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1  Introduction 

 

 
Figure 1: Rubble from a destroyed building in Afghanistan (left),  

Air Force Sergeant prepares to send PackBot on mission to incident area (right) 

Ground robots, such as the iRobot PackBot, have saved hundreds of lives in Iraq and Afghanistan 
by helping soldiers safely inspect and disarm improvised explosive devices (IEDs) (Figure 1). 
However, even state-of-the-art robot control systems fail to approach the adaptive, versatile 
mobility demonstrated by humans and animals on an everyday basis. In order to extend the 
applicability of ground robots to a wider range of missions, fundamental advances are needed to 
provide robust mobility in unstructured, dynamic, natural environments. 

One of the common criticisms of currently deployed UGVs is that they are too slow. The typical 
standoff distance for an EOD team investigating an IED is 200-500 meters. At top speed (5.8 
mph), a PackBot would take over 3 minutes to travel downrange to an IED 500 meters away. 
Though a defensive perimeter is setup around the EOD teams, 3 minutes is long enough to setup 
and deploy mortars or for snipers to take action. Reducing this time window is critical. The 
Robotic Systems Joint Project Office (RSJPO) has identified the need for faster UGVs as a top 
priority for Army and Marine Corps warfighters [Jackowski 10]. 

 
Figure 2: Italian soldier inspects IED in culvert in Afghanistan (left),  

iRobot PackBot retrieves pipe bomb from culvert (right) 

We envision UGVs that can travel 30-45 mph or faster which would enable their use in rapid 
reconnaissance and high-optempo infantry assault missions. At 45 mph, a high-speed UGV could 
reach an IED 500 meters away in just 25 seconds. However, high-speed UGVs are difficult to 
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control manually, particularly on the dirt or sand surfaces that are common on the battlefield. On 
these surfaces, the vehicle can skid or lose traction while cornering and can become airborne from 
even modest terrain variation. 

Another urgent warfighter need is for UGVs that can robustly negotiate rough terrain. IEDs are 
often emplaced in rubble or in culverts next to roads (Figure 2). These locations can be difficult 
for a soldier to access without putting himself at risk. Once the soldier is close enough to 
determine that an IED is present, he may be within the kill radius. UGVs can approach these 
IEDs while keeping soldiers out of harm’s way, but UGVs are difficult to teleoperate over rough 
terrain and often have problems with rolling over or getting high-centered on obstacles. When 
this occurs, a solider often must walk out to rescue the robot, putting himself at risk. 

 
Figure 3: Simulated Ferrari controlled by MTC races on an alpine road course (left),  

PackBot climbs obstacle using MTC-controlled active weight shifting (right) 

The Dynamo Project is developing real-time learning techniques for high-speed vehicle control 
and robust mobility over rough terrain.  We have developed Model Transition Control (MTC), a 
novel framework for modeling nonlinear control problems, and Dynamic Threshold Learning 
(DTL), a real-time, online algorithm that learns to keep a robot within a desired control regime. 
During the Dynamo Feasibility Study, we have conducted research to validate the potential of our 
approach.  In particular, we have: 

 Applied DTL to learn an MTC Dynamic Stability Control (DSC) behavior for a 
simulated high-speed race car traveling at speeds up to 210 kph (130 mph) (Figure 3, 
left). 

 Developed an adaptive regime classifier that can detect high-centering on a real iRobot 
PackBot and trigger an escape behavior. 

 Applied DTL to learn an MTC rollover prevention behavior that prevents the PackBot 
from rolling over in rough terrain. 

 Applied DTL to learn an MTC weight shifting behavior that enables the PackBot to 
actively adjust its center-of-gravity to climb over tall obstacles (Figure 3, right). 

The results from the Feasibility Study indicate that MTC and DTL can be applied to wide range 
of adaptive mobility tasks, and that these techniques can be used to quickly learn the dynamic 
limits of both wheeled and tracked platforms in different environments.  The Dynamo Project is 
now ready to move on to the next phase.   In Phase II, we will use MTC and DTL to learn semi-
autonomous control behaviors for real, high-speed, small UGVs that can travel at speeds up to 
70 kph (45 mph), and we will extend our work on adaptive rough terrain mobility to more 
complex real-world terrain, such as rock piles and rubble piles. 
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2 Detailed Technical Approach 

2.1 Model Transition Control (MTC) 

Controlling a vehicle in natural terrain is an inherently nonlinear problem that requires adaptation 
to changes in the interaction between vehicle and environment. Well-understood techniques, such 
as Model Reference Adaptive Systems (MRAS) and Self-Tuning Regulators (STR), exist for 
developing adaptive controllers for linear control problems [Åström and Wittenmark, 2008], but 
there are no general solutions for arbitrary nonlinear control problems. 

We propose Model Transition Control (MTC) as a new framework for modeling nonlinear 
control problems and developing nonlinear control systems. While the space of nonlinear control 
problems is extremely large, we can make this space more tractable through the use of domain 
knowledge. The key insight of MTC is that UGV control problems tend to consist of relatively 
linear control regimes that are linked by rapid nonlinear transitions. This insight motivates the 
state-action map (Figure 4), which takes the current vehicle state and proposed vehicle action as 
inputs and outputs the regime that will result if the proposed action is taken. For example, the 
state-action map may say that if you’re driving at high speed, and you turn the steering wheel 
hard to the right and slam on the brakes, then you will end up in the oversteer regime. At the same 
time, it may also say that you can turn less sharply and brake more gradually and remain in the 
normal grip regime. 

 
Figure 4: State-action map 

For a concrete example, consider the dynamic transition that occurs when a vehicle’s brakes lock 
up. Before the brakes lock up, vehicle deceleration can be approximated as a linear function of 
braking force at the wheels. After the brakes lock up, vehicle deceleration is no longer a function 
of braking force. Instead, deceleration becomes a function of vehicle weight, velocity, and the 
sliding coefficient of friction between the tires and the ground. 

Anti-lock braking systems (ABS) handle this by monitoring the rotational speed of each wheel 
and detecting when one of those wheels starts moving much slower than the others, indicating 
that it is about to lock up. ABS then reduces the braking force at that individual wheel, allowing it 
to start moving faster. After the wheel starts moving, ABS increases the braking force again until 
it senses that the wheel is about to lock up again. ABS allows the average driver to stop a car in a 
relatively short distance by simply pressing the brake hard and holding it down. However, 
professional race drivers can achieve even better performance through a technique known as 
threshold braking. In threshold braking, the driver learns the point at which the brakes start to 
lock up and then applies slightly less pressure. This provides the maximum braking force to the 
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wheels, as opposed to ABS which alternates between maximum braking force (no lock up) and 
reduced braking force (lock up). 

Like a professional race driver, MTC DSC will learn the point at which the brakes will lock up 
for a given vehicle state. A simplified two-dimensional version of the corresponding state-action 
map (SAM) is shown in Figure 5. In reality, the state-action map would have multiple dimensions 
for both vehicle state and potential actions. This map shows that small amounts of braking force 
will never cause the brakes to lock up, so the vehicle will remain in the normal grip regime. The 
map also shows that, at low speeds, full braking can be applied without causing lock up. At high 
speeds, hard braking will result in a skid, as indicated by the red region showing the skid regime 
in the map. 

 
Figure 5: State-action map for braking 

Given the vehicle state and a naïve action that might be taken by an inexperienced driver or 
generated by a simple PID control loop, we can use the state-action map to identify the resulting 
control regime. If the line corresponding to the current vehicle slate intersects the region 
corresponding to the desired control regime, we can find an action along that line that will result 
in the desired control regime (Figure 5). In practice, the current vehicle state will be represented 
by an n-dimensional manifold corresponding to the n degrees-of-freedom in the control space. 
For low-dimensional spaces, an exhaustive search can be used to find the action closest to the 
naïve action that will put the vehicle in the desired control regime. For high-dimensional spaces, 
exhaustive search is computationally infeasible, so a Monte Carlo approach will be used instead, 
with a large number of actions being generated randomly, and the action that is closest in 
Euclidean space to the naïve action will be selected. 

Figure 6 shows a block diagram for an MTC controller using Dynamic Threshold Learning 
(DTL). An exploratory controller provides raw commands based on sensor inputs, which are used 
to explore the state-action space. For example, this could be a PID controller or a simple set of 
reactive rules. Alternately, a human operator can provide teleoperation inputs that serve the role 
of the exploratory controller. The exploratory controller provides aggressive responses that are 
likely to result in both desirable and undesirable control regimes. As the MTC controller learns 
the SAM, it gradually limits these responses to remain within the desired control regime. 

If the DTL module predicts that the raw command output by the exploratory controller will result 
in an undesirable control regime, then the DTL will modify the output in one of two ways. First, 
it can modify the control law parameters in the exploratory controller so that it will only generate 
outputs that remain within the desired control regime. Second, it can apply explicit limits to the 
command outputs via the arbiter. 
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Figure 6: Block diagram for MTC controller 

The net result is that an MTC-controlled robot will initially behave very aggressively, and this 
will result in the robot experiencing undesirable control regimes. DTL will quickly learn which 
state-action combinations lead to undesirable control regimes and will modify the control system 
so that it no longer directs the robot into these regimes. After a brief learning period, the MTC-
based control system will be able to keep the robot within the desired control regime regardless of 
dynamic changes in the environmental inputs. 

2.2 Dynamic Transition Learning (DTL) 

The MTC framework is compatible with a wide variety of learning techniques. We have 
developed a novel learning algorithm that we call dynamic transition learning (DTL), which 
makes use of domain knowledge related to vehicle dynamics to speed up the learning process. 
Transitions between vehicle control regimes tend to occur when some physical threshold (e.g. tire 
adhesion) is exceeded. This allows us to generalize from a single observation to all other points in 
the state-action space that exceed the same threshold in the same way. By making this assumption 
of monotonicity in regime transition thresholds, we sacrifice some generality in terms of the 
functions that can be learned, but in return, we gain very fast learning. A key feature of our 
approach is that all learning takes place online as the vehicle moves through the world. Initially, 
the vehicle’s motions are controlled by the exploratory controller, but DTL continuously learns 
regime transition dynamics as the vehicle moves through the world and continuously improves 
vehicle performance via MTC. 

We assume a bounded state-action space where each state can vary between statemin and statemax 
and each action can vary between actionmin and actionmax, and we define an anchor point AREGIME 
in state-action space for each REGIME. This anchor point corresponds to the combined state and 
action that is most likely be part of the corresponding control regime. In the case of braking, 
skidding is most likely to occur when the vehicle is traveling at the maximum speed and 
maximum brake effort is applied. So the anchor point for the skid control regime is defined by: 

     ASKID=(vmax, brakemax) 

We define a regime identification function IDENT such that: 

     IDENT(Si,Ai) = REGIME 

Where Si is a state vector, Ai is an action vector, and REGIME is the control regime that applies 
when action Ai is executed in state Si. 
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Given that IDENT(Si,Ai) = REGIME, then for any other point in state-action space (Sj,Aj), we 
assume that IDENT(Sj,Aj) = REGIME, if for each state variable state in Sj: 

  statei ≤ statej ≤ AREGIME(state) or statei ≥ statej ≥ AREGIME(state) 

And for each action variable action in Aj: 

  actioni ≤ actionj ≤ AREGIME(action) or actioni ≥ actionj ≥ AREGIME(action) 

Where AREGIME(state) is the value of state variable state for the REGIME anchor point, and 
AREGIME(action) is the value of action variable action for the REGIME anchor point. In other 
words, if the new state-action point is closer to the anchor point along every axis, we can infer 
that it corresponds to the same regime. If (Sj,Aj) is not within the corresponding region for any 
observation, IDENT returns the default regime. This allows DTL to rapidly converge to an 
approximate model of the system dynamics with a small number of observations.  

 
Figure 7: Using DTL to learn SKID regime boundaries from a small number of observations 

(black circles) 

Figure 7 shows how a handful of observations can be used to create a reasonable model of the 
SKID regime in the braking example. DTL constructs a model of the boundaries between control 
regimes with a relatively small number of observations. Points near regime boundaries are 
particularly useful for constructing this model, and this suggests the exploratory controller should 
drive the vehicle close to its limits to speed up learning. In higher-dimensional spaces, more 
observations will be necessary, but we believe that DTL will scale well since each observation 
can update the regime information for a large volume of the state-action space. 

3 Simulated High-Speed Vehicle Control 

For our first experiments with DTL, we used The Open Race Car Simulator (TORCS), an open-
source high-speed vehicle simulator. Source code for TORCS is available online at 
http://torcs.sourceforge.net. We chose TORCS because it provides physical modeling of high-
speed wheeled vehicles, including tire-surface interaction for different surface materials and 
geometries, aerodynamic drag, and handling parameters for different vehicles. TORCS also 
provides an easy-to-use interface for implementing autonomous driving behaviors and linking 
these behaviors with the simulator. 

We developed an MTC-based dynamic stability control (DSC) system for simulated TORCS 
vehicles to prevent understeer and oversteer. Conventional DSC systems are only capable of 
reacting to understeer and oversteer once they occur. These systems detect the difference between 
the actual and commanded yaw rates and then apply brakes at individual wheels and/or reduce the 
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throttle to reduce understeer/oversteer. Our MTC-based DSC system predicts which state-action 
combinations will result in understeer or oversteer. It then modifies the steering and throttle 
commands to prevent understeer and oversteer from occurring in the first place. 

3.1 Exploratory Controller 

The exploratory controller attempts to steer the car toward the center of the current track segment 
while maintaining a desired speed. The steering control rule is: 

 

       (           )  
    
      

 

 

where θsteer is the steering command, θtrack is the track orientation in world coordinates, θcar is the 
vehicle heading in world coordinates, ycar is the lateral position of the car relative to the current 
track segment, and wtrack is the width of the current track segment. 

The speed control rule is: 
 

    (                 ) 
 

where a is the acceleration command, kv is the proportional control gain, vdesired is the desired 
velocity, and vcurrent is the current velocity. Initially, vdesired is set to the maximum speed of the 
vehicle. 

3.2 Preventing Understeer 

We define an understeer threshold that is a function of speed, turn radius, and the friction 
coefficient of the track surface. This threshold specifies the maximum speed that the vehicle can 
drive for a given turn radius without risking understeer. 

The maximum traction available is given by: 
 

              
 

where F is the force applied by the tires, m is the mass of the vehicle, µ is the coefficient of 
friction, and g is the acceleration due to gravity. The lateral acceleration during a turn is: 
 

  
  

 
 

 

where a is the lateral acceleration, v is the vehicle velocity, and r is the turn radius. We predict 
understeer when the lateral acceleration exceeds the maximum traction: 
 

  

 
                

 

where Tundersteer is the understeer threshold, which is initialized to its maximum value. 
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The task of learning the SAM for the understeer prevention behavior is equivalent to learning 
Tundersteer, assuming the regime boundary is linear in the space defined by the state variable for the 
track radius and the action variable for velocity. In this SAM, the anchor point for the GRIP 
regime is at maximum r and zero v. The anchor point for the UNDERSTEER regime is at 
minimum r and maximum v. 

Understeer is detected by the regime classifier when the absolute yaw rate  ̇        is less than 
the absolute steering command θsteer multiplied by a constant kundersteer that is less than 1: 

 
| ̇       |             |      | 

 

If understeer is detected, but understeer is not predicted, then Tundersteer is reduced to the current 
lateral acceleration: 

 

            
  

 
 

 

If DTL predicts that the current desired velocity will exceed the understeer threshold for the turn 
radius of the current track segment, 

 
        
 

 
             

 

then DTL reduces the desired velocity to a value that is not predicted to cause understeer: 
 

         √             

 

3.3 Preventing Oversteer 

We define an oversteer threshold as a function of steering and acceleration inputs. This threshold 
represents the maximum combination of steering and throttle inputs that can be commanded 
without triggering oversteer. 

We predict oversteer when 
 

      |      |                     
 

where ksteer and kaccel are fixed coefficients for weighting the steering and acceleration inputs and 
Toversteer is the oversteer threshold, which is initialized to its maximum value. 

The regime classifier detects oversteer when the absolute yaw rate  ̇        is greater than the 
absolute steering command θsteer multiplied by a constant koversteer that is greater than 1: 

 
| ̇       |            |      | 
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If oversteer is detected, but not predicted, then we reduce the oversteer threshold based on the 
current steering and acceleration commands: 

 
                 |      |          

 

If the steering and acceleration commands proposed by the exploratory controller are predicted to 
exceed the oversteer threshold: 

 
      |      |                             

 

where kmargin is a fixed safety margin, then we reduce the acceleration command (if possible) to a 
value that is not predicted to cause oversteer: 
 

        (
                 |      |         

      
  ) 

 

where amod is the modified acceleration command. We do not reduce the steering command, 
because doing so would be the equivalent of inducing understeer and would reduce the 
maneuverability of the vehicle. 

3.4 Experimental Results 

We tested the MTC DSC controller on a wide range of track types including speedways with long 
straights and sweeping turns that allow high speeds (Figure 8); complex road courses with tight 
corners that allow moderate speeds (Figure 9); and small dirt tracks with tight corners that require 
slow speeds (Figure 10). We experimented with tracks containing both asphalt (high friction) and 
dirt (low friction) surfaces. For these tracks, DTL maintained separate Tundersteer and Toversteer 
parameters for asphalt and dirt learned the correct parameters for the current terrain type. On a 
real vehicle, this would require a terrain classification system using sensors such as vision. 

In our initial experiments, we discovered that after the car began to understeer or oversteer, it 
would often end up switching rapidly between GRIP, UNDERSTEER, and OVERSTEER 
domains. Consider a driver who begins to spin out and then countersteers in the opposite 
direction, the car may end up snapping back and forth as the tires skid and grab intermittently. 
Once an understeer or oversteer event begins, the transitions between GRIP and UNDERSTEER 
and OVERSTEER occur at much lower speeds, steering angles, and acceleration inputs. As a 
result, the initial MTC DSC controller learned overly conservative regime limits and drove much 
more slowly than necessary. 
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Figure 8: MTC controller driving simulated Ferrari on speedway 

 
Figure 9: MTC controller driving simulated Ferrari on alpine road course 

 
Figure 10: MTC controller driving simulated Ferrari on dirt track 
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In order to prevent this, we added an event timer, tevent.  When tevent = 0, and understeer or 
oversteer is detected, the transition is learned by DTL, and tevent is set equal to tmax. At every time 
step, if tevent > 0, then tevent decremented by 1. If tevent > 0 and understeer or oversteer is detected, 
the event is ignored by DTL, but the event timer is reset to tmax. 

The result is that for a brief period of time, DTL ignores understeer and oversteer detections to 
avoid learning false positive information. A tradeoff exists between a low value of tmax, which 
will reduce the learning time, but increase false positives, and a high value of tmax, which will 
reduce false positives, but also increase learning time and increase the number of collisions. The 
TORCS simulator models collision damage, and if the car suffers too much damage, the 
simulation run is ended. So, if the value of tmax is set too high, the car may fail to finish the race 
due to collisions.  

The TORCS simulator package includes 34 tracks: 17 road tracks, 8 dirt tracks, and 9 oval tracks. 
We tested the MTC DTL controller on all 34 tracks, and we compared its performance with the 
reactive controller provided in Chapters 1-3 of Bernhard Wymann’s TORCS Robot Tutorial 
available at http://www.berniw.org/ (but without the traction control and ABS functions in 
Chapter 3.6). We also compared the performance of the MTC DSC controller with two different 
values of tmax, 100 timesteps (2 seconds) and 500 timesteps (10 seconds). 

The reactive controller differs from the MTC exploratory controller in knowing the friction 
coefficient of each track segment in advance and then commanding the maximum speed that it 
knows will not cause loss of traction. Thus, the reactive controller makes use of more a priori 
knowledge about the environment than is available to the MTC DTL controller. The reactive 
controller is also more conservative than the MTC DTL controller, even after learning, as the 
MTC DTL controller will allow some wheel slip as long as the understeer and oversteer 
thresholds are not exceeded.  Table 1 shows the lap times for reactive controller on all tracks. 

The key results from our experiments are: 

1) DTL is able to successfully learn thresholds for understeer and oversteer prevention 
across a wide range of track geometries and surface types. 

2) DTL is able to learn these thresholds very quickly, often within a single lap. 
3) In most cases, the MTC DSC controller can outperform the reactive controller, despite 

the fact that the reactive controller is provided with a prior information about the track 
characteristics that DTL has to learn through experience. 

4) In some cases, DTL will learn overly conservative thresholds from false positives that 
result in reduced performance. 

5) In other cases, DTL may not learn quickly enough, resulting in excessive damage to the 
vehicle. 

6) The maximum event time tmax parameter controls the tradeoff between false positive 
frequency and learning time.  Low values of tmax result in many false positives but rapid 
learning.  High values of tmax result in fewer false positives but slower learning. 

Table 2 shows the results of our experiments with tmax = 500.  All times are in seconds.  We 
measured the lap time for the MTC DSC controller on the first lap after learning had converged.  
For a fair comparison, we compared these lap times to the second lap time for the reactive 
controller (since this allowed the reactive controller to start the measured lap at speed, as with the 
MTC DSC controller). 
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Table 1: Lap times for reactive controller (seconds) 

 
In these experiments, the MTC DSC controller was able to successfully learn to prevent 
understeer and oversteer on 16 out 17 road tracks and 3 out of 8 dirt tracks. The MTC DSC 
controller was also able to complete all 9 oval tracks successfully, though learning was only 
needed on 2 tracks. 

 

Ferrari 360 Modena Reactive

Time for Lap 2

ROAD TRACKS

Alpine 1 203.18

E-Track 1 96.13

E-Track 2 110.15

E-Track 3 129.71

E-Track 4 144.69

E-Track 6 130.97

E-Road 105.82

CG Speedway 1 57.98

CG Track 2 80.11

CG Track 3 88.72

Olethros Road 1 153.52

Ruudskogen 87.87

Spring 663.41

Street 1 113.71

Wheel 1 116.3

Wheel 2 158.35

Aalborg 161.61

DIRT TRACKS

Dirt 1 47.14

Dirt 2 68.97

Dirt 3 79.5

Dirt 4 120.83

Dirt 5 47.04

Dirt 6 130.16

Mixed 1 66.42

Mixed 2 92.57

OVAL TRACKS

A-Speedway 46.49

B-Speedway 62.65

C-Speedway 52.99

D-Speedway 52.6

E-Speedway 64.31

E-Track 5 46.04

F-Speedway 58.5

G-Speedway 49.63

Michigan Speedway 48
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Table 2: Lap times for MTC DSC Controller with tmax = 500 
(DNF = Did Not Finish) 

 
On the tracks where the MTC DSC controller was successful, learning typically converged in 3 or 
less laps. On many tracks, the MTC DSC controller was able to learn how to prevent understeer 
and oversteer in less than a single lap. On most of the oval tracks, no learning was necessary, 
because the tracks were sufficiently banked to allow the cars to drive flat out for the entire track. 
On oval tracks, the exploratory controller was able to outperform the reactive controller even 
without learning, because it allowed the car to slide in the corners, while the reactive controller 
did not. 

The MTC DSC controller demonstrated significantly better performance (on those tracks where it 
was successful) than the reactive controller. On 24 out of 28 tracks, the MTC DSC controller was 
able to lap the track faster than the reactive controller, despite the additional a priori knowledge 
available to the reactive controller. On average, the MTC DSC controller was able to complete 
these 24 tracks in 17% less time than required by the reactive controller. 

 

Ferrari 360 Modena Reactive

Time for Lap 2

ROAD TRACKS

Alpine 1 203.18

E-Track 1 96.13

E-Track 2 110.15

E-Track 3 129.71

E-Track 4 144.69

E-Track 6 130.97

E-Road 105.82

CG Speedway 1 57.98

CG Track 2 80.11

CG Track 3 88.72

Olethros Road 1 153.52

Ruudskogen 87.87

Spring 663.41

Street 1 113.71

Wheel 1 116.3

Wheel 2 158.35

Aalborg 161.61

DIRT TRACKS

Dirt 1 47.14

Dirt 2 68.97

Dirt 3 79.5

Dirt 4 120.83

Dirt 5 47.04

Dirt 6 130.16

Mixed 1 66.42

Mixed 2 92.57

OVAL TRACKS

A-Speedway 46.49

B-Speedway 62.65

C-Speedway 52.99

D-Speedway 52.6

E-Speedway 64.31

E-Track 5 46.04

F-Speedway 58.5

G-Speedway 49.63

Michigan Speedway 48

Ferrari 360 Modena Reactive MTC DSC Controller t max  = 500

Time for Lap 2 Laps Required for Learning Time for First Lap After Learning Time vs. Reactive % Change

ROAD TRACKS

Alpine 1 203.18 1 187.25 -15.93 -7.84

E-Track 1 96.13 1 102.31 6.18 6.43

E-Track 2 110.15 2 91.31 -18.84 -17.10

E-Track 3 129.71 2 116.83 -12.88 -9.93

E-Track 4 144.69 1 125.87 -18.82 -13.01

E-Track 6 130.97 1 105.39 -25.58 -19.53

E-Road 105.82 1 165.52 59.70 56.42

CG Speedway 1 57.98 3 47.55 -10.43 -17.99

CG Track 2 80.11 1 63.17 -16.94 -21.15

CG Track 3 88.72 1 88.61 -0.11 -0.12

Olethros Road 1 153.52 2 255.99 102.47 66.75

Ruudskogen 87.87 1 79.21 -8.66 -9.86

Spring 663.41 1 652.02 -11.39 -1.72

Street 1 113.71 1 97.62 -16.09 -14.15

Wheel 1 116.3 1 225.48 109.18 93.88

Wheel 2 158.35 1 137.31 -21.04 -13.29

Aalborg 161.61 0 DNF N/A N/A

DIRT TRACKS

Dirt 1 47.14 3 DNF N/A N/A

Dirt 2 68.97 1 DNF N/A N/A

Dirt 3 79.5 5 69.88 -9.62 -12.10

Dirt 4 120.83 1 99.48 -21.35 -17.67

Dirt 5 47.04 3 DNF N/A N/A

Dirt 6 130.16 2 114.17 -15.99 -12.28

Mixed 1 66.42 1 DNF N/A N/A

Mixed 2 92.57 1 DNF N/A N/A

OVAL TRACKS

A-Speedway 46.49 2 36.7 -9.79 -21.06

B-Speedway 62.65 0 46.62 -16.03 -25.59

C-Speedway 52.99 0 38.89 -14.10 -26.61

D-Speedway 52.6 0 40.02 -12.58 -23.92

E-Speedway 64.31 0 47.68 -16.63 -25.86

E-Track 5 46.04 1 33.83 -12.21 -26.52

F-Speedway 58.5 0 43.29 -15.21 -26.00

G-Speedway 49.63 0 35.37 -14.26 -28.73

Michigan Speedway 48 0 36.83 -11.17 -23.27
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Table 3: Lap times for MTC DSC Controller with tmax = 100 
(DNF = Did Not Finish, * = race terminated) 

 
However, in the 4 out of 28 tracks where the MTC DSC controller lost to the reactive controller, 
it required an average of 56% more time. The reason is that for three of these tracks – E-Road, 
Ruudskogen, and Wheel 1 – the MTC DSC controller learned overly conservative thresholds and 
completed these tracks at much slower speeds. 

The MTC DSC controller failed to finish 6 out of the 34 tracks. On the one road track, Aalborg, 
the initial straightaway led directly into a sharp corner (Turn 1) with a stone wall, so the car 
crashed into the wall at full speed and sustained sufficient damage to end the race. On the 5 dirt 
tracks, the car was almost continuously understeering or oversteering, so the event timer was 
rarely reset, and DTL was unable to learn the correct thresholds. Eventually sufficient collision 
damage accumulated to end the race. 

Table 3 shows the results from the experiments with tmax = 100. With the reduced event time, 
DTL tended to learn more quickly, but also more conservatively. As a result, the MTC DSC 
controller was able to learn how to prevent understeer and oversteer on 33 out 34 tracks. The one 
exception was Aalborg, where the high-speed collision on Turn 1 ended the race immediately. 

Ferrari 360 Modena Reactive

Time for Lap 2

ROAD TRACKS

Alpine 1 203.18

E-Track 1 96.13

E-Track 2 110.15

E-Track 3 129.71

E-Track 4 144.69

E-Track 6 130.97

E-Road 105.82

CG Speedway 1 57.98

CG Track 2 80.11

CG Track 3 88.72

Olethros Road 1 153.52

Ruudskogen 87.87

Spring 663.41

Street 1 113.71

Wheel 1 116.3

Wheel 2 158.35

Aalborg 161.61

DIRT TRACKS

Dirt 1 47.14

Dirt 2 68.97

Dirt 3 79.5

Dirt 4 120.83

Dirt 5 47.04

Dirt 6 130.16

Mixed 1 66.42

Mixed 2 92.57

OVAL TRACKS

A-Speedway 46.49

B-Speedway 62.65

C-Speedway 52.99

D-Speedway 52.6

E-Speedway 64.31

E-Track 5 46.04

F-Speedway 58.5

G-Speedway 49.63

Michigan Speedway 48

MTC DSC Controller t max  = 100

Laps Required for Learning Time for First Lap After Learning Time vs. Reactive % Change

1 182.09 -21.09 -10.38

1 195.83 99.70 103.71

1 366.32 256.17 232.56

1 114.75 -14.96 -11.53

1 125.87 -18.82 -13.01

1 110.47 -20.50 -15.65

1 291.51 185.69 175.48

1 46.37 -11.61 -20.02

1 63.17 -16.94 -21.15

1 364.17 275.45 310.47

1 173.66 20.14 13.12

1* 420 332.13 377.98

1* 1200 536.59 80.88

1 97.61 -16.10 -14.16

1* 480 363.70 312.73

1 137.31 -21.04 -13.29

DNF DNF N/A N/A

1 41.42 -5.72 -12.13

2 96.6 27.63 40.06

1 116.42 36.92 46.44

1 99.48 -21.35 -17.67

1 45.36 -1.68 -3.57

1 113.97 -16.19 -12.44

1 53.93 -12.49 -18.80

1 75.54 -17.03 -18.40

2 36.7 -9.79 -21.06

0 46.62 -16.03 -25.59

0 38.89 -14.10 -26.61

0 40.02 -12.58 -23.92

0 47.68 -16.63 -25.86

0 33.83 -12.21 -26.52

0 43.29 -15.21 -26.00

0 35.37 -14.26 -28.73

0 36.83 -11.17 -23.27
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The cost of this greatly improved robustness was reduced performance on some tracks, due to the 
more conservative thresholds learned for understeer and oversteer. However, the MTC DSC 
controller was still able to outperform the reactive controller on 8 out of 17 road tracks, 6 out of 8 
of the dirt tracks, and all 9 oval tracks. On average, the MTC DSC controller was able to 
complete these 23 tracks in 15% less time than the reactive controller.  

On the 10 tracks where MTC DSC controller lost to the reactive controller, it required an average 
of 213% more time to complete these laps. This included three tracks where the race was 
terminated due to lack of progress. On these tracks, the MTC DSC controller learned extremely 
low thresholds, and drove extremely slowly. This occurred because the event timer expired while 
an understeer or oversteer event was still in progress. For example, the car would snap between 
oversteer and understeer at low speeds and at some points during this event, the steering wheel 
would be pointed nearly straight and acceleration was near zero. As a result, DTL could learn 
wrongly that understeer and oversteer could be trigger at low speeds with small steering and 
acceleration inputs. 

One conclusion we drew from these results is that DTL needs the capacity for unlearning false 
positives as well as a means for testing learning thresholds. One approach would be to 
probabilistically attempt to exceed learned thresholds by a small amount. As a result, these 
thresholds would slowly increase over time as long as the controller did not detect any understeer 
or oversteer events. 

An alternate approach would be to modify the exploratory controller so it starts with a very 
conservative strategy and gradually becomes more aggressive until undesirable control regimes 
are encountered. This would have the additional benefit of reducing the overall number of 
collisions and damage suffered by the vehicle. However, this could come at the cost of increased 
learning time. 

We plan to investigate both unlearning and the alternate exploratory controller strategy during 
Phase II of the Dynamo Project. 

We also briefly experimented with other vehicle types, including a NASCAR stock car, a Subaru 
WRX STI rally car, and a dune buggy. MTC DTL worked equally well on these other vehicles to 
learn understeer and oversteer thresholds. 

4 PackBot Rollover Prevention 

For our second task, we developed an MTC-based controller to prevent rollover using a real 
iRobot PackBot. The SAM for this task has a state variable for the robot’s pitch angle and an 
action variable for the robot’s speed. The anchor point for the NORMAL regime is at zero pitch 
and speed. The anchor point for the ROLLOVER regime is at maximum pitch and speed. 

These experiments were performed using stock PackBot hardware. The PackBot’s pitch and roll 
angles were determined using the robot’s standard onboard fluid pitch-roll sensor. The PackBot’s 
speed was determined using its wheel encoders. 

The role of the exploratory controller is performed by a human operator. Initially, translation and 
rotation commands are sent unchanged to the robot. As the operator explores the space of robot 
actions, DTL observes which combinations of pitch and speed result in rollover and learns the 
boundaries between the NORMAL and ROLLOVER control regimes. 
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The regime classifier identifies the current regime based on the output of the roll sensor: 
 

      ( )  {
              
                

 

 

where φ is the robot’s roll angle. This classifier would work equally well using the pitch angle. 

DTL learns to predict rollover when the pitch angle exceeds a threshold function of velocity: 
 

           (        ) 
 

where θ is the robot’s pitch angle (0° = level, 90° = vertical), Toversteer is the rollover threshold 
function, and v is the robot’s velocity. 

DTL maintains a history of recent robot state-action pairs. 
 

  {(     ) (     )  (     )} 

 

where H is the state-action history, θi is the robot’s pitch angle at i timesteps prior to the present 
and vi is the robot’s velocity at i timesteps prior to the present and n is the number of entries in the 
history. In our experiments, the timesteps were 0.1 seconds long and the history contained the 
most recent 5 state-action values. 

 
Figure 11: PackBot attempts to climb a tall obstacle and begins to roll over backwards 

If the robot rolls over and rollover was not predicted, then for each state-action pair in the history, 
DTL reduces the pitch threshold for the velocity and all greater velocities: 

 
 (     )                   (  )     (            (  )) 
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If the current pitch angle exceeds the pitch threshold for the speed commanded by the operator 
 

                (        ) 
 

where vdesired is the desired velocity sent by the operator, then the DTL module will reduce the 
speed command sent to the robot to the maximum speed that is not predicted to cause rollover: 
 

            ( ) |                 ( ) 
 

where vcommand is the velocity command that is sent to the robot. 

In each trial, we drove the PackBot forward at a fixed speed onto a tall obstacle (Figure 11). As 
the robot drove forward, it reached a point where it rolled over backward. DTL then learned each 
state-action pair in the history that led up to the rollover event and lowered the pitch thresholds 
for the corresponding robot velocities. We repeated this procedure at three different speeds 
(0.25 m/s, 0.5 m/s, and 1.0 m/s). DTL was able to learn how to prevent rollover at 0.25 m/s after 
just 2 trials. The thresholds learned for 0.25 m/s were also sufficient to prevent rollover at 0.5 m/s 
but not 1.0 m/s. After 5 more trials, DTL learned thresholds for preventing rollover at all speeds 
up to 1.0 m/s. 

 
Figure 12: SAM learned by DTL for the rollover prevention task. The NORMAL regime 

anchor point is at zero pitch and speed. The ROLLOVER regime anchor point is at 
maximum pitch and speed. 

Figure 12 shows the SAM learned by DTL during a typical rollover prevention learning 
experiment. This SAM indicates that if the robot ever exceeds a pitch angle of 47°, it should stop 
moving forward. However, if the pitch angle is between 39° and 47°, it can move forward safely 
as long as the speed is below the threshold function. 

5 PackBot High-Centering Prevention 

For our third task, we developed a regime classifier that learned to detect when the PackBot was 
high-centered on an obstacle. High-centering occurs when the PackBot drives onto an obstacle; 
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its momentum carries it on top of the obstacle; and the obstacle is tall enough to lift the PackBot 
off its treads (Figure 13, left). Once the PackBot is high-centered, it can no longer move. 
However, if the PackBot can detect that it is high-centered, it can rotate its flippers down to 
contact the ground, and then drive off the obstacle (Figure 13, right). 

 
Figure 13: PackBot becomes high-centered on obstacle and spins its tracks in the air (left), 

High-centering prevention behavior uses flippers to free PackBot (right) 

High-centering commonly occurs in the field when the PackBot is driving over rough terrain. The 
ability to prevent high-centering is one of the capabilities requested by the warfighters. 

To detect high-centering, our regime classifier learns the amount of vibration that occurs when 
the robot is moving forward (NORMAL control regime) versus when it is high-centered and 
spinning its tracks in the air (HIGH-CENTERED control regime). The average vibration 
amplitude tends to be higher when the robot is moving then when it is high-centered. This is 
especially true when moving over rough terrain, but even on a flat, indoor, carpeted surface, we 
were able to detect the difference in amplitude between forward movement and spinning the 
tracks in the air. 

The vibration is measured using the PackBot's onboard fluid pitch-roll sensor and is measured in 
terms of the rate of change in the robot's pitch angle. During learning, we drove the robot forward 
at a set of speeds ranging from 0.0 to 0.5 m/s at 0.1 m/s increments, driving at each speed for 5 
seconds.  The pitch angle was sampled at 10 Hz, and for each velocity v, the difference between 
each pitch angle      and the previous pitch angle        was stored as      : 

                  

The average vibration amplitude for each velocity v was then computed as the average of these 
differences, where n is the number of stored difference values for each velocity: 

 ( )  
∑      
 
   

 
 

We linearly interpolate this function for velocities other than ones observed during learning.  
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Figure 14: High-centering vibration threshold learned as a function of track speed 

A threshold function was then computed as the weighted average of the vibration rate observed 
during NORMAL and HIGH-CENTERED control regimes: 

 ( )                 ( ) (   )       ( ) 

where w is the weight coefficient. To reduce false positive detections of high-centering, we used a 
value of w of 0.75. As a result, the vibration rate must be significantly below the observed 
vibration level for the NORMAL control regime for a period of time (5 seconds) before the 
regime classifier determines that the robot is in a HIGH-CENTERED control regime. 

Figure 14 shows the interpolated functions for        ( ),               ( ), and  ( ) based 
on learning trials for the robot driving on a flat, carpeted surface. This is a particularly difficult 
case because the vibration level during motion over flat, smooth terrain is relatively low. Driving 
over rough terrain would result in higher values of vibration levels in the NORMAL regime, 
making the task of detecting high-centering easier. 

After learning, the high-centering escape behavior acts as a driver-assist capability during 
teleoperation. The operator drives the robot normally, but if the vibration level remains below 
threshold for the current commanded velocity for an extended period of time, the regime 
classifier determines that the robot has become high-centered (Figure 13, left) . At that point, the 
escape behavior automatically deploys the flippers to attempt to make contact with the ground 
and commands the robot to move backwards (Figure 13, right). In most cases, this should result 
in the robot moving back off the obstacle. 

6 PackBot Active Weight Shifting 

For our fourth task, we developed an MTC-based controller that used DTL to learn how to move 
the PackBot’s manipulator arm to actively shift its center of gravity. The SAM for this task 
includes a state variable for the robot’s pitch angle and an action variable for the rotation angle of 
the arm’s shoulder joint. The anchor point for the NORMAL regime is at a pitch angle of zero 
and a shoulder angle of zero (arm horizontal). The anchor point for the ROLLOVER regime is at 
a pitch angle of 90° and a shoulder angle of 90° (arm vertical). 
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The role of the exploratory controller is performed by a human operator. For each trial, the arm is 
initially positioned with the shoulder joint in the vertical orientation. The operator drives the 
robot forward at a fixed speed. As the robot climbs the obstacle, it reaches a point at which it tips 
backward and rolls over. By rotating the shoulder joint, the robot can shift its center-of-gravity 
forward and avoid rolling over backwards. The learning task is to determine the necessary arm 
angle to prevent rollover as a function of the robot’s pitch angle. 

 
Figure 15: PackBot climbs over obstacle using active weight shifting 

For this task, the SAM is represented as an array of values where SAM(θ, α) represents the control 
regime for the robot when its pitch angle is θ and its shoulder angle is α. Initially, all of the array 
values are set to NORMAL. When the regime classifier identifies that the robot has entered the 
ROLLOVER regime, DTL updates the SAM for all entries in the history H: 

 
 (     )                           (   )           

 

where θi is the robot’s pitch angle at i timesteps prior to the present, αi is the robot’s shoulder 
angle at i timesteps prior to the present, and θmargin is a safety margin (20° in these experiments). 
Whenever DTL detects a rollover event, it predicts that rollover will occur again at the same or 
greater pitch and the same or greater shoulder angle. 

As in the rollover prevention task, the DTL acts as a driver-assist behavior for weight shifting. 
DTL predicts that the robot will rollover when 

 
   (   )           

 

where θ is the current pitch angle and α is the current shoulder angle. 
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When DTL predicts rollover, it overrides the current operator command, stops the robot, and 
rotates the shoulder joint forward to the maximum angle for which it does not predict 
ROLLOVER: 

 
            ( ) |    (   )         

 

where αcommand is the joint position command that is sent to the robot.  

Using this MTC-based controller, the operator can simply command the robot to move forward, 
and the controller will automatically rotate the arm forward to shift the center-of-gravity and 
prevent rollover (Figure 15). 

 
Figure 16: SAM learned by DTL for the weight shifting task. The anchor point for the 

NORMAL regime is at zero pitch and shoulder angle. The anchor point for the ROLLOVER 
regime is at the maximum pitch and shoulder angle. 

Figure 16 shows a SAM learned by DTL for weight shifting. In this SAM, the pitch and shoulder 
axes are quantized at 10° intervals, where each grid cell corresponds to a single SAM array value. 
In our experiments, DTL was able to learn each SAM in 4 trials. A tradeoff exists between the 
resolution of the SAM grid and the number of trials required. Finer resolutions allow more 
precise identification of the regime boundary, but require more trials to learn an effective SAM. 

7 Related Work 

Reinforcement learning techniques [Kaelbling, Littman & Moore 96], such as temporal difference 
learning [Sutton 88] and Q learning [Watkins 89], have been applied to a wide range of robot 
control problems, including robot juggling [Schaal & Atkeson 94], obstacle avoidance and 
corridor following  [Smart & Kaelbling 02], quadruped obstacle negotiation [Lee, et al. 06] and 
gap jumping [Schaal & Atkeson 10], helicopter control [Abbeel, et al. 07], and many others. Most 
previous research has been done offline or using discrete, rather than continuous state-spaces, but 
[Schaal & Atkeson 94] and [Abbeel, et al. 07] are examples of real-time control learning in 
continuous state and action spaces. 
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DTL is similar to reinforcement learning in that it uses reinforcement in the form of undesirable 
regime detection to learn an appropriate control policy. Like most successful applications of 
reinforcement learning to robotics, DTL makes use of domain knowledge about the problem to 
reduce the search space so that learning can occur in a tractable amount of time [Kaelbling, 
Littman & Moore 96]. 

DTL differs from previous reinforcement learning algorithms in modeling the state-action space 
as a set of linear control problems linked by nonlinear transitions. DTL requires additional a 
priori domain knowledge in terms of the control regimes that may occur and the state-action pairs 
(anchor points) that are most likely to generate these control regimes. DTL also requires the 
ability to identify the current control regime based on sensor inputs. 

The payoff for these additional requirements is greatly accelerated learning. While many 
reinforcement learning algorithms require hundreds or thousands of trials and hours of real time 
to learn robotics tasks, DTL is able to learn highly dynamic control tasks in minutes, often with 
the number of required trials in the single digits. 

However, our initial experiments have been conducted using low-dimensional state-action spaces. 
As with all learning techniques, DTL will need to address the curse of dimensionality. We believe 
the DTL will scale well due to the large amount of information that can be gleaned from a single 
observation and the use of domain knowledge in the form of anchor points. 

DTL is also similar to adaptive fuzzy control [Passino & Yurkovich 94] in terms of using 
heuristic a priori knowledge about the control problem and then modifying the initial control rules 
based on feedback from the environment. DTL differs both in the specific learning algorithm 
provided and in the focus on learning behaviors that must deal with abrupt discontinuities in 
control regimes, such as the transition that occurs from normal driving to snap oversteer. 

One limitation of our approach is that the robot must be able to survive the undesirable control 
regimes experienced during learning or be cheap enough to be easily replaced. In the case of the 
PackBot learning rollover prevention and weight shifting, it was very useful that we had a rugged 
platform that could survive multiple falls. In the case of high-speed vehicle control learning with 
full-sized vehicles, learning may need to occur in simulation first and then be transferred to the 
actual vehicle for testing. 

One way to address this limitation would be to modify the exploratory controller so that it starts 
with maximally conservative behavior and gradually becomes more aggressive over time. This 
would reduce the negative effects on the platform, but may require more learning time. We plan 
to investigate this approach in Phase II of the Dynamo Project. 

A second limitation is the lack of an ability to unlearn overly conservative threshold values 
resulting from false positive regime classifications. A way to address this would be to 
probabilistically attempt to exceed current thresholds by a small amount. If these attempts do not 
result in negative control regimes, then the corresponding thresholds would be increased. We plan 
to explore this approach in Phase II. 

8 Public Website 

We have launched a public website for the Dynamo Project at: 

http://www.irobot.com/dynamo 

This website contains a summary of the research performed under the Dynamo Project, along 
with publications, videos, and source code. 
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9 Phase II Plans 

9.1 DTL Scaling and Enhancements 

In the Dynamo Feasibility Study, we have introduced MTC, a new framework for developing 
robot controllers, and DTL, a new algorithm for fast online learning of control regime thresholds. 
We have demonstrated that DTL can rapidly learn these thresholds in three different task 
domains: preventing understeer and oversteer for simulated high-speed vehicles, preventing 
rollover for the PackBot, and enabling the PackBot to use active weight shifting to climb 
obstacles that it would not be otherwise able to climb. 

In Phase II, we plan to study how DTL scales to higher-dimensional state-action spaces. For 
example, we plan to develop rollover prevention for lateral as well as longitudinal rollover, and to 
develop weight shifting behaviors in three dimensions to maintain balance over rough terrain. We 
also plan to study how to implement “unlearning” to correct for noisy data or incorrect regime 
classifications. In addition, we plan to investigate exploratory behaviors that, instead of beginning 
with maximally aggressive behavior, start with conservative behavior and gradually become more 
aggressive. 

9.2 High-Speed Small UGV DSC Experiments 

We will apply the results from the Feasibility Study to a UGV hardware platform (Figure 17). We 
plan to modify an existing high-speed, radio-controlled vehicle platform, such as the Traxxas 
Slash 4x4, for use as the Dynamo vehicle testbed. The Slash 4x4 is a 1/10 scale vehicle (22” long 
x 11” wide x 5” high) with a top speed of 60 mph. We integrate a computational payload with 
sensors (GPS, IMU, LIDAR) for vehicle control. 

 
Figure 17: Dynamo high-speed small UGV hardware platform 

We will perform experiments to measure the MTC DSC controller’s ability to learn the transition 
boundaries between full grip, understeer, and oversteer on a physical vehicle. A key challenge 
will be to make the learning algorithm sufficiently robust to deal with uncertainties in velocity 
(from GPS) and yaw rate (from the IMU) estimates. 

9.3 Integrating Body Mass Manipulation with DSC for High-Speed Control 

We also plan to investigate the integration of body mass modulation with DSC, using a unique 
two-dimensional weight shifting payload (Figure 18) that is capable of quickly shifting the 



Dynamo: A Model Transition Framework for Dynamic 
Stability Control and Body Mass Manipulation 
Final Technical Report (W91CRB-11-C-0049) 
 

© 2011, iRobot Corporation  25 
Sponsored by the U.S. Government under contract No. W91CRB-11-C-0049. 

vehicle center-of-gravity. This payload will be similar to a gantry robotic system with two linear 
actuators that can move a weight rapidly in two-dimensional XY space, requiring just 0.5 seconds 
to move the weight from front to back and 0.2 seconds to move the weight from right to left. 

 
Figure 18: Two-dimensional weight shifting payload 

We will extend our MTC-based DSC controller to incorporate states and actions of the weight 
shifting payload into the state-action space. Initially, we will perform experiments with statically-
modeled changes to the vehicle’s center-of-gravity. For example, the controller may move the 
weight to the rear to avoid oversteer, but it will not accelerate and decelerate the weight so 
quickly that we need to consider the dynamic effects of this motion on vehicle stability. 
Subsequently, we will examine the dynamic effects of accelerating and decelerating the weight 
quickly. A key challenge will be to maintain tractability of learning as the dimensionality of the 
state-action space increases. 

9.4 PackBot Adaptive Rough Terrain Mobility 

We will extend our research in rough terrain mobility to more complex outdoor environments, 
such as the terrain in our PackBot Test Facility. The PackBot Test Facility includes rock piles, 
rubble piles, sand pits, simulated railroad tracks, and a shipping container, as well as other 
examples of challenging terrain. We will extend our Rollover Prevention and Active Weight 
Shifting capabilities to deal with complex 3D real-world terrain, including body mass 
manipulation to maintain stability along both pitch and roll axes. 

We will also investigate how to adapt in real-time to changes in terrain, such as moving from 
rocky terrain to sandy terrain. This will incorporate DTL extensions such as unlearning and 
progression from conservative to aggressive behavior in the exploratory controller. 
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11 Appendix: Abbreviations 

ABS  Anti-lock Braking System 

DNF  Did Not Finish 

DTL  Dynamic Threshold Learning 

DSC  Dynamic Stability Control 

EOD  Explosives Ordnance Disposal 

IED  Improvised Explosive Device 

MRAS  Model Reference Adaptive System 

MTC  Model Transition Control 

N/A  Not Applicable 

PID  Proportional-Integral-Derivative 

RSJPO  Robotic Systems Joint Projects Office 

SAM  State-Action Map 

STR  Self-Tuning Regulator 

TORCS  The Open Race Car Simulator 

UGV  Unmanned Ground Vehicle 

 


