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Chapter 4 
Ocean Data Quality Control 

James A. Cummings 

Abstract Automated ocean data quality procedures are presented. The procedures 
are logically grouped into four stages of processing, which when taken together 
form a complete sensor-to-prediction quality control system. The main features of 
the different ocean observing systems assimilated by GODAE are presented along 
with sources and types of errors that can occur in the data. Specific quality control 
procedures are described that test for these errors as well as more general procedures 
that estimate the consistency of the data across observing systems. Performance 
of the external data checks in the U.S. Navy real-time ocean data quality system 
is described. Finally, the importance of real-time ocean data quality control as an 
observing system monitoring tool is emphasized, and some specific examples are 
given of new quality control techniques developed in numerical weather prediction 
that have direct applicability in ocean data assimilation and forecasting systems. 

4.1    Introduction 

Observation data quality control is a fundamental requirement of GODAE ocean 
data assimilation systems. Using or accepting erroneous data can cause an invalid 
conclusion to be made or an incorrect analysis. Alternatively, rejecting extreme, 
but valid, data can miss the detection of important events. The goal of quality 
control, therefore, is to reduce or eliminate making the wrong decisions. Quality 
control must correctly identify observations that are obviously in error, as well as 
the more difficult process of identifying measurements that fall within valid and 
reasonable ranges, but nevertheless are erroneous. It is likely that decisions made 
at the quality control step affect the success or failure of the entire analysis/forecast 
system. 

Ocean data quality control is best performed in stages. The first stage consists 
of a series of preliminary data sensibility checks. Observations failing any one of 
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these tests are considered to have gross errors and are removed from further con- 
sideration. The second stage is based on a complex quality control procedure where 
observations are subjected to a series of tests. Observations are not rejected after 
immediately failing any one of the quality control tests; rather the final quality 
control decision is based on simultaneous consideration of results from all of the 
tests. This process uses a decision-making algorithm where the ultimate fate of the 
observation in the analysis/forecast system is decided (accept, reject, schedule for 
manual intervention). The outcome of the decision-making algorithm represents 
the likelihood an observation contains a random error. The third stage of ocean data 
quality control is performed by the analysis system itself. At this point, the gross 
and random error characteristics of the observations have been determined, and 
observations considered acceptable for the analysis have been selected. The third 
stage of the quality control is designed to protect the analysis from marginally ac- 
ceptable data that have, for unknown reasons, passed the earlier stages of the quality 
control. A final fourth stage of the quality control is done after the analysis and the 
forecast have been completed as part of a system that performs routine assessment 
of the impact of assimilating observations on the reduction of model forecast error. 
Figure 4.1 illustrates these different stages of ocean data quality control and the 
flow of information through the fully automated, real-time system operated by the 
U.S. Navy. 

In this paper, various approaches, procedures, and algorithms used to quality 
control ocean observations are described. The emphasis is on real-time, fully au- 
tomated ocean data quality control. It is beyond the scope of this paper to discuss 
the wide variety of delayed-mode or manual intervention quality control efforts 
that have been implemented (e.g., Boyer and Levitus 1994). The paper is orga- 
nized as follows. Section 2 describes the real-time ocean observing systems, and 
Sect. 3 gives the stand alone, gross error quality control procedures that are applied 
to ocean observations. Section 4 provides descriptions of external quality control 
data checks and brief overviews of specific sources of error in ocean observing 
systems. Section 5 describes how the various independent external quality control 
data checks can be combined in a quality control decision-making algorithm and 
gives some performance results from the U.S. Navy real-time ocean data quality 
control system. Section 6 outlines the internal consistency checks that are used in 
the assimilation system itself, while Sect. 7 describes some possible quality control 
outcomes from the data impact system. Finally, Sect. 8 provides a summary and 
gives some conclusions on the interactions between ocean data quality control and 
observation monitoring. 

T 

4.2    Ocean Observing Systems 

A wide variety of observation data types are used in GODAE assimilation sys- 
tems. The data include both in situ and remotely sensed measurements from space. 
As will be discussed, each observing system has its own unique data issues and 
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Fig. 4.1 Chart showing flow of ocean observations through the different stages of ocean data qual- 
ity control in the U.S. Navy global HYCOM system. Stage I sensibility error checks are performed 
on the raw data; stage 2 external data checks are performed in the fully automated ocean data 
QC module; stage 3 internal data checks are performed by the iterative solver in the variational 
assimilation; and stage 4 adjoint sensitivity calculations are done after the forecast before the next 
QC data cut (see text for details). Note feedback of the HYCOM forecast model fields and predic- 
tion errors into the ocean data QC for use as background fields in the next execution of the stage 
2 external data error checks 

quality control requirements. Sources of operational ocean data are described in 
this section. 

Most GODAE assimilation centers receive in situ ocean observations over the 
Global Telecommunication System (GTS). At the current time, data transmitted via 
the GTS are coded in specific data type formats which use, at most, two decimal 
places for measurements of temperature and salinity. Further, the existing formats 
do not allow for additional information about the data in the form of quality flags. 
However, observational data on the GTS are moving to a new binary format based 
on BUFR (Binary Universal Form for the Representation of data—a data format 
maintained by the World Meteorological Organization). In this format, data values 
can be transmitted with more precision than the existing text-based data formats, 
and local tables can be added to the message that contain value added or quality 
assurance information from the data provider. The move to BUFR on the GTS is a 
long process, scheduled to be completed for all ocean data types in 2016. In addition 
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to the GTS, Argo float data are also available at two global data assembly centers 
(GDAC): one in the United States at the Naval Research Laboratory, Monterey, 
California; and the second in France at the Coriolis Data Center, Brest. 

There is no standard way satellite oceanographic observations are distributed 
to GODAE assimilation systems. In some cases, there is a dedicated push from 
the data provider to the center. In other cases, data are placed on dedicated servers 
where the observations are then pulled by the center. For example, the GODAE 
High Resolution SST pilot project has been instrumental in setting up data servers 
where satellite SST data providers transmit their SST retrievals in near-real-time in 
a common format (Donlon et al. 2007). This effort has made the availability of SST 
data from a wide variety of satellite systems commonplace. 

4.2.1    Ship and Buoy Sea Surface Temperature and Salinity 

Ship sea surface temperature (SST) observation data types are identified as en- 
gine room intake, hull contact sensor, or bucket temperatures based on type codes 
contained in the ship reports received over the GTS. Buoy SST data types are also 
received from the GTS and consist of fixed and drifting buoy reports. Observ- 
ing systems that report both in situ SST and sea surface salinity (SSS) include 
thermo-salinograph observations from ships are sent over the GTS in TRAKOB 
reports. 

4.2.2   Satellite Sea Surface Temperature 

There are many sources of satellite SST observations. Infrared satellite sensors 
include the NOAA and METOP Advanced Very High Resolution Radiometer 
(AVHRR) polar orbiter 4-km resolution global area coverage (GAC) and 1-km 
resolution local area coverage (LAC) data. Note that METOP LAC retrievals are 
global, while NOAA LAC retrievals are restricted to certain coastal areas, mainly 
in the northern hemisphere. The Geostationary Operational Environmental Sat- 
ellite (GOES) infrared data have a resolution of 4-km and are available from 
the GOES-10, GOES-11, and GOES-12 satellites. The Meteosat Second Genera- 
tion (MSG) is also a geostationary infrared satellite that provides 4-km resolution 
data centered over Europe. The Advanced Microwave Sensor Radiometer Earth 
(AMSR-E) on board the NASA Aqua satellite provides global coverage of 25- 
km resolution microwave SST. The Advanced Along-Track Scanning Radiometer 
(AATSR) instrument on board the European ENVISAT satellite provides the first 
routine measurements of a true skin SST at 1-km resolution. Typically, radiance 
data in adjacent pixels are averaged into 2x2 (NOAA and METOP AVHRR) or 
3x3 (GOES, MSG) bins before making the SST retrieval in order to reduce sat- 

I 
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ellite sensor noise and produce a more accurate SST. This process necessarily 
reduces the resolution of the sensor data listed above to 2-km LAC, 8-km GAC, 
and 12-km geostationary retrievals. SST retrievals from the NOAA, METOP, 
and GOES satellites are available from the Naval Oceanographic Office (May 
and Osterman 1998; May et al. 1998). SST retrievals from AATSR (Corlett et al. 
2006) and MSG (Merchant et al. 2008, 2009) are available from Meteo-France 
and obtained from the GHRSST data server at the Jet Propulsion Laboratory, USA 
(Donlon et al. 2007). 

4.2.3   Sea Ice Concentration 

The Special Sensor Microwave Imager (SSM/I) and the Special Sensor Microwave 
Imager/Sounder (SSMIS) on board the Defense Meteorological Satellite Program 
(DMSP) series of satellites provide routine observations of sea ice concentration at 
approximately 25 km resolution. At the present time there are 3 SSM/I (Fl 1, F13, 
F15)and3 SSMIS (F16, F17, F18) satellites providing sea ice data. 

4.2.4    Temperature and Salinity Profiles 

Profile observations are reported from both fixed and moving platforms. Most pro- 
file observations report only temperature, such as expendable bathythermographs 
(XBT) and some fixed buoys, but profiling floats (Argo), conductivity-tempera- 
ture-depth (CTD) sensors, and an increasing number of fixed buoys report both 
temperature and salinity. Profile observations are also available from gliders that 
measure temperature and salinity at varying depths and positions along a dive. A 
glider dive consists of a descending and an ascending profile in which the latitude, 
longitude positions and times of the observations change with depth. The presence 
of temperature and salinity in some reports and the unique sampling characteristics 
of ocean gliders present new challenges to the quality control of ocean profile data. 
There are common approaches to the quality control of the various profile observ- 
ing systems, but there are also unique instrumentation specific error checks that 
are performed. 

4.2.5   A Itimeter Sea Surface Height 

At the present time, sea surface height anomaly (SSHA) observations are available 
from satellite radar altimeters on board the Jason-1, Jason-2, and ENVISAT satel- 
lites. Historically, satellite altimeters have been flown on Topex/Poseidon, Geo- 
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sat and Geosat Follow-on, and the European Remote Sensing series of satellites 
(ERS-1 andERS-2). 

4.2.6   Altimeter and Buoy Significant Wave Height 

Each satellite radar altimeter also provides significant wave height (SWH) and wind 
speed observations. SWH observations are also available from many fixed buoy 
locations, mainly in the northern hemisphere. SWH observations are assimilated 
into wave models. 

4.3    Preliminary Data Sensibility Checks 

Several preliminary data sensibility error checks are performed prior to the quality 
control of the observed values. Observations failing any one of these preliminary 
data checks are considered to have gross errors and are discarded or flagged for 
rejection. In some cases the preliminary data checks are performed by the data pro- 
vider and the observations are simply not distributed. The preliminary data checks 
and logic for accepting/rejecting observations at this stage of the quality control 
process are described below. 

4.3.1    Land/Sea/Fresh Water Test 

All observation locations are checked against a global, high-resolution land/sea da- 
tabase. Observation locations surrounded by water in all directions are accepted, 
and observation locations surrounded by land in all directions are discarded. For 
observations very near the coast a fuzzy land/sea boundary check is used. Observa- 
tion locations are accepted if, in any one direction, the otherwise over-land loca- 
tion is next to a water point. Relaxation of the land/sea discrimination allows for 
resolution errors of the land/sea database and precision errors in the reporting of 
observation latitude and longitude positions over the GTS. Fuzzy land/sea tests are 
useful when ships provide observations while parked at a dock, or when instru- 
ments are deployed on piers very close to the coast. Note that the land/sea test must 
also distinguish observation locations in fresh- and seawater locations. Lake surface 
temperatures are routinely provided in remotely sensed satellite data streams, and 
in situ fixed buoys are located in many large lake systems, such as the Great Lakes 
in the U.S. Remotely sensed and in situ lake surface temperatures have unique error 
characteristics and need to be distinguished as such in the quality control. Remotely 
sensed lake surface temperatures are routinely used in analyses of lower boundary 
conditions in Numerical Weather Predictions (NWP) systems. 
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4.3.2   Location/Speed Test 

A location (speed) test is used to determine if the reported position of an observa- 
tion is consistent with prior positions from the same platform. The test is neces- 
sarily restricted to data types that report unique call signs, such as Argo floats, sur- 
face ships, aircraft, and fixed and drifting buoys. Observations failing the location/ 
speed test are typically scheduled for manual intervention. No automated method 
exists at the present time to correct erroneous reported positions. The speed test 
uses a sliding time window of the last 25 reported platform positions from a given 
platform. The algorithm is applied to sequential locations both forward and back- 
ward in time. Newly received observation locations may appear to be erroneous 
but in fact are correct and indicate an error in a past reported position. Forward 
and backward application of the speed test has been shown to be the best way to 
detect position errors in the past. The method takes into account differences in the 
expected movement of airborne versus surface ship platforms, as well as a test to 
ensure that the identification of a buoy is fixed or drifting based on the expected 
pattern of all numeric buoy call signs. Care is taken to ensure that the speed test 
does not inadvertently reject new drifting buoy observations when drifting buoy 
call signs are reused. The practice of reusing buoy call signs often results in very 
large changes from the last reported position of the failed buoy and the position 
of the new buoy with the same call sign. This problem is minimized by not check- 
ing locations from buoys with the same call sign that have reporting times which 
differ by more than 120 hours. Observations are rejected if the reported position 
differs by twice the expected rate of speed as computed from the recent time his- 
tory of platform locations. Buoy drift direction is not taken into account in the 
speed test. 

4.3.3    Valid Value Range Tests 

Valid value range tests are applied to observed variables as well as observation loca- 
tions and sampling times. Reported values of temperature are required to be great- 
er than -2.5°C and less than 42°C. Reported values of salinity are required to be 
greater than or equal to 0 PSU and less than 42 PSU. Geographic dependencies can 
be built into the temperature and salinity valid value range test to take into account 
unique oceanographic conditions in marginal seas, such as the Red Sea, Mediter- 
ranean Sea, Sulu Sea, and Black Sea. Observation latitudes must be between -90 
and 90°, and observation longitudes must be between -180 and 180°. Current speed 
observations are required to be positive numbers and less than a maximum value 
of 2 ms '. Observation sampling times must contain valid year, month, day, hour, 
minute, and second date-time information, and the combined date time group can- 
not formally lie in the future (observation time younger than the receipt time of the 
observation at the center). 
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4.3.4   Duplicates 

Detection of duplicate reports in ocean observational data is a difficult and recur- 
ring problem. The same data message can be received multiple times over different 
networks at the operational centers. One powerful method of detecting duplicates 
is to use the cycle redundancy check (CRC). The CRC checksum is calculated as 
a function of the message contents. It processes each byte of a message file. Any 
change, no matter how small, will produce a different CRC number. Identical CRC 
numbers, therefore, will indicate an exact duplicate message and one of the mes- 
sages can simply be deleted. The real problem with detecting duplicates, however, 
is the issue of near-duplicates; observations with the same location, time and exact 
match of data type, but otherwise are different. It may be that one version has lower 
precision, fewer reporting levels, or a different reporting source. It is not possible to 
reject near-duplicates at the preliminary data check level of quality control process- 
ing. Further, examination of the observed data values is usually needed to make an 
informed decision. Near-duplicates, therefore, are typically processed through the 
external data checks described in Sect. 4 as unique data reports. It is when updating 
observations in the quality controlled data base that the problem of near-duplicates 
needs to be resolved. It is not advisable to maintain near-duplicates in the data base 
because of the possibility of data inconsistency. Accordingly, a decision has to be 
made on which of the near-duplicate observations to keep and which near-duplicate 
to toss. The decision should be based on objective measures of data quality; retain 
the observation that has more reporting levels, has sampled deeper, or has received 
better quality control scores. 

An additional determination of near-duplicates is done when observations are 
read into the analysis. In this case, multiple observations can be closely spaced 
(within a model grid cell) and must be thinned horizontally to ensure that the co- 
variance matrix is not ill conditioned. Decisions to retain or toss observations at 
this point in the assimilation can take into account additional information about the 
observation, such as data type and quality control outcomes from the external data 
checks described in the next section. 

4.4    External Data Checks 

Effective quality control is a strong function of the amount of information available. 
A primary purpose of the quality control system is to gather validated information 
about a newly received observation in order to determine the consistency of the 
reported values with what is known about the observed variable. Knowledge of the 
uncertainty of the observation and the collocated information is also needed to for- 
mulate and test hypotheses in the quality control decision-making process. This in- 
formation is acquired and combined in a series of external data checks that are per- 
formed prior to the analysis. Many of these pre-analysis quality control procedures 
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are specific to an observing system and test for instrument failure or known biases 
in certain data types. Other pre-analysis quality control procedures are common to 
more than one data type. In this category, background field checks and cross vali- 
dation analyses are particularly important. Pre-analysis procedures in common are 
described first (Sects. 4.1 and 4.2), followed by descriptions of procedures unique 
to specific data types (Sects. 4.3 through 4.8). 

4,4,1   Background Field Check 

Background fields used to quality control ocean data include climatology, short- 
term forecasts, and global or regional analyses. In all cases, appropriate background 
error variances must be used. Background and background error fields valid at the 
observation sampling time are interpolated to the observation location. An innova- 
tion is formed (observation minus background) and normalized by the error esti- 
mate of the background field. Assuming errors are normally distributed, the prob- 
ability the observation contains a random error is computed by, 

P(x<X) = (aV2Zr,(X e'h^"2dx (4.1) 
J-00 

where x is the observed value, p is the background value, a is the background er- 
ror standard deviation, and p is the area to the left of X beneath the standardized 
normal probability curve. Histograms should be examined and formal statistical 
tests performed to show that the normalized background innovations are indeed 
normally distributed in order to use the probability of error values to accept or reject 
observations in the quality control decision making algorithm (see Sect. 5). As an 
example, Fig. 4.2 shows frequency distributions of global and regional analyses 
and climate innovations for a 6-hour data cut of SST retrievals from two different 
satellites (AMSR-E and METOP-A). The shapes of the innovation histograms for 
the analysis backgrounds clearly resemble normal distributions, albeit with differ- 
ent variances. The climate background histograms, however, are skewed with a long 
positive tail. This feature is most notable in the METOP-A data, and likely indicates 
SST retrievals from diurnal warming events that are not represented in the climate 
fields. 

4.4.2   Cross Validation 

Cross validation compares observations against other nearby data. A variety of meth- 
ods are used to make these comparisons. The most common approach is to perform 
an optimum interpolation (01) analysis at the observation location and sampling time 
using nearby validated data, excluding the datum being checked. The innovations 
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Fig. 4.2 Geographic coverage charts and histograms of AMSR-E and METOP LAC retrieved SST 
minus global (red) and regional (green) analysis and climate (blue) backgrounds. The AMSR-E 
data cut processed 1,369,870 observations on 28 Dec 2009 at 18Z. The METOP LAC data cut 
processed 2,281.094 observations on 10 SEP 2009 at 01Z. Daytime retrievals are indicated as 
blue and nighttime retrievals are indicated as green points in the geographic coverage charts. The 
histograms are formed using 0.25°C temperature difference bins 

for the cross validation are computed from an ocean climatology. It is important to 
ensure that cross validation checks are data driven and independent of any analysis 
or forecast model backgrounds. The uncertainty of the analyzed value is computed 
from the 01 analysis error reduction of climate variability. The cross validation ana- 
lyzed value and its uncertainty are then used as the background and background error 
values in the background field check described in Sect. 4.1. In the absence of any 
nearby valid data, the cross validation procedure simply returns climate and climate 
variability as the analysis and error estimates, and the cross validation check is iden- 
tical to the background check using climatology. Thus, cross validation is analogous 
to checking observations against a dynamic, time-dependent climatology. 

The background error covariances used in the cross validation procedure can 
be very simple, such as only including data within some specified distance from 
the observation being checked, or more complicated, based on the multivariate 
covariances used in the assimilation procedure itself. Cross validation can be ap- 
plied to all observation data pairs in the quality control or it can be preceded by 
other data checks which first detect suspect observations. The cross validation is 
then performed only on the suspect observations to save on computational time. 
In data sparse areas the cross validation check will have limited effect. However, 
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the continuing development of the Argo profiling float array generally provides an 
adequate number of nearby data to allow the cross validation of profile observa- 
tions to work well in practice. Cross validation is also useful in the quality control 
of altimeter SSH and SWH observations, since individually those data tend to be 
rejected along sequential segments of altimeter tracks due to phase errors in the 
model background fields. 

4.4.3   Ship and Buoy Sea Surface Temperature 

Volunteer observing ship (VOS) temperatures have very different error character- 
istics depending on the measurement method. Hull contact sensor measurements 
of temperature appear to be the most accurate followed by engine room intake and 
buckets. However, all ship-based measurement systems are prone to error since the 
on-board instruments are rarely calibrated. In general, ship-based SST measure- 
ments are noisy and observations from engine-room-intake instruments tend to be 
warm biased, while bucket measurements are biased toward cooler temperatures. In 
addition, there appears to be some geographic dependence in ship SST errors, with 
errors higher in the Pacific than in the Atlantic. 

Drifting buoy measurements of SST are very important since the buoys are glob- 
ally distributed and have a relatively long life. In general, drifting buoy SST mea- 
surements are of high accuracy and high quality. Occasionally, spurious drifter loca- 
tions are received, but these are usually detected in the location speed check. In gen- 
eral, buoy SST measurements are quality controlled by the background field checks 
using climatology or analysis fields. Since drifting buoys and ships are identified 
by unique call signs the time history of individual instruments can be monitored 
for indications of drift and calibration errors. Drifters are deployed with holey-sock 
drogues to a depth of-15 m. Monitoring surface drifters for drogue loss is impor- 
tant, because loss of a drogue changes the sampling characteristics of the drifter. 

4.4.4   Satellite Sea Surface Temperature 

Infrared and microwave satellite SST retrievals measure very different properties 
of the sea surface, requiring unique quality control procedures. In the sections to 
follow, residual cloud and aerosol contamination quality control tests are applied 
to infrared SST retrievals. Diurnal warming detection is performed for daytime re- 
trievals from both infrared and microwave satellites. 

4.4.4.1    Residual Cloud Contamination 

Infrared SST measurements are derived from radiometric observations at wave- 
lengths of-3.7 urn and 11-12 urn. Though the 3.7 urn channel is more sensitive to 
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SST, it is primarily used only for night-time measurements because of the relatively 
strong reflection of solar irradiation in this wavelength region during daytime, which 
contaminates the retrieved radiation. The infrared wavelength bands are sensitive to 
the presence of clouds and atmospheric water vapor. For this reason, thermal infra- 
red measurements of SST first require atmospheric correction of the retrieved signal 
and can only be made for cloud-free pixels. However, cloud clearing algorithms are 
far from perfect and atmospheric water vapor variations are significant. In addition, 
satellite zenith angle plays a role in determining SST errors, since the atmospheric 
path length over which the radiation is observed is longer at higher zenith angles. 
Residual cloud contamination errors are manifested as cold biases. Detection of 
these errors is performed by the background field check (Sect. 4.1). 

4.4.4.2    Aerosol Contamination 

Satellite sea surface temperature retrievals from infrared radiometers are known to 
be prone to bias when significant amounts of aerosol are present in the atmosphere. 
Retrievals are degraded by the presence of tropospheric aerosols, as are cloud de- 
tection tests that depend upon accurate visible and infrared channel measurements. 
In particular, desert dust particles are large enough to attenuate and contribute to 
the infrared signal emitted from the ocean surface before it reaches the satellite 
sensor in space. Saharan dust events are common in the eastern tropical Atlantic 
and Mediterranean Sea. Saharan dust is lifted by convection over hot desert areas, 
and can reach very high altitudes; from there it can be transported over the ocean 
by winds, covering distances of thousands of kilometers. The dust combined with 
the hot dry air of the Sahara Desert has significant effects on tropical weather, es- 
pecially as it interferes with the development of hurricanes. In Eastern Asia, min- 
eral dust events originate in springtime in the Gobi Desert (Southern Mongolia and 
Northern China). The aerosols are carried eastward by prevailing winds, and pass 
over China, Korea, and Japan, sometimes as far as the western United States. Thus, 
the impact of atmospheric aerosols on infrared SST retrievals is a cold bias that is 
a global problem. 

The current limiting factor for dealing with aerosol contamination in satellite 
SST retrievals is accurate knowledge of the characteristics and amount of the aero- 
sol at the coincident time and location of the satellite SST retrievals. This informa- 
tion is available in the daytime for the anti-solar side of the scan in the visible chan- 
nels of the instrument (-25% of the data), but there is no information at night or on 
the solar side of scan due to the effects of sun glint (-75% of the data). However, 
aerosol transport models can be used to provide the necessary information. In par- 
ticular, the Navy Aerosol Analysis Prediction System (NAAPS) provides 3-hourly, 
aerosol optical depth (AOD) forecasts for four aerosol sources (dust, smoke, sul- 
phate, and sea spray) at 19 different wavelengths; 14 of the NAAPS aerosol optical 
depth wavelengths match the channels used in satellite SST retrieval algorithms. 

The wavelength dependent, global NAAPS optical depth products are used in a 
canonical variate analysis to detect aerosol contamination. Canonical variate analy- 
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sis finds the linear combination of observed variables that maximize the ratio of 
between-group to within-group variation. There are five groups of infrared satellite 
SST retrievals: four groups are defined with varying levels of aerosol contamination 
and one group is free from aerosol contamination. The canonical variates are then 
used to discriminate between the groups. Separate canonical variate functions have 
been computed for day versus night retrievals and for different geographic areas. 

Let B be the between group covariance matrix and W the within group covari- 
ance matrix. Linear variate functions (X) are found to maximize, 

v = \'BX/\'W\ (4.2) 

which represent the ratio of between group to within group variances. Differentiat- 
ing Eq. (4.2) and setting to zero gives, 

(B-vW)k = 0. (4.3) 

The eigenvalues of W"'B and the corresponding eigenvectors (i) are the canonical 
variate functions used for discrimination. The observed channel brightness tem- 
peratures and NAAPS wavelength dependent AOD components are projected onto 
the canonical variates and the Euclidean distances to the projected group means 
is determined. The SST retrieval is classified as contaminated if the distance to a 
contaminated group mean is closer than the distance to the non-contaminated group 
mean according to, 

r 

K = minY[ki{x- vij)}2 (4.4) 

where x is the AOD wavelength components and AVHRR channel brightness tem- 
peratures vector for a given SST retrieval, r is the number of canonical variate func- 
tions,/*, is the group mean vector of observed values for the contaminated and non- 
contaminated groups, and K is the group classification code. The group assignment 
probability is computed assuming that group distances are chi-square distributed 
with r-1 degrees of freedom. Satellite SST retrievals assigned to a contaminated 
aerosol group can either be flagged for rejection or corrected using radiative trans- 
fer modeling that takes into account the height distribution of the aerosol plume in 
NAAPS and the vertical distribution of temperature from an atmospheric forecast 
model (Merchant et al. 2006). 

4.4.4.3    Diurnal Warming 

Surface diurnal warming events are common in the world oceans. The warming 
events produce near-surface thermal gradients that create daytime near-surface or 
warm-layer temperatures 2-4°C warmer than nighttime (Donlon et al. 2002). Al- 
though not strictly a measurement error, combining SST measurements with dif- 
ferent observation times in a daily analysis requires consideration of diurnal wann- 
ing events. Knowledge of diurnal warming events, in turn, requires information on 



104 J. A. Cummings 

the local time history of the wind speed and surface solar radiation at the time of 
the SST observation. However, often only instantaneous measures of surface wind 
speed and solar radiation fields from NWP systems are collocated with satellite 
SST retrievals. Nevertheless, detection of diurnal warming and potential skin-layer 
effects in satellite SST retrievals is still possible given the presence of low winds, 
high solar insolation, and a positive, statistically significant change in SST from a 
background field valid within ~6 hours of the observation time. 

4.4.4.4    Microwave SST 

Due to lower signal strength of the radiation curve in the microwave region, accuracy 
and resolution is poorer for SST derived from passive microwave measurements as 
compared to SST derived from thermal infrared measurements. However, the advan- 
tage gained with passive microwave is that radiation at these longer wavelengths is 
largely unaffected by clouds and generally easier to correct for atmospheric effects. 
Phenomena which do affect passive microwave signal return, however, are wind- 
generated roughness at the ocean surface and precipitation. These affects can usually 
be corrected for using multiple frequencies. SST measurements are primarily made 
at a channel near 7 GHz with a water vapor correction enabled by observations at 
21 GHz. Other frequencies used for correction of surface roughness (including foam), 
precipitation, and what little effect clouds do have on microwave radiation, include 
information in the 11, 18, and 37 GHz channels. Nevertheless, rain contamination 
continues to be a problem at the edge of rain cells, where there is often undetected rain 
that cause biased SST retrievals. Land contamination is also an issue with microwave 
measurements. Within 50-100 km of land microwave measurements are affected by 
emissions from land resulting in a warm bias in coastal microwave SST. For this rea- 
son, microwave SST observations are typically not produced within 100 km of land. 

4.4.5   Sea Ice Concentration 

A problem with sea ice concentration retrievals from the SSM/I and SSMIS sensors 
on board the DMSP series of satellites is false indication of sea ice over the open 
ocean and at the ice edge. These spurious sea ice concentrations result from the 
presence of atmospheric water vapor, non-precipitating cloud liquid water, rain, and 
sea surface roughening by surface winds. While these effects are relatively minor 
at polar latitudes in winter, they result in serious weather contamination problems 
at all latitudes in summer. The various sea ice retrieval algorithms used operation- 
ally attempt to eliminate these false positive sea ice concentrations, but with limited 
success. Accordingly, prior to assimilation, sea ice concentrations need to be qual- 
ity controlled using a weather filter. A good proxy for a weather filter is SST. If 
the sea ice concentration is greater than zero and the collocated SST exceeds 4°C, 
then it is likely the sea ice retrieval is contaminated by a weather event and should 
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be rejected. The 4°C SST threshold is considered to be very conservative. Tests 
with a 1°C SST threshold resulted in spurious rejections of sea ice retrievals in the 
East Greenland Current during periods of rapid ice growth, when the analyzed SST 
fields are not accurate due to a lack of SST observations. A cross validation check 
will not work as a weather filter, since weather contamination is typically large 
scale affecting many near-by sea ice retrievals simultaneously. 

Sea ice retrieval algorithms also return false positive ice conditions near land due 
to land contamination of the microwave signal. This bias is most evident during the 
summer ice melt season in the northern hemisphere when the Arctic land boundar- 
ies become ice free. A high resolution distance from land database is used to check 
if the retrieval is within 100 km of land. The test uses retrieval distance from land, 
background field anomalies, collocated SST, and a cross validation check of nearby 
locations to determine if positive sea ice observations near land are valid. Land 
contaminated sea ice retrievals are typically rejected at this point. 

4.4.6    Temperature and Salinity Profiles 

Profile observations are first checked for duplicate depths and strictly increasing 
depths. Reported levels that fail these tests are flagged and not used in the following 
profile quality control procedures. 

4.4.6.1     Instrumentation Error Checks 

Special instrument specific error tests are applied to profile observations to identify 
errors that have unique profile signatures. These errors include temperature inver- 
sions at the bottom of the profile, spikes in the temperature profile, and positive tem- 
perature gradients (warm bulge) in the mixed layer. The instrumentation error checks 
are applied iteratively until all errors are found, since a profile may have one or more 
of these types of errors. Reported temperature-depth levels that contain instrumenta- 
tion errors are flagged and not used in the next iteration of the instrumentation error 
checks. One difficulty with the current suite of profile instrumentation error checks 
is that the tests are designed to detect errors specific to expendable bathythermo- 
graphs (XBT) (Bailey et al. 1994). Other profile data types, such as Argo floats, 
gliders and CTD probes, are likely to have failure modes that are different from a 
XBT. Automated quality control tests need to be developed to detect instrumentation 
errors in these data types as more experience is gained with their assimilation. 

4.4.6.2    Static Stability 

A static stability test is performed to detect density inversions in profile observa- 
tions. The reported in situ temperature and depth data pairs are first converted to 
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potential temperature and pressure, and then potential density is computed at each 
pressure level using observed or derived salinity values. Salinity observations are 
generated for profiles that report only temperature. Salinity is computed from ob- 
served temperature values using bi-monthly climatological temperature-to-salinity 
regression models that have been computed on a global 0.25° resolution grid. The 
potential density profile is examined for inversions (higher density shallower than 
lower density), and observed temperature and salinity profile levels with inversions 
that exceed a minimum specified inversion threshold of 0.025 kg nr3 are flagged. 
For profiles with derived salinities, static instabilities are corrected by iteratively 
adjusting the derived salinity until the resulting profile is neutrally buoyant. Salinity 
is removed from the top of the permanent thermocline upward and added from that 
depth downward in the adjustment. The salinity correction algorithm is not applied 
to density inversions for profiles that observe both temperature and salinity levels, 
since it is difficult to determine a priori if the cause of the density inversion is due 
to the reported temperature or the reported salinity value. In this case profile levels 
with density inversions are simply flagged. 

4.4.6.3    Vertical Gradient Checks 

A global climatology of vertical mean temperature differences and standard de- 
viations about these means has been computed from the historical profile ar- 
chive. The climatology is used to test observed vertical temperature gradients 
for outliers. First, the climate temperature differences and variability are inter- 
polated to the observation location and sampling time. Second, the vertical tem- 
perature differences are converted to vertical temperature gradients and inter- 
polated to the observed profile levels. Observed vertical temperature gradients 
are computed, and the difference between the observed and the expected mean 
vertical gradient from the climatology is standardized by the expected gradient 
variability, 

z = (Ar„i«"1 - Arem~')/a (4.5) 

where ATo • m"' is the observed vertical gradient, ATc • nr1 is the climate mean 
vertical gradient, a is the variability about that mean, and z is the standardized verti- 
cal gradient variate. If the observed profile gradient exceeds 0.2°C-m_l and |z|>4, 
then the profile level is flagged. Experience has shown that the vertical gradient test 
based on climate statistics tends to spuriously flag as erroneous profile levels as- 
sociated with a strong thermocline. This problem is particularly acute in the tropics. 
Truly erroneous profile vertical gradients are often associated with bad temperature 
or salinity observations, which are detected in the spike test and background field 
checks described previously. Hence, at the present time, quality control flags set by 
the vertical gradient check are flagged and only used for informational purposes 
(Sect. 5). 
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4.4.6.4 Profile Shape Comparisons 

Observed profiles are compared to profiles extracted from the various background 
fields using a profile shape quality control procedure. This procedure has the advan- 
tage of taking an overview of the entire profile. Profile levels that have previously 
been determined to be unreliable based on other profile quality control data checks 
are excluded in the profile shape quality control procedure. The shape quality con- 
trol procedure computes an integrated observed-minus-predicted statistic that takes 
into account level thicknesses. The test statistic is calculated as, 

n = £«°* - Pk)/vk) • (z*+i -z*-i)/£(z*+i -z*-i) (4.6) 

where Ok is the observed value at level k, Pk is the prediction (background) value at 
level k, ffk is the prediction error standard deviation at level k, and zk is the depth of 
level k. The probability of// being greater than zero is computed assuming a normal 
probability distribution function. The shape comparison statistic is analogous to a 
goodness-of-fit test of two cumulative distribution functions. It identifies observed 
profiles with large errors relative to the background profiles. Profiles that have large 
temperature or salinity differences over narrow depth ranges, such as dissimilar 
mixed layer depths, will be considered similar. Observed profile shape must be 
consistent with forecast and climate background profiles in order for the profile to 
be accepted into the analysis. 

4.4.6.5 Gliders 

Ocean gliders are autonomous platforms which fly in a saw-tooth-sampling pat- 
tern in the upper ocean by changing their buoyancy. Depending upon configura- 
tion, gliders sample profiles of pressure, temperature, and conductivity. The gliders 
surface at regular intervals to transmit their observations to shore or satellite based 
receivers. Gliders provide both downward and upward profiles of temperature and 
salinity, with glider position and time varying with depth during the dive. Quality 
control of glider data is similar to that of single profile data, other than relaxation 
of the strictly increasing depths check. However, several glider specific tests are 
performed that are, in most cases, functions of the vertical velocity of the glider. 
These tests are applied to gliders with a non-pumped CTD, where flow through the 
conductivity cell depends upon the speed of the glider, making the thermal inertial 
correction speed-dependent. 

4.4.7   Altimeter Sea Surface Height 

The along-track altimeter data undergo an extensive series of pre-processing steps 
to prepare the data for use in the assimilation. The measured sea surface height 



J. rt. LUIIlllllllgS 

(SSH) is corrected for geophysical effects (wet and dry troposphere, ionosphere, 
inverted barometer, and winds), and the tidal signal is removed. The corrected SSH 
from each satellite altimeter mission are then intercalibrated with a global crossover 
adjustment using Topex/Poseidon data as the reference. Next, the data are resa- 
mpled every 7 km (1 sec intervals) along the tracks. A mean SSH is removed from 
the individual SSH measurements producing sea surface height anomalies (SSHA). 
The mean SSH contains both the unknown geoid signal and the mean dynamic 
topography over the averaging period. For most satellite missions a mean SSH cal- 
culated over a 7-year period is used, although the averaging period continues to be 
extended in time as the altimeter satellite missions continue. These altimeter pre- 
processing steps are typically performed by the data provider. 

Altimeter SSHA observations are of lower accuracy or are not interpretable near 
the coasts due to inaccurate tidal corrections and incorrect removal of atmospheric 
wind and pressure effects at the sea surface in shallow water. The coastal region for 
altimeter data assimilation is often defined as everywhere shallower than 400 m 
depth. Altimeter observations also have significant along-track correlated errors 
that must be taken into account in the assimilation. The along-track altimeter SSHA 
data are very noisy at the full 7 km resolution. Accordingly, altimeter SSHA data 
are smoothed along-track using a median or Lanczos filter to reduce the measure- 
ment noise. In addition, the altimeter data are often sub-sampled or bin-averaged to 
remove redundant observations. Finally, altimeter SSHA measurements are scaled 
by a hyperbolic tangent operator using local dynamic height variability limits that 
have been computed from the historical profile archive. This operation attempts to 
remove spurious altimeter SSHA outliers and maintain the data within the range of 
known baroclinic variability limits. 

A Final issue with altimeter SSHA measurements is the fact that different ver- 
sions of the data are reported in both near real-time and in delayed mode. Real-time 
SSHA observations are computed using less precise, predicted orbits rather than 
the more precise, observed orbits, which are not available for several days after 
real-time. Although less precise, real-time SSHA observations still have significant 
value in the analysis. However, when the more precise delayed mode SSHA ob- 
servations are available, the corresponding real-time SSHA data should be identi- 
fied and replaced by the delayed mode data. This procedure ensures that the higher 
quality, delayed mode SSH observations are incorporated into the altimeter SSHA 
data archive for use in hindcast studies. Satellite altimeter SSHA observations are a 
critical data source in GODAE assimilation systems and timely access to the most 
complete, highest quality data is essential. 

4.4.8   Altimeter Significant Wave Height 

Comparisons with buoy data show that altimeter SWH estimates are in agreement 
with the in situ data, with standard deviations of differences on the order of 0.30 m, 
but the satellite data tends to slightly overestimate low SWH and slightly underes- 
timate high SWH. The altimeter SWH data thus needs to be bias corrected before 
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being used in the assimilation. These bias corrections are generally linear and are 
derived from altimeter/buoy matchups that correspond to corrections of only a few 
percent of SWH. Altimeter SWH data can also be contaminated by sea ice or land. 
Elimination of these data requires a contemporaneous sea ice concentration field, ei- 
ther from a forecast model or an analysis of SSM/I and SSMIS sea ice retrievals. The 
land mask needs to resolve the along-track 7-km footprint of the altimeter SWH data. 

4.5    Quality Control Decision-Making Algorithms 

The quality control outcomes of the various external data checks described previ- 
ously are combined in a decision-making algorithm. The outcome of the decision- 
making algorithm is the overall indication of observation quality, which is used to 
select data for the assimilation. The decision-making algorithm is applied to each 
observed reporting level and, in the case of profile (and glider) observations, to the 
entire profile in the shape comparison test. Thus, for profile observations there are 
two indicators of data quality: one indicator for the overall profile shape, and a sec- 
ond indicator for each profile level. It is important to take into consideration results 
from all of the external data checks before the final quality decision is made. For 
example, an observation could fail the climate background check while at the same 
time pass the forecast background check. The observation would be rejected if the 
climate test was applied first in a serial fashion. Quality control decision-making 
algorithms, therefore, are necessarily complex and must combine outcomes from 
the different external test results appropriately. It helps if the external test outcomes 
are of the same form, such as probabilities or standard normal deviates. 

A quality control decision-making algorithm in use at the U.S. Navy oceano- 
graphic centers is described here. The quality control outcomes from the various 
external data checks are in the form of probabilities of error. The majority of these 
probabilities are calculated according to Eq. (4.1), assuming a normal probability 
density function, but probabilities are also calculated using chi-square distribution 
functions (i.e., aerosol contamination test). Given a set of error probabilities the 
decision-making algorithm is summarized as follows: 

P„ = min (Pg,Pr) 
Pd = min(Pc,Px) 
P„<Tf,P0 = Ph 

(q-'> 
Pb>Tf,P0 = mm{Pb,Pd) 

where pb is the composite background error probability, pd is the composite data- 
derived error probability, pg and pr are the global and regional forecast background 
error probabilities, pc and px are the climate and cross validation error probabilities, 
rf is the forecast error threshold probability, and po is the overall probability the 
observation contains a random error. The forecast error probability threshold for the 
system is typically set to 0.99 (3 standard deviations). 

The algorithm first determines if the observation is consistent with the model 
background fields by taking the minimum error probability of the global and re- 
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gional forecasts. If the minimum background error probability is less than the pre- 
scribed forecast error tolerance limit, then the algorithm returns it as the overall 
probability of error for the observation. However, if the minimum model back- 
ground error probability exceeds the forecast error threshold, then it is compared 
against the data-derived error defined as the minimum of the cross validation and 
climatology error probabilities. The overall observation error probability is returned 
as the minimum of the composite background and composite data-derived errors. 
In this way, cross validation and climate backgrounds determine data quality only 
if the observation is not consistent with the forecast. Experience has shown that 
requiring observations to always be consistent with climate backgrounds results in 
spurious rejection of valid observations during extreme events. 

Once the overall probability of error for an observation has been determined, 
output from the various specific observing system quality control tests are simply 
added to the error probability using unique integer-valued flags. The quality con- 
trol flags have three levels of severity: (1) information-only (<100); (2) cautionary 
(>100); and (3) fatal (> 1,000). Observations with fatal errors are not used in the 
analysis. Information-only flagged observations are routinely used in the analysis, 
but the use of cautionary flagged observations is under user control via analysis 
namelist options. The ultimate decision to accept an observation into the analysis, 
however, is always based on the underlying error probability value obtained from 
the decision-making algorithm. If quality control flags have been appended, the 
underlying probability of error can always be recovered from the summation using 
some simple modular arithmetic. 

4.5.1    Quality Control System Performance 

Output from the U.S. Navy's fully automated real-time ocean data control system 
is summarized for satellite SST retrievals, sea ice concentration retrievals, altimeter 
sea surface height and significant wave height retrievals, and in situ observations at 
the surface and at depth from various sources. Quality control output for the satel- 
lite data is given for two monthly time periods during 2009 (June and December) to 
allow for examination of possible effects of seasonality, while output from quality 
control of the in situ data is shown for the entire 2009 year. The overall quality of 
the observations is summarized using an error probability frequency of occurrence 
in per cent. The error probabilities are the outcomes of the quality control decision- 
making algorithm for single level observations and the overall probability of er- 
ror for profile observations. Assuming a normal probability distribution function, 
the frequency of occurrence bins correspond to one standard deviation (p<0.67), 
two standard deviation (p<0.95), and three standard deviation (p<0.99) departures 
from a zero mean. Probability frequencies indicated as p< 1.0 include probabilities 
greater than 0.99 plus observations flagged as being suspect from one or more of the 
specific external data checks described previously. Observations with error prob- 
abilities less than 0.99 are typically accepted into the analysis. 
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In general, QC outcomes of the satellite SST retrievals indicate that the data are 
of good quality (Table 4.1). The frequencies of error probabilities within one stan- 
dard deviation of the background field consistently include 90% or more of the data 
for all satellite systems. Allowing for two background error standard deviations re- 
sults in more than -99% of the observations being included. There is some evidence 

Table 4.1  Real-time QC outcomes for satellite SST retrievals 

Satellite    Month   Type     Countx    Diurnal    Aerosol1    p<0.67   p<0.95   p<0.99  p< 1.0 
 2009 10^  

7MSR-E? Jun 87.82 
Dec       Day 47.68       23,427 

Night 55.59 
AATSR?    Jun        Day 220.35     364,910 

Night 330.58     - 
Dec       Day 230.32      161,863 

Night 317.16     - 
GOES-11  Jun        Day 26.93       258 

Night 70.84 
Dec       Day 37.67 

Night 88.80 
GOES-12 Jun        Day 19.06        1,043 

Night 53.33 
Dec       Day 27.44       1,014 

Night 66.30 
METOP   Jun        Day 5.46 938 

GAC Night 5.63 
Dec       Day 6.09 862 

Night 5.89 
METOP   Jun        Day 106.52     28,165 

LAC Night 119.47     - 
Dec       Day 216.67     20,350 

Night 234.74     - 
MSGi       Jun        Day 14.47       2,995 

Night 73.28 
Dec       Day 12.23       25.999 

Night 11.55 
NOAA-18 Jun        Day 4.71 148 

Night 5.24 
NOAA-19  Dec       Day 5.08          11,919 
 Night 4.99   

1 Aerosol contamination calculated for Saharan Dust events in an area bounded by 10°S-30°N, 
25°E-55°W 
2 AMSR-E not partitioned into day/night retrievals in June. AMSR-E data missing 16-17 June 
06Z, 18 June 00-12Z, 20 June, 23 June, 25-26 June, 28-30 June, 29 Dec I2-24Z 
3 AATSR data missing 16 June 00-06Z, 20 June 00-06Z, 26 June 00-18Z, 28 June 00-12Z, 29 
June 12-18Z. 8 Dec 00-06Z, 24 Dec 06-12Z 
4 METOP LAC data missing 19 Dec 00-12Z; 27 Dec I8-24Z 
5 MSG data missing 6 June 12-18Z, 13 June 00-06Z, 15 June 00-06Z, 16-18 June, 20-21 June 
00Z, 22 June 06-12Z, 23-24 June 00Z, 25-30 June, 15 Dec 06-12Z 

- 96.2 3.7 0.1 0.1 
- 94.5 5.3 0.2 0.1 
- 95.5 4.3 0.1 0.0 
30,656 93.0 6.3 0.5 0.3 
195,971 91.2 8.4 0.4 0.1 
8,391 95.0 4.7 0.2 0.1 
42,313 91.9 7.6 0.4 0.0 
12 89.8 10.1 0.1 0.0 
4 95.2 4.7 0.1 0.0 

97.6 2.3 0.0 0.0 
95.8 4.1 0.1 0.0 

7,083 96.7 3.2 0.1 0.0 
435,078 93.3 5.7 0.2 o.x 
49 95.4 4.6 0.0 0.0 
12,519 93.1 6.7 0.2 0.0 
2,541 97.6 2.3 0.1 0.1 
5,462 94.7 5.0 0.2 0.1 
35 97.5 2.4 0.1 0.0 
144 95.4 4.4 0.2 0.0 
86,935 96.2 3.5 0.1 0.1 
44,456 95.5 4.4 0.2 0.0 
3,312 97.4 2.5 0.1 0.0 
9,060 94.5 5.3 0.2 (1.0 

10,202 94.8 4.5 0.4 0.3 
13,343 94.8 4.8 0.2 0.2 
759 95.3 4.2 0.2 0.3 
3,082 94.9 4.9 0.2 0.0 
14 90.7 8.6 0.6 0.1 
5,072 95.3 4.4 0.2 0.1 
36 88.9 10.2 0.6 0.3 
298 95.4 4.4 0.3 0.0 
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Table 4.2  Real-time QC outcomes for satellite sea ice retrievals 

Satellite1     Month 2009     CountxlO6 Weather 
Filter2 

p<0.67      p<0.95     p<0.99     p< 1.0 

F/J3 

FI5 

FI6 

F17 

Shelflce 

Inn 
Dec 
Jun 

Dec 
Jun 

Dec 
Jun 

Dec 
Jun 
Dec 

5.23 570 97.1 2.1 0.5 0.3 

10.65 2,777 96.2 2.6 0.7 0.5 

11.63 1,048 94.5 3.6 1.1 0.8 

16.78 17,070 96.5 2.4 0.6 0.5 

18.32 3,478 95.3 3.3 0.9 0.6 
16.64 13,687 97.1 2.1 0.4 0.3 
18.87 3,652 95.5 3.2 0.8 0.5 
0.65 - 77.6 10.4 5.8 6.1 
0.44 - 74.7 16.7 5.7 2.9 

1 F13 and F15 are SSM/1 satellites; F16 and FI7 are SSMI/S satellites 
2 Weather filter based on collocated analyzed SST values (see text for details) 
3 FI3 data use discontinued in December 

of seasonality in the number of retrievals detected as coming from diurnal warming 
and aerosol contamination events for AATSR, GOES, METOP and MSG data. Sea 
ice concentration retrievals from the SSMI and SSMI/S satellites are also of good 
quality: -99% of the data fall within two standard deviations of the background 
field (Table 4.2). The number of sea ice retrievals rejected by the weather filter 
based on collocated SST shows a clear seasonality with many more weather filter 
rejections in June than in December. Altimeter sea surface height (SSH) observa- 
tions are also of good quality with -99% of the data within two standard deviations 
(Table 4.3). Altimeter significant wave height (SWH) observations appear to be of 
lower quality, but SWH rejections are mostly over land or ice covered seas (defined 
here as 33% sea ice concentration). Quality control of altimeter SWH retrievals is 
model based in the Navy system. A 6-hour forecast from a data assimilative run 
of the wave model is used to check newly received altimeter and buoy SWH ob- 
servations for consistency, ensuring that the valid time of the forecast corresponds 
closely to the observed times of the data. 

Table 4.4 gives QC outcomes for in situ SST observations from ships and buoys. 
Ship data are of lower quality than buoy data, with about 8% of the ship data being 
rejected across the different ship data types. Drifting buoy data are of higher quality 
than fixed buoys, with fixed buoy data showing increased variability as indicated 
by the large percentage of data in the probability range of 0.67-0.95. Profile data 
QC is summarized in Table 4.5. Recall that profile levels with density inversions 
or vertical gradient information-only flags do not affect use of those data in the 
assimilation. The large number of TESAC data is a result of fixed buoys report- 
ing both temperature and salinity using the WMO TESAC code form. These data 
report only a single or very few vertical levels and are of low quality, with less than 
75% of the data occurring within two standard deviations of the background field. 
XBT observations have large occurrences of vertical gradient and instrumentation 
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Table 4.4 Real-time QC outcomes for in situ surface temperature observations in 2009 
Type Count * 103       p<0.67 p<0.95 p<0.99 p< 1.0 
Ship ERJ 210.3 55.5 27.0 9.0 8.5 

Ship Bucket 32.1 47.2 31.4 12.6 8.8 

Ship Hull Contact 309.2 53.6 28.5 10.2 7.7 

CMAN Station 23.6 72.1 20.6 5.0 2.2 

Fixed Buoy 2,657.3 83.5 13.3 2.6 0.7 

Drifting Buoy 10,624.1 92.3 5.8 0.9 1.0 

Table 4.5 Real-time QC outcomes for profile observations in 2009  
Type        Count'x Density   Vertical Inst.      Depth Missing p<0.67 p<0.95 p<0.99 p< 1.0 

I03 Grad.2    Error2-3 Error2 Value2-4 

XBT 18.9 - 12,722 52,301 674 26 75.9 16.2 1.6 6.3 

Fixed 502.5 19,000 3,922 - - 1,163 81.3 16.3 1.5 0.9 
Buoy 

Drifting 31.7 207 5,743 6,374 - - 84.3 8.1 1.9 5.7 
Buoy 

TESAC 1,332.4 1,382 2,165 1,706 551 222 44.0 29.3 10.0 16.7 

Argo 148.2 9,028 8,801 6,669 4,628 7,158 7?» 18.3 1.7 2.1 
1 Counts are number of profiles 
2 Counts are number of profile levels affected 
3 Instrumentaton error includes wire stretch, wire breaking, invalid upper ocean temperature 
response, profile spikes 
4 Counts refer to missing temperature levels only 

errors, which are probably due to inflexion point decimation of the profiles done 
prior to posting the data on the GTS. Argo is of high quality with more than 96% 
of the profiles accepted into the analysis. However, Argo profiles show a relatively 
high occurrence of depth errors (duplicate depths or depths not strictly increasing) 
and missing value errors (defined here in terms of temperature) that need to be 
investigated. 

4.6    Internal Data Checks 

Internal checks are those quality control procedures performed by the analysis sys- 
tem itself. These data consistency checks are best done within the assimilation algo- 
rithm since it requires detailed knowledge of the background and observation error 
covariances, which are available only when the assimilation is being performed. 
The internal data checks are the last defense of the assimilation algorithm against 
bad observations. Data that contain gross and random errors have hopefully been 
removed prior to the assimilation in the sensibility and external data checks. The 
purpose of the internal data checks is to decide whether any marginal observations 
remaining in the assimilation data set are acceptable or unacceptable. 
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The need for quality control at this stage of the analysis/forecast system cannot 
be over emphasized. Any assimilation system based on the assumption of normality, 
no matter how sophisticated, is vulnerable to bad observations that do not fit a nor- 
mal distribution. Further, since many GODAE forecasting systems use a sequential 
analysis-forecast cycle, it is difficult to remove the propagation of error through the 
forecast period that occurs when erroneous data have been assimilated. Once this 
happens the only option is to blacklist the bad observations and back-up and rerun 
the analysis-forecast cycle. This remedy will cause a delay in the production of the 
forecast, which can be a serious problem in operations since the forecast products 
are time critical. 

The internal consistency checks are quite different from the cross validation pro- 
cedure described in Sect. 4. In particular, each observation is compared with the 
entire set of observations used in the assimilation, not just nearby observations. 
A metric is devised to test whether observation innovations are likely or unlikely 
with respect to other observations and the specified background and observation 
error statistics. Once the decision to reject an observation is made in the internal 
data check it is necessary to intervene in the assimilation process to ensure that the 
rejected observation has no effect on the analysis. Typically, internal data checks 
are performed in variational analysis schemes, where the solution is obtained us- 
ing iterative methods that can be interrupted and started up again. The internal data 
checks described below were developed for the Navy Atmospheric Variational Data 
Assimilation System (NAVDAS), described in Daley and Barker (2001). These 
checks have also been implemented in the Navy Coupled Ocean Data Assimila- 
tion (NCODA) system (Cummings 2005), which has recently been updated to a 
3D variational analysis based on NAVDAS. The discussion below is adapted from 
Daley and Barker (2001, Chap. 9.3). 

In an observation based analysis system the analyzed increments (or correction 
vector) are computed according to, 

(xa - xh) = BH'(HBHT + Ry^y - H(xb)} (4.8) 

where xa is the analysis and xb is the forecast model background. In the right hand 
side of Eq. (4.8), B is the background error covariance, H is the forward operator, 
R is the observation error covariance, y is the observation vector, and T indicates 
matrix transpose. The observation vector contains all of the synoptic temperature, 
salinity and velocity observations that are within the geographic and time domains 
of the forecast model grid and update cycle. When the analysis variable and the 
model prognostic variable are the same type, the forward operator H is simply spa- 
tial interpolation of the forecast model grid to the observation location performed 
in three dimensions. Thus, HBHT is approximated directly by the background error 
correlation between observation locations, and BHT directly by the error correlation 
between observation and grid locations. The quantity |y-H(xb)| is referred to as the 
innovation vector (model-data misfits at the observation locations). 

The first part of the internal data check uses a tolerance lim it. Denote A = H BHT+ R 
as the observation symmetric positive definite matrix of Eq. (4.8). Define A"=diag 
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(A). Then, define the observation vector d" = A" ~1/2|y-H(xb)]. The elements of d* 
are the normalized innovations and should be distributed (over many realizations) 
in a normal distribution with a standard deviation equal to 1.0 if the background and 
observation error covariances have been specified correctly. Assuming this to be the 
case, tolerance limits (TL) are defined. Since B and R are never perfectly known, it 
is best to use a relatively high tolerance limit (say, TL = 4.0) in operations. The test 
statistic is designed to identify a marginally acceptable observation if its element of 
d" is larger than the specified tolerance limit. 

The second part of the internal data check is a consistency check. It compares 
marginally acceptable observations with every other observation. The procedure is 
a logical extension of the tolerance limit check described above. Define the vec- 
tor d* = A"l/2[y-//(xb)|. The elements of d* are like those of d", dimensionless 
quantities normally distributed. However, because d* involves the full covariance 
matrix A, it includes correlations between all of the observations. By comparing the 
vectors d" and d* it can be shown which marginally acceptable observations are 
inconsistent with other observations and can therefore be rejected. The d* metric 
should increase (decrease) with respect to d* when that observation is inconsistent 
(consistent) with other observations, as specified by the background and observa- 
tion error statistics. 

The internal data check is illustrated using the example given in Table 4.6 for 3 
hypothetical observations considered marginally acceptable on the basis of a pre- 
scribed tolerance limit (d") check value of 3.0 (Daley and Barker 2001). The d* 
metric for the first observation is reduced when additional, correlated (/> = 0.8) ob- 
servations more accurate than the background (eo = 0.1) are considered. In this case, 
the suspect observation, rejected individually on the basis of the tolerance limit 
check, is now determined to be consistent and is retained in the analysis (d*= 1.9). 
However, if the additional data are uncorrelated (/)=-0.4) while also being accurate 
(eo=0.1), then the results indicate the suspect observation is much more unlikely 
than the tolerance limit check and should be rejected (d* = 5.8). Inaccurate obser- 
vations relative to the background (eo = 2.0) show less sensitivity to correlations 
among observations but still give the same direction of change (d* vs. d") as the 
accurate observations. 

There are difficulties applying the consistency data check in practice since it 
requires calculating the entire A""2 matrix, which is prohibitive for very large prob- 
lems. Fortunately, there are some good approximations to this calculation that can 
be used (Daley and Barker 2001). However, other implementation issues remain. To 

Table 4.6 Hypothetical test 
case for internal consistency 
check (from Daley and 
Barker 2001) 

rf,*= =df =d- = 3.0 

l<V P = ~ 0.4 ^ = 0.8 

En= 0.1 5.X 1.9 

V 2.0 3.5 2.4 

dA, d* defined in text 
p correlation between observations 
e observation error normalized by the background error 
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reject an observation a large constant is added to the appropriate diagonal element 
of the HBHT+R matrix. This modifies the matrix in such a way as to effectively 
prevent the rejected observation from affecting the analysis. However, if this op- 
eration is done during the descent iteration then the modified matrix is no longer 
consistent with the other vectors that have been evolving as part of the conjugate 
gradient solution. The descent can be restarted (very expensive) or the conjugate 
gradient solution vectors can be suitably altered to allow the descent to continue. 
In either case the tolerance limit and internal consistency checks can be applied 
multiple times during the descent as the solution resolves more and more of the 
observation innovations. 

As discussed in Daley and Barker (2001), modifications to this procedure can be 
made for extreme events when the specified background error statistics are likely to 
be incorrect. Typically, error statistics in the assimilation are produced by averaging 
time series of innovations and forecast differences and reflect average, rather than 
extreme, conditions over the model domain. When changes are occurring in the 
ocean (such as an eddy shedding or frontal meander event) the background error 
statistics are likely to be larger than normal. In this case, a tolerance limit specified 
too low could reject good (and very important) data. One option for dealing with 
this is make one pass through the tolerance limit check and compute the mode of the 
d* values over some limited subareas of the analysis domain. The mode is a better 
statistic here because it is less susceptible to outliers than the mean. If the subarea 
mode is much greater than one, then it can be concluded that there are serious 
discrepancies between the observations and the background in that area. In such a 
case, to avoid spuriously rejecting good data, the subarea tolerance limit should be 
increased beyond the prescribed value. 

4.7   Adjoint Sensitivities 

Adjoint-based observation sensitivity, initially developed in Numerical Weather 
Prediction as an observation-targeting tool, provides a feasible (all at once) ap- 
proach to estimating observation impact for a large variety of datasets and indi- 
vidual observations. Observation impact is calculated in a two-step process that 
involves the adjoint of the forecast model and the adjoint of the assimilation system. 
First, a cost function (J) is defined that is a scalar measure of some aspect of the 
forecast error. The forecast model adjoint is used to calculate the gradient of the 
cost function with respect to the forecast initial conditions (dj/dxj. The second 
step is to extend the initial condition sensitivity gradient from model space to ob- 
servation space using the adjoint of the assimilation procedure (5J/dy = KT3J/dx ), 
where K = BHT|HBHT+R] ' is the Kalman gain matrix of Eq. 4.8. The adjoint of 
K is given by KT=[HBHT+Rj"'HB. The only difference between the forward and 
adjoint of the analysis system is in the post-multiplication of going from the solu- 
tion in observation space to grid space. The solver (HBHT+R] is symmetric or 
self-adjoint and operates the same way in the forward and adjoint directions. Given 
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an analysis sensitivity vector, observation impact is obtained as a scalar product of 
the observed model-data differences and the sensitivity of the forecast error to those 
differences. Observations will have the largest impact on reducing forecast error 
when the observation influences the initial conditions in a dynamically sensitive 
area. It is not necessary for the observation to produce a large change (i.e., innova- 
tion) to the initial conditions for it to have a large forecast impact (Baker and Daley 
2000; Langland and Baker 2004). 

If the assimilation of an observation has made the forecast issued from the ana- 
lyzed state more accurate than a forecast valid at the same time but issued from a 
prior state, then the observation is considered to have a beneficial, positive impact. 
All assimilated observations are expected to have beneficial impacts on correcting 
the initial conditions and thereby improving the forecast issued from the analysis. 
However, if consistent non-beneficial impacts are found for a particular data type or 
observing system, then that may indicate data quality control issues, such as subtle 
instrument drift or calibration problems that otherwise are difficult to assess when 
considering the data in isolation. Thus, the adjoint-based data impact procedure is 
an effective tool to provide quantitative diagnostics of ocean data quality. The use 
of adjoint sensitivities in ocean data assimilation and ocean data quality control is 
still an active area of research and development. 

4.8    Summary and Conclusions 

Effective ocean data quality control is a difficult problem. Observations are imper- 
fect and prone to error. Data with errors that are not described by the assimilation 
system through the error covariance matrices need to be eliminated prior to the 
analysis. Effective quality control, therefore, requires a set of pre-established, stan- 
dardized test procedures, with results of the procedures clearly associated with the 
data values. Effectiveness in turn depends on the reliability of the standard(s) and 
on the choices made for measuring goodness of fit. 

The need for observation quality control depends on the use being made of the 
observations. Users of quality controlled data sets have a wide range of views on 
the most appropriate standards and on the appropriate "tightness of fit" demanded 
by the quality control procedures (too tight increases the chance of erroneously 
rejecting anomalous features; too loose increases the chance of accepting bad data). 
Indicators of data quality must be useful for determining if the quality controlled 
observations are appropriate for a particular purpose. In this paper, observation 
quality control is performed as a prelude to assimilation of the observations in an 
ocean forecast system. Using this definition, the best ocean data quality scheme is 
that which leads to the best ocean forecast. 

It is surprisingly difficult to demonstrate consistent impact from the quality 
control of individual observations in an analysis/forecast system. Quality control, 
however, is very important in data monitoring: collection of statistics on the perfor- 
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mance of observing systems; detection of observing systems that are not performing 
as expected; and feedback to the data providers so that deficiencies are corrected. 
An integrated, end-to-end quality control system, therefore, must ensure that results 
of the quality control procedures are recorded for independent analysis and later 
use. If the quality control is carried out well, then it can reduce the duplication of 
effort among the users of ocean data—value added is not lost or misinterpreted. At 
a minimum, a comprehensive database of raw and processed observed values, inde- 
pendent estimates of the same quantities, and quality control outcomes is needed. 
The database would be used to look for "unexpected" behavior in observing sys- 
tems, and allow users and operators of quality control systems to identify systematic 
problems in order to get errors in the data collection or data transmission corrected. 
At present, there are few agreed-upon standards for real-time ocean data quality 
control and very few cases where the procedures and results from the oceanographic 
centers have been compared. As the GODAE operational oceanographic commu- 
nity continues to develop a range of complex ocean analysis and prediction systems, 
it is important that procedures be developed for routinely assessing the effective- 
ness of ocean data quality control and for routinely exchanging statistics from the 
quality control processes at the operational centers. A start on this process has begun 
with the GODAE QC intercomparison project (Smith 2003; Cummings et al. 2009), 
which initially is focusing on profile data types. 

The fully automated ocean data quality control procedures described in this pa- 
per are limited to observation data types that are routinely assimilated in ocean 
forecast models. New ocean observing systems continue to be deployed and new 
failure modes of existing observing systems continue to be identified. Examples of 
new observing systems include HF coastal radars and microwave measurements 
of sea surface salinity from space. Examples of new instrument failure modes are 
the pressure and salinity sensor issues associated with the long-term, autonomous, 
deployments of the Argo profiling floats. New observation error models need to be 
developed for the automated quality control of new data types, and existing error 
models need to be updated to detect, and correct, new instrument failure modes. 
The validity of existing and new automated quality control procedures must be con- 
tinually confirmed by formal statistical tests and by examining differences between 
automated and delayed-mode quality control outcomes on the same observation. 
The automated quality control system can be considered to have performed well 
if decisions made on observations in real-time are consistent with decisions made 
to modify or reject the same observations in delayed mode, where more rigorous 
scientific and expert manual intervention quality control methods are possible. De- 
layed mode quality control outcomes of the Argo profiling float array are readily 
available and can be used in this evaluation. This activity is an integral component 
of the GODAE QC intercomparison project, which includes participation from the 
following operational centers: Bureau of Meteorology in Australia, Coriolis Data 
Center in France, the Integrated Science Data Management Branch in Canada, Fleet 
Numerical Meteorology and Oceanography Center in the U.S.A, and the Met Office 
in the U.K. 
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