
© 2011, iRobot Corporation
Sponsored by the U.S. Government under contract No. W91CRB-11-C-0049.

Dynamo: A Model Transition Framework for Dynamic
Stability Control and Body Mass Manipulation

FEASIBILITY STUDY – FINAL TECHNICAL REPORT

Contract Number: W91CRB-11-C-0049
Sponsoring Agency: DARPA Defense Sciences Office (DSO)

Report Type: Final Technical Report
Period of Performance: January 24, 2011 – January 24, 2012

Contractor Name: iRobot Corporation
Contractor Address: 8 Crosby Drive MS 8-1
 Bedford, MA 01730
Contractor Phone: (781) 430-3291
Contractor Email: yamauchi@irobot.com

Principal Investigator: Dr. Brian Yamauchi

Security Classification: Unclassified

Distribution Statement: Approved for public release

Distribution unlimited

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
NOV 2011 2. REPORT TYPE

3. DATES COVERED
 00-00-2011 to 00-00-2011

4. TITLE AND SUBTITLE
Dynamo: A Model Transition Framework For Dynamic Stability Control
And Body Mass Manipulation

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
iRobot Corporation,8 Crosby Drive MS 8-1,Bedford,MA,01730

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

27

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Dynamo: A Model Transition Framework for Dynamic
Stability Control and Body Mass Manipulation
Final Technical Report (W91CRB-11-C-0049)

© 2011, iRobot Corporation 2
Sponsored by the U.S. Government under contract No. W91CRB-11-C-0049.

1 Introduction

Figure 1: Rubble from a destroyed building in Afghanistan (left),

Air Force Sergeant prepares to send PackBot on mission to incident area (right)

Ground robots, such as the iRobot PackBot, have saved hundreds of lives in Iraq and Afghanistan
by helping soldiers safely inspect and disarm improvised explosive devices (IEDs) (Figure 1).
However, even state-of-the-art robot control systems fail to approach the adaptive, versatile
mobility demonstrated by humans and animals on an everyday basis. In order to extend the
applicability of ground robots to a wider range of missions, fundamental advances are needed to
provide robust mobility in unstructured, dynamic, natural environments.

One of the common criticisms of currently deployed UGVs is that they are too slow. The typical
standoff distance for an EOD team investigating an IED is 200-500 meters. At top speed (5.8
mph), a PackBot would take over 3 minutes to travel downrange to an IED 500 meters away.
Though a defensive perimeter is setup around the EOD teams, 3 minutes is long enough to setup
and deploy mortars or for snipers to take action. Reducing this time window is critical. The
Robotic Systems Joint Project Office (RSJPO) has identified the need for faster UGVs as a top
priority for Army and Marine Corps warfighters [Jackowski 10].

Figure 2: Italian soldier inspects IED in culvert in Afghanistan (left),

iRobot PackBot retrieves pipe bomb from culvert (right)

We envision UGVs that can travel 30-45 mph or faster which would enable their use in rapid
reconnaissance and high-optempo infantry assault missions. At 45 mph, a high-speed UGV could
reach an IED 500 meters away in just 25 seconds. However, high-speed UGVs are difficult to

Dynamo: A Model Transition Framework for Dynamic
Stability Control and Body Mass Manipulation
Final Technical Report (W91CRB-11-C-0049)

© 2011, iRobot Corporation 3
Sponsored by the U.S. Government under contract No. W91CRB-11-C-0049.

control manually, particularly on the dirt or sand surfaces that are common on the battlefield. On
these surfaces, the vehicle can skid or lose traction while cornering and can become airborne from
even modest terrain variation.

Another urgent warfighter need is for UGVs that can robustly negotiate rough terrain. IEDs are
often emplaced in rubble or in culverts next to roads (Figure 2). These locations can be difficult
for a soldier to access without putting himself at risk. Once the soldier is close enough to
determine that an IED is present, he may be within the kill radius. UGVs can approach these
IEDs while keeping soldiers out of harm’s way, but UGVs are difficult to teleoperate over rough
terrain and often have problems with rolling over or getting high-centered on obstacles. When
this occurs, a solider often must walk out to rescue the robot, putting himself at risk.

Figure 3: Simulated Ferrari controlled by MTC races on an alpine road course (left),

PackBot climbs obstacle using MTC-controlled active weight shifting (right)

The Dynamo Project is developing real-time learning techniques for high-speed vehicle control
and robust mobility over rough terrain. We have developed Model Transition Control (MTC), a
novel framework for modeling nonlinear control problems, and Dynamic Threshold Learning
(DTL), a real-time, online algorithm that learns to keep a robot within a desired control regime.
During the Dynamo Feasibility Study, we have conducted research to validate the potential of our
approach. In particular, we have:

 Applied DTL to learn an MTC Dynamic Stability Control (DSC) behavior for a
simulated high-speed race car traveling at speeds up to 210 kph (130 mph) (Figure 3,
left).

 Developed an adaptive regime classifier that can detect high-centering on a real iRobot
PackBot and trigger an escape behavior.

 Applied DTL to learn an MTC rollover prevention behavior that prevents the PackBot
from rolling over in rough terrain.

 Applied DTL to learn an MTC weight shifting behavior that enables the PackBot to
actively adjust its center-of-gravity to climb over tall obstacles (Figure 3, right).

The results from the Feasibility Study indicate that MTC and DTL can be applied to wide range
of adaptive mobility tasks, and that these techniques can be used to quickly learn the dynamic
limits of both wheeled and tracked platforms in different environments. The Dynamo Project is
now ready to move on to the next phase. In Phase II, we will use MTC and DTL to learn semi-
autonomous control behaviors for real, high-speed, small UGVs that can travel at speeds up to
70 kph (45 mph), and we will extend our work on adaptive rough terrain mobility to more
complex real-world terrain, such as rock piles and rubble piles.

Dynamo: A Model Transition Framework for Dynamic
Stability Control and Body Mass Manipulation
Final Technical Report (W91CRB-11-C-0049)

© 2011, iRobot Corporation 4
Sponsored by the U.S. Government under contract No. W91CRB-11-C-0049.

2 Detailed Technical Approach

2.1 Model Transition Control (MTC)

Controlling a vehicle in natural terrain is an inherently nonlinear problem that requires adaptation
to changes in the interaction between vehicle and environment. Well-understood techniques, such
as Model Reference Adaptive Systems (MRAS) and Self-Tuning Regulators (STR), exist for
developing adaptive controllers for linear control problems [Åström and Wittenmark, 2008], but
there are no general solutions for arbitrary nonlinear control problems.

We propose Model Transition Control (MTC) as a new framework for modeling nonlinear
control problems and developing nonlinear control systems. While the space of nonlinear control
problems is extremely large, we can make this space more tractable through the use of domain
knowledge. The key insight of MTC is that UGV control problems tend to consist of relatively
linear control regimes that are linked by rapid nonlinear transitions. This insight motivates the
state-action map (Figure 4), which takes the current vehicle state and proposed vehicle action as
inputs and outputs the regime that will result if the proposed action is taken. For example, the
state-action map may say that if you’re driving at high speed, and you turn the steering wheel
hard to the right and slam on the brakes, then you will end up in the oversteer regime. At the same
time, it may also say that you can turn less sharply and brake more gradually and remain in the
normal grip regime.

Figure 4: State-action map

For a concrete example, consider the dynamic transition that occurs when a vehicle’s brakes lock
up. Before the brakes lock up, vehicle deceleration can be approximated as a linear function of
braking force at the wheels. After the brakes lock up, vehicle deceleration is no longer a function
of braking force. Instead, deceleration becomes a function of vehicle weight, velocity, and the
sliding coefficient of friction between the tires and the ground.

Anti-lock braking systems (ABS) handle this by monitoring the rotational speed of each wheel
and detecting when one of those wheels starts moving much slower than the others, indicating
that it is about to lock up. ABS then reduces the braking force at that individual wheel, allowing it
to start moving faster. After the wheel starts moving, ABS increases the braking force again until
it senses that the wheel is about to lock up again. ABS allows the average driver to stop a car in a
relatively short distance by simply pressing the brake hard and holding it down. However,
professional race drivers can achieve even better performance through a technique known as
threshold braking. In threshold braking, the driver learns the point at which the brakes start to
lock up and then applies slightly less pressure. This provides the maximum braking force to the

Dynamo: A Model Transition Framework for Dynamic
Stability Control and Body Mass Manipulation
Final Technical Report (W91CRB-11-C-0049)

© 2011, iRobot Corporation 5
Sponsored by the U.S. Government under contract No. W91CRB-11-C-0049.

wheels, as opposed to ABS which alternates between maximum braking force (no lock up) and
reduced braking force (lock up).

Like a professional race driver, MTC DSC will learn the point at which the brakes will lock up
for a given vehicle state. A simplified two-dimensional version of the corresponding state-action
map (SAM) is shown in Figure 5. In reality, the state-action map would have multiple dimensions
for both vehicle state and potential actions. This map shows that small amounts of braking force
will never cause the brakes to lock up, so the vehicle will remain in the normal grip regime. The
map also shows that, at low speeds, full braking can be applied without causing lock up. At high
speeds, hard braking will result in a skid, as indicated by the red region showing the skid regime
in the map.

Figure 5: State-action map for braking

Given the vehicle state and a naïve action that might be taken by an inexperienced driver or
generated by a simple PID control loop, we can use the state-action map to identify the resulting
control regime. If the line corresponding to the current vehicle slate intersects the region
corresponding to the desired control regime, we can find an action along that line that will result
in the desired control regime (Figure 5). In practice, the current vehicle state will be represented
by an n-dimensional manifold corresponding to the n degrees-of-freedom in the control space.
For low-dimensional spaces, an exhaustive search can be used to find the action closest to the
naïve action that will put the vehicle in the desired control regime. For high-dimensional spaces,
exhaustive search is computationally infeasible, so a Monte Carlo approach will be used instead,
with a large number of actions being generated randomly, and the action that is closest in
Euclidean space to the naïve action will be selected.

Figure 6 shows a block diagram for an MTC controller using Dynamic Threshold Learning
(DTL). An exploratory controller provides raw commands based on sensor inputs, which are used
to explore the state-action space. For example, this could be a PID controller or a simple set of
reactive rules. Alternately, a human operator can provide teleoperation inputs that serve the role
of the exploratory controller. The exploratory controller provides aggressive responses that are
likely to result in both desirable and undesirable control regimes. As the MTC controller learns
the SAM, it gradually limits these responses to remain within the desired control regime.

If the DTL module predicts that the raw command output by the exploratory controller will result
in an undesirable control regime, then the DTL will modify the output in one of two ways. First,
it can modify the control law parameters in the exploratory controller so that it will only generate
outputs that remain within the desired control regime. Second, it can apply explicit limits to the
command outputs via the arbiter.

Dynamo: A Model Transition Framework for Dynamic
Stability Control and Body Mass Manipulation
Final Technical Report (W91CRB-11-C-0049)

© 2011, iRobot Corporation 6
Sponsored by the U.S. Government under contract No. W91CRB-11-C-0049.

Figure 6: Block diagram for MTC controller

The net result is that an MTC-controlled robot will initially behave very aggressively, and this
will result in the robot experiencing undesirable control regimes. DTL will quickly learn which
state-action combinations lead to undesirable control regimes and will modify the control system
so that it no longer directs the robot into these regimes. After a brief learning period, the MTC-
based control system will be able to keep the robot within the desired control regime regardless of
dynamic changes in the environmental inputs.

2.2 Dynamic Transition Learning (DTL)

The MTC framework is compatible with a wide variety of learning techniques. We have
developed a novel learning algorithm that we call dynamic transition learning (DTL), which
makes use of domain knowledge related to vehicle dynamics to speed up the learning process.
Transitions between vehicle control regimes tend to occur when some physical threshold (e.g. tire
adhesion) is exceeded. This allows us to generalize from a single observation to all other points in
the state-action space that exceed the same threshold in the same way. By making this assumption
of monotonicity in regime transition thresholds, we sacrifice some generality in terms of the
functions that can be learned, but in return, we gain very fast learning. A key feature of our
approach is that all learning takes place online as the vehicle moves through the world. Initially,
the vehicle’s motions are controlled by the exploratory controller, but DTL continuously learns
regime transition dynamics as the vehicle moves through the world and continuously improves
vehicle performance via MTC.

We assume a bounded state-action space where each state can vary between statemin and statemax
and each action can vary between actionmin and actionmax, and we define an anchor point AREGIME
in state-action space for each REGIME. This anchor point corresponds to the combined state and
action that is most likely be part of the corresponding control regime. In the case of braking,
skidding is most likely to occur when the vehicle is traveling at the maximum speed and
maximum brake effort is applied. So the anchor point for the skid control regime is defined by:

 ASKID=(vmax, brakemax)

We define a regime identification function IDENT such that:

 IDENT(Si,Ai) = REGIME

Where Si is a state vector, Ai is an action vector, and REGIME is the control regime that applies
when action Ai is executed in state Si.

Dynamo: A Model Transition Framework for Dynamic
Stability Control and Body Mass Manipulation
Final Technical Report (W91CRB-11-C-0049)

© 2011, iRobot Corporation 7
Sponsored by the U.S. Government under contract No. W91CRB-11-C-0049.

Given that IDENT(Si,Ai) = REGIME, then for any other point in state-action space (Sj,Aj), we
assume that IDENT(Sj,Aj) = REGIME, if for each state variable state in Sj:

 statei ≤ statej ≤ AREGIME(state) or statei ≥ statej ≥ AREGIME(state)

And for each action variable action in Aj:

 actioni ≤ actionj ≤ AREGIME(action) or actioni ≥ actionj ≥ AREGIME(action)

Where AREGIME(state) is the value of state variable state for the REGIME anchor point, and
AREGIME(action) is the value of action variable action for the REGIME anchor point. In other
words, if the new state-action point is closer to the anchor point along every axis, we can infer
that it corresponds to the same regime. If (Sj,Aj) is not within the corresponding region for any
observation, IDENT returns the default regime. This allows DTL to rapidly converge to an
approximate model of the system dynamics with a small number of observations.

Figure 7: Using DTL to learn SKID regime boundaries from a small number of observations

(black circles)

Figure 7 shows how a handful of observations can be used to create a reasonable model of the
SKID regime in the braking example. DTL constructs a model of the boundaries between control
regimes with a relatively small number of observations. Points near regime boundaries are
particularly useful for constructing this model, and this suggests the exploratory controller should
drive the vehicle close to its limits to speed up learning. In higher-dimensional spaces, more
observations will be necessary, but we believe that DTL will scale well since each observation
can update the regime information for a large volume of the state-action space.

3 Simulated High-Speed Vehicle Control

For our first experiments with DTL, we used The Open Race Car Simulator (TORCS), an open-
source high-speed vehicle simulator. Source code for TORCS is available online at
http://torcs.sourceforge.net. We chose TORCS because it provides physical modeling of high-
speed wheeled vehicles, including tire-surface interaction for different surface materials and
geometries, aerodynamic drag, and handling parameters for different vehicles. TORCS also
provides an easy-to-use interface for implementing autonomous driving behaviors and linking
these behaviors with the simulator.

We developed an MTC-based dynamic stability control (DSC) system for simulated TORCS
vehicles to prevent understeer and oversteer. Conventional DSC systems are only capable of
reacting to understeer and oversteer once they occur. These systems detect the difference between
the actual and commanded yaw rates and then apply brakes at individual wheels and/or reduce the

Dynamo: A Model Transition Framework for Dynamic
Stability Control and Body Mass Manipulation
Final Technical Report (W91CRB-11-C-0049)

© 2011, iRobot Corporation 8
Sponsored by the U.S. Government under contract No. W91CRB-11-C-0049.

throttle to reduce understeer/oversteer. Our MTC-based DSC system predicts which state-action
combinations will result in understeer or oversteer. It then modifies the steering and throttle
commands to prevent understeer and oversteer from occurring in the first place.

3.1 Exploratory Controller

The exploratory controller attempts to steer the car toward the center of the current track segment
while maintaining a desired speed. The steering control rule is:

 ()

where θsteer is the steering command, θtrack is the track orientation in world coordinates, θcar is the
vehicle heading in world coordinates, ycar is the lateral position of the car relative to the current
track segment, and wtrack is the width of the current track segment.

The speed control rule is:

 ()

where a is the acceleration command, kv is the proportional control gain, vdesired is the desired
velocity, and vcurrent is the current velocity. Initially, vdesired is set to the maximum speed of the
vehicle.

3.2 Preventing Understeer

We define an understeer threshold that is a function of speed, turn radius, and the friction
coefficient of the track surface. This threshold specifies the maximum speed that the vehicle can
drive for a given turn radius without risking understeer.

The maximum traction available is given by:

where F is the force applied by the tires, m is the mass of the vehicle, µ is the coefficient of
friction, and g is the acceleration due to gravity. The lateral acceleration during a turn is:

where a is the lateral acceleration, v is the vehicle velocity, and r is the turn radius. We predict
understeer when the lateral acceleration exceeds the maximum traction:

where Tundersteer is the understeer threshold, which is initialized to its maximum value.

Dynamo: A Model Transition Framework for Dynamic
Stability Control and Body Mass Manipulation
Final Technical Report (W91CRB-11-C-0049)

© 2011, iRobot Corporation 9
Sponsored by the U.S. Government under contract No. W91CRB-11-C-0049.

The task of learning the SAM for the understeer prevention behavior is equivalent to learning
Tundersteer, assuming the regime boundary is linear in the space defined by the state variable for the
track radius and the action variable for velocity. In this SAM, the anchor point for the GRIP
regime is at maximum r and zero v. The anchor point for the UNDERSTEER regime is at
minimum r and maximum v.

Understeer is detected by the regime classifier when the absolute yaw rate ̇ is less than
the absolute steering command θsteer multiplied by a constant kundersteer that is less than 1:

| ̇ | | |

If understeer is detected, but understeer is not predicted, then Tundersteer is reduced to the current
lateral acceleration:

If DTL predicts that the current desired velocity will exceed the understeer threshold for the turn
radius of the current track segment,

then DTL reduces the desired velocity to a value that is not predicted to cause understeer:

 √

3.3 Preventing Oversteer

We define an oversteer threshold as a function of steering and acceleration inputs. This threshold
represents the maximum combination of steering and throttle inputs that can be commanded
without triggering oversteer.

We predict oversteer when

 | |

where ksteer and kaccel are fixed coefficients for weighting the steering and acceleration inputs and
Toversteer is the oversteer threshold, which is initialized to its maximum value.

The regime classifier detects oversteer when the absolute yaw rate ̇ is greater than the
absolute steering command θsteer multiplied by a constant koversteer that is greater than 1:

| ̇ | | |

Dynamo: A Model Transition Framework for Dynamic
Stability Control and Body Mass Manipulation
Final Technical Report (W91CRB-11-C-0049)

© 2011, iRobot Corporation 10
Sponsored by the U.S. Government under contract No. W91CRB-11-C-0049.

If oversteer is detected, but not predicted, then we reduce the oversteer threshold based on the
current steering and acceleration commands:

 | |

If the steering and acceleration commands proposed by the exploratory controller are predicted to
exceed the oversteer threshold:

 | |

where kmargin is a fixed safety margin, then we reduce the acceleration command (if possible) to a
value that is not predicted to cause oversteer:

 (
 | |

)

where amod is the modified acceleration command. We do not reduce the steering command,
because doing so would be the equivalent of inducing understeer and would reduce the
maneuverability of the vehicle.

3.4 Experimental Results

We tested the MTC DSC controller on a wide range of track types including speedways with long
straights and sweeping turns that allow high speeds (Figure 8); complex road courses with tight
corners that allow moderate speeds (Figure 9); and small dirt tracks with tight corners that require
slow speeds (Figure 10). We experimented with tracks containing both asphalt (high friction) and
dirt (low friction) surfaces. For these tracks, DTL maintained separate Tundersteer and Toversteer
parameters for asphalt and dirt learned the correct parameters for the current terrain type. On a
real vehicle, this would require a terrain classification system using sensors such as vision.

In our initial experiments, we discovered that after the car began to understeer or oversteer, it
would often end up switching rapidly between GRIP, UNDERSTEER, and OVERSTEER
domains. Consider a driver who begins to spin out and then countersteers in the opposite
direction, the car may end up snapping back and forth as the tires skid and grab intermittently.
Once an understeer or oversteer event begins, the transitions between GRIP and UNDERSTEER
and OVERSTEER occur at much lower speeds, steering angles, and acceleration inputs. As a
result, the initial MTC DSC controller learned overly conservative regime limits and drove much
more slowly than necessary.

Dynamo: A Model Transition Framework for Dynamic
Stability Control and Body Mass Manipulation
Final Technical Report (W91CRB-11-C-0049)

© 2011, iRobot Corporation 11
Sponsored by the U.S. Government under contract No. W91CRB-11-C-0049.

Figure 8: MTC controller driving simulated Ferrari on speedway

Figure 9: MTC controller driving simulated Ferrari on alpine road course

Figure 10: MTC controller driving simulated Ferrari on dirt track

Dynamo: A Model Transition Framework for Dynamic
Stability Control and Body Mass Manipulation
Final Technical Report (W91CRB-11-C-0049)

© 2011, iRobot Corporation 12
Sponsored by the U.S. Government under contract No. W91CRB-11-C-0049.

In order to prevent this, we added an event timer, tevent. When tevent = 0, and understeer or
oversteer is detected, the transition is learned by DTL, and tevent is set equal to tmax. At every time
step, if tevent > 0, then tevent decremented by 1. If tevent > 0 and understeer or oversteer is detected,
the event is ignored by DTL, but the event timer is reset to tmax.

The result is that for a brief period of time, DTL ignores understeer and oversteer detections to
avoid learning false positive information. A tradeoff exists between a low value of tmax, which
will reduce the learning time, but increase false positives, and a high value of tmax, which will
reduce false positives, but also increase learning time and increase the number of collisions. The
TORCS simulator models collision damage, and if the car suffers too much damage, the
simulation run is ended. So, if the value of tmax is set too high, the car may fail to finish the race
due to collisions.

The TORCS simulator package includes 34 tracks: 17 road tracks, 8 dirt tracks, and 9 oval tracks.
We tested the MTC DTL controller on all 34 tracks, and we compared its performance with the
reactive controller provided in Chapters 1-3 of Bernhard Wymann’s TORCS Robot Tutorial
available at http://www.berniw.org/ (but without the traction control and ABS functions in
Chapter 3.6). We also compared the performance of the MTC DSC controller with two different
values of tmax, 100 timesteps (2 seconds) and 500 timesteps (10 seconds).

The reactive controller differs from the MTC exploratory controller in knowing the friction
coefficient of each track segment in advance and then commanding the maximum speed that it
knows will not cause loss of traction. Thus, the reactive controller makes use of more a priori
knowledge about the environment than is available to the MTC DTL controller. The reactive
controller is also more conservative than the MTC DTL controller, even after learning, as the
MTC DTL controller will allow some wheel slip as long as the understeer and oversteer
thresholds are not exceeded. Table 1 shows the lap times for reactive controller on all tracks.

The key results from our experiments are:

1) DTL is able to successfully learn thresholds for understeer and oversteer prevention
across a wide range of track geometries and surface types.

2) DTL is able to learn these thresholds very quickly, often within a single lap.
3) In most cases, the MTC DSC controller can outperform the reactive controller, despite

the fact that the reactive controller is provided with a prior information about the track
characteristics that DTL has to learn through experience.

4) In some cases, DTL will learn overly conservative thresholds from false positives that
result in reduced performance.

5) In other cases, DTL may not learn quickly enough, resulting in excessive damage to the
vehicle.

6) The maximum event time tmax parameter controls the tradeoff between false positive
frequency and learning time. Low values of tmax result in many false positives but rapid
learning. High values of tmax result in fewer false positives but slower learning.

Table 2 shows the results of our experiments with tmax = 500. All times are in seconds. We
measured the lap time for the MTC DSC controller on the first lap after learning had converged.
For a fair comparison, we compared these lap times to the second lap time for the reactive
controller (since this allowed the reactive controller to start the measured lap at speed, as with the
MTC DSC controller).

Dynamo: A Model Transition Framework for Dynamic
Stability Control and Body Mass Manipulation
Final Technical Report (W91CRB-11-C-0049)

© 2011, iRobot Corporation 13
Sponsored by the U.S. Government under contract No. W91CRB-11-C-0049.

Table 1: Lap times for reactive controller (seconds)

In these experiments, the MTC DSC controller was able to successfully learn to prevent
understeer and oversteer on 16 out 17 road tracks and 3 out of 8 dirt tracks. The MTC DSC
controller was also able to complete all 9 oval tracks successfully, though learning was only
needed on 2 tracks.

Ferrari 360 Modena Reactive

Time for Lap 2

ROAD TRACKS

Alpine 1 203.18

E-Track 1 96.13

E-Track 2 110.15

E-Track 3 129.71

E-Track 4 144.69

E-Track 6 130.97

E-Road 105.82

CG Speedway 1 57.98

CG Track 2 80.11

CG Track 3 88.72

Olethros Road 1 153.52

Ruudskogen 87.87

Spring 663.41

Street 1 113.71

Wheel 1 116.3

Wheel 2 158.35

Aalborg 161.61

DIRT TRACKS

Dirt 1 47.14

Dirt 2 68.97

Dirt 3 79.5

Dirt 4 120.83

Dirt 5 47.04

Dirt 6 130.16

Mixed 1 66.42

Mixed 2 92.57

OVAL TRACKS

A-Speedway 46.49

B-Speedway 62.65

C-Speedway 52.99

D-Speedway 52.6

E-Speedway 64.31

E-Track 5 46.04

F-Speedway 58.5

G-Speedway 49.63

Michigan Speedway 48

Dynamo: A Model Transition Framework for Dynamic
Stability Control and Body Mass Manipulation
Final Technical Report (W91CRB-11-C-0049)

© 2011, iRobot Corporation 14
Sponsored by the U.S. Government under contract No. W91CRB-11-C-0049.

Table 2: Lap times for MTC DSC Controller with tmax = 500
(DNF = Did Not Finish)

On the tracks where the MTC DSC controller was successful, learning typically converged in 3 or
less laps. On many tracks, the MTC DSC controller was able to learn how to prevent understeer
and oversteer in less than a single lap. On most of the oval tracks, no learning was necessary,
because the tracks were sufficiently banked to allow the cars to drive flat out for the entire track.
On oval tracks, the exploratory controller was able to outperform the reactive controller even
without learning, because it allowed the car to slide in the corners, while the reactive controller
did not.

The MTC DSC controller demonstrated significantly better performance (on those tracks where it
was successful) than the reactive controller. On 24 out of 28 tracks, the MTC DSC controller was
able to lap the track faster than the reactive controller, despite the additional a priori knowledge
available to the reactive controller. On average, the MTC DSC controller was able to complete
these 24 tracks in 17% less time than required by the reactive controller.

Ferrari 360 Modena Reactive

Time for Lap 2

ROAD TRACKS

Alpine 1 203.18

E-Track 1 96.13

E-Track 2 110.15

E-Track 3 129.71

E-Track 4 144.69

E-Track 6 130.97

E-Road 105.82

CG Speedway 1 57.98

CG Track 2 80.11

CG Track 3 88.72

Olethros Road 1 153.52

Ruudskogen 87.87

Spring 663.41

Street 1 113.71

Wheel 1 116.3

Wheel 2 158.35

Aalborg 161.61

DIRT TRACKS

Dirt 1 47.14

Dirt 2 68.97

Dirt 3 79.5

Dirt 4 120.83

Dirt 5 47.04

Dirt 6 130.16

Mixed 1 66.42

Mixed 2 92.57

OVAL TRACKS

A-Speedway 46.49

B-Speedway 62.65

C-Speedway 52.99

D-Speedway 52.6

E-Speedway 64.31

E-Track 5 46.04

F-Speedway 58.5

G-Speedway 49.63

Michigan Speedway 48

Ferrari 360 Modena Reactive MTC DSC Controller t max = 500

Time for Lap 2 Laps Required for Learning Time for First Lap After Learning Time vs. Reactive % Change

ROAD TRACKS

Alpine 1 203.18 1 187.25 -15.93 -7.84

E-Track 1 96.13 1 102.31 6.18 6.43

E-Track 2 110.15 2 91.31 -18.84 -17.10

E-Track 3 129.71 2 116.83 -12.88 -9.93

E-Track 4 144.69 1 125.87 -18.82 -13.01

E-Track 6 130.97 1 105.39 -25.58 -19.53

E-Road 105.82 1 165.52 59.70 56.42

CG Speedway 1 57.98 3 47.55 -10.43 -17.99

CG Track 2 80.11 1 63.17 -16.94 -21.15

CG Track 3 88.72 1 88.61 -0.11 -0.12

Olethros Road 1 153.52 2 255.99 102.47 66.75

Ruudskogen 87.87 1 79.21 -8.66 -9.86

Spring 663.41 1 652.02 -11.39 -1.72

Street 1 113.71 1 97.62 -16.09 -14.15

Wheel 1 116.3 1 225.48 109.18 93.88

Wheel 2 158.35 1 137.31 -21.04 -13.29

Aalborg 161.61 0 DNF N/A N/A

DIRT TRACKS

Dirt 1 47.14 3 DNF N/A N/A

Dirt 2 68.97 1 DNF N/A N/A

Dirt 3 79.5 5 69.88 -9.62 -12.10

Dirt 4 120.83 1 99.48 -21.35 -17.67

Dirt 5 47.04 3 DNF N/A N/A

Dirt 6 130.16 2 114.17 -15.99 -12.28

Mixed 1 66.42 1 DNF N/A N/A

Mixed 2 92.57 1 DNF N/A N/A

OVAL TRACKS

A-Speedway 46.49 2 36.7 -9.79 -21.06

B-Speedway 62.65 0 46.62 -16.03 -25.59

C-Speedway 52.99 0 38.89 -14.10 -26.61

D-Speedway 52.6 0 40.02 -12.58 -23.92

E-Speedway 64.31 0 47.68 -16.63 -25.86

E-Track 5 46.04 1 33.83 -12.21 -26.52

F-Speedway 58.5 0 43.29 -15.21 -26.00

G-Speedway 49.63 0 35.37 -14.26 -28.73

Michigan Speedway 48 0 36.83 -11.17 -23.27

Dynamo: A Model Transition Framework for Dynamic
Stability Control and Body Mass Manipulation
Final Technical Report (W91CRB-11-C-0049)

© 2011, iRobot Corporation 15
Sponsored by the U.S. Government under contract No. W91CRB-11-C-0049.

Table 3: Lap times for MTC DSC Controller with tmax = 100
(DNF = Did Not Finish, * = race terminated)

However, in the 4 out of 28 tracks where the MTC DSC controller lost to the reactive controller,
it required an average of 56% more time. The reason is that for three of these tracks – E-Road,
Ruudskogen, and Wheel 1 – the MTC DSC controller learned overly conservative thresholds and
completed these tracks at much slower speeds.

The MTC DSC controller failed to finish 6 out of the 34 tracks. On the one road track, Aalborg,
the initial straightaway led directly into a sharp corner (Turn 1) with a stone wall, so the car
crashed into the wall at full speed and sustained sufficient damage to end the race. On the 5 dirt
tracks, the car was almost continuously understeering or oversteering, so the event timer was
rarely reset, and DTL was unable to learn the correct thresholds. Eventually sufficient collision
damage accumulated to end the race.

Table 3 shows the results from the experiments with tmax = 100. With the reduced event time,
DTL tended to learn more quickly, but also more conservatively. As a result, the MTC DSC
controller was able to learn how to prevent understeer and oversteer on 33 out 34 tracks. The one
exception was Aalborg, where the high-speed collision on Turn 1 ended the race immediately.

Ferrari 360 Modena Reactive

Time for Lap 2

ROAD TRACKS

Alpine 1 203.18

E-Track 1 96.13

E-Track 2 110.15

E-Track 3 129.71

E-Track 4 144.69

E-Track 6 130.97

E-Road 105.82

CG Speedway 1 57.98

CG Track 2 80.11

CG Track 3 88.72

Olethros Road 1 153.52

Ruudskogen 87.87

Spring 663.41

Street 1 113.71

Wheel 1 116.3

Wheel 2 158.35

Aalborg 161.61

DIRT TRACKS

Dirt 1 47.14

Dirt 2 68.97

Dirt 3 79.5

Dirt 4 120.83

Dirt 5 47.04

Dirt 6 130.16

Mixed 1 66.42

Mixed 2 92.57

OVAL TRACKS

A-Speedway 46.49

B-Speedway 62.65

C-Speedway 52.99

D-Speedway 52.6

E-Speedway 64.31

E-Track 5 46.04

F-Speedway 58.5

G-Speedway 49.63

Michigan Speedway 48

MTC DSC Controller t max = 100

Laps Required for Learning Time for First Lap After Learning Time vs. Reactive % Change

1 182.09 -21.09 -10.38

1 195.83 99.70 103.71

1 366.32 256.17 232.56

1 114.75 -14.96 -11.53

1 125.87 -18.82 -13.01

1 110.47 -20.50 -15.65

1 291.51 185.69 175.48

1 46.37 -11.61 -20.02

1 63.17 -16.94 -21.15

1 364.17 275.45 310.47

1 173.66 20.14 13.12

1* 420 332.13 377.98

1* 1200 536.59 80.88

1 97.61 -16.10 -14.16

1* 480 363.70 312.73

1 137.31 -21.04 -13.29

DNF DNF N/A N/A

1 41.42 -5.72 -12.13

2 96.6 27.63 40.06

1 116.42 36.92 46.44

1 99.48 -21.35 -17.67

1 45.36 -1.68 -3.57

1 113.97 -16.19 -12.44

1 53.93 -12.49 -18.80

1 75.54 -17.03 -18.40

2 36.7 -9.79 -21.06

0 46.62 -16.03 -25.59

0 38.89 -14.10 -26.61

0 40.02 -12.58 -23.92

0 47.68 -16.63 -25.86

0 33.83 -12.21 -26.52

0 43.29 -15.21 -26.00

0 35.37 -14.26 -28.73

0 36.83 -11.17 -23.27

Dynamo: A Model Transition Framework for Dynamic
Stability Control and Body Mass Manipulation
Final Technical Report (W91CRB-11-C-0049)

© 2011, iRobot Corporation 16
Sponsored by the U.S. Government under contract No. W91CRB-11-C-0049.

The cost of this greatly improved robustness was reduced performance on some tracks, due to the
more conservative thresholds learned for understeer and oversteer. However, the MTC DSC
controller was still able to outperform the reactive controller on 8 out of 17 road tracks, 6 out of 8
of the dirt tracks, and all 9 oval tracks. On average, the MTC DSC controller was able to
complete these 23 tracks in 15% less time than the reactive controller.

On the 10 tracks where MTC DSC controller lost to the reactive controller, it required an average
of 213% more time to complete these laps. This included three tracks where the race was
terminated due to lack of progress. On these tracks, the MTC DSC controller learned extremely
low thresholds, and drove extremely slowly. This occurred because the event timer expired while
an understeer or oversteer event was still in progress. For example, the car would snap between
oversteer and understeer at low speeds and at some points during this event, the steering wheel
would be pointed nearly straight and acceleration was near zero. As a result, DTL could learn
wrongly that understeer and oversteer could be trigger at low speeds with small steering and
acceleration inputs.

One conclusion we drew from these results is that DTL needs the capacity for unlearning false
positives as well as a means for testing learning thresholds. One approach would be to
probabilistically attempt to exceed learned thresholds by a small amount. As a result, these
thresholds would slowly increase over time as long as the controller did not detect any understeer
or oversteer events.

An alternate approach would be to modify the exploratory controller so it starts with a very
conservative strategy and gradually becomes more aggressive until undesirable control regimes
are encountered. This would have the additional benefit of reducing the overall number of
collisions and damage suffered by the vehicle. However, this could come at the cost of increased
learning time.

We plan to investigate both unlearning and the alternate exploratory controller strategy during
Phase II of the Dynamo Project.

We also briefly experimented with other vehicle types, including a NASCAR stock car, a Subaru
WRX STI rally car, and a dune buggy. MTC DTL worked equally well on these other vehicles to
learn understeer and oversteer thresholds.

4 PackBot Rollover Prevention

For our second task, we developed an MTC-based controller to prevent rollover using a real
iRobot PackBot. The SAM for this task has a state variable for the robot’s pitch angle and an
action variable for the robot’s speed. The anchor point for the NORMAL regime is at zero pitch
and speed. The anchor point for the ROLLOVER regime is at maximum pitch and speed.

These experiments were performed using stock PackBot hardware. The PackBot’s pitch and roll
angles were determined using the robot’s standard onboard fluid pitch-roll sensor. The PackBot’s
speed was determined using its wheel encoders.

The role of the exploratory controller is performed by a human operator. Initially, translation and
rotation commands are sent unchanged to the robot. As the operator explores the space of robot
actions, DTL observes which combinations of pitch and speed result in rollover and learns the
boundaries between the NORMAL and ROLLOVER control regimes.

Dynamo: A Model Transition Framework for Dynamic
Stability Control and Body Mass Manipulation
Final Technical Report (W91CRB-11-C-0049)

© 2011, iRobot Corporation 17
Sponsored by the U.S. Government under contract No. W91CRB-11-C-0049.

The regime classifier identifies the current regime based on the output of the roll sensor:

 () {

where φ is the robot’s roll angle. This classifier would work equally well using the pitch angle.

DTL learns to predict rollover when the pitch angle exceeds a threshold function of velocity:

 ()

where θ is the robot’s pitch angle (0° = level, 90° = vertical), Toversteer is the rollover threshold
function, and v is the robot’s velocity.

DTL maintains a history of recent robot state-action pairs.

 {() () ()}

where H is the state-action history, θi is the robot’s pitch angle at i timesteps prior to the present
and vi is the robot’s velocity at i timesteps prior to the present and n is the number of entries in the
history. In our experiments, the timesteps were 0.1 seconds long and the history contained the
most recent 5 state-action values.

Figure 11: PackBot attempts to climb a tall obstacle and begins to roll over backwards

If the robot rolls over and rollover was not predicted, then for each state-action pair in the history,
DTL reduces the pitch threshold for the velocity and all greater velocities:

 () () (())

Dynamo: A Model Transition Framework for Dynamic
Stability Control and Body Mass Manipulation
Final Technical Report (W91CRB-11-C-0049)

© 2011, iRobot Corporation 18
Sponsored by the U.S. Government under contract No. W91CRB-11-C-0049.

If the current pitch angle exceeds the pitch threshold for the speed commanded by the operator

 ()

where vdesired is the desired velocity sent by the operator, then the DTL module will reduce the
speed command sent to the robot to the maximum speed that is not predicted to cause rollover:

 () | ()

where vcommand is the velocity command that is sent to the robot.

In each trial, we drove the PackBot forward at a fixed speed onto a tall obstacle (Figure 11). As
the robot drove forward, it reached a point where it rolled over backward. DTL then learned each
state-action pair in the history that led up to the rollover event and lowered the pitch thresholds
for the corresponding robot velocities. We repeated this procedure at three different speeds
(0.25 m/s, 0.5 m/s, and 1.0 m/s). DTL was able to learn how to prevent rollover at 0.25 m/s after
just 2 trials. The thresholds learned for 0.25 m/s were also sufficient to prevent rollover at 0.5 m/s
but not 1.0 m/s. After 5 more trials, DTL learned thresholds for preventing rollover at all speeds
up to 1.0 m/s.

Figure 12: SAM learned by DTL for the rollover prevention task. The NORMAL regime

anchor point is at zero pitch and speed. The ROLLOVER regime anchor point is at
maximum pitch and speed.

Figure 12 shows the SAM learned by DTL during a typical rollover prevention learning
experiment. This SAM indicates that if the robot ever exceeds a pitch angle of 47°, it should stop
moving forward. However, if the pitch angle is between 39° and 47°, it can move forward safely
as long as the speed is below the threshold function.

5 PackBot High-Centering Prevention

For our third task, we developed a regime classifier that learned to detect when the PackBot was
high-centered on an obstacle. High-centering occurs when the PackBot drives onto an obstacle;

Dynamo: A Model Transition Framework for Dynamic
Stability Control and Body Mass Manipulation
Final Technical Report (W91CRB-11-C-0049)

© 2011, iRobot Corporation 19
Sponsored by the U.S. Government under contract No. W91CRB-11-C-0049.

its momentum carries it on top of the obstacle; and the obstacle is tall enough to lift the PackBot
off its treads (Figure 13, left). Once the PackBot is high-centered, it can no longer move.
However, if the PackBot can detect that it is high-centered, it can rotate its flippers down to
contact the ground, and then drive off the obstacle (Figure 13, right).

Figure 13: PackBot becomes high-centered on obstacle and spins its tracks in the air (left),

High-centering prevention behavior uses flippers to free PackBot (right)

High-centering commonly occurs in the field when the PackBot is driving over rough terrain. The
ability to prevent high-centering is one of the capabilities requested by the warfighters.

To detect high-centering, our regime classifier learns the amount of vibration that occurs when
the robot is moving forward (NORMAL control regime) versus when it is high-centered and
spinning its tracks in the air (HIGH-CENTERED control regime). The average vibration
amplitude tends to be higher when the robot is moving then when it is high-centered. This is
especially true when moving over rough terrain, but even on a flat, indoor, carpeted surface, we
were able to detect the difference in amplitude between forward movement and spinning the
tracks in the air.

The vibration is measured using the PackBot's onboard fluid pitch-roll sensor and is measured in
terms of the rate of change in the robot's pitch angle. During learning, we drove the robot forward
at a set of speeds ranging from 0.0 to 0.5 m/s at 0.1 m/s increments, driving at each speed for 5
seconds. The pitch angle was sampled at 10 Hz, and for each velocity v, the difference between
each pitch angle and the previous pitch angle was stored as :

The average vibration amplitude for each velocity v was then computed as the average of these
differences, where n is the number of stored difference values for each velocity:

 ()
∑

We linearly interpolate this function for velocities other than ones observed during learning.

Dynamo: A Model Transition Framework for Dynamic
Stability Control and Body Mass Manipulation
Final Technical Report (W91CRB-11-C-0049)

© 2011, iRobot Corporation 20
Sponsored by the U.S. Government under contract No. W91CRB-11-C-0049.

Figure 14: High-centering vibration threshold learned as a function of track speed

A threshold function was then computed as the weighted average of the vibration rate observed
during NORMAL and HIGH-CENTERED control regimes:

 () () () ()

where w is the weight coefficient. To reduce false positive detections of high-centering, we used a
value of w of 0.75. As a result, the vibration rate must be significantly below the observed
vibration level for the NORMAL control regime for a period of time (5 seconds) before the
regime classifier determines that the robot is in a HIGH-CENTERED control regime.

Figure 14 shows the interpolated functions for (), (), and () based
on learning trials for the robot driving on a flat, carpeted surface. This is a particularly difficult
case because the vibration level during motion over flat, smooth terrain is relatively low. Driving
over rough terrain would result in higher values of vibration levels in the NORMAL regime,
making the task of detecting high-centering easier.

After learning, the high-centering escape behavior acts as a driver-assist capability during
teleoperation. The operator drives the robot normally, but if the vibration level remains below
threshold for the current commanded velocity for an extended period of time, the regime
classifier determines that the robot has become high-centered (Figure 13, left) . At that point, the
escape behavior automatically deploys the flippers to attempt to make contact with the ground
and commands the robot to move backwards (Figure 13, right). In most cases, this should result
in the robot moving back off the obstacle.

6 PackBot Active Weight Shifting

For our fourth task, we developed an MTC-based controller that used DTL to learn how to move
the PackBot’s manipulator arm to actively shift its center of gravity. The SAM for this task
includes a state variable for the robot’s pitch angle and an action variable for the rotation angle of
the arm’s shoulder joint. The anchor point for the NORMAL regime is at a pitch angle of zero
and a shoulder angle of zero (arm horizontal). The anchor point for the ROLLOVER regime is at
a pitch angle of 90° and a shoulder angle of 90° (arm vertical).

Dynamo: A Model Transition Framework for Dynamic
Stability Control and Body Mass Manipulation
Final Technical Report (W91CRB-11-C-0049)

© 2011, iRobot Corporation 21
Sponsored by the U.S. Government under contract No. W91CRB-11-C-0049.

The role of the exploratory controller is performed by a human operator. For each trial, the arm is
initially positioned with the shoulder joint in the vertical orientation. The operator drives the
robot forward at a fixed speed. As the robot climbs the obstacle, it reaches a point at which it tips
backward and rolls over. By rotating the shoulder joint, the robot can shift its center-of-gravity
forward and avoid rolling over backwards. The learning task is to determine the necessary arm
angle to prevent rollover as a function of the robot’s pitch angle.

Figure 15: PackBot climbs over obstacle using active weight shifting

For this task, the SAM is represented as an array of values where SAM(θ, α) represents the control
regime for the robot when its pitch angle is θ and its shoulder angle is α. Initially, all of the array
values are set to NORMAL. When the regime classifier identifies that the robot has entered the
ROLLOVER regime, DTL updates the SAM for all entries in the history H:

 () ()

where θi is the robot’s pitch angle at i timesteps prior to the present, αi is the robot’s shoulder
angle at i timesteps prior to the present, and θmargin is a safety margin (20° in these experiments).
Whenever DTL detects a rollover event, it predicts that rollover will occur again at the same or
greater pitch and the same or greater shoulder angle.

As in the rollover prevention task, the DTL acts as a driver-assist behavior for weight shifting.
DTL predicts that the robot will rollover when

 ()

where θ is the current pitch angle and α is the current shoulder angle.

Dynamo: A Model Transition Framework for Dynamic
Stability Control and Body Mass Manipulation
Final Technical Report (W91CRB-11-C-0049)

© 2011, iRobot Corporation 22
Sponsored by the U.S. Government under contract No. W91CRB-11-C-0049.

When DTL predicts rollover, it overrides the current operator command, stops the robot, and
rotates the shoulder joint forward to the maximum angle for which it does not predict
ROLLOVER:

 () | ()

where αcommand is the joint position command that is sent to the robot.

Using this MTC-based controller, the operator can simply command the robot to move forward,
and the controller will automatically rotate the arm forward to shift the center-of-gravity and
prevent rollover (Figure 15).

Figure 16: SAM learned by DTL for the weight shifting task. The anchor point for the

NORMAL regime is at zero pitch and shoulder angle. The anchor point for the ROLLOVER
regime is at the maximum pitch and shoulder angle.

Figure 16 shows a SAM learned by DTL for weight shifting. In this SAM, the pitch and shoulder
axes are quantized at 10° intervals, where each grid cell corresponds to a single SAM array value.
In our experiments, DTL was able to learn each SAM in 4 trials. A tradeoff exists between the
resolution of the SAM grid and the number of trials required. Finer resolutions allow more
precise identification of the regime boundary, but require more trials to learn an effective SAM.

7 Related Work

Reinforcement learning techniques [Kaelbling, Littman & Moore 96], such as temporal difference
learning [Sutton 88] and Q learning [Watkins 89], have been applied to a wide range of robot
control problems, including robot juggling [Schaal & Atkeson 94], obstacle avoidance and
corridor following [Smart & Kaelbling 02], quadruped obstacle negotiation [Lee, et al. 06] and
gap jumping [Schaal & Atkeson 10], helicopter control [Abbeel, et al. 07], and many others. Most
previous research has been done offline or using discrete, rather than continuous state-spaces, but
[Schaal & Atkeson 94] and [Abbeel, et al. 07] are examples of real-time control learning in
continuous state and action spaces.

Dynamo: A Model Transition Framework for Dynamic
Stability Control and Body Mass Manipulation
Final Technical Report (W91CRB-11-C-0049)

© 2011, iRobot Corporation 23
Sponsored by the U.S. Government under contract No. W91CRB-11-C-0049.

DTL is similar to reinforcement learning in that it uses reinforcement in the form of undesirable
regime detection to learn an appropriate control policy. Like most successful applications of
reinforcement learning to robotics, DTL makes use of domain knowledge about the problem to
reduce the search space so that learning can occur in a tractable amount of time [Kaelbling,
Littman & Moore 96].

DTL differs from previous reinforcement learning algorithms in modeling the state-action space
as a set of linear control problems linked by nonlinear transitions. DTL requires additional a
priori domain knowledge in terms of the control regimes that may occur and the state-action pairs
(anchor points) that are most likely to generate these control regimes. DTL also requires the
ability to identify the current control regime based on sensor inputs.

The payoff for these additional requirements is greatly accelerated learning. While many
reinforcement learning algorithms require hundreds or thousands of trials and hours of real time
to learn robotics tasks, DTL is able to learn highly dynamic control tasks in minutes, often with
the number of required trials in the single digits.

However, our initial experiments have been conducted using low-dimensional state-action spaces.
As with all learning techniques, DTL will need to address the curse of dimensionality. We believe
the DTL will scale well due to the large amount of information that can be gleaned from a single
observation and the use of domain knowledge in the form of anchor points.

DTL is also similar to adaptive fuzzy control [Passino & Yurkovich 94] in terms of using
heuristic a priori knowledge about the control problem and then modifying the initial control rules
based on feedback from the environment. DTL differs both in the specific learning algorithm
provided and in the focus on learning behaviors that must deal with abrupt discontinuities in
control regimes, such as the transition that occurs from normal driving to snap oversteer.

One limitation of our approach is that the robot must be able to survive the undesirable control
regimes experienced during learning or be cheap enough to be easily replaced. In the case of the
PackBot learning rollover prevention and weight shifting, it was very useful that we had a rugged
platform that could survive multiple falls. In the case of high-speed vehicle control learning with
full-sized vehicles, learning may need to occur in simulation first and then be transferred to the
actual vehicle for testing.

One way to address this limitation would be to modify the exploratory controller so that it starts
with maximally conservative behavior and gradually becomes more aggressive over time. This
would reduce the negative effects on the platform, but may require more learning time. We plan
to investigate this approach in Phase II of the Dynamo Project.

A second limitation is the lack of an ability to unlearn overly conservative threshold values
resulting from false positive regime classifications. A way to address this would be to
probabilistically attempt to exceed current thresholds by a small amount. If these attempts do not
result in negative control regimes, then the corresponding thresholds would be increased. We plan
to explore this approach in Phase II.

8 Public Website

We have launched a public website for the Dynamo Project at:

http://www.irobot.com/dynamo

This website contains a summary of the research performed under the Dynamo Project, along
with publications, videos, and source code.

Dynamo: A Model Transition Framework for Dynamic
Stability Control and Body Mass Manipulation
Final Technical Report (W91CRB-11-C-0049)

© 2011, iRobot Corporation 24
Sponsored by the U.S. Government under contract No. W91CRB-11-C-0049.

9 Phase II Plans

9.1 DTL Scaling and Enhancements

In the Dynamo Feasibility Study, we have introduced MTC, a new framework for developing
robot controllers, and DTL, a new algorithm for fast online learning of control regime thresholds.
We have demonstrated that DTL can rapidly learn these thresholds in three different task
domains: preventing understeer and oversteer for simulated high-speed vehicles, preventing
rollover for the PackBot, and enabling the PackBot to use active weight shifting to climb
obstacles that it would not be otherwise able to climb.

In Phase II, we plan to study how DTL scales to higher-dimensional state-action spaces. For
example, we plan to develop rollover prevention for lateral as well as longitudinal rollover, and to
develop weight shifting behaviors in three dimensions to maintain balance over rough terrain. We
also plan to study how to implement “unlearning” to correct for noisy data or incorrect regime
classifications. In addition, we plan to investigate exploratory behaviors that, instead of beginning
with maximally aggressive behavior, start with conservative behavior and gradually become more
aggressive.

9.2 High-Speed Small UGV DSC Experiments

We will apply the results from the Feasibility Study to a UGV hardware platform (Figure 17). We
plan to modify an existing high-speed, radio-controlled vehicle platform, such as the Traxxas
Slash 4x4, for use as the Dynamo vehicle testbed. The Slash 4x4 is a 1/10 scale vehicle (22” long
x 11” wide x 5” high) with a top speed of 60 mph. We integrate a computational payload with
sensors (GPS, IMU, LIDAR) for vehicle control.

Figure 17: Dynamo high-speed small UGV hardware platform

We will perform experiments to measure the MTC DSC controller’s ability to learn the transition
boundaries between full grip, understeer, and oversteer on a physical vehicle. A key challenge
will be to make the learning algorithm sufficiently robust to deal with uncertainties in velocity
(from GPS) and yaw rate (from the IMU) estimates.

9.3 Integrating Body Mass Manipulation with DSC for High-Speed Control

We also plan to investigate the integration of body mass modulation with DSC, using a unique
two-dimensional weight shifting payload (Figure 18) that is capable of quickly shifting the

Dynamo: A Model Transition Framework for Dynamic
Stability Control and Body Mass Manipulation
Final Technical Report (W91CRB-11-C-0049)

© 2011, iRobot Corporation 25
Sponsored by the U.S. Government under contract No. W91CRB-11-C-0049.

vehicle center-of-gravity. This payload will be similar to a gantry robotic system with two linear
actuators that can move a weight rapidly in two-dimensional XY space, requiring just 0.5 seconds
to move the weight from front to back and 0.2 seconds to move the weight from right to left.

Figure 18: Two-dimensional weight shifting payload

We will extend our MTC-based DSC controller to incorporate states and actions of the weight
shifting payload into the state-action space. Initially, we will perform experiments with statically-
modeled changes to the vehicle’s center-of-gravity. For example, the controller may move the
weight to the rear to avoid oversteer, but it will not accelerate and decelerate the weight so
quickly that we need to consider the dynamic effects of this motion on vehicle stability.
Subsequently, we will examine the dynamic effects of accelerating and decelerating the weight
quickly. A key challenge will be to maintain tractability of learning as the dimensionality of the
state-action space increases.

9.4 PackBot Adaptive Rough Terrain Mobility

We will extend our research in rough terrain mobility to more complex outdoor environments,
such as the terrain in our PackBot Test Facility. The PackBot Test Facility includes rock piles,
rubble piles, sand pits, simulated railroad tracks, and a shipping container, as well as other
examples of challenging terrain. We will extend our Rollover Prevention and Active Weight
Shifting capabilities to deal with complex 3D real-world terrain, including body mass
manipulation to maintain stability along both pitch and roll axes.

We will also investigate how to adapt in real-time to changes in terrain, such as moving from
rocky terrain to sandy terrain. This will incorporate DTL extensions such as unlearning and
progression from conservative to aggressive behavior in the exploratory controller.

10 References

[Abbeel, et al. 07] P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng, "An application of
reinforcement learning to aerobatic helicopter flight," in Advances in Neural Information
Processing Systems 19: Proc. 20st Annual Conf. (NIPS 2006), B. Scholkopf, J. Platt, and
T. Hofmann, Eds., Cambridge, MA: MIT Press, 2007, pp. 1-8.

[Jackowski 10] Jeffery Jackowski, Deputy Project Manager, Robotic Systems Joint Project
Office, RSJPO PM Priority List Submitted to JGRE, January 2010.

Dynamo: A Model Transition Framework for Dynamic
Stability Control and Body Mass Manipulation
Final Technical Report (W91CRB-11-C-0049)

© 2011, iRobot Corporation 26
Sponsored by the U.S. Government under contract No. W91CRB-11-C-0049.

[Kaelbling, Littman & Moore 96] L. P. Kaelbling, M. L. Littman, and A. W. Moore,
“Reinforcement learning: A survey,” Journal of Artificial Intelligence Research, vol. 4,
pp. 237-285, 1996.

[Lee, et al. 06] H. Lee, Y. Shen, C.-H. Yu, G. Singh, and A. Ng, “Quadruped robot obstacle
negotiation via reinforcement learning,” in Proc. 2006 IEEE Int. Conf. on Robotics and
Automation, Orlando, FL, 2006, pp. 3003-3010.

[Passino & Yurkovich 94] K. Passino and S. Yurkovich, Fuzzy Control, Menlo Park, CA:
Addison-Wesley Longman, 1994.

[Schaal & Atkeson 94] S. Schaal and C. G. Atkeson, “Robot juggling: An implementation of
memory-based learning,” Control Systems Magazine, vol. 14, no. 1, pp. 57-71, 1994.

[Schaal & Atkeson 10] S. Schaal and C. G. Atkeson, “Learning control in robotics,” IEEE
Robotics & Automation Magazine, vol. 17, no. 2, pp. 20-29, 2010.

[Smart & Kaelbling 02] W. D. Smart and L. P. Kaelbling, “Effective reinforcement learning for
mobile robots," in Proc. 2002 IEEE Int. Conf. on Robotics and Automation, Washington,
DC, 2002, pp. 3404-3410.

[Sutton 88] R. S. Sutton, “Learning to predict by the methods of temporal differences,” Machine
Learning, vol. 3, pp. 9-44, 1988.

[Watkins 89] C. Watkins, “Learning from delayed rewards,” Ph.D. dissertation, University of
Cambridge, Cambridge, UK, 1989.

Dynamo: A Model Transition Framework for Dynamic
Stability Control and Body Mass Manipulation
Final Technical Report (W91CRB-11-C-0049)

© 2011, iRobot Corporation 27
Sponsored by the U.S. Government under contract No. W91CRB-11-C-0049.

11 Appendix: Abbreviations

ABS Anti-lock Braking System

DNF Did Not Finish

DTL Dynamic Threshold Learning

DSC Dynamic Stability Control

EOD Explosives Ordnance Disposal

IED Improvised Explosive Device

MRAS Model Reference Adaptive System

MTC Model Transition Control

N/A Not Applicable

PID Proportional-Integral-Derivative

RSJPO Robotic Systems Joint Projects Office

SAM State-Action Map

STR Self-Tuning Regulator

TORCS The Open Race Car Simulator

UGV Unmanned Ground Vehicle

