrence, as well as how faults affecting a component
are propagated. We calculate for each component how incoming faults (i.e., faults propagated up
to this point from upstream network components) and internal faults manifest as outgoing faults
and what probability the outgoing faults have (as a function of the incoming and internal faults).
This is indicated as propagated faults upstream in Figure 32.

The component specific failure protection mechanism, referred in Figure 32 applies to both
failures propagated upstream and up to and also introduced in this component. We then model
the efficacy of protection mechanism by computing the probability of allowing failure to
propagate downstream. Next, we compute the probability of occurrence of propagated faults
downstream for all types of faults that may be propagated from this point in the component to
any downstream network components. Note that the protection mechanism of the component
may transform certain faults that have propagated up to the component into other faults
downstream. For example, propagated commission faults at ES SI Tx, due to BAG policing at
SW in a TTE network, manifest as omission fault downstream from the SW.

Finally, we analyze whether or not the system’s fault tolerance requirements are satisfied by
making sure the probabilities of propagated failures end-to-end for all types of failures (and the

45
Approved for public release; distribution unlimited

number of failures) are less than the system’s failure rate requirements (e.g., the probabilities of
failure per flight hour being 10^-9 for critical systems).

Figure 32: Fault Analysis

The set of different network components for which we need to individually model and analyze
failure probabilities are:

 Host SI Tx

 ES SI Tx

 ES SI Tx with multiple channel/redundant path

 SW SI

 SW SI with multicast

 ES SI Rx

 ES SI Rx with multiple channel/redundant path (i.e., with RM & IC functions in the
component)

 Host SI Rx

 Host HI Tx

 ES HI Tx

 ES HI Tx with multiple channel/redundant path

 SW HI

 SW HI with multicast

46
Approved for public release; distribution unlimited

 ES HI Rx

 ES HI Rx with multiple channel/redundant path (i.e., with RM & IC functions in the
component)

 Host HI Rx

The component-specific failure protection mechanisms are summarized in

Table 5.

Table 5. Failure Protection Mechanism of Components

Components
Traffic Type
supported

Failure Protection mechanism
description

ES SI Tx, ES SI Tx with multiple
channel/redundant path, ES HI Tx, ES HI Tx
with multiple channel/redundant path, SW SI,
SW SI with multicast, SW HI, SW HI with
multicast, ES SI Rx, ES SI Rx with multiple
channel/redundant path , ES HI Rx, ES HI Rx
with multiple channel/redundant path

TT, RC, BE,
COTS

FCS/CRC addition at Tx (output) and
check and Rx (input)

ES SI Tx, ES SI Tx with multiple
channel/redundant path, ES HI Tx, ES HI Tx
with multiple channel/redundant path, SW SI,
SW SI with multicast, SW HI, SW HI with
multicast, ES SI Rx, ES SI Rx with multiple
channel/redundant path, ES HI Rx, ES HI Rx
with multiple channel/redundant path

TT, RC, BE VLID check (part of Eth DA) arrived
on valid Rx (input) port for critical
traffic table checks for TT &RC. Eth
DA valid is checked for BE also at Rx
(input) port via the routing and anti-
masquerading checks.

SW SI, SW SI with multicast, SW HI, SW HI
with multicast, ES SI Rx, ES SI Rx with
multiple channel/redundant path, ES HI Rx,
ES HI Rx with multiple channel/redundant path

TT, RC, BE,
COTS

Valid Message length check at Rx
(input) port (i.e., if actual payload
[data] length matches Ethernet
type/length field).

ES SI Tx, ES SI Tx with multiple
channel/redundant path, ES HI Tx, ES HI Tx
with multiple channel/redundant path, SW SI,
SW SI with multicast, SW HI, SW HI with
multicast, ES SI Rx, ES SI Rx with multiple
channel/redundant path, ES HI Rx, ES HI Rx
with multiple channel/redundant path

TT, RC Actual Message (payload) length is
less than configured maximum length
possible check at Rx (input) port.

ES SI Tx, ES SI Tx with multiple
channel/redundant path, ES HI Tx, ES HI Tx
with multiple channel/redundant path, SW SI,
SW SI with multicast, SW HI, SW HI with
multicast

TT, RC, BE Dispatch enforcement at Tx (output)
port. Scheduled Dispatch (TT) strictly
on a schedule and in gaps in the
unscheduled timeline (RC) based on
priority (FIFO within priority) and
finally BE a slowest priority.

ES SI Tx, ES SI Tx with multiple
channel/redundant path, ES HI Tx, ES HI Tx
with multiple channel/redundant path

RC At Tx (output) port. Traffic Shaping
(ARINC 664)

SW SI, SW SI with multicast, SW HI, SW HI
with multicast

TT Strict Timing Window Enforcement
(TT) at Rx (input) port.

SW SI, SW SI with multicast, SW HI, SW HI RC Bandwidth Allocation Gap (BAG) at

47
Approved for public release; distribution unlimited

Components
Traffic Type
supported

Failure Protection mechanism
description

with multicast Rx (input) port. This is a rate-limiting
check.

SW SI, SW SI with multicast, SW HI, SW HI
with multicast

BE “Coarse” per-port BAG Enforcement
at Rx (input) port. This is a rate-
limiting check for all BE traffic that
arrives on the configured port.

SW SI, SW SI with multicast, SW HI, SW HI
with multicast

RC At Tx (output) port, Age Check for
RC Message. Check resident delay
in SW (from Rx to Tx) against
maximum configured delay and
drops, if more delay occurred. Note
that this check buys protection for
timing delay and for “small”
probability protection against timing
for a global timebase.

ES SI Rx, ES SI Rx with multiple
channel/redundant path , ES HI Rx, ES HI Rx
with multiple channel/redundant path

TT, RC At Rx (input) port, Redundancy
Management (RM) across channels;
First SN accept and drop redundant
SNs for RC; Accept first frame for TT
within a period and excluding
duplicate frames for configured time
window within a period after
accepting the first frame.

ES SI Rx, ES SI Rx with multiple
channel/redundant path, ES HI Rx, ES HI Rx
with multiple channel/redundant path

TT (optional),
RC

At Rx (input) port, Integrity Check
(IC) per channel/redundant path;
Additional SN check (Prev SN +1 or
prev SN + 2). This was used as
operator “x” in Figure 27.

ES HI Tx, ES HI Tx with multiple
channel/redundant path, SW HI, SW HI with
multicast, ES HI Rx, ES HI Rx with multiple
channel/redundant path, Host HI Rx,

TT, RC, BE High Integrity input-exchange
operator “+” at Rx (input) port

Host HI Tx, ES HI Tx, ES HI Tx with multiple
channel/redundant path, SW HI, SW HI with
multicast, ES HI Rx, ES HI Rx with multiple
channel/redundant path

TT, RC, BE High Integrity output cross compare
operator “+” at Rx (output) port

5.2.5 Analysis Tool Chain Overview

Figure 33 gives an overview of the performance and fault analysis tools that we implemented.
The fault-free performance tool checks whether TT traffic is schedulable and what is the end-to-
end latency for RC traffic. The fault analysis tool checks for each VL the probability of the
various failure types. The tools are introduced in more detail below.

48
Approved for public release; distribution unlimited

Figure 33: Network Architecture Tradeoff Analysis Tool Chain

Figure 34 summarizes the input needed for the analysis tools.

Figure 34: Tool Chain Inputs

49
Approved for public release; distribution unlimited

5.2.6 Brake-by-wire Case Study

Fault tolerance is one of the most critical features in the brake system of cars. Papadopoulos et
al. [17] describes details of an initial brake-by-wire (BBW) model. However, we propose
extending the scope to include communication of signals from the wheel brakes to the brake
lights, as well as feedback to the driver from the light sensors about whether any of the bulbs
need to be replaced. Finally, we also include safety-critical communication of brake signals to
the motor control logic in order to prevent opening the throttle from opening while braking.

Our model assumes that the communication infrastructure supports TT Ethernet (TTE) with its
different types of traffic, namely time-triggered (TT), rate-constrained (RC), and best-effort
(BE).

Figure 35 is a high-level overview of our BBW system design. Each sensor and actuator has a
corresponding logic unit, which interfaces with the communication infrastructure of the car. The
expected behavior of this system is governed by the following rules:

 If the brake pedal is engaged, brake at each wheel.

 If the wheel brake is engaged, illuminate brake lights.

 If the wheel brake is engaged, close the throttle at motor.

 If the brake light does not work, show warning in driver display.

Figure 35: High-level Overview of BBW System Design

Corresponding to the criticality of the signal, the TTE communication links are labeled as time-
triggered (high criticality), rate-constrained (medium criticality), and best-effort (low criticality).
The highly critical paths must be protected by redundancy. We consider dual and triple modular
redundancy in this study.

Furthermore, we assume that the brake signal is always communicated from the pedal to the
wheels and from the wheels to the motor logic during operation. If the brake pedal is not
engaged, the brake logic sends a value of 0 to the wheels. Similarly, if the wheel brakes are not
engaged, they send a value of 0 to the motor logic. Then, if messages are missing for a prolonged

50
Approved for public release; distribution unlimited

period of time, the wheel brakes should engage to come to a fail-stop. However, it may be
advisable to slowly engage or perform consensus first, as asymmetrical braking may lead to
instability of the car. Such advanced behavior of handling faults is not covered in this study.

Figure 36 and Figure 37 present a more detailed view of the architecture. Here, we already made
a design decision to use dual redundancy for the highly critical communication paths from the
brake pedal to the wheels and from the wheels to the motor logic. The communications of
medium and low criticality are assigned to one of the two switches in this instantiation of the
system.

Figure 36: Detailed View of BBW System including replication (1/2) with
dataflows from pedal to brakes in black and brakes to lights in blue

51
Approved for public release; distribution unlimited

Figure 37: Detailed View of BBW System including replication (2/2) with
dataflows of brake light problem in green and brakes engaged in black

Table 6 lists all dataflows considered in our model. We use high-integrity devices and TT traffic
to send the brake signal from the pedal to the wheel brakes. For the light signal from the wheel
brakes to the brake lights, we use high-integrity devices and RC (rate-constrained) traffic.
Finally, the signal sent from the light logic to the display logic uses BE (best-effort) traffic.

Table 6. Dataflows in BBW system

VL ID Sender Receiver Type

1 Pedal Logic Brake Logic 1, 2, 3, and
4

TT

2 Brake Logic 1 Motor Logic TT

3 Brake Logic 2 Motor Logic TT

4 Brake Logic 3 Motor Logic TT

5 Brake Logic 4 Motor Logic TT

6 Brake Logic 1 Light Logic 1, 2, and 3 RC

52
Approved for public release; distribution unlimited

7 Brake Logic 2 Light Logic 1, 2, and 3 RC

8 Brake Logic 3 Light Logic 1, 2, and 3 RC

9 Brake Logic 4 Light Logic 1, 2, and 3 RC

10 Light Logic 1 Driver Display BE

11 Light Logic 2 Driver Display BE

12 Light Logic 3 Driver Display BE

For the purpose of fault propagation analysis, each dataflow originates and ends at a host, and
traverses the following components: host to end system (transmit) via physical link to switch via
physical link to end system (receive) to host. We believe that any kind of Ethernet network can
be evolved from such a basic model.

5.2.7 Equational Logic, Rewriting Logic, and Maude

Our network analysis tools build on the Maude language and tool, which is based on equational
logic and rewrite logic. Maude is well suited to this role due to its flexible syntax and powerful
inference capabilities. The flexible syntax lets us specify networks in an extensible way that can
accommodate future extensions and interoperate with other tools using the Maude syntax as the
interlingua between them. The powerful inference capability allows us to do fault analysis in
Maude itself, as we will discuss below. In the following sections below, we introduce Maude and
its logical basis.

Equational logic (EL) [18] is the subset of first-order logic with the = sign as the only predicate
symbol, and equations as the only formulas (i.e., there are no logical connectives). The rules of
deduction of EL are reflexivity, congruence, transitivity, and symmetry. Despite being a very
small subset of first-order logic, equational logic can be used to define any computable function.
Furthermore, EL can be used as a programming language by treating equations as left-to-right
rewrite rules (i.e., ignoring the symmetry rule) and using reduction as the operational semantics.
Viewed as rewrite systems, theories in EL are expected to be terminating and confluent. This
means that the order in which redexes and rewrite rules are chosen does not matter; we will reach
the same result regardless and in a finite number of steps. Sometimes conditional equations are
allowed, which means that Horn clauses can be used in addition to plain equations.

For example, given an encoding of the natural numbers as 0, s(0), s(s(0)), …., one can define
addition (using an infix + function) as:

0 + x = x (17)
s(x) + y = s(x + y) (18)

Using the equations above, we can compute 2 + 3 through the following steps (with the redexes
underlined):

s(s(0)) + s(s(s(0))) => s(s(0) + s(s(s(0)))) => s(s(0 + s(s(s(0)))) => s(s(s(s(0)))).
 (19)

Rewriting logic (RL) [19] is similar to EL on the surface, in that it allows for (possibly
conditional) rewrite rules. However, the rules are not semantically equations, and the rule

53
Approved for public release; distribution unlimited

systems are not expected to be confluent. Therefore, reduction cannot be used as the operational
semantics, since different choices of redexes and rules can lead to different results. Instead, the
rewrite rules are interpreted as nondeterministic state transitions, and the operational mechanism
is search in the state space. Analogously to EL, RL can also support conditional rewrite rules.

Maude [20] is a multiparadigm executable specification language encompassing both EL and
RL. The Maude interpreter is very efficient, allowing prototyping of quite complex test cases.
Maude also provides efficient built-in search and model-checking capabilities. Maude is
reflective [21], providing a meta-level module that reflects both the syntax and semantics of
Maude. Using reflection, the user can program special-purpose execution and search strategies,
module transformations, analyses, and user interfaces. Maude sources, executables for several
platforms, the manual, a primer, cases studies, and papers are available from the Maude website
http://maude.cs.uiuc.edu or its mirror http://maude.csl.sri.com.

We briefly summarize the syntax of Maude used in this report. Maude has a modular system,
with:

 Functional modules, specifying equational theories, which are declared with the syntax
fmod … endfm

 System modules, which are rewrite theories specifying systems of state transitions; they are
declared with the syntax mod … endm

These modules have an initial model semantics [22]. Immediately after the module's keyword,
the name of the module is given. After this, a list of imported submodules can be added. One can
also declare sorts and subsorts and operators. Operators are introduced with the op keyword
followed by the operator name, the argument, and result sorts. An operator may have mixfix
syntax, with the name containing _'s marking the argument positions. A binary operator may be
declared with equational attributes, such as assoc, comm, and id: <identity element> stating,
for example, that the operator is associative, commutative, and specifying an identity element for
the operation. Such attributes are then used by the Maude engine to match terms modulo the
declared axioms. Equational axioms are introduced with the keyword eq (or ceq for conditional
equations) followed by the two terms being declared equal separated by the equality sign =.
Rewrite rules are introduced with the keyword rl (or crl for conditional rules) followed by an
optional rule label, and terms corresponding to the premises and conclusion of the rule separated
by the rewrite sign =>. Variables appearing in axioms and rules (and commands) may be
declared globally using the keyword var or vars, or “inline” using the variable name and its sort
separated by a colon; for example, n:Nat is a variable named n of sort Nat. Rewrite rules are not
allowed in functional modules.

Maude has a reduce command for equational reduction in functional modules, and a search
command for breadth-first search in the state space of system modules. The search mechanism
allows searching for the first answer, all answers, or only answers matching some goal term. The
search mechanism encompasses the reduction mechanism, as equational reduction is performed
before each application of rewrite rules.

54
Approved for public release; distribution unlimited

5.3 Results and Discussion

5.3.1 Network Specification in Maude

We use the Maude language to specify networks. We need to be able to specify at least:

 Components in the network, such as routers, physical links, and end systems

 Topology of the network components, i.e., how they are connected to each other

 Required dataflows in the network, i.e., the desired traffic flows

In the following, we introduce (parts of) our Maude modules used to represent these elements,
which can be found in the network.maude file.

We introduce a functional module NETWORK and declare the sorts used to specify our
networks.

fmod NETWORK is

 …

 sorts NetworkConfiguration Component Connection HISwitch SISwitch HIEndSystem
SIEndSystem HIHost SIHost Link Dataflow PhysicalLink .

 subsorts Component Dataflow < NetworkConfiguration .

HI and SI are short for high integrity and standard integrity, respectively, where high integrity
refers to a self-checking pair of processor (e.g., as used extensively in TTEthernet networks and
other modern network technologies where reliability is important). We define Component and
Dataflow as subsorts of the NetworkConfiguration sort, to allow them to be used wherever a
NetworkConfiguration is required.

Subsequently, we define constructors for all the network component types.

 subsort Connection < Component .

 op < conn(_)|_to_> : Nat OutPort InPort ‐> Connection [ctor] .

 subsort PhysicalLink < Component .

 op < pl(_)|_|_|_> : Nat InPortSet OutPortSet FailureAnnotationSet ‐>

PhysicalLink [ctor] .

 subsort SISwitch < Component .

 subsort HISwitch < Component .

 op < si‐sw(_)|_|_|_> : Nat InPortSet OutPortSet FailureAnnotationSet ‐>

55
Approved for public release; distribution unlimited

SISwitch [ctor] .

 op < hi‐sw(_)|_|_|_> : Nat InPortSet OutPortSet FailureAnnotationSet ‐>

HISwitch [ctor] .

 subsort SIEndSystem < Component .

 subsort HIEndSystem < Component .

 op < si‐es(_)|_|_|_> : Nat InPortSet OutPortSet FailureAnnotationSet ‐>

SIEndSystem [ctor] .

 op < hi‐es(_)|_|_|_> : Nat InPortSet OutPortSet FailureAnnotationSet ‐>

HIEndSystem [ctor] .

 subsort SIHost < Component .

 subsort HIHost < Component .

 op < si‐host(_)|_|_|_> : Nat InPortSet OutPortSet FailureAnnotationSet ‐>

SIHost [ctor] .

 op < hi‐host(_)|_|_|_> : Nat InPortSet OutPortSet FailureAnnotationSet ‐>

HIHost [ctor] .

We use angle brackets <...> everywhere to give our components a uniform appearance. All
components take a Nat (natural number) argument to give them a unique identifier. Most
components have one or more incoming or outgoing ports. Ports are introduced in their own Port
module.

fmod PORT is
 pr NAT .
 *** Ports
 sorts Port InPort OutPort .
 op in(_) : Nat ‐> InPort [ctor] .
 op out(_) : Nat ‐> OutPort [ctor] .
endfm	

(The NETWORK module uses sets extensively – for example, sets of ports, as in InPortSet and
OutPortSet. The Maude mechanism for defining such sets, or other “polymorphic data types” is
somewhat intricate, and we do not show it here). Again, natural numbers are used as identifiers.

One important component type is the connection. Note the syntax of its constructor above:

 op < conn(_)|_to_> : Nat OutPort InPort ‐> Connection [ctor] .

56
Approved for public release; distribution unlimited

The “_to_” part specifies two ports that are connected through this connection, always an out-
port to an in-port. Note that connections do not represent actual physical links. Those have their
own type and constructor (see “pl” in the specification above) because we want to model the
possibility of failures in the physical links. The connections here are used in addition to describe,
for example, which physical link is connected to which port on a switch.

Many of the components also have an argument for failure annotations. These are used to show
what types of failures can occur in the component. Failure annotations are defined in their own
modules Failure and FailureAnnotation.

fmod FAILURE is
 *** component‐internal temporary failure
 *** failures cause faults
 sort FailureType .
 op swfail : ‐> FailureType [ctor] .
 op hostfail : ‐> FailureType [ctor] .
 op esfail : ‐> FailureType [ctor] .
 op fcschfail : ‐> FailureType [ctor] .
 op plfail : ‐> FailureType [ctor] .
endfm

fmod FAILUREANNOTATION is
 pr FAILURE .
 pr FORMULA .
 sort FailureAnnotation .
 op _:_ : FailureType Formula ‐> FailureAnnotation [ctor] .
 op unknown : ‐> FailureAnnotation [ctor] .
endfm

A failure annotation combines a failure type, such as “swfail” (switch failure) with a formula that
describes the logical conditions under which the failure occurs. We will return to these formulas
later.

Going back to the main NETWORK module, we have one additional component type: dataflow.

 sort TrafficType .
 op tt : ‐> TrafficType [ctor] .
 op rc : ‐> TrafficType [ctor] .
 op be : ‐> TrafficType [ctor] .

 op df(_|_|_) : Nat TrafficType DataflowComponentSet ‐> Dataflow [ctor] .

Dataflows are used to represent a network path through which a particular type of data travels.
The traffic types are tt, rc, and be, for time-triggered, rate-controlled, and best-effort. Each
dataflow also has a set of components.

fmod DATAFLOWCOMPONENT is
 pr NAT .
 pr SET{FaultAnnotation} * (sort Set{FaultAnnotation} to FaultAnnotationSet) .
 sort DataflowComponent .
 op conn(_|_) : Nat FaultAnnotationSet ‐> DataflowComponent [ctor] .
endfm

57
Approved for public release; distribution unlimited

	

Dataflow components are essentially connections annotated with fault annotations. Fault
annotations are also defined in their own module.

fmod FAULT is
 sort FaultType .
 op sil : ‐> FaultType [ctor] .
 op om : ‐> FaultType [ctor] .
 op com : ‐> FaultType [ctor] .
 op vSA : ‐> FaultType [ctor] .
 op vDA : ‐> FaultType [ctor] .
 op vSN : ‐> FaultType [ctor] .
 op vLen : ‐> FaultType [ctor] .
 op vData : ‐> FaultType [ctor] .
 op vFCS : ‐> FaultType [ctor] .
 op te : ‐> FaultType [ctor] .
 op tl : ‐> FaultType [ctor] .
 op incPath : ‐> FaultType [ctor] .
 op incHI : ‐> FaultType [ctor] .
endfm

fmod FAULTANNOTATION is
 pr FAULT .
 pr PROB .
 sort FaultAnnotation .
 op _:_ : FaultType Prob ‐> FaultAnnotation [ctor] .
 op unknown : ‐> FaultAnnotation [ctor] .
endfm

	

Faults and fault annotations are similar to failures and failure annotations. The difference is that
failures are internal to components, and are typically the cause of faults, which are symptoms of
such failures. In the end, it is primarily the faults that we are interested in analyzing. The fault
types are discussed in more detail in 5.2.3 Fault Types. Note the special unknown fault annotation.

Typically, a network configuration specified by the user will use this for all the fault annotations.
The Maude fault analysis tool will then infer the actual non-unknown annotations using fault
propagation/introduction rules. This process is discussed in detail in Section 5.3.3Fault Analysis in Maude.

Finally, we have the top-level network configurations.

 *** Network configurations
 op none : ‐> NetworkConfiguration [ctor] .
 op __ : NetworkConfiguration NetworkConfiguration ‐> NetworkConfiguration [ctor
assoc comm id: none] .	

Essentially, a network configuration is just a set of network components, combined using the
“empty syntax”, __.

With the syntax described so far, we can already specify arbitrarily complex network
configurations. For example, the term (of sort NetworkConfiguration)

58
Approved for public release; distribution unlimited

 < hi‐host(0) | empty | out(0) | hostfail : pr(‘h0fail) >
 < conn(0) | out(0) to in(0) >
 < hi‐es(0) | in(0) | out(1) | esfail : pr(‘es0fail), fcschfail :
pr(‘es0fcsfail) >
 < conn(1) | out(1) to in(1) >
 < pl(0) | in(1) | out(2) | plfail : pr(‘pl0fail)>
 < conn(2) | out(2) to in(2) >
 < hi‐sw(0) | in(2) | out(3) | swfail : pr(‘sw0fail), fcschfail :
pr(‘sw0fcsfail) >
 < conn(3) | out(3) to in(3) >
 < pl(1) | in(3) | out(4) | plfail : pr(‘pl1fail)>
 < conn(4) | out(4) to in(4) >
 < hi‐es(1) | in(4) | out(5) | esfail : pr(‘es1fail), fcschfail :
pr(‘es1fcsfail)>
 < conn(5) | out(5) to in(5) >
 < hi‐host(1) | in(5) | out(6) | hostfail : pr(‘h1fail) >

< conn(6) | out(6) to in(6) >
df(0 | tt | conn(0 | unknown),
 conn(1 | unknown),
 conn(2 | unknown),
 conn(3 | unknown),
 conn(4 | unknown),
 conn(5 | unknown),
 conn(6 | unknown)) .

describes a network with two high-integrity hosts, two end systems, and one high-integrity
switch, with the switch connected to the two end systems through two physical links. There is
one dataflow from the first host to the second, through all the other components. All the failures
are set to some propositional variable (pr(…)), as discussed in more detail below. The network
described above is a simple straight-line configuration. In Section 5.3.2, BBW Network
Specification in Maude, we show how the Maude specification is used to realize the BBW
architecture.

5.3.2 BBW Network Specification in Maude

Figure 38 illustrates the network layout for the BBW system, in particular the dataflow from the
pedal to the four brakes and from the four brakes to the three lights. Between each two
components (host, end system, switch, and physical link) there is a connection (Cn) that connects
the appropriate ports of each component.

59
Approved for public release; distribution unlimited

Figure 38: BBW Network Supporting Dataflows from pedal to the brakes,
and from the brakes to the lights.

5.3.3 Fault Analysis in Maude

As mentioned above, the Maude network specifications serve two purposes: as a common
language for network specifications that can be used by different tools and, more directly, for
fault analysis implemented in Maude itself. Here, we discuss the latter.

The fault analysis is based on “rules” (loosely speaking) that define how faults are propagated
and introduced by each type of component. As an example, the rule for the hi‐es (high integrity
end system) type of component looks as follows.

 *** HI ES, all traffic types

 ceq

 < conn(C1) | Out1 to In1 >

 < hi‐es(ES1) | In1,INS | Out2,OUTS | esfail : ESFail, fcschfail : Fcschfail >

 < conn(C2) | Out2 to In2 >

60
Approved for public release; distribution unlimited

 df(DF1 | TType |

 conn(C1 | om : OMin, com : COMin, vSA : VSAin, vDA : VDAin, vSN : VSNin, vLen
: VLENin, vData : VDATAin, vFCS : VFCSin, te : TEin, tl : TLin),

 conn(C2 | unknown),

 DFS)

 =

 < conn(C1) | Out1 to In1 >

 < hi‐es(ES1) | In1,INS | Out2,OUTS | esfail : ESFail, fcschfail : Fcschfail >

 < conn(C2) | Out2 to In2 >

 df(DF1 | TType |

 conn(C1 | om : OMin, com : COMin, vSA : VSAin, vDA : VDAin, vSN : VSNin, vLen
: VLENin, vData : VDATAin, vFCS : VFCSin, te : TEin, tl : TLin),

 conn(C2 | om : OMout, com : COMout, vSA : VSAout, vDA : VDAout, vSN : VSNout,
vLen : VLENout, vData : VDATAout, vFCS : VFCSout, te : TEout, tl : TLout),

 DFS)

 if

 OMout := OMin or COMin or (VDATAin and not Fcschfail) or (VFCSin and not
Fcschfail) or TEin or TLin or ESFail /\

 COMout := false /\

 VSAout := VSAin /\

 VDAout := false /\\

 VSNout := false /\

 VLENout := false /\

 VDATAout := VDATAin and Fcschfail /\

 VFCSout := Fcschfail /\

 TEout := false /\

 TLout := false .

The “rule” is actually an equation – more specifically, a conditional equation (ceq). As such, it
has three parts: two terms separated by the equality sign (=), and a condition following the “if”
keyword. The two terms are both of sort NetworkConfiguration. The equation is applicable to
any network configuration, or part of a network configuration, that matches the left side. The
left-side term describes the situation where we have a high-integrity switch with incoming and
outgoing connections, with known fault annotations on the incoming connection, and unknown
faults on the outgoing connection. The right side has the exact same term except that it has some

61
Approved for public release; distribution unlimited

actual, meaningful annotations on the outgoing connection. Thus, the effect of the rule is to
annotate the outgoing connection with a fault annotation. Performing this process for all
components using their respective rules is the essence of our fault analysis.

To see how the rule adds the fault annotations, we must look at its condition. The outgoing faults
are all variables like OMout, COMout, and so on. These variables are assigned values in the
condition. For example,

OMout := OMin or COMin or (VDATAin and not Fcschfail) or (VFCSin and not Fcschfail)
or TEin or TLin or ESFail

Assigns a value to the OMout variable. The assigned value is a logical formula, and it depends on
the values of a number of other variables, viz., certain incoming faults (OMin, COMin, VDATAin,
VFCSin, TEin, and TLin) as well as certain failures in the component itself (ESFail and
Fcschfail). Essentially, the high integrity end system can stop many types of faults and turn
them into omission faults. This is known as fail-silent operation.

The syntax for the logical formulas used to describe the conditions under which a fault occurs is
defined in the FORMULA module

fmod FORMULA is
 pr QID .
 sort Formula .
 sort Var .
 subsort Var < Formula .
 op pr : Qid ‐> Var [ctor] . *** Variables

 *** These have the same precedence values as their boolean counterparts
 op _and_ : Formula Formula ‐> Formula [assoc comm prec 55] .
 op _or_ : Formula Formula ‐> Formula [assoc comm prec 59] .
 op not_ : Formula ‐> Formula [prec 53] .
 op true : ‐> Formula [ctor] .
 op false : ‐> Formula [ctor] .

 *** Basic simplifications
 vars P Q P1 P2 A B C : Formula .
 eq P and P = P .
 eq P or P = P .
 eq true or P = true .
 eq true and P = P .
 eq false or P = P .
 eq false and P = false .
 eq P and not P = false .
endfm

Maude also has built-in modules for Boolean logic, but we need more precise control over the
computations done with these formulas than we would get by using the built-in support.
Formulas are built using the usual Boolean operations (and, or, not), the basic truth values (true,
false), and propositional variables (pr). There are also a few equations that perform trivial
simplifications on formulas. Many other logical rules are valid and could be written as equations,

62
Approved for public release; distribution unlimited

but more is not needed for our purposes, and in some cases certain rules could be detrimental, as
will become clear shortly.

Once we have a network configuration, we can simply ask Maude to execute our equations in
order to add fault annotations to the network. For example, if we reduce the example network in
the previous section, we get this result:

< hi‐host(0) | empty | out(0) | hostfail : pr('h0fail) >
< conn(0) | out(0) to in(0) >
< pl(0) | in(1) | out(2) | plfail : pr('pl0fail) >
< conn(1) | out(1) to in(1) >
< pl(1) | in(3) | out(4) | plfail : pr('pl1fail) >
< conn(2) | out(2) to in(2) >
< hi‐sw(0) | in(2) | out(3) | swfail : pr('sw0fail), fcschfail : pr(
'sw0fcsfail) >
< conn(3) | out(3) to in(3) >
< hi‐es(0) | in(0) | out(1) | esfail : pr('es0fail), fcschfail : pr(
'es0fcsfail) >
< conn(4) | out(4) to in(4) >
< hi‐es(1) | in(4) | out(5) | esfail : pr('es1fail), fcschfail : pr(
'es1fcsfail) >
< conn(5) | out(5) to in(5) >
< hi‐host(1) | in(5) | out(6) | hostfail : pr('h1fail) >
< conn(6) | out(6) to in(6) >
df(0 | tt | conn(0 | om : pr('h0fail), com : false, vSA : false, vDA : false, vSN :
false, vLen : false, vData : false, vFCS : false, te : false, tl : false),
 conn(1 | om : (pr('es0fail) or pr('h0fail)), com : false, vSA : false,
vDA : false, vSN : false, vLen : false, vData : false, vFCS : pr('es0fcsfail), te :
false, tl : false), conn(2 | om : (pr('es0fail) or pr('h0fail)), com : false, vSA
: false, vDA : false, vSN : false, vLen : false, vData : pr('pl0fail), vFCS :
pr('es0fcsfail), te : false, tl : false),
 conn(3 | om : (pr('es0fcsfail) or pr('pl0fail) or pr('sw0fail) or not
pr('sw0fail) and (pr('es0fail) or pr('h0fail))), com : false, vSA : false, vDA :
false,
vSN : false, vLen : false, vData : false, vFCS : false, te : false, tl : false),
 conn(4 | om : (pr('es0fcsfail) or pr('pl0fail) or pr('sw0fail) or not
pr('sw0fail) and (pr('es0fail) or pr('h0fail))), com : false, vSA : false, vDA :
false,
vSN : false, vLen : false, vData : pr('pl1fail), vFCS : false, te : false, tl : false
),
 conn(5 | om : (pr('es0fcsfail) or pr('es1fail) or pr('pl0fail) or
pr('sw0fail) or pr('pl1fail) and not pr('es1fcsfail) or not pr('sw0fail) and
(pr('es0fail) or pr('h0fail))), com : false, vSA : false, vDA : false, vSN : false,
vLen : false, vData : (pr('es1fcsfail) and pr('pl1fail)), vFCS : pr('es1fcsfail), te
: false, tl : false),
 conn(6 | om : pr('h1fail), com : false, vSA : false, vDA : false, vSN :
false, vLen : false, vData : false, vFCS : false, te : false, tl : false))

The interesting parts are the fault annotations on the connections – in particular for connection
number 5, which is the connection coming into the receiver host. The formulas for this
connection are the result of applying the rules for all the previous connections, propagating and
introducing different faults along the way. For example,

63
Approved for public release; distribution unlimited

vData : (pr('es1fcsfail) and pr('pl1fail))

indicates that the vData fault can happen only if end system 1 has a frame check sequence (FCS)
check failure, and physical link 1 fails. Note that the fault annotations were all unknown in the
input above.

There is one more step in our fault analysis. While the formulas above describe the exact
conditions for a certain type of fault to occur, we are also interested in the probabilities (or
frequencies) of the faults. We would like to input the probabilities of the various component
failures, and calculate the probabilities of the faults. To do this, we interpret the propositional
variables as probabilistic variables (another reading of the “pr” constructor). For example, for
any formula, such as

 (P and Q) or (P and R)

given the individual probabilities of P, Q, and R, we would like to know the probability of the
compound formula. To that end, there are several inference rules of probabilistic logic [23]:

Pr(not P) = 1.0 – Pr(P) (20)
Pr(true) = 1.0 (21)
Pr(false) = 0.0 (22)
Pr(P and Q) = Pr(P)*Pr(Q) if P and Q are independent (23)
Pr(P or Q) = Pr(P)+Pr(Q) if P and Q are disjoint (24)

where “Pr” denotes “probability of”. The first three rules are easy to handle, but the last two are
problematic because of their conditions. Most formulas are not independent or disjoint. While we
assume that independence holds for our atomic formulas (the probabilistic/propositional
variables), it often does not hold for larger formulas, because they might share some variables.
For example, in (P or Q) and (P or R), (P or Q) is not independent of (P or R) since they
both contain P. Disjointness of P and Q means that pr(P and Q) = 0. In other words, it is not
possible for both cases of the “or” to be true at the same time. Again, this is not the case in
general. For example, in (P and Q) or (P and R), the two disjuncts could both be true (when all
of P, Q, and R, are true) and are therefore not disjoint.

There are different approaches to computing with probabilistic logic [24]. In general, it is very
expensive, and there are algorithms for computing approximate results. However, we have
adopted an exact approach, which has been quite fast with networks that we have tried so far,
despite having worst-case exponential complexity in the number of variables.

The idea behind our approach is to convert the formula into a form where

 For each conjunction, the conjuncts are independent, and

 For each disjunction, the disjuncts are disjoint

When we have a formula of that type, we simply apply the rules above to compute the
probability of the formula.

64
Approved for public release; distribution unlimited

It turns out that formulas in full disjunctive normal form (full DNF) are of the type described. A
formula is in DNF if and only if it is a disjunction of one or more conjunctions of one or more
literals (a literal is either a propositional variable or a negated variable). For example,

(P and Q) or (P and R) (25)
P or (Q and not R) (26)	

are both in DNF. A formula is in full DNF if and only if it is in DNF and if each of its variables
appears exactly once in every clause. Any formula can be converted to full DNF. For example,
the first formula above becomes

 (P and Q and R) or (P and Q and not R) or (P and not Q and R) (27)

Note that each formula has a unique full DNF form, but not a unique DNF form. The full DNF
form can be interpreted as the entries in a truth table that make a formula true. For example, for
the formula above (with “1” for true and “0” for false) the truth table is as follows:

Table 7. Truth Table for Example Full Disjunctive Normal Form

P 0 0 0 0 1 1 1 1

Q 0 0 1 1 0 0 1 1

R 0 1 0 1 0 1 0 1

(P and Q) or
(P and R)

0 0 0 0 0 1 1 1

Each column describes one “possible world”. Each column differs in at least one position.
Hence, each column is disjoint from all the others. They describe different states of affairs that
cannot be true at the same time. Similarly, each row for the atomic variables is independent of
the others, since we already stated that we assume that the atomic variables are independent.

Looking at the table, we see that the entire formula (last row) is true exactly in the situations
described by the rightmost three columns. In other words, when P is true, Q is false, and R is
true, OR when P is true, Q is true, and R is false, OR when all three are true. As can be seen from
this verbiage, each column can be interpreted as a conjunctive formula, and the combination of
several columns can be interpreted as a disjunction. Each column contains all the variables.
Hence, what we get from the table is a full DNF formula with which we can easily compute.

Our network.maude specification includes the modules DNF and FULLDNF to convert any formula
to full DNF form. The details are omitted here. Next we need to assign probabilities to the
probabilistic variables. We do that using what we call a valuation, defined in the VALUTATION
module

fmod VALUATION is
 pr FORMULA .
 pr FLOAT .
 sort Valuation .
 op _ := _ : Var Float ‐> Valuation [ctor] .
endfm

65
Approved for public release; distribution unlimited

Finally, the PROB module pulls it all together and includes the probabilistic rules mentioned
above. Note that we do not check for the side conditions, because we know that our full DNF
form guarantees that they hold.

fmod PROB is
 pr FULLDNF .
 pr SET{Valuation} * (sort Set{Valuation} to ValuationSet) .
 op evaluate : ValuationSet Formula ‐> Float .
 var V : Valuation . var VS : ValuationSet . vars P Q R : Formula .
 var Var : Var . var F : Float .
 eq evaluate(VS,P) = eval(VS,fulldnf(P)) .

 *** internal, use evaluate above
 op eval : ValuationSet Formula ‐> Float .
 eq eval((V,VS),P or Q) = eval((V,VS),P) + eval((V,VS),Q) .
 eq eval((V,VS),P and Q) = eval((V,VS),P) * eval((V,VS),Q) .
 eq eval((Var := F,VS),Var) = F .
 eq eval(VS,not P) = 1.0 ‐ eval(VS,P) .
 eq eval(VS,true) = 1.0 .
 eq eval(VS,false) = 0.0 .
endfm

	

The evaluate operator takes a set of valuations and a formula and calculates the probability of
the formula given the valuations. The NETWORK module includes some operators to make it easier
to extract some or all of the fault annotations of a network configuration and evaluate them. For
example, to calculate the probabilities on connection 5 in the example above, with some given
probabilities for the probabilistic variables, we execute the Maude command

red evaluateFaultAnnotations((pr('h0fail) := 1E‐3, pr('es0fail) := 1E‐3,
pr('es0fcsfail) := 1E‐9, pr('pl0fail) := 1E‐6, pr('sw0fail) := 1E‐3,
pr('sw0fcsfail) := 1E‐9, pr('pl1fail) := 1E‐6, pr('es1fail) := 1E‐3, pr('es1fcsfail)
:= 1E‐9, pr('h1fail) := 1E‐3),
getFaultAnnotations(getDataflow(net1,0),5)) .

	

and get the result

om : 3.9959970059990028e‐3,
com : 0.0,
vSA : 0.0,
vDA : 0.0,
vSN : 0.0,
vLen : 0.0,
vData : 1.0000000000000001e‐15,
vFCS : 1.0000000000000001e‐9,
te : 0.0,
tl : 0.0

66
Approved for public release; distribution unlimited

5.3.4 Performance Analysis Using Time-Triggered and Rate-Constrained
Communication Paradigm

Networks for real-time systems have stringent end-to-end latency and jitter requirements. One
cost-efficient way to meet these requirements is the time-triggered communication paradigm,
which pre-plans the transmission points of the frames in the network off-line. This plan prevents
contentions of frames on the network and is called a time-triggered schedule (tt-schedule).

In general the tt-scheduling is a bin-packing problem, known to be NP complete, where the
complexity is mostly driven by the topology freedom of the network, its associated hardware
restrictions, and application-imposed constraints. Multi-hop networks, in particular, require the
synthesis of path-dependent, communication-link schedules in order to maintain full determinism
of time-triggered communication from sender to receiver.

In previous experiments using the Yices Satisfiability Modulo Theories (SMT) solver, we have
shown that the scheduling problem can be solved by Yices out-of-the-box for a few hundred
random frame instances on the network. A customized tt-scheduler using Yices as a back-end
solver allows to increase this number of frame instances up to tens of thousands.

Time-triggered communication provides minimal latency and jitter guarantees. However, the
rate-constrained multicast paradigm is a standard communication paradigm used in modern
avionics networks (e.g., in form of ARINC 664-p7) and also gains attraction in adjacent
industrial markets. In the multicast paradigm, a single message that is dispatched by a sender can
be forwarded to a group of receivers. The forwarding function is typically executed by a network
switch, which receives a multicast message on one port and forwards the message to a pre-
configured set of outgoing ports. Messages will typically arrive unsynchronized at the switches,
and consequently the maximum queuing delays have to be calculated to determine the
transmission latency of a message in the rate-constrained paradigm.

For the analysis of networks that communicate rate-constrained messages we have previously
developed a second tool that checks the end-to-end latency. This tool, the rc-checker,
incorporates the Yices SMT solver as well. In addition to pure analysis, the SMT-based approach
is also capable of assigning messages to nodes in a way such that the network usage remains
balanced.

In the following we report on using the SMT-based tt-scheduling and rc-checking approach in a
brake-by-wire case study.

Figure 39 depicts the network representation for the “tt_scheduler” and “rc_checker.” Each
physical Ethernet connection (each “wire”) is represented by two arrows – for example, the pair
of arrows 1,2 represents one wire. The file “BBW.top” specifies the topology of the BBW case
study (it can be used as input to an automatic traffic generator).

67
Approved for public release; distribution unlimited

Figure 39: BBW Network Topology

Using the representation of the topology as specified in Figure 39, we can define virtual links
(VLs).

Figure 40 shows the example of VL 1 (see Table 6 for all VLs).

	

Figure 40: Virtual Link 1 of the BBW Case Study shown in dashed arrows

The file “BBW.top.msg” specifies VL 1 – VL 5 from the BBW case study (VL 1 is highlighted
in red):

Pedal Logic

Brake Logic

Brake Logic

Brake Logic

Brake Logic

Light Logic

Light Logic

Light Logic

Motor Logic

Driver Display

TTEthernet
Switch

1

2
3

4
5 6

7

8

9

10

11

12

13
141516

17

18

19

20

Pedal Logic

Brake Logic

Brake Logic

Brake Logic

Brake Logic

Light Logic

Light Logic

Light Logic

Motor Logic

Driver Display

TTEthernet
Switch

1

2
3

4
5 6

7

8

9

10

11

12

13
141516

17

18

19

20

VL 1: 2  3,5,13,15

68
Approved for public release; distribution unlimited

5;50000;20;100;10;500;10;0;0

1;15;4;1

paths:

2;3;0;0;0;0;0;0;0;0;

2;5;0;0;0;0;0;0;0;0;

2;13;0;0;0;0;0;0;0;0;

2;15;0;0;0;0;0;0;0;0;

splits:

3;5;13;15;0;0;0;0;0;0;

2;15;1;0

paths:

4;19;0;0;0;0;0;0;0;0;

splits:

3;15;1;0

paths:

6;19;0;0;0;0;0;0;0;0;

splits:

4;15;1;0

paths:

14;19;0;0;0;0;0;0;0;0;

splits:

5;15;1;0

paths:

16;19;0;0;0;0;0;0;0;0;

splits:

task_dependencies

0;0;0

rand_msg

1;2;3;4;5;

69
Approved for public release; distribution unlimited

5.3.4.1 Time-Triggered Communication Paradigm

BBW.top.msg is the input to the TT scheduler (tt_scheduler_adv), which can be executed by

./tt_scheduler_adv BBW.top.msg –f 1

When the scheduler finds a feasible TT schedule, it generates an input file for gnuplot™.
Gnuplot can then be used to generate the plots in an appropriate file type. The schedule of VL 1
– VL 5 of the BBW case study is shown in Figure 41. The plot depicts the dataflow links on the
x axis and the slots of the TT schedule on the y axis. VL 1 is represented by “1”, VL 2 by “2”,
and so forth.

Figure 41: TT Schedule for VL 1 - VL 5 of the BBW Case Study

To demonstrate the tt scheduling under higher dataloads we can add artificial “dummy” data. We
schedule the dummy data first and then add the VLs from the BBW case study (see Figures 42-
45).

70
Approved for public release; distribution unlimited

Figure 42: TT Schedule with Five Additional Frames (VL IDs 1-5),
BBW VL IDs 1-5 are Translated to VL IDs 6-10

Figure 43: TT Schedule with 15 Additional Frames (VL IDs 1-15),
BBW VL IDs 1-5 are Translated to VL IDs 16-20

71
Approved for public release; distribution unlimited

Figure 44: TT Schedule with 35 Additional Frames (VL IDs 1-35),
BBW VL IDs 1-5 are Translated to VL IDs 36-40

Figure 45: TT Schedule with 95 Additional Frames (VL IDs 1-95),
BBW VL IDs 1-5 are Translated to VL IDs 96-100

72
Approved for public release; distribution unlimited

5.3.4.2 Rate-Constrained Communication Paradigm

The topology file BBW.top and the messages file BBW.top.msg are the inputs to the RC traffic
analyzer (rc_checker), which can be executed by

./rc_checker BBW.top BBW.top.msg –u –n 5

The rc_checker tool then approximates the end-to-end latency of the messages specified in the
message file considering the topology specified in the topology file (the –n parameter specifies
that only the first five messages from the message file will be analyzed). The result of the
analysis can be plotted by gnuplot™ as for example in Figure 46. The x axis lists the VL IDs.

For simplicity of description of the examples we assume that the unit on the y axis is
microseconds. In the scenarios, frame lengths are randomly distributed in an interval [1:100]. In
a 100 Mbit/s Ethernet system the message lengths will be [6:124] microseconds and in a 1 Gbit/s
Ethernet system in [0.6:12.4] microseconds. So, when we say the unit on the y axis is 1
microsecond, the frame sizes in the example are representative for a 100 Mbit/s Ethernet (or
TTEthernet) system. Figures 46-49 show the results for various loads on the network (i.e.,
additional 15, 35, or 95 frames).

Figure 46: Plot of the VL IDs (x axis) Versus their End-to-end Transmission
Latencies (y axis)

	

73
Approved for public release; distribution unlimited

Figure 47: Plot of the VL IDs (x-axis) Versus their End-to-end Transmission Latencies
(y axis) Considering 15 Additional Dummy Frames

Figure 48: Plot of the VL IDs (x axis) Versus their End-to-end Transmission
Latencies (y axis) Considering 35 Additional Dummy Frames

	

74
Approved for public release; distribution unlimited

Figure 49: Plot of the VL IDs (x axis) Versus their End-to-end Transmission Latencies
(y axis) Considering 95 Additional Dummy Frames

The RC tool calculates the end-to-end latency in two parts. In the first part, it calculates the
maximum time a frame may be buffered in each node (e.g., a switch) before it can be relayed. In
the second part, it calculates the number of physical links on which a frame is transmitted (i.e.,
always two in the BBW example). This number is then used as a multiplier of the frame length
(this is pure time it takes to transmit a frame over the physical links, without considering the
buffering time in the switches). The sum of the first part and the second part is the end-to-end
latency as depicted in the figures for RC traffic.

Part one is a bit more complex to calculate: essentially if you had a switch with three inputs IN1,
IN2, and IN3 and two outputs OUT1 and OUT2, then the tool calculates the queuing delay of the
frames transmitted on OUT1 as the sum of all frames received on IN1, IN2, and IN3 that are
relayed on OUT1, minus the maximum sum of all frames received on IN1, IN2, and IN3 relayed
on OUT1. Essentially, the tool is concerned with "burst scenarios" in which all frames that may
be sent on OUT1 are sent back to back on IN1, IN2, and IN3.

5.3.4.3 Comparison of TT vs. RC End-to-End Performance

For TT, again, we assume message sizes randomly distributed in [1:100], and we assume that a
slot is 100 microseconds long. (Here we are omitting overheads that would arise from the clock
synchronization. If one wanted to include this as well, we could add another microsecond or so
more for the slot length).

For the end-to-end latency of a TT frame the tool simply sums up the slots from the transmission
on the first physical link until the transmission on the last physical link; for example, if a VL is

75
Approved for public release; distribution unlimited

transmitted initially in slot 1 and then to its final destination in slot 3 then 1, calculate the end-to-
end latency as (3-1)+1 * slot_length.

5.3.4.4 The ASIIST Tool

ASIIST stands for “Application Specific I/O Integration Support Tool” and was developed by
the University of Illinois at Urbana-Champaign. Here, we discuss the relation of the ASIIST tool
to the tt scheduling and rc checking as presented earlier in this report. The basis for our
assessment is the set of presentations available via youtube [25,26] and the slide deck “ASIIST-
IMA Partitioned System Analysis.”

As it appears from the aforementioned presentations, ASIIST is primarily concerned with
analysis and scheduling inside a single end system (also called “node” or “LRU” [line-
replaceable unit] in the avionics context). In particular, the end system targets at integrated
modular avionics (IMA), so that the single end system may host a multitude of processors. Each
processor in turn can be configured to host several partitions. Typically, a partition is assigned an
exclusive part of the memory and a guaranteed percentage of processor time (e.g., by a fixed-
length time slot in case the processor time is defined according to a round-robin scheduling
scheme).

The “scheduling” problem in such an environment is to assign application tasks to partitions.
When a system is not schedulable, a reason might be that the set of tasks assigned to one
partition requires too much processor time. Consequently, enlarging the time slot of the
respective partition may make the system schedulable.

However, this scheduling problem is different from the tt scheduling problem discussed earlier in
this document, which is concerned with scheduling a network and not so much the resources

76
Approved for public release; distribution unlimited

inside an end system. From the above-mentioned presentations, we conclude that the ASIIST
tools do not provide functionality for tt scheduling.

In contrast to our work discussed above, the “bus” delay analysis of ASIIST is concerned with
the measurement of delays as they occur inside an end system. For example, the delays between
processor and main memory or delays resulting from communication via a PCI interface are
addressed. In the case of our experiments we are concerned with network delays as they occur
between different end systems. However, the ASIIST tool implements the Network Calculus for
its bus delay analysis, which is also used in other tools to determine the network delays between
end systems for rate-constrained traffic. Hence, future versions of the ASIIST tool may very well
be also used to calculate the bus delay analysis between different end systems for rate-
constrained traffic.

5.3.5 Integration of Tools in a Graphical User Interface

We built a prototypical integration of the tools for the network analysis in a graphical Java
application. The starting point for this graphical user interface (GUI) is the Maude specification
of the network in a text file. However, it is very much conceivable to have another graphical tool
available to help with generating such Maude code from a network editor. Once the Maude file
is known to the GUI, the user can generate the term and a graph for a specific dataflow, deduce
the fault annotation set of specific connections, and invoke the TT scheduling tools. Figure 50
shows the GUI with an example network specification of the BBW system with all components
in high-integrity mode in Maude.

Figure 50: Graphical User Interface with Example

77
Approved for public release; distribution unlimited

Requirements for Running the GUI

The GUI application itself is written in Java 6, so this runtime environment must be installed. To
access all the tools from Java, we assume a Unix shell like bash and standard Unix tools such as
“awk” and “sed.” Furthermore, the GUI calls Maude, which we tested in version 2.6. The
network graph is generated using graphviz’ dot in version 2.28.0. The executable must be
located (or linked from) /usr/local/bin/dot. When using the TT scheduler tools, these must be
compiled for the specific platform and located in a directory to be supplied to the Java
application. The TT scheduler tools also require gnuplot and perl.

Using the GUI

We supply a shell script called “gui.sh” to wrap the call to the Java application with all the
dependencies. A command line switch –h prints the usage and options:

 $> ./gui.sh ‐h

 usage: java ‐cp ... com.sri.promise.gui.GUI [options...]

 with:

 FILE : choose given Maude file

 ‐h : display usage and exit

 ‐l LEVEL : set console log level

 ‐mExe FILE : path to Maude executable (default is $MAUDE_LIB/maude)

 ‐mLib PATH : path to MAUDE_LIB directory ‐‐ mandatory!

 ‐sDir PATH : path to scheduler directory ‐‐ mandatory!

To invoke the GUI with a certain Maude file chosen for analysis, we use for example:

 $> ./gui.sh ‐mLib $MAUDE_LIB \

 ‐mExe /usr/local/bin/maude \

 ‐sDir../Performance/demo‐20110719 \

 ../Maude/BBW/brake‐by‐wire‐AllHI.maude

Once the GUI is open, we enter the Maude operator to be reduced into a NetworkConfiguration,
here “bbw6”, into the text field below the Maude file (see Figure 51).

78
Approved for public release; distribution unlimited

Figure 51: Analyzing Dataflow “bbw6”

Then, we can run Maude using the button or simply hit <ENTER> when done typing the
operator. Maude should run in the background and the result is printed in the text area in the
middle. If we find the strings "result NetworkConfiguration:" and "Bye." inside this text, the text
between these two terms is automatically selected. Without changing the automatic text
selection, simply hitting <SHIFT>-<ENTER> generates the graph corresponding to the network
configuration. Figure 52 shows part of the resulting graph.

Figure 52: Graph for Fault Propagation over Dataflow “bbw6”

Once the graph is showing, the user can zoom in and out, zoom to fit using a double click, and
scroll with the bars and mouse wheel.

To further investigate the failure values for an existing connection, the user enters the connection
number into the corresponding text field and hits <ENTER> or the adjacent button. Maude will
print the result as a

NeSet{FaultProbAnnotation} with each line containing a failure value as seen in Figure 53.

79
Approved for public release; distribution unlimited

Figure 53: Fault Propagation at Connection 74 of “bbw6”

To run TTTech's scheduling tool, the user selects the type (time-triggered or rate-constrained)
and supplies the number of Virtual Link IDs (must be between 5 and 100). Clicking the adjacent
button performs the scheduling analysis and opens the resulting plot in a PostScript viewer.

5.4 Conclusions

Co-optimization of fault tolerance and performance with verification proofs of the general space
of architectures is intractable. Our approach is to provide feasible trade-off analysis and
verification of selected points in the design space. We support design choices through network
architecture design space characterization at network components, host, and application-level
redundancy management. Our approach is novel in that we integrate latency, utilization, buffer
size and fault tolerance analysis and it is scalable to vehicle-sized network architectures.

80
Approved for public release; distribution unlimited

6. INTEGRATING VERIFICATION INTO EARLY DESIGN FLOW

6.1 Introduction

We integrated two verification tools into the META workflow: (1) the HybridSAL hybrid model
checker and (2) the Honeywell Lifecycle Tools & Environment (HiLiTE). The integration of
HybridSAL and HiLiTE into the CyPhy language and design environment enhances the META
workflow with essential verification capabilities: (1) model checking of dynamic properties
based on qualitative and relational abstractions and (2) static analysis of signal properties in
large-scale, embedded control software. Further, we adopted a general approach, which is
independent of the verification tools and provides the infrastructure to integrate additional tools.
The implementation provides generic templates for: (1) integrating models suitable for
verification and linking them to architecture models in CyPhy and (2) incorporating verification
certificates into the system models that can be used in the design space exploration.

6.2 Methods, Assumptions, and Procedures

6.2.1 High-Level Integration Concepts

6.2.1.1 High-Level Requirements Interface

CyPhy is an integration language: thus, it does not contain all the information of the specifics of
the models – it only references them. The verification tool interface must comply with this
notion, which means that it is necessary to have a requirements language that is tool independent
on the language level, but can contain verification tool-specific information on the modeling
level. Moreover, this requirement language must capture all the necessary information to verify
the integration, enable the selection of components with specific formally verified properties, and
design space exploration.

Figure 54 depicts this requirement language. One can define one or more formal requirements,
and attach it to a component. For more complex situations, the formal requirements can be
recursively grouped. The requirement contains a human-readable description, a verification
result returned by the verification tool along with a more detailed tool-specific message. Formal
requirements were carefully designed to support reproducibility. The reproducibility information
contains all the information to repeat the execution of the tools with exactly the same model and
environment. Finally, a formal requirement can be assigned to a tool-specific integrator
component, referred to as verifier and described in detail in the next section.

81
Approved for public release; distribution unlimited

Figure 54: The High-level Requirements Interface in CyPhy

6.2.1.2 Tool Integration Architecture

The integration architecture must be open to accommodate tools with various interfaces. To this
end, we use a generic tool integration architecture, which consists of a general manager
component and arbitrary number of plugins called verifiers.

The Vanderbilt Verification Manager is a generic integration component that is able to manage
tool-specific plugins, edit the requirements specified in CyPhy in a tool-independent way, and
assign tool-specific plugins to the formal requirements. The component supports a wide variety
of programming languages (C++, Java, Python, C#, etc.).

Figure 55 illustrates the component while we register a HiLiTe-specific verifier plugin. The tool
integration discussed in the next sections is realized by verifier plugins via the Vanderbilt
Verification Manager.

82
Approved for public release; distribution unlimited

Figure 55: Vanderbilt Verification Manager

6.2.2 Integrating HybridSAL with Design Flow

6.2.2.1 Example Verification Problem

A case study of a cabin air compressor (CAC) provided by Honeywell is the basis of our
example description. An overview of the Simulink model is shown in Figure 56.

83
Approved for public release; distribution unlimited

Figure 56: CAC Control Overview

This system has two parallel paths of two compressors; both work together to control the air and
the pressure in the cabin. Although the two systems work at the same rate – that is, they must
provide the same rate of flow – the speed of the compressors can be different. The figure depicts
an open loop simulation; in practice, FlowSensor_1/FlowSensor_2 originate from the plants.

Figure 57 depicts the internals of the flow control boxes. Essentially, the solution is a PI control
realization. The signal FLOW_SP is the set point coming from an upper layer, while RST is a
reset signal. Moreover, FLOW_FB is the feedback – that is, the actual sensed data. SPEED_FF is
used when the sensor fails. It is a signal describing the altitude; from the altitude an
approximation can be computed and used instead of the erroneous feedback.

84
Approved for public release; distribution unlimited

Figure 57: Flow Control Internals

6.2.2.2 CyPhy and other Tools

The META language, called CyPhy, is composed of several modeling languages. The most
important for us are the Embedded System Modeling Language (ESMoL), and the Bond Graph
language. ESMoL (Figure 58) describes models, and facilitates the step-by-step refinement of the
design, along with physical implementation and scheduling in real time environments. The
BondGraph language describes plants and processes from different physical domains, such as
mechanical, thermodynamical, and electrical. There exists also a requirements language that
captures the validation results. The requirements language is integrated with DESERT, the
META design space exploration tool. It is significant for us in the sense that the variables in the
requirements model store the result of the validation. The relevant part of the META workflow is
shown in Figure 59.

85
Approved for public release; distribution unlimited

Figure 58: Case Study in ESMoL

The META toolset includes a translator tool from MATLAB Simulink/Stateflow to ESMol.
Currently, this translation supports both discrete and continuous time systems; however, the tool
chain makes use of only the discrete part.

	

Figure 59: META Workflow

A translator from Bond Graphs to MATLAB is provided as a part of the META workflow. It is
conceptually important here that the abstraction level is significantly different: bond graphs are
low-level formalisms compared to a Simulink/Stateflow model. In the case of this
transformation, this means information loss, which implies that the inverse transformation is hard
to create and involves ambiguity.

86
Approved for public release; distribution unlimited

6.2.2.3 Overview of HybridSAL

HybridSAL is used to verify safety properties of hybrid automata models. A sample hybrid
automaton is depicted in Figure 60. Roughly, a hybrid automaton is a state machine, where the
states contain ODE-s (state space description of a linear continuous time system), and the
transitions are enabled by Boolean expression defined over the state variables.

	

Figure 60: Sample Hybrid Automaton

The hybrid automata representation used by HybridSAL differs from the general notion because
the transitions are not taken immediately when the guard conditions enable them. HybridSAL
uses state invariants (last line in the states) to force a transition before it is too late – that is, they
invalidate the state. HybridSAL takes a textual representation as its input; however, on the
conceptual level, it is satisfactory for us to use the graphical representation in this document.

6.2.3 Scalable, Multi-Component Static Verification Integrated with Design Flow

6.2.3.1 Motivation

When integrating several reusable control software components for a new vehicle mission
requirement or platform configuration, parameters within the application and platform
components need to be selected and tuned. These changes impact the results of computations in a
component, which in turn influence correctness of certain properties in a downstream component
that uses the results of other components. Even though component designs (models) and code
can be parameterized and reused across vehicle configurations, verification must be redone on
exact bounds/constraints of the parameters in a set of integrated components for a specific
configuration, because the state space of all interactions of generic parameter bounds of multiple
components is undecidable and cannot be properly enumerated.

Therefore, not all verification “assumptions” of a component (inputs, environment) can be a
priori specified; certain properties must be verified in the integrated context of all components
for specific values of configuration parameters. The following classes of properties can be
automatically verified by static analysis of all internal function blocks of models and cross-
model intermediate signals:

 Signal data type and dimensions compatibility

87
Approved for public release; distribution unlimited

 Overflow (e.g., divide-by-zero): signal range bounds exceed data type representation limits

 Reachability: e.g., not all branches can be exercised, not all states can be reached

 Control function specific: e.g., time constant of digital filter less than 2 * sampling
frequency

Benefits and Cost Impact: A significant part of the costs of integrating a large number of
reusable components is the verification that the internal design of each component operates
correctly in the integrated context and there can be no anomalous behavior to adversely impact
system safety. This verification must be done in a comprehensive, automated manner; otherwise,
the cost benefits of reuse cannot be realized.

There is also a strong benefit of performing this verification in early design stages on the
component algorithm models in the same way integrated simulations are performed currently.
Figure 61 illustrates the industry observation on the relative cost impact of detecting errors in
various life cycle phases; errors detected late in the development can have a much larger cost
impact than if detected in early design. Other industry observations surmise that approximately
40-50% of all defects are injected in model design phases and this contributes to a significant
portion of system development cost and time.

In addition to saving cost and time, the design verification of integrated components provides
stronger, correct-by-construction integration assurance than by simulation, code analysis, and
testing approaches.

Figure 61: Relative Costs of Detecting Errors in Various Life Cycle Phases

Long‐term industry observation – Boehm model
(source: NASA Aviation Safety presentation 2011)

88
Approved for public release; distribution unlimited

Static Analysis Automation Objectives: In order to realize the benefits of detecting design
problems early and associated lifecycle cost savings, it is essential to minimize the cost of
performing the static analysis across multiple integrated components. Static analysis at the level
of detailed design properties can be quite labor intensive, even at the individual component level,
using standard verification tools such as model checkers, since the properties need to be
manually enumerated and several “invariants” from model semantics need to be translated and/or
manually generated. The approach used in META uses the HiLiTE tool that automates the
property enumeration and model semantics translation/generation such that no manual
intervention is required.

Integrating the analysis across multiple components and into the design flow is also labor
intensive in current methods, requiring manual translation and inference steps. Our META
approach performs this integration in the CyPhy environment where the intermediate
propagation of analysis results can be controlled and also annotated/visualized directly into the
design models at the appropriate levels for system architects and application designers.
Furthermore, the intermediate analysis results (such as range bounds on control parameters) can
be fed back into the design optimization process or can be used for constraining other
verification analyses on other specific aspects of the system.

Scalability Objectives: Scalability of the verification automation is extremely important since a
specific configuration can consist of hundreds of interconnected MATLAB models used as
software components, which can translate to approximately 2-4 M SLOC. In each model,
hundreds to thousands of properties must be automatically enumerated and verified, with
negligible amounts of human input. This requires that very scalable and fast static analysis
methods must be employed for verification.

6.2.3.2 Static Model Analysis Background and Approach

For several application domains such as flight controls, engine controls, and environment
controls, Honeywell (and other industry members) follow a model-based approach to control
software development, using MATLAB Simulink and Stateflow modeling tools. Honeywell’s
HiLiTE has been used for static analysis and test generation in the aforementioned domains.

HiLiTE was designed to perform static analysis on individual models. That is, the options are set
to process one or more models specified in a HiLiTE command file. It then analyzes those
models in sequence without any information about inter-model connections. It propagates
supplied ranges for the model inputs (or uses the maximum ranges of the data types) through the
blocks to the model outputs. Along the way, it identifies possible division by zero when the
range of a divisor includes zero. In addition, it accommodates overflow when, say, the maximum
magnitudes of the ranges for values being added or multiplied exceed the data type, or underflow
when the ranges span such broad magnitudes that adding one lower value to a larger one will not
affect the larger value. Other clear model errors such as a multiport selector that may exceed the
number of ports are also reported.

Moving beyond single models, we have extended the HiLiTE interfaces and execution control
within the CyPhy environment to verify properties for multiple integrated models. HiLiTE can
output the ranges it propagates in the same file format used to input model input ranges, so

89
Approved for public release; distribution unlimited

HiLiTE can be run in sequence on multiple models, using the computed output ranges from one
model as the input ranges for the next. These computed ranges then inform the divide-by-zero,
overflow, underflow, and other block-specific analyses. Figure 62 illustrates examples of how
the tuning of parameters in a component or the interactions of multiple assumptions in several
components can lead to violations of design properties. The approach is to model the component
interconnections and system dictionaries in the CyPhy design flow and provide designers a view
of the property violations directly in the context of architecture designs and component models.

Figure 62: Multi-Component Analysis of Design Properties

6.2.3.3 CyPhy—HiLiTE Integration Approach

CyPhy captures the inter-model relationships of a system – that is, the connections from one
model’s outputs to another’s inputs. Given the ranges for the system inputs, CyPhy can then
generate a HiLiTE command file referencing the first model (in a topological ordering where
model A runs before model B when model A’s outputs are connected to model B’s inputs) and
the supplied ranges to analyze the model. HiLiTE propagates the input ranges for the given
model to the outputs and returns a new range file that CyPhy can then reference in a new HiLiTE
command file for the next model in the system. In the absence of feedback loops, a single
topologically ordered run through the system will result in the system output ranges. If feedback
loops are present in the system, multiple runs are required until the ranges converge. If a loop
diverges, a maximum number of runs can be specified, after which CyPhy-HiLiTE reports the
divergence and terminates the run.

90
Approved for public release; distribution unlimited

Figure 63: CyPhy - HiLiTE Integration Interfaces and Artifacts

6.3 Results and Discussion

6.3.1 Integrating HybridSAL with Design Flow

6.3.1.1 Semantic Mapping between Simulink/StateFlow and HybridSAL

Based on the META workflow and the capabilities of HybridSAL, we have developed a
conceptual framework to integrate HybridSAL into the META workflow. Recalling Figure 59,
we can easily conclude that the connection points of the integration are the ESMoL model along
with the requirements model. As far as the latter is concerned, it is quite natural to bring the
validation result to the format of the requirements model. Thus, DESERT can be executed over
the results, enabling one of the most crucial paths of the META workflow automatically.

With respect to Simulink/Stateflow, we have two equivalent representations: one is Simulink,
while the other is the ESMoL part of CyPhy. Since the feedback from the verification tool is
going to be stored in the requirements model, it is reasonable to use another CyPhy component
as an input. This is an implementation detail: it is not important whether the tool connects to
Simulink or, after a conversion, it obtains the same information from an ESMoL model. We refer
to the model as Simulink throughout this document.

Moreover, the transformation from Bond Graphs to Simulink/Stateflow might be problematic,
since it allows generic functions that might not have an equivalent expression in the domain of

Static
Analysis
(HiLiTE)

Model Summary File
(XML)
Property Violations

Models,
System

Dictionaries

HiLiTE
Command File

(XML)

Design
Tool

(CyPhy)

External Input
Range Files

(.csv)

Models

Intermediate
Range File
(.csv) generate

annotate

generate

91
Approved for public release; distribution unlimited

ODEs. This problem is orthogonal to the model representation; it is conceptually present in
Simulink and in ESMoL. Figure 64 shows the overall architecture of the integration.

	

Figure 64: Overall architecture of HybridSAL Integration

In the next sections, we give a detailed explanation of the Simulink/Stateflow to HybridSAL
transformation.

6.3.1.2 Simulink/Stateflow to HybridSAL Transformation

The main challenge of this transformation is that while hybrid automata represent the continuous
time part and the discrete behavior separated, these concerns are scattered across a
Simulink/Stateflow model. The transformation consists of two main steps:

1. Identifying the states of the hybrid automata and constructing the conditions

2. Converting the continuous time blocks into algebraic differential equations

Below we describe each of these steps. We rely upon research described in [27], and extend the
results as explained below.

Identifying the states.

Figure 65 shows a Simulink/StateFlow diagram. Switch elements and a state machine define the
discrete behavior. We can observe that the state Low does not define a value for Switch3. This
means that Switch3 can be either on or off, which needs a separate state to describe the different
states for Switch3 – that is, state Low must be split into two states.

92
Approved for public release; distribution unlimited

Figure 65: Sample Simulink/Stateflow Model

This gives the notion of undefined state, for which new states must be generated. Some of these
states might turn out to be dead states, so the resulting automata must be pruned after this state
generation.

If we look closely at Figure 58, we can see two additional examples for discrete behavior. The
saturation block limits with lower and upper bounds:

1. If the signal is between the lower and upper bounds, the result is the signal.

2. If the signal is below the lower bound, the result is the lower bound.

3. If the signal is above the upper bound, the result is the upper bound.

The hybrid automaton given in Figure 66 models this definition.

93
Approved for public release; distribution unlimited

Figure 66: Hybrid Automata Model of the Saturation Block

The integrator with saturation is very similar:

 When the integral is less than or equal to the lower saturation limit, the output is held at the
lower saturation limit.

 When the integral is between the lower saturation limit and the upper saturation limit, the
output is the integral.

 When the integral is greater than or equal to the upper saturation limit, the output is held at
the upper saturation limit.

Thus, we must model this case as an integrator and a saturation component. There is one more
component in our case study that does not have either a continuous or discrete counterpart: the
bus creator groups signals together, which does not change the signals but only groups them.

Creating Continuous Time Blocks.

Since the Simulink representation is not in state space format, we must transform the complex
frequency domain components to a state space representation. This conversion has a well-known
solution. For the elements with discrete behavior, the hybrid automata states identified
according to the method described in the previous section determine the state of the switches and
saturation components. Using these states, we need to focus on the continuous behavior in a
certain state only.

The Transformation of the Case Study.

The result of the transformation is depicted in Figure 67. The discrete behavior is defined by the
saturation components.

out=in
lower_bound <= in <= upper_bound out=upper_bound

in> upper_bound

out=lower_bound
lower_bound > in

in>upper_bound

in<=upper_bound

in<lower_bound

in>=lower_bound

94
Approved for public release; distribution unlimited

Figure 67: Hybrid Automata Model of the CAC Case Study

We modeled the system with two automata sharing the signal y. The SPEED_SET is labeled out,
while the FLOW_FB is labeled FS. Adding an extra state for each integrator state, and setting the
input signal to the initial value (in our case, to zero) can model the reset signal.

6.3.2 Scalable, Multi-Component Static Verification Integrated with Design Flow

6.3.2.1 Design Flow Views of Models, Requirements, and Verification Results

HiLiTE’s static analyses cover most static code analyzers and provide additional checks that
would require a model checker. HiLITE does so with less user input than a model checker, and it
can scale over thousands of analyses across hundreds of components. Indeed, by running the
model analyses alone and skipping test generation, HiLiTE has been able to process real-world

x'=280-10FS
y = x+14000 Š500FS
-30000 <= x <= 65000

x'=280-10FS
y = 79000 Š500FS

x > 65000

x'=280-10FS
y = -16000 Š500FS

x < -30000

x>=-30000

x<=65000

x>= -30000
x >= -30000

out=y
20000 <= y <= 75000 out=75000

y> 75000

out=20000
20000 > y

y>75000

y<=75000

y<=20000
y>=20000

95
Approved for public release; distribution unlimited

models in a matter a minutes. This speed makes it practical to run HiLiTE earlier in the
development process when bugs can be addressed at a much lower cost.

The combination of CyPhy and HiLiTE supports the capture of inter-model relationships to
support cross-component analyses. This will allow HiLiTE to identify problems at blocks that
are triggered by blocks in upstream models. CyPhy can reference the MATLAB Simulink
models, as show in Figure 68.

Figure 68: CyPhy Captures Relationship between Simulink Models

CyPhy can then invoke HiLiTE on the Simulink models, as shown in Figure 69.

96
Approved for public release; distribution unlimited

Figure 69: CyPhy can Generate HiLiTE Inputs to Run Offline, or Directly Invoke HiLiTE

Finally, the outputs of the HiLiTE propagation and analysis are imported back into CyPhy for
subsequent runs, as shown in Figure 70.

Figure 70: Verification Results are fed back into the design tool

97
Approved for public release; distribution unlimited

6.3.2.2 Examples of Property Violations in Integrated Components

Example 1: Divide-by-Zero Overflow due to Control Parameter Tuning

The diagram shown in Figure 71 is a structure excerpted from real avionics systems that includes
mathematical computations, one of which (shown in color) can produce an overflow if the value
on the denominator (d) can be zero. This can cause an arithmetic exception and adversely impact
safety. In the particular model, the signals driving the value at ‘d’ are Intermediate_J and
Intermediate_X that are produced by other models from different sources.

Figure 71: Computation in a Model that is Susceptible to Divide-by-Zero Overflow Defect

Figure 72 shows an excerpt from a model that tunes a gain parameter controlling the signal
Intermediate_J that is used by the previous model as input. The verification shows that for the
value of the gain parameter shown in this model, the divide-by-zero defect exists in the model
shown in Figure 73. When the value of the gain parameter is changed from 0.8 to 1.1, then the
range bound on signal Intermediate_J is constrained such that the static analysis can prove the
absence of the divide-by-zero defect in the model of Figure 73.

Figure 72: Model that Tunes a Parameter Impacting Defects in Other Models

External_W (a) [4]

External_Y (a) [3]

External_Z (a) [2]

External_X (a) [1]
n

d
n/d

posibleDivByZero

+

-

Sum

n

d
n/d

SafeDivide

X

ProductLimit

Limit
2 to 4

k=5

GainIntermediate_K (f, 0, L) [4]

Intermediate_X (f, 0, L) [3]

Intermediate_J (f, 0, L) [2]

External_C (f, 0, L) [1]

value of gain parameter affects
divide-by-zero property in downstream model

Intermediate_K (a) [2]

Intermediate_J (a) [1]
+

+

Sum

k=.8

Gain
External_D (f, , L) [2]

Intermediate_Y (f, , L) [1]

98
Approved for public release; distribution unlimited

Example 2: Unreachable Models in Flight Modes Testing

The FlightModesTest model in Figure 73 is a structure excerpted from real avionics systems as
part of built-in tests that must execute at certain times to test the control response of actuators in
various flight models of operation. In an independent environment, without any integration
context, there is no problem with the model. All states and transitions are reachable and all
conditions can be tested.

Figure 73: FlightModesTest Example Model

However, the upstream model ModeSelectionParameters limits the inputs to FlightModesTest. In
particular, the ModeTestParameter_3 output of ModeSelectionParameters is connected to the
iSignal03 input of FlightModesTest. The encoder block will return the value of the highest port
with an input of 1 – that is, the maint_ace_bit_in_progress output will be an integral value
between zero and four. HiLiTE will propagate this information through the sum block to
determine that the range of ModeTestParameter_3 is six to ten.

99
Approved for public release; distribution unlimited

Figure 74: ModesSelectionParameters Limits the Input ranges for FlightModesTest

This is a problem for FlightModesTest. As shown in the exitState2 truth table of Figure 75, the
value of iSignal03 must be greater than ten to set mode to three. Since the range is constrained to
be less than or equal to ten, oModeSelect will not be set to 3 in Mode2. Likewise, in exitState1
and when oModeSelect is initialized, iSignal03 must be greater than ten to set oModeSelect to 3
to enter Mode3.

Figure 75: Value of Mode will be 3 only if the Value of iSignal03 is Greater than 2

When HiLiTE runs on ModeSelectionParameters, it outputs an intermediate ranges file that
reflects the computed range for ModeTestParameter_3. When this ranges file is supplied to
HiLiTE for a run on FlightModesTest, HiLiTE reports that Mode3 is an unreachable state.

6.4 Conclusions

The META approach to reusability of library components can only be realized if detailed design
properties of integrated components are automatically verified as parameters are selected and
fine-tuned for specific vehicle configurations. Providing automated verification tools that give
feedback to the designer by tracing causes of violations across components is key to success. The
integrated CyPhy—HiLiTE tool provides such capability.

100
Approved for public release; distribution unlimited

Checking safety and stability properties of designs early in the process is important so as to avoid
proceeding with designs that do not satisfy these crucial requirements. The integrated CyPhy—
HybridSAL capability allows checking such requirements during the design phase.

Industry observation has shown that 40-50% of all defects are injected in model design phases.
Other studies have shown that problems found at code testing can cause much more effort than if
caught in early design. Thus, integrating verification tools into the design phase is a solution to
reduce time and cost of software development because errors can be detected early.

A feature which is critical in decreasing time schedules is the capability to automate the
management of labor intensive tasks, such as the static analysis of large scale embedded control
software, and seamlessly integrating the verification results with the architecture models and the
design space exploration process.

101
Approved for public release; distribution unlimited

7. REFERENCES

1. Sriram Sankaranarayanan and Ashish Tiwari, "Relational abstractions for continuous and

hybrid systems", in CAV 2011: 686-702.

2. Ashish Tiwari, "Approximate reachability for linear systems", in Proceedings of Hybrid
Systems: Computation and Control, HSCC 2003.

3. http://www.csl.sri.com/users/tiwari/existsforall/

4. Thomas Sturm and Ashish Tiwari, "Verification and synthesis using real quantifier
elimination", in ISSAC 2011.

5. Ashish Tiwari, "Compositionally analyzing a PI controller family", in CDC 2011. To
appear.

6. Matt Richardson, Pedro Domingos. Markov logic networks. Machine Learning 62(1-2),
107–136 (2006).

7. Shalini Ghosh, Natarajan Shankar, Sam Owre, "Machine Reading Using Markov Logic
Networks for Collective Probabilistic Inference", Appearing in the Proceedings of the
European Conference on Machine Learning (ECML) Workshop on Collective Learning
and Inference from structured data (CoLISD), 2011.

8. Hoifung Poon, Pedro Domingos. Joint inference in information extraction. In: AAAI
(2007)

9. Alfons Geser and Paul Miner. A New On-line Diagnosis Protocol for the SPIDER Family
of Byzantine Fault Tolerant Architectures. NASA TM-212432, December 2004.

10. Marc Chérèque, David Powell, Philippe Reynier, Jean-luc Richier, Jacques Voiron,
“Active Replication in Delta-4”, Symposium on Fault-Tolerant Computing - FTCS, pp. 28-
37, 1992

11. Y.C. (Bob) Yeh, “Triple-Triple Redundant 777 Primary Flight Computer”, 1996 IEEE
Aerospace Applications Conference, pp. 293-307.

12. Roger M. Kieckhafer, Chris J. Walter, Alan M. Finn, Philip M. Thambidurai, The MAFT
Architecture for Distributed Fault, IEEE Transactions on Computers - TC, vol. 37, no. 4,
pp. 398-405.

13. Robert C. Hammett, Philip S. Babcock, “Achieving 10-9 Dependability with Drive-by-Wire
Systems”, The Charles Stark Draper Lab, SAE 2003 World Congress & Exhibition, March
2003, SP-1783

102
Approved for public release; distribution unlimited

14. Hermann Kopetz, Real-Time Systems, Design Principles for Distributed Embedded
Applications, 2nd Edition, 2011, XVIII, 376 p.

15. Stefan Poledna, Fault-Tolerant Real-Time Systems: The Problem of Replica Determinism,
The Springer International Series in Engineering and Computer Science, 1996

16. Maria Sorea and Wilfried Steiner, “Classification and Analysis of Failure Modes for Time-
Triggered Systems”, 7th IFAC International Conference on Fieldbuses and Networks in
Industrial and Embedded Systems (2007), Fieldbuses and Networks in Industrial and
Embedded Systems, Volume# 7, Part# 1.

17. Y. Papadopoulos, J. McDermid, R. Sasse, and G. Heiner, “Analysis and synthesis of the
behaviour of complex programmable electronic systems in conditions of failure”,
Reliability Engineering & System Safety 71(3):229–247, March 2001. doi: 10.1016/S0951-
8320(00)00076-4.

18. M.J. O’Donnell, Equational Logic as a Programming Language, Massachusetts Institute of
Technology, Cambridge, MA, USA (1985).

19. J. Meseguer, “Conditional rewriting logic as a unified model of concurrency”, Theoretical
Computer Science 96	(1992) 73–155.

20. M. Clavel, F. Dur´an, S. Eker, P. Lincoln, N. Mart´ı-Oliet, J. Meseguer, C. L. Talcott, eds.:
“All about Maude - A high-performance logical framework: How to specify, program and
verify systems in rewriting logic”, Vol. 4350 of Lecture Notes in Computer Science,
Springer (2007).

21. M. Clavel and J. Meseguer, “Reflection and strategies in rewriting logic”, in Rewriting
Logic Workshop 96, Number 4 in Electronic Notes in Theoretical Computer Science,
Elsevier (1996). http://www.elsevier.nl/locate/entcs/volume4.html.

22. M. Wirsing, “Algebraic specification”, in van Leeuwen, J., ed.: Handbook of Theoretical
Computer Science, Vol. B., North-Holland (1990) 675–788

23. http://en.wikipedia.org/wiki/Probability_space

24. N.J. Nilsson, 1986, "Probabilistic logic”, Artificial Intelligence 28(1): 71-87.

25. http://www.youtube.com/watch?v=PnSLzCPTdts, ASIIST Schedulability Analysis Demo

26. http://www.youtube.com/watch?v=NrXtwK8aowE&feature=related, ASIIST Bus Delay
Analysis Demo

27. Aditya Agrawal, Gyula Simon, and Gabor Karsai, “Semantic translation of
Simulink/Stateflow models to hybrid automata using graph transformations”, Electronic
Notes in Theoretical Computer Science, Vol. 109, 14 December 2004, pages 43-56.

103
Approved for public release; distribution unlimited

LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

APU auxiliary power unit

ASIIST application specific i/o integration support

BAG bandwidth allocation gap

BBW brake by wire

BE best effort

BIU bus interface unit

BUS physical media/link representing PCI bus

CAC cabin air compressor

CAN controller area network

COTS common off-the-shelf

CRC cyclic redundancy check

CPS cyber-physical system

CyPhy Cyber-Physical (language)

DA destination address

DE discrete event

DESERT the design space exploration tool

DoD Department of Defense

ECS environmental control system

EL equational logic

ES end system

EsMOL embedded system modeling language

FCS frame check sequence

FCR fault containment region

GUI graphical user interface

HI high integrity

104
Approved for public release; distribution unlimited

HiLiTE Honeywell lifecycle tools & environment

IFG inter frame gap

KB knowledge base

kW kilowatt

FF feed forward

FSM finite state machine

ID identifier

IMA integrated modular avionics

LRU line-replaceable unit

MCMC Markov chain Monte Carlo

MC-SAT Monte Carlo Satisfiability

MLN Markov-logic network

NASA National Aeronautics and Space Administration

ODE ordinary differential equations

OMH one more hop

OMH-FTP one more hop file transfer protocol

OS operating system

PCE probabilistic consistency engine

PE processing elements

PI proportional integral

PHY physical link

PVS prototype verification system

PROMISE probabilistic, compositional, multi-dimension model-based verification

PTMS power and thermal management system

RC rate constrained

RL rewriting logic

RMU redundancy management unit

105
Approved for public release; distribution unlimited

ROBUS reliable optical bus

RST reset

Rx receive

SA source address

SAL symbolic analysis laboratory

SAT satisfiability

SC supervisory control

SFD static frame delimiter

SI standard integrity

SMT satisfiability modulo theory

SN sequence number

SOS sums of squares

SPEED_FF speed feed forward

SPIDER scalable processor-independent design for extended reliability

TDMA time-division multiple access

TMR triple modular redundancy

TT time triggered

TTE TT Ethernet

TTGbE time-triggered gigabit Ethernet

Tx transmit

V&V verification and validation

VL virtual link

VLID virtual link identifier

106
Approved for public release; distribution unlimited

APPENDIX 1

The architectures A2, A3, A4, A5 the corresponding Markov-Logic Networks (MLNs) (two-
cac1-complete.mln, three-cac1-complete.mln, voting-three-cac-complete.mln, and three-cac-hl-
complete.mln) and the corresponding trace outputs on running MCSAT on each MLN (two-
cac1-complete-mln.output, three-cac1-complete-mln.output, voting-three-cac-
complete.mln.output, and three-cac-hl-complete.mln.output) are provided below.

two-cac1-complete.mln

Copyright: SRI International, 2010.

This MLN simulates failures in a dual-CAC system
by using a coarse system model. This version tries to
test whether you can regenerate the prior on failSystem
from the System rules

Definitions

sort cac_id; # can be only c1 or c2 now
sort sys_id; # can be only s

Component
predicate failCac(cac_id) indirect;
predicate highLoadCac(cac_id) indirect;
predicate failMotor(cac_id) indirect;
predicate failMotorController(cac_id) indirect;
predicate failCompressor(cac_id) indirect;
predicate failCanBus(cac_id) indirect;

System
predicate failSystem(sys_id) indirect;

We will only model 1 system with 2 cacs
const s: sys_id;
const c1: cac_id;
const c2: cac_id;

Rules

System
add (failCac(c1) and failCac(c2)) iff failSystem(s);

Component
add failCac(c1) => highLoadCac(c2);
add failCac(c2) => highLoadCac(c1);

Cac
add [cac_id] (failMotor(cac_id) or failMotorController(cac_id) or
 failCompressor(cac_id) or failCanBus(cac_id)) iff failCac(cac_id);

High Load => Cac failure
add [cac_id] highLoadCac(cac_id) => failCac(cac_id) 0.1;

107
Approved for public release; distribution unlimited

Priors
add [cac_id] failMotor(cac_id) -4;
add [cac_id] failMotorController(cac_id) -4;
add [cac_id] failCompressor(cac_id) -4;
add [cac_id] failCanBus(cac_id) -4;

Query
mcsat_params 10000000, 0.01, 20.0, 0.01, 100;
mcsat; dumptables atom;

two-cac1-complete.mln.output

Loading two-cac1-complete.mln
Input from file two-cac1-complete.mln
Setting MCSAT parameters:
 max_samples was 100, now 10000000
 sa_probability was 0.500000, now 0.010000
 samp_temperature was 5.000000, now 20.000000
 rvar_probability was 0.050000, now 0.010000
 max_flips was 100, now 100

Calling MCSAT with parameters (set using mcsat_params):
 max_samples = 10000000
 sa_probability = 0.010000
 samp_temperature = 20.000000
 rvar_probability = 0.010000
 max_flips = 100
 max_extra_flips = 5
 timeout = 0

|i | probability | atom

| 0 | 1.0144e-03 | failSystem(s)
| 1 | 3.1614e-02 | failCac(c1)
| 2 | 4.9182e-01 | highLoadCac(c1)
| 3 | 8.1695e-03 | failMotor(c1)
| 4 | 8.1082e-03 | failMotorController(c1)
| 5 | 8.1208e-03 | failCompressor(c1)
| 6 | 8.1054e-03 | failCanBus(c1)
| 7 | 3.1046e-02 | failCac(c2)
| 8 | 4.9219e-01 | highLoadCac(c2)
| 9 | 8.1084e-03 | failMotor(c2)
| 10 | 7.9976e-03 | failMotorController(c2)
| 11 | 7.9406e-03 | failCompressor(c2)
| 12 | 7.8608e-03 | failCanBus(c2)

three-cac1-complete.mln

Copyright: SRI International, 2010.

108
Approved for public release; distribution unlimited

This MLN simulates failures in a triple-CAC system
by using a coarse system model.

Definitions

sort cac_id; # can be only c1 or c2 now
sort sys_id; # can be only s

Component
predicate failCac(cac_id) indirect;
predicate highLoadCac(cac_id) indirect;
predicate failMotor(cac_id) indirect;
predicate failMotorController(cac_id) indirect;
predicate failCompressor(cac_id) indirect;
predicate failCanBus(cac_id) indirect;

System
predicate failSystem(sys_id) indirect;

We will only model 1 system with 3 cacs
const s: sys_id;
const c1: cac_id;
const c2: cac_id;
const c3: cac_id;

Rules

System
add (failCac(c1) and failCac(c2) and failCac(c3)) iff failSystem(s);

Component
add failCac(c1) => highLoadCac(c2);
add failCac(c1) => highLoadCac(c3);
add failCac(c2) => highLoadCac(c1);
add failCac(c2) => highLoadCac(c3);
add failCac(c3) => highLoadCac(c1);
add failCac(c3) => highLoadCac(c2);

Cac
add [cac_id] (failMotor(cac_id) or failMotorController(cac_id) or
 failCompressor(cac_id) or failCanBus(cac_id)) iff failCac(cac_id);

High Load => Cac failure
add [cac_id] highLoadCac(cac_id) => failCac(cac_id) 0.1;

Priors
add [cac_id] failMotor(cac_id) -4;
add [cac_id] failMotorController(cac_id) -4;
add [cac_id] failCompressor(cac_id) -4;
add [cac_id] failCanBus(cac_id) -4;

Query

109
Approved for public release; distribution unlimited

mcsat_params 10000000, 0.01, 20.0, 0.01, 100;
mcsat;
dumptables atom;

three-cac1-complete.mln.output

Loading three-cac1-complete.mln
Input from file three-cac1-complete.mln
Setting MCSAT parameters:
 max_samples was 100, now 10000000
 sa_probability was 0.500000, now 0.010000
 samp_temperature was 5.000000, now 20.000000
 rvar_probability was 0.050000, now 0.010000
 max_flips was 100, now 100

Calling MCSAT with parameters (set using mcsat_params):
 max_samples = 10000000
 sa_probability = 0.010000
 samp_temperature = 20.000000
 rvar_probability = 0.010000
 max_flips = 100
 max_extra_flips = 5
 timeout = 0

|i | probability | atom

| 0 | 5.9600e-05 | failSystem(s)
| 1 | 1.7452e-02 | failCac(c1)
| 2 | 4.9239e-01 | highLoadCac(c1)
| 3 | 4.5388e-03 | failMotor(c1)
| 4 | 4.4547e-03 | failMotorController(c1)
| 5 | 4.4539e-03 | failCompressor(c1)
| 6 | 4.4972e-03 | failCanBus(c1)
| 7 | 1.6874e-02 | failCac(c2)
| 8 | 4.9249e-01 | highLoadCac(c2)
| 9 | 4.4293e-03 | failMotor(c2)
| 10 | 4.2980e-03 | failMotorController(c2)
| 11 | 4.3343e-03 | failCompressor(c2)
| 12 | 4.2942e-03 | failCanBus(c2)
| 13 | 1.7171e-02 | failCac(c3)
| 14 | 4.9246e-01 | highLoadCac(c3)
| 15 | 4.4812e-03 | failMotor(c3)
| 16 | 4.4125e-03 | failMotorController(c3)
| 17 | 4.3850e-03 | failCompressor(c3)
| 18 | 4.3950e-03 | failCanBus(c3)
--

voting-three-cac-complete.mln

Copyright: SRI International, 2010.

This MLN simulates failures in a triple-CAC system that votes the
cac outputs, by using a coarse system model.

110
Approved for public release; distribution unlimited

Definitions

sort cac_id; # can be only c1 or c2 now
sort sys_id; # can be only s

Component
predicate failCac(cac_id) indirect;
predicate highLoadCac(cac_id) indirect;
predicate failMotor(cac_id) indirect;
predicate failMotorController(cac_id) indirect;
predicate failCompressor(cac_id) indirect;
predicate failCanBus(cac_id) indirect;

System
predicate failSystem(sys_id) indirect;

We will only model 1 system with 3 cacs
const s: sys_id;
const c1: cac_id;
const c2: cac_id;
const c3: cac_id;

Rules

System
add [c,d,e,s] ((failCac(c) and failCac(d)) or (failCac(c) and failCac(d) and
 failCac(e))) and ((c ~= d) and (d ~= e) and (c ~= e)) iff failSystem(s);

Component
add [c, d] failCac(c) and ~failCac(d) and (c ~= d) => highLoadCac(d);

Cac
add [cac_id] (failMotor(cac_id) or failMotorController(cac_id) or
 failCompressor(cac_id) or failCanBus(cac_id)) iff failCac(cac_id);

High Load => Cac failure
add [cac_id] highLoadCac(cac_id) => failCac(cac_id) 0.1;

Priors
add [cac_id] failMotor(cac_id) -4;
add [cac_id] failMotorController(cac_id) -4;
add [cac_id] failCompressor(cac_id) -4;
add [cac_id] failCanBus(cac_id) -4;

Query
mcsat_params 10000000, 0.01, 20.0, 0.01, 100;
mcsat;
dumptables atom;

voting-three-cac-complete.mln.output

111
Approved for public release; distribution unlimited

Loading voting-three-cac-complete.mln
Input from file voting-three-cac-complete.mln
Setting MCSAT parameters:
 max_samples was 100, now 10000000
 sa_probability was 0.500000, now 0.010000
 samp_temperature was 5.000000, now 20.000000
 rvar_probability was 0.050000, now 0.010000
 max_flips was 100, now 100

Calling MCSAT with parameters (set using mcsat_params):
 max_samples = 10000000
 sa_probability = 0.010000
 samp_temperature = 20.000000
 rvar_probability = 0.010000
 max_flips = 100
 max_extra_flips = 5
 timeout = 0

|i | probability | atom

| 0 | 2.7610e-04 | failSystem(s)
| 1 | 1.7014e-02 | failCac(c1)
| 2 | 4.9184e-01 | highLoadCac(c1)
| 3 | 4.2967e-03 | failMotor(c1)
| 4 | 4.4401e-03 | failMotorController(c1)
| 5 | 4.4544e-03 | failCompressor(c1)
| 6 | 4.3056e-03 | failCanBus(c1)
| 7 | 1.6410e-02 | failCac(c2)
| 8 | 4.9181e-01 | highLoadCac(c2)
| 9 | 4.2073e-03 | failMotor(c2)
| 10 | 4.2543e-03 | failMotorController(c2)
| 11 | 4.2419e-03 | failCompressor(c2)
| 12 | 4.1764e-03 | failCanBus(c2)
| 13 | 1.6163e-02 | failCac(c3)
| 14 | 4.9228e-01 | highLoadCac(c3)
| 15 | 4.1988e-03 | failMotor(c3)
| 16 | 4.1342e-03 | failMotorController(c3)
| 17 | 4.2161e-03 | failCompressor(c3)
| 18 | 4.0727e-03 | failCanBus(c3)
| 19 | 0.0000e+00 | failSystem(c1)
| 20 | 0.0000e+00 | failSystem(c2)
| 21 | 0.0000e+00 | failSystem(c3)

three-cac-hl-complete.mln

Copyright: SRI International, 2010.

This MLN simulates failures in a triple-CAC system that votes the
cac outputs, by using a coarse system model.

Definitions

112
Approved for public release; distribution unlimited

sort cac_id; # can be only c1 or c2 now
sort sys_id; # can be only s

Component
predicate failCac(cac_id) indirect;
predicate highLoadCac(cac_id) indirect;
predicate failMotor(cac_id) indirect;
predicate failMotorController(cac_id) indirect;
predicate failCompressor(cac_id) indirect;
predicate failCanBus(cac_id) indirect;

System
predicate failSystem(sys_id) indirect;

We will only model 1 system with 3 cacs
const s: sys_id;
const c1: cac_id;
const c2: cac_id;
const c3: cac_id;

Rules

System
add [c,d,e,s] (failCac(c) and failCac(d) and failCac(e)) and ((c ~= d) and (d
 ~= e) and (c ~= e)) iff failSystem(s);

Component
add [c, d] failCac(c) and ~failCac(d) and (c ~= d) => highLoadCac(d) -1.1;
prob = 0.25
add [c, d, e] (failCac(c) and failCac(d) and ~failCac(e)) and ((c ~= d) and
 (d ~= e) and (c ~= e)) => highLoadCac(e) 1.1; # p = 0.75

Cac
add [cac_id] (failMotor(cac_id) or failMotorController(cac_id) or
 failCompressor(cac_id) or failCanBus(cac_id)) iff failCac(cac_id);

High Load => Cac failure
add [cac_id] highLoadCac(cac_id) => failCac(cac_id) 0.1; # prob = 0.525

Priors
add [cac_id] failMotor(cac_id) -4;
add [cac_id] failMotorController(cac_id) -4;
add [cac_id] failCompressor(cac_id) -4;
add [cac_id] failCanBus(cac_id) -4;

Query
mcsat_params 1000000, 0.01, 20.0, 0.01, 100;
mcsat;
dumptables atom;

three-cac-hl-complete.mln.output

113
Approved for public release; distribution unlimited

Loading three-cac-hl-complete.mln
Input from file three-cac-hl-complete.mln
Setting MCSAT parameters:
 max_samples was 100, now 1000000
 sa_probability was 0.500000, now 0.010000
 samp_temperature was 5.000000, now 20.000000
 rvar_probability was 0.050000, now 0.010000
 max_flips was 100, now 100

Calling MCSAT with parameters (set using mcsat_params):
 max_samples = 1000000
 sa_probability = 0.010000
 samp_temperature = 20.000000
 rvar_probability = 0.010000
 max_flips = 100
 max_extra_flips = 5
 timeout = 0

|i | probability | atom

| 0 | 3.4100e-04 | failSystem(s)
| 1 | 1.6839e-01 | failCac(c1)
| 2 | 4.0064e-01 | highLoadCac(c1)
| 3 | 4.2501e-02 | failMotor(c1)
| 4 | 4.3303e-02 | failMotorController(c1)
| 5 | 4.3514e-02 | failCompressor(c1)
| 6 | 4.3637e-02 | failCanBus(c1)
| 7 | 1.7034e-01 | failCac(c2)
| 8 | 4.0236e-01 | highLoadCac(c2)
| 9 | 4.3206e-02 | failMotor(c2)
| 10 | 4.4964e-02 | failMotorController(c2)
| 11 | 4.2501e-02 | failCompressor(c2)
| 12 | 4.4192e-02 | failCanBus(c2)
| 13 | 1.6813e-01 | failCac(c3)
| 14 | 4.0173e-01 | highLoadCac(c3)
| 15 | 4.3781e-02 | failMotor(c3)
| 16 | 4.2395e-02 | failMotorController(c3)
| 17 | 4.2719e-02 | failCompressor(c3)
| 18 | 4.3864e-02 | failCanBus(c3)
| 19 | 0.0000e+00 | failSystem(c1)
| 20 | 0.0000e+00 | failSystem(c2)
| 21 | 0.0000e+00 | failSystem(c3)
--

three-cac-hl-complete.output.1fail

Loading three-cac-hl-complete.mln
Input from file three-cac-hl-complete.mln
Setting MCSAT parameters:
 max_samples was 100, now 1000000
 sa_probability was 0.500000, now 0.010000
 samp_temperature was 5.000000, now 20.000000
 rvar_probability was 0.050000, now 0.010000

114
Approved for public release; distribution unlimited

 max_flips was 100, now 100

Calling MCSAT with parameters (set using mcsat_params):
 max_samples = 1000000
 sa_probability = 0.010000
 samp_temperature = 20.000000
 rvar_probability = 0.010000
 max_flips = 100
 max_extra_flips = 5
 timeout = 0

|i | probability | atom

| 0 | 1.5070e-03 | failSystem(s)
| 1 | 1.0000e+00 | failCac(c1)
| 2 | 5.0075e-01 | highLoadCac(c1)
| 3 | 1.0000e+00 | failMotor(c1)
| 4 | 1.7684e-02 | failMotorController(c1)
| 5 | 1.8135e-02 | failCompressor(c1)
| 6 | 1.8351e-02 | failCanBus(c1)
| 7 | 3.3665e-02 | failCac(c2)
| 8 | 2.3985e-01 | highLoadCac(c2)
| 9 | 8.6550e-03 | failMotor(c2)
| 10 | 8.6920e-03 | failMotorController(c2)
| 11 | 8.7630e-03 | failCompressor(c2)
| 12 | 8.4750e-03 | failCanBus(c2)
| 13 | 3.3986e-02 | failCac(c3)
| 14 | 2.4090e-01 | highLoadCac(c3)
| 15 | 8.5650e-03 | failMotor(c3)
| 16 | 8.3860e-03 | failMotorController(c3)
| 17 | 9.2010e-03 | failCompressor(c3)
| 18 | 8.7350e-03 | failCanBus(c3)
| 19 | 0.0000e+00 | failSystem(c1)
| 20 | 0.0000e+00 | failSystem(c2)
| 21 | 0.0000e+00 | failSystem(c3)
--

three-cac-hl-complete.output.2fail

Loading three-cac-hl-complete.mln
Input from file three-cac-hl-complete.mln
Setting MCSAT parameters:
 max_samples was 100, now 1000000
 sa_probability was 0.500000, now 0.010000
 samp_temperature was 5.000000, now 20.000000
 rvar_probability was 0.050000, now 0.010000
 max_flips was 100, now 100

Calling MCSAT with parameters (set using mcsat_params):
 max_samples = 1000000
 sa_probability = 0.010000
 samp_temperature = 20.000000
 rvar_probability = 0.010000
 max_flips = 100
 max_extra_flips = 5

115
Approved for public release; distribution unlimited

 timeout = 0

|i | probability | atom

| 0 | 3.3156e-02 | failSystem(s)
| 1 | 1.0000e+00 | failCac(c1)
| 2 | 5.0034e-01 | highLoadCac(c1)
| 3 | 1.0000e+00 | failMotor(c1)
| 4 | 1.7894e-02 | failMotorController(c1)
| 5 | 1.7725e-02 | failCompressor(c1)
| 6 | 1.7774e-02 | failCanBus(c1)
| 7 | 1.0000e+00 | failCac(c2)
| 8 | 5.0000e-01 | highLoadCac(c2)
| 9 | 1.0000e+00 | failMotor(c2)
| 10 | 1.7968e-02 | failMotorController(c2)
| 11 | 1.8006e-02 | failCompressor(c2)
| 12 | 1.8393e-02 | failCanBus(c2)
| 13 | 3.3156e-02 | failCac(c3)
| 14 | 2.3946e-01 | highLoadCac(c3)
| 15 | 8.8460e-03 | failMotor(c3)
| 16 | 8.3050e-03 | failMotorController(c3)
| 17 | 8.3490e-03 | failCompressor(c3)
| 18 | 8.4980e-03 | failCanBus(c3)
| 19 | 0.0000e+00 | failSystem(c1)
| 20 | 0.0000e+00 | failSystem(c2)
| 21 | 0.0000e+00 | failSystem(c3)
--

three-cac-hl-complete.output.3fail

Loading three-cac-hl-complete.mln
Input from file three-cac-hl-complete.mln
Setting MCSAT parameters:
 max_samples was 100, now 1000000
 sa_probability was 0.500000, now 0.010000
 samp_temperature was 5.000000, now 20.000000
 rvar_probability was 0.050000, now 0.010000
 max_flips was 100, now 100

Calling MCSAT with parameters (set using mcsat_params):
 max_samples = 1000000
 sa_probability = 0.010000
 samp_temperature = 20.000000
 rvar_probability = 0.010000
 max_flips = 100
 max_extra_flips = 5
 timeout = 0

|i | probability | atom

| 0 | 1.0000e+00 | failSystem(s)
| 1 | 1.0000e+00 | failCac(c1)
| 2 | 4.9957e-01 | highLoadCac(c1)

116
Approved for public release; distribution unlimited

| 3 | 1.0000e+00 | failMotor(c1)
| 4 | 1.8033e-02 | failMotorController(c1)
| 5 | 1.8015e-02 | failCompressor(c1)
| 6 | 1.8095e-02 | failCanBus(c1)
| 7 | 1.0000e+00 | failCac(c2)
| 8 | 5.0133e-01 | highLoadCac(c2)
| 9 | 1.0000e+00 | failMotor(c2)
| 10 | 1.7969e-02 | failMotorController(c2)
| 11 | 1.7875e-02 | failCompressor(c2)
| 12 | 1.7890e-02 | failCanBus(c2)
| 13 | 1.0000e+00 | failCac(c3)
| 14 | 4.9966e-01 | highLoadCac(c3)
| 15 | 1.0000e+00 | failMotor(c3)
| 16 | 1.8090e-02 | failMotorController(c3)
| 17 | 1.7762e-02 | failCompressor(c3)
| 18 | 1.7829e-02 | failCanBus(c3)
| 19 | 0.0000e+00 | failSystem(c1)
| 20 | 0.0000e+00 | failSystem(c2)
| 21 | 0.0000e+00 | failSystem(c3)
--

cac-model1-demo.pcein

Copyright: SRI International, 2010.

This MLN simulates failures in a dual-CAC system
by using a coarse system model. This version tries to
test whether you can regenerate the prior on failSystem
from the System rules

Definitions

sort cac_id; # can be only c1 or c2 now
sort sys_id; # can be only s

Component
predicate failCac(cac_id) indirect;
predicate highLoadCac(cac_id) indirect;
predicate failMotor(cac_id) indirect;
predicate failMotorController(cac_id) indirect;
predicate failCompressor(cac_id) indirect;
predicate failCanBus(cac_id) indirect;

System
predicate failSystem(sys_id) indirect;

We will only model 1 system with 2 cacs
const s: sys_id;
const c1: cac_id;
const c2: cac_id;

Rules

System
add (failCac(c1) and failCac(c2)) iff failSystem(s);

117
Approved for public release; distribution unlimited

Component
add failCac(c1) => highLoadCac(c2);
add failCac(c2) => highLoadCac(c1);

High Load => Cac failure
add [cac_id] highLoadCac(cac_id) => failCac(cac_id) 0.1;

Cac
add [cac_id] (failMotor(cac_id) or failMotorController(cac_id) or
 failCompressor(cac_id) or failCanBus(cac_id)) iff failCac(cac_id);

Priors
add [cac_id] failMotor(cac_id) -8; # p = 5 x 10-4
add [cac_id] failMotorController(cac_id) -8; # p = 5 x 10-4
add [cac_id] failCompressor(cac_id) -8;
add [cac_id] failCanBus(cac_id) -8;

Query
mcsat_params 10000000, 0.01, 20.0, 0.01, 100;

ask[c] failMotor(c);
ask[c] failCanBus(c);
ask[c] failCac(c);
ask[s] failSystem(s);

cac-model2-demo.pcein

Copyright: SRI International, 2010.

This MLN simulates failures in a dual-CAC system
using a more detailed failure model.

Definitions

sort cac_id; # can be only c1 or c2 now
sort sys_id; # can be only s

Component
predicate failCac(cac_id) indirect;
predicate highLoadCac(cac_id) indirect;
predicate failMotor(cac_id) indirect;
predicate failMotorController(cac_id) indirect;
predicate failCompressor(cac_id) indirect;
predicate failCanBus(cac_id) indirect;
predicate unstableMotorController(cac_id) indirect;
predicate maxpowerMotor(cac_id) indirect;
predicate loosebladesMotor(cac_id) indirect;
predicate overspeedMotor(cac_id) indirect;
predicate overheatMotor(cac_id) indirect;

System
predicate failCooling(sys_id) indirect;

118
Approved for public release; distribution unlimited

predicate failSystem(sys_id) indirect;

We will only model 1 system with 2 cacs
const s: sys_id;
const c1: cac_id;
const c2: cac_id;

Rules

System
add (failCac(c1) and failCac(c2)) iff failSystem(s);

Component
add failCac(c1) => highLoadCac(c2);
add failCac(c2) => highLoadCac(c1);

Cac
add [cac_id] (failMotor(cac_id) or failMotorController(cac_id) or
 failCompressor(cac_id) or failCanBus(cac_id)) iff failCac(cac_id);

High Load => Cac failure
add [cac_id] highLoadCac(cac_id) => failCac(cac_id) 0.1;

Motor and Heating
add [cac_id] unstableMotorController(cac_id) iff maxpowerMotor(cac_id);
add [cac_id] maxpowerMotor(cac_id) iff overspeedMotor(cac_id);
add [cac_id] overspeedMotor(cac_id) iff loosebladesMotor(cac_id);
add [cac_id] loosebladesMotor(cac_id) iff failMotor(cac_id);
add [cac_id] overspeedMotor(cac_id) iff overheatMotor(cac_id);
add [sys_id, cac_id] (failCooling(sys_id) and overheatMotor(cac_id)) iff
 failMotor(cac_id);
#add [cac_id, sys_id] loosebladesMotor(cac_id) iff failSystem(sys_id);

Priors
add [cac_id] failMotor(cac_id) -8; # p = 5 x 10-4
add [cac_id] failMotorController(cac_id) -8; # p = 5 x 10-4
add [cac_id] failCompressor(cac_id) -8;
add [cac_id] failCanBus(cac_id) -8;

Facts
add unstableMotorController(c1);
add overspeedMotor(c2);

Query
mcsat_params 10000000, 0.01, 20.0, 0.01, 100;
ask[c] failMotor(c);
ask[c] failCac(c);
ask[s] failSystem(s);

