
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, 

searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments 

regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington 

Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.  

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection of 

information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

a. REPORT

Correlation of mechanical properties in bulk metallic glasses 

with 27Al NMR characteristics

14.  ABSTRACT

16.  SECURITY CLASSIFICATION OF:

We report 27Al NMR and magnetic susceptibility measurements of Zr and ZrHf-based bulk metallic glasses 

(BMGs). 27Al NMR Knight shift shows that there exists a clear correlation between the local electronic properties 

at Al sites and mechanical properties. In addition, magnetic susceptibility measurements also provide clues on the 

influence of the electronic states, especially the strong influence of d-orbital characteristics on the mechanical 

properties of toughness and hardness.

1. REPORT DATE (DD-MM-YYYY)

4.  TITLE AND SUBTITLE

13.  SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department 

of the Army position, policy or decision, unless so designated by other documentation.

12. DISTRIBUTION AVAILIBILITY STATEMENT

Approved for public release; distribution is unlimited.

UU

9.  SPONSORING/MONITORING AGENCY NAME(S) AND 

ADDRESS(ES)

6. AUTHORS

7.  PERFORMING ORGANIZATION NAMES AND ADDRESSES

U.S. Army Research Office 

 P.O. Box 12211 

 Research Triangle Park, NC 27709-2211

15.  SUBJECT TERMS

Bulk metallic glass, Nuclear magnetic resonance, Knight shift, magnetic susceptibility, Mechanical properties

Magdalena T SANDOR , Laszlo J KECSKES , Qiang HE , Jian XU , 

Yue WU

University of North Carolina - Chapel Hill

Office of Sponsored Research

The University of North Carolina at Chapel Hill

Chapel Hill, NC 27599 -1350

REPORT DOCUMENTATION PAGE

b. ABSTRACT

UU

c. THIS PAGE

UU

2. REPORT TYPE

New Reprint

17.  LIMITATION OF 

ABSTRACT

UU

15.  NUMBER 

OF PAGES

5d.  PROJECT NUMBER

5e.  TASK NUMBER

5f.  WORK UNIT NUMBER

5c.  PROGRAM ELEMENT NUMBER

5b.  GRANT NUMBER

5a.  CONTRACT NUMBER

W911NF-09-1-0343

8620AK

Form Approved OMB NO. 0704-0188

54132-MS.4

11.  SPONSOR/MONITOR'S REPORT 

NUMBER(S)

10.  SPONSOR/MONITOR'S ACRONYM(S)

    ARO

8.  PERFORMING ORGANIZATION REPORT 

NUMBER

19a.  NAME OF RESPONSIBLE PERSON

19b.  TELEPHONE NUMBER

Yue Wu

919-962-0307

3. DATES COVERED (From - To)

Standard Form 298 (Rev 8/98) 

Prescribed by ANSI  Std. Z39.18

-



Correlation of mechanical properties in bulk metallic glasses with 27Al NMR characteristics

Report Title

ABSTRACT

We report 27Al NMR and magnetic susceptibility measurements of Zr and ZrHf-based bulk metallic glasses 

(BMGs). 27Al NMR Knight shift shows that there exists a clear correlation between the local electronic properties at 

Al sites and mechanical properties. In addition, magnetic susceptibility measurements also provide clues on the 

influence of the electronic states, especially the strong influence of d-orbital characteristics on the mechanical 

properties of toughness and hardness.



REPORT DOCUMENTATION PAGE (SF298)

(Continuation Sheet)

Continuation for Block 13

ARO Report Number 

Correlation of mechanical properties in bulk met

Block 13:  Supplementary Note

© 2011 . Published in [object Object]Chinese Science Bulletin, Vol. Ed. 0 56, (36) (2011), ( (36).  DoD Components reserve a 

royalty-free, nonexclusive and irrevocable right to reproduce, publish, or otherwise use the work for Federal purposes, and to 

authroize others to do so (DODGARS §32.36).  The views, opinions and/or findings contained in this report are those of the 

author(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by 

other documentation.

Approved for public release; distribution is unlimited.

...

54132.4-MS



   
 

© The Author(s) 2011. This article is published with open access at Springerlink.com csb.scichina.com   www.springer.com/scp 

                      
*Corresponding author (email: yuewu@physics.unc.edu) 

Article 

SPECIAL TOPICS:  

SPECIAL ISSUE December 2011  Vol.56  No.36: 39373941 

Bulk Metallic Glasses doi: 10.1007/s11434-011-4834-z 

Correlation of mechanical properties in bulk metallic glasses with 
27Al NMR characteristics 

SANDOR Magdalena T1, KECSKES Laszlo J2, HE Qiang3, XU Jian3 & WU Yue1* 

1 Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255, USA; 
2 US Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA; 
3 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 

Received July 1, 2011; accepted August 31, 2011 

 

We report 27Al NMR and magnetic susceptibility measurements of Zr and ZrHf-based bulk metallic glasses (BMGs). 27Al NMR 
Knight shift shows that there exists a clear correlation between the local electronic properties at Al sites and mechanical properties. In 
addition, magnetic susceptibility measurements also provide clues on the influence of the electronic states, especially the strong 
influence of d-orbital characteristics on the mechanical properties of toughness and hardness. 

bulk metallic glass, nuclear magnetic resonance, knight shift, magnetic susceptibility, mechanical properties 

 

Citation:  Sandor M T, Kecskes L J, He Q, et al. Correlation of mechanical properties in bulk metallic glasses with 27Al NMR characteristics. Chinese Sci Bull, 
2011, 56: 39373941, doi: 10.1007/s11434-011-4834-z 

 

 

 
Many families of multi-component bulk metallic glasses 
(BMGs) have been studied extensively due to their good 
glass forming ability (GFA) [1–6], thermal stability, as ex-
hibited by their wide supercooled region [2,5,7], and favor-
able mechanical properties such as high yield strength [5,6]. 
Earlier studies have discussed correlations of GFA with 
thermodynamics [8,9], kinetics [8–10], electronic structure 
[11], and atomic structures [12–14]. To optimize the poten-
tial of metallic glasses for engineering applications, an un-
derstanding of correlations between electronic structures 
and mechanical properties can be quite valuable for design-
ing and fine-tuning the properties of BMGs. Previous ex-
perimental [15–17] and computational studies of transition 
metal (TM)-based BMGs [16,18,19] have addressed the 
issue of the relationship between electronic structures and 
mechanical properties such as strength and ductility. More 
experimental evidence would be very useful for further es-
tablishing and understanding the correlations between 
structural properties and electronic properties of BMGs. In 
this study, we use 27Al NMR and magnetic susceptibility to 

show strong correlations between hardness and toughness of 
Zr and ZrHf-based BMGs and local electronic structures.  

1  Experimental 

In this study, Zr-based BMGs (Zr56Co28Al16, Zr60Ni21Al19, 
Zr48Cu45Al7, Zr60Cu28Al12, and Zr61Ti2Cu25Al12) [3] and 
ZrHf-based BMGs ((Zr1xHfx)52.5Ti5Cu17.9Ni14.6Al10 from x = 
0.0 to 1.0) [4] were used for investigation due to their good 
GFA and favorable mechanical properties such as toughness 
and hardness. Details regarding the BMG sample prepara-
tions and mechanical testing methods and properties were 
reported in [3] and [4]. 27Al NMR experiments were per-
formed at room temperature in a magnetic field of 8.89 T. 
1.0 mol/L Al(NO3)3 aqueous solution was used as shift ref-
erence for 27Al Knight shift measurements. NMR spectra 
were acquired using a Hahn-echo pulse sequence with a 
strong rf field strength of rf/2=100 kHz and recycle delay 
of 300 ms. Magnetization measurements were conducted at 
room temperature using a Quantum Design SQUID magne-
tometer. The magnetization of metallic glass samples were 
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measured as a function of varying field from 50000 to 
50000 Oe in steps of 5000 Oe. The total magnetic suscep-
tibility for each sample was then calculated and also cor-
rected for the weak diamagnetic background susceptibility 
due to an empty sample holder. 

2  Results and discussion 

27Al NMR was used to probe local atomic and electronic 
structure as a function of composition. Figure 1(a) and (b) 
shows 27Al NMR spectra for Zr and ZrHf-based BMG 
compositions, respectively. Changes of the local electronic 
states are established by the systematic changes of spectral 
shift caused by variations of both the aluminum and transi-
tion metal (Zr, Cu, Ni, Co, Ti) content (Figure 1(a)) and 
also by systematic variation of the Hf/Zr ratio with fixed 
aluminum content (Figure 1(b)). The dominant shift mecha-
nism for metallic systems is given by the Knight shift Kiso. 
For transition metal alloy systems the Knight shift is ex-
pressed as Kiso = Ks+Kd+Korb = s

s
pauli+orborb [20,21]. The 

most prominent contribution comes from Ks, which is the 
direct contact shift due to the Fermi contact hyperfine in-
teraction associated with the Pauli susceptibility 

s
pauli 

of s electrons at the Fermi level. Kd is caused by transition 
metals due to the polarization of d-electrons by the external 
field and provides an indirect s-d exchange interaction with 
the s-conduction electrons described by Kd = DD, where 
D is the hyperfine coupling constant and D is the 
d-electron Pauli susceptibility. Korb 

is the orbital shift con-
tribution derived from the orbital moment induced in occu-
pied conduction electron states, where orb is the orbital 
susceptibility and orb is the coupling constant. This second 
order perturbation effect gives rise to magnetic shielding of 
the nucleus and is most important in transition metals with 
half-filled d-band [20]. The changes in Figure 1(a) and (b) 
of Kiso observed in both Zr and ZrHf-based systems indicate 
that the atomic structure at Al sites is changing with com-
position. The values of the Knight shift given in Figure 1 (a) 
and (b) are on the order of ~350 ppm demonstrating that the 
s-electron contribution at the Fermi energy is quite small as 
compared to the shift in pure Al metal (~1630 ppm) [20]. 
This is consistent with previous NMR studies of Al-based 
BMGs [15,16,22] and recent electronic structure calcula-
tions of Al-Zr-Cu [16] and Al-Ca [23] amorphous systems. 
The calculations indicate that the s-electron band is signifi-
cantly shifted to higher binding energies whereas the va-
lence d-electron band of transition metals remain prominent 
at the Fermi level [16,24]. 

Correlations of hardness and toughness with the 27Al 
Knight shift Kiso values are displayed in Figure 2. These 
results demonstrate that the local electronic structure at Al 
sites correlate with the hardness and toughness properties of 
BMGs. Figure 2(b) shows linear correlation between the 

hardness and the 27Al Knight shift, where the Zr/Hf ratio is 
an implicit parameter. Figure 2 (a) shows that the toughness 
decreases with increasing 27Al Knight shift Kiso 

although the 
correlation is not linear. Magnetic susceptibility measure-
ments were obtained to further understand the change of 
electronic structure with toughness and hardness properties. 
The insets of Figure 2 (a) and (b) display a direct correlation 
of total magnetic susceptibility exp with Kiso. The total 
measured magnetic susceptibility for each composition was 
corrected by a weighted average of the diamagnetic core 
susceptibilities [25]. The total susceptibility can be further 
expressed as exp core = 

s
Pauli+L+

d
Pauli+orb [21,22,26], 

where L 
is the Landau diamagnetic s-conduction electron 

susceptibility.  The free s-conduction electron components 


s
Pauli and L of the total susceptibility can be calculated 

from 
s
Pauli = (1.33×106)Va    

2/3Ve 
1/3 and L = 1/3

s
Pauli [26], 

where Va is the atomic volume in Å3 and ne is the number of 
conduction elements per atom. Except for orb, all contribu-
tions to the total susceptibility are directly related to the s or 
d electronic density of states (DOS). The d-electron contri-
bution 

d
Pauli+orb of the total susceptibility can be approxi-

mated by subtracting the free s-conduction contribution 


s
Pauli+L from the total measured susceptibility. 
Table 1 summarizes the results of total, d-electron, and 

s-electron magnetic susceptibilities in addition to the shift 
and mechanical properties for each Zr and ZrHf-based 
composition. A direct relationship between the total suscep-
tibility (or DOS) and mechanical properties was also ob-
served in TE-TL (TE=Zr, Hf, Ti; TL=Cu, Ni, Co) metallic 
glasses [17,27] where the hardness and Young’s modulus E 
were found to increase in proportion to the TL content while 
resulting in a decrease of the total DOS. Table 1 also reveals 
that the d-electron contribution to the magnetic susceptibil-
ity for both alloy systems is significant comprising ap-
proximately half of the total magnetic susceptibility. This is 
compatible with X-ray and ultraviolet photoemission studies 
[24,28] of TE-TL (TE=Zr, Ti; TL=Cu, Ni, Co, Fe) metallic 
glass alloys that show the DOS at the Fermi level is domi-
nated by d-electron valence band states of TE elements. For 
both Zr and ZrHf-based BMG systems, the d-electron sus-
ceptibility 

d
Pauli+orb (or DOS) is proportional to the 

toughness and hardness. One should note that Zr56Co28Al16 
does not fit into this trend and can be attributed to the sus-
ceptibility contribution caused by orb [20] due to a nearly 
half-filled d-band of Co, which is otherwise negligible in 
the remaining compositions of this study. The dependence 
of toughness and hardness properties on d-electron suscep-
tibility is demonstrated in Figure 3, where the outlier from 
Zr56Co28Al16 is clearly noted. Furthermore, while the 27Al 
Knight shifts demonstrate that local electronic structure at 
Al-sites is strongly coupled to mechanical properties of me-
tallic glass, Figure 3 shows that the d-electron susceptibility 
provides a strong correlation with hardness and toughness 
properties. 
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Figure 1  (a) Room temperature 27Al NMR spectra for Zr56Co28Al16, Zr60 Ni21 Al19, Zr48Cu45Al7, Zr60Cu28Al12, and Zr61Ti2Cu25Al12 BMGs. A dashed line 
centered at 322 ppm serves as a guide for the eyes. (b) Room temperature Al NMR spectra for (Zr1-xHfx)52.5Ti5Cu17.9Ni14.6Al10 BMG system from x = 0 to 1.0.  
A dashed line centered at 329 ppm for x = 0 serves to demonstrate systematic changes of the shift with composition. 

 

Figure 2  (a) Toughness (kJ m2) properties are plotted as a function of Knight shift Kiso for Zr-based BMGs [3] demonstrating a direct correlation between 
mechanical properties and local electronic structure. (b) Hardness (GPa) properties for ZrHf-based BMGs [4] are plotted versus the Knight shift Kiso

 
showing 

a systematic correlation. The insets of both figures display the corresponding correlation between the Knight shift Kiso and the total magnetic susceptibility 
expcore.  

Table 1  Room temperature 27Al Knight shifts, total magnetic susceptibility, s-electron susceptibility, d-electron susceptibility, and toughness and hardness 
mechanical properties for Zr [3] and ZrHf-based [4] BMGs 

Sample 
Knight shift 

(ppm) 
expcore

emu

mole Oe
 
 
  ×104 s+L

emu

mole Oe
 
 
  ×105

 d+orb
emu

mole Oe
 
 
  ×105 Toughness  

(kJ m2) 

Zr56Co28Al16 475 1.30 7.02 5.87 52 

Zr60 Ni21 Al19 376 1.25 7.82 4.67 87.5 

Zr48Cu45Al7 326 0.98 4.50 5.32 206 

Zr60Cu28Al12 337 1.16 6.32 5.26 187.5 

Zr61Ti2Cu25Al12 322 1.23 6.64 5.67 238 

(Zr1xHfx)52.5Ti5Cu17.9Ni14.6Al10      

x     Hardness (GPa) 

0 329 1.13 5.97 5.33 6.2 

0.2 342 1.17 6.24 5.47 7.1 

0.4 358 1.19 6.46 5.48 7.2 

0.6 374 1.22 6.66 5.51 7.5 

0.8 387 1.24 6.82 5.54 8 

1 402 1.27 6.97 5.71 7.8 
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Figure 3  Toughness (●) and hardness (▼) properties for Zr and 
ZrHf-based BMGs are plotted versus dorb from Table 1 showing an 
approximately linear correlation. The outlier of the trend seen here is from 
Zr56Co28Al16 due to enhanced orb

 
and is noted with a different symbol (○). 

Previous electronic structure studies of Zr-Cu-based me-
tallic glasses [3,16] attribute a decreasing toughness (or an 
increase in brittleness) to an enhancement of covalent-like 
bonding, or specifically an increase in Al-TM sp-d hybridi-
zation in band structure. While this cannot be confirmed 
directly here, the implications of the data presented in Table 
1 are that both the s and d magnetic susceptibilities of 
BMGs are highly influential for obtaining favorable me-
chanical properties. This can be rationalized in terms of the 
cohesive energies or interatomic bond strengths in transition 
metal-based alloy systems [29] and was briefly alluded to in 
recent studies of Zr and ZrHf-based BMGs [4,17]. The co-
hesive properties of alloys depend directly on the densities 
of s and d-electron states at the Fermi energy and the 
d-electron valence band width [29]. This is also important in 
achieving large exothermic heats of alloy formation [28,30] 
which are significant for good GFA and thermal stability [4, 
17]. Large d-electron valence differences between constitu-
ents in an alloy (i.e. Zr-Cu) have been experimentally ob-
served to induce significant d-band splitting that enhances 
the d-electron valence band width and density of states [24], 
which thereby increases the cohesive energy [29]. This is 
consistent with the data presented in Table 1 where the 
largest toughness value is observed in Zr61Ti2Cu25Al12 
whereas it is the smallest in Zr56Co28Al16 due to a much 
smaller valence difference between Zr and Co resulting in 
minimal d-band splitting [24]. Similarly, in ZrHf-based al-
loys where the cohesive energy due to the s and d-band of 
Hf is significantly higher than Zr [29], the hardness in-
creases systematically from x = 0 to x = 1.0 due to a larger 
Hf/Zr fractional content. 

3  Conclusions 

In conclusion, this work provides insight into the correla-
tions that exist between both the local electronic structure at 

Al sites and magnetic susceptibility with hardness and 
toughness properties of Zr and ZrHf-based BMGs. The 
NMR and magnetic susceptibility results discussed also 
show consistency with previous studies of BMGs. The ex-
perimental data presented here clearly provides evidence 
that for transition metal-based BMGs, the d-electron struc-
ture is very important for obtaining favorable mechanical 
properties. The correlations observed in this study provide a 
guide for designing BMGs with specific mechanical proper-
ties of interest. 

This work was supported by the U. S. Army Research Office (W911NF-09- 
1-0343).  

1 Inoue A, Zhang T, Masumoto T. New amorphous alloys with 
significant supercooled liquid region and large reduced glass 
transition temperature. Mater Sci Eng A, 1991, 134: 1125–1128 

2 Cheung T L, Shek C H. Thermal and mechanical properties of Cu-Zr- 
Al bulk metallic glasses. J Alloy Compd, 2007, 434-435: 71–74 

3 He Q, Cheng Y Q, Ma E, et al. Locating bulk metallic glasses with 
high fracture toughness: Chemical effects and composition opti- 
mization. Acta Mater, 2011, 59: 202–215  

4 Zhang H. Shear band evolution in Zr/Hr-based bulk metallic glasses 
under static and dynamic indentations. Dissertation for Doctoral 
Degree. Michigan: Michigan Technological University, 2006 

5 Inoue A, Zhang W, Zhang T, et al. High-strength Cu-based bulk 
glassy alloys in Cu-Zr-Ti and Cu-Hf-Ti ternary systems. Acta Mater, 
2001, 49: 2645–2652  

6 Inoue A, Zhang W, Zhang T, et al. Cu-based bulk glassy alloys with 
high tensile strength of over 2000 MPa. J Non-Cryst Solids, 2002, 
304: 200–209 

7 Inoue A, Zhang T, Masumoto T. The structural relaxation and glass 
transition of La-Al-Ni and Zr-Al-Cu amorphous alloys with a 
significant supercooled liquid region. J Non-Cryst Solids, 1992, 150: 
396–400 

8 Busch R. The thermophysical properties of bulk metallic glass- 
forming liquids. JOM, 2000, 52: 39–42 

9 Turnbull D. Under what conditions can a glass be formed? Contemp 
Phys, 1969, 10: 473–488 

10 Angell C A. Formation of glasses from liquids and biopolymers. 
Science, 1995, 267: 1924–1935 

11 Yu H B, Wang W H, Bai H Y. An electronic structure perspective on 
glass-forming ability in metallic glasses. Appl Phys Lett, 2010, 96: 
081902–081903 

12 Xi X K, Li L L, Zhang B, et al. Correlation of atomic cluster 
symmetry and glass-forming ability of metallic glass. Phys Rev Lett, 
2007, 99: 095501–095504 

13 Kelton K F, Lee G W, Gangopadhyay A K, et al. First X-ray 
scattering studies on electrostatically levitated metallic liquids: 
Demonstrated influence of local icosahedral order on the nucleation 
barrier. Phys Rev Lett, 2003, 90: 195504 

14 Tanaka H. Relationship among glass-forming ability, fragility, and 
short-range bond ordering of liquids. J Non-Cryst Solids, 2005, 351: 
678–690 

15 Sun B A, Pan M X, Zhao D Q, et al. Aluminum-rich bulk metallic 
glasses. Scripta Mater, 2008, 59: 1159–1162 

16 Xi X K, Sandor M T, Wang H J, et al. Bonding characters of 
Al-containing bulk metallic glasses studied by 27Al NMR. J Phys 
Condens Matter, 2011, 23: 115501 

17 Ristić R, Stubičar M, Babić E. Correlation between mechanical, 
thermal and electronic properties in Zr-Ni, Cu amorphous alloys. 
Philos Mag, 2007, 87: 5629–5637 

18 Lekka C E. Cu-Zr and Cu-Zr-Al clusters: Bonding characteristics and 
mechanical properties. J Alloy Compd, 2010, 504: S190–S193 

19 Gu X J, Poon S J, Shiflet G J, et al. Ductility improvement of 



 Sandor M T, et al.   Chinese Sci Bull   December (2011) Vol.56 No.36 3941 

amorphous steels: Roles of shear modulus and electronic structure. 
Acta Mater, 2008, 56: 88–94 

20 Carter G C, Bennett L H, Kahan D J. Metallic shifts in NMR: A 
review of the theory and comprehensive critical data compilation of 
metallic materials. Prog Mater Sci, 1977, 20: 1–385 

21 Bennett L H, Watson R E, Carter G C. Relevance of knight shift 
measurements to the electronic density of states. J Res Nat Bur Stand, 
1970, 74A: 569–610 

22 Yang D P, Hines W A, Tsai C L, et al. Magnetization and NMR 
study of the La-Al metallic glass system. J Appl Phys, 1991, 69: 
6225–6227 

23 Nagel S R, Gubler U M, Hague C F, et al. Electronic structure studies 
of CaxAl1x metallic glasses. Phys Rev Lett, 1982, 49: 575–578 

24 Oelhafen P, Hauser E, Güntherodt H J. Varying d-band splitting in 
glassy transition metal alloys. Solid State Commun, 1980, 35: 1017– 
1019 

25 Selwood P W. Magnetochemistry. New York: Interscience Publishers, 
1956 

26 Hines W A, Glover K, Clark W G, et al. Electronic structure of the 
Ni-Pd-P and Ni-Pt-P metallic glasses: A pulsed NMR study. Phys 
Rev B, 1980, 21: 3771–3780 

27 Ristić R, Stubičar M, Kuršumović A. Correlation between electronic 
structure, mechanical properties and stability of TE-TL metallic 
glasses. Croat Chem Acta, 2010, 83: 33–37 

28 Oelhafen P, Hauser E, Guntherodt H J, et al. New type of d-band- 
metal alloys: The valence-band structure of the metallic glasses Pd-Zr 
and Cu-Zr. Phys Rev Lett, 1979, 43: 1134–1137 

29 Friedel J. Transition metals. Electronic structure of the d-band. In: 
Ziman J M, ed. The Physics of Metals. London: Cambridge 
University Press, 1969. 340–403 

30 Pettifor D G. Theory of the heats of formation of transition-metal 
alloys. Phys Rev Lett, 1979, 42: 846–850 

 
Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction 

in any medium, provided the original author(s) and source are credited. 

 


