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ABSTRACT.  The propagation of elastic waves in a material can involve a number of complex 
physical phenomena, resulting in both subtle and dramatic effects on detected signal content. In recent 
years, the use of advanced methods for characterizing and imaging elastic wave propagation and 
scattering processes has increased, where for example the use of scanning laser vibrometry and 
advanced computational models have been used very effectively to identify propagating modes, 
scattering phenomena, and damage feature interactions.  In the present effort, the propagation of 
Lamb waves within a narrow, constrained geometry composite pi-joint structure are studied using 3D 
finite element models and scanning laser vibrometry measurements, where the effects of varying 
sample thickness, complex joint curvatures, and restricted structure geometries are highlighted, and a 
direct comparison of computational and experimental results are provided for simulated and realistic 
geometry composite pi-joint samples.  

 
Keywords: Composite Joint, Lamb Waves, Scanning Laser Vibrometry, Finite Element Modeling 
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INTRODUCTION 
 
 In recent years, the use of composite materials in aircraft structures has increased, 
where for example the newly developed Boeing B787 and Airbus A350-XWB aircraft are 
expected to contain nearly 50% composite materials [1]. With increased composite 
material use, the need for structural integrity and damage assessment in these important 
materials has also increased, where ultrasonic sensing using guided Lamb waves has 
drawn considerable interest [2-4]. As pointed out by Giurgiutiu [5], the appeal of guided 
Lamb waves involves its capability for accomplishing measurements over extended 
regions with a minimal number of sensors. Combined with the availability of inexpensive 
piezoelectric sensor disks, the efficient generation and use of guided Lamb waves for 
damage detection, location, and quantification in thin-walled plates and shells is showing 
continued promise for use many practical applications.   
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 The use of guided Lamb waves has been studied extensively, with an increasing 
emphasis on the detection of damage in composite laminate materials [6-9]. In much of the 
work done to date, however, guided wave sensing has focused on large, open, plate-like 
structures typically found in wings and fuselage structures [10].  Although these structures 
are of concern for aerospace applications, structural joints are historically of critical 
importance for aircraft structural integrity assessments [11]. An increasing need exists, 
therefore, for sensing technologies capable of characterizing complex geometry and 
localized joints in composite structures.  
 In this paper, the characterization of a restricted geometry composite joint is 
studied using Lamb waves generated by bonded piezo sensor disks. The sensors were 
strategically placed on either side of the composite joint, which included a varying 
thickness, multi-layer composite structure with a vertical riser. Finite element models and 
scanning laser vibrometry measurements were used to study the generation and 
propagation of Lamb waves in the material, where both undamaged and damaged 
specimens are considered. Extensive use of forward models were used to understand Lamb 
wave interactions with the structure, where scanning laser vibrometry measurements were 
used as a method for model validation. The remainder of the manuscript includes a brief 
technical background on Lamb wave sensing in a restricted geometry composite joint, 
followed by a description of the forward models, experimental studies, results, and 
conclusions.    
 
LAMB WAVE PROPAGATION IN A RESTRICTED GEOMETRY PI-JOINT 
 
Physics of Wave Propagation Problem 
 
 Guided Lamb waves involve the propagation of elastic waves in a bounded 
medium whose particle motion lies in the plane defined by the plate normal to the direction 
of wave propagation [12].  In contrast to bulk waves, guided Lamb waves involve two 
infinite sets of propagating modes, referred to as symmetric Sn and antisymmetric An 
modes. In most instances, the Sn and An modes are dispersive in nature, where the velocity 
of a propagating mode, cn, depends on the ultrasonic frequency, the elastic constants and 
density of the material, and the ratio of the plate thickness, d, and propagating mode 
wavelength, , which determine the effective stiffness of the plate [2,3,12].  For a given 
thickness d and frequency f, the characteristic propagating modes and wave velocities can 
be established using dispersion curves calculated from the Rayleigh–Lamb relations 
[2,3,12]. 
 

 
FIGURE 1.  Schematic diagram of symmetric and antisymmetric guided Lamb wave modes (left), and 
example of dispersion curve for propagating modes in a thin-walled, plate structure (right). 
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 It is widely known that the phenomenon of velocity dispersion can lead to 
significant complexity with respect to experimentally observed Lamb wave signals.  As a 
result, the use of single mode, or ‘tuned’, excitation methods have been developed, where 
a single fundamental mode is preferentially excited and other modes are suppressed. As 
originally described by Giurgiutiu [5], the direct shear-layer coupling between an 
adhesively bonded piezoelectric sensor disk and a structure can lead to an inherent and 
preferred coupling of energy into a particular Lamb wave mode by frequency tuning.  This 
represents a key feature for minimizing signal complexity in a practical Lamb wave 
measurement process when geometric/material complexity exists (Figure 2). The 
fundamental A0 mode, for example, can effectively be isolated for generation and 
detection purposes, where previous research has shown signal content simplification and 
enhanced interactions of A0 energy with delaminations in composite laminates [5].   
 

 
 
FIGURE 2.  Schematic diagram of thin 2-layer, restricted-geometry joint with a vertical web attachment. A 
schematic representation of the piezo disk sensor placement and propagating guided waves are also depicted 
where guided Lamb waves propagate in the thickness of the sample in the X-Y plane (top schematic view), 
and omnidirectional waves propagate away from the sensor in the Y-Z plane (bottom schematic view). 
 
 With regard to wave propagation in the restricted geometry sample depicted in 
Figure 2, several important points can be made. For low-frequency waves of f = 100kHz, 
the propagating modes are restricted to the two lowest modes A0 and S0 depicted in the 
dispersion curve diagram of Figure 1. In addition, mode selection can be used to 
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preferentially excite A0 versus S0 [5,13], where a single A0 mode exists within the material 
volume. For the composite material used in the current study (a carbon fiber reinforced 
polymer, CFRP), wavelengths and phase velocities for the A0 mode were near 10 mm and 
1500 m/s, respectively. Due to the restricted sample geometry, reflective waves are quickly 
generated at the left end (R1) and top-bottom sidewalls (R2 and R3) of the sample in the 
axial-transverse plane (Y-Z). These reflected waves propagate and superposition within the 
3D volume in a semi-coherent nature, resulting in signal content trailing behind the direct-
transmit wave (T1) with 25-100 microsecond time delays for detection positions along the 
sample length. The variation and increase of thickness in the co-cured joint region can also 
cause shifts in the frequency-thickness product (see Figure 1), with corresponding changes 
in the phase velocity, cp, and wavelength, , of the propagating modes in those regions. 
Propagation and re-direction of energy into the vertical web region can also occur (Figure 
2), with mode conversion and additional dispersive characteristics at the various reflective 
surfaces (R4) and thickness variation positions.            
 
Numerical Modeling Approach and Studies 
 
 A series of 3D-finite element models were used to study the behavior of the Lamb 
wave interactions within the composite joint depicted in Figure 3. The model was 
developed in a commercially available finite element package PZFlex, which is designed 
and optimized for elastic wave propagation analysis. The model geometry depicted in 
Figure 3 was chosen to match as closely as possible the cross-sectional profile and 3D 
characteristics of a composite joint sample used in mechanical testing studies. Figure 3 
provides a schematic cross-sectional diagram of the composite joint test article, and digital 
images of a sample showing bonded piezo sensors and composite layers in cross-section. 
The sample included a 40-ply, quasi-isotropic lay-up [0/90/45/-45]5S for the graphite 
fiber/epoxy composite skin (Newport Adhesives and Composites, NCT-350-GT145-
TR50S), which was co-cured with a 20-ply vertical riser/web lay-up [0/45/90/-45/-
45/45/45/90]S, where ½ of the web plies were split and re-directed 90-degrees into the top 
surface of the skin during the curing process [14]. The overall length, width, and thickness 
of the skin region were 202.4 mm, 51 mm, and 4.8 mm, respectively. In the overlap region 
of the skin, the thickness increases to 6.6 mm due the additional 2 composite plies, while 
the thickness of the vertical riser/web region was 2.45 mm with an overall height of 140 
mm. The thickened region extends out ~42.8 mm on either side of the vertical riser/web 
region along the length of the sample. As shown in the inset images and schematic 
diagram in Figure 3, piezoelectric sensors (APC D-6.35mm-0.2mm-850WFB) were 
bonded on the top and bottom surfaces of the composite skin, with four additional sensors 
placed symmetrically on either side of the web.  The sensors were bonded to the specimen 
using M-Bond adhesive, and were located along the length and height of the specimen as 
depicted in Figure 3.  The sensors were 6.35 mm round disks of PZT, with a thickness of 
200 microns, and were polarized to produce a radial shearing force when actuated.   
 The 3D finite element model used to approximate the realistic sample geometry 
included a 200 mm long x 50 mm wide x 140 mm high structure (see upper right inset 
graphic in Figure 3). A single piezoelectric sensor (PZT:fpz29) was used to generate Lamb 
waves in the model and was located on the top left surface of the skin as depicted in Figure 
3.  The sensor had a diameter of 6.35 mm and a thickness of 250 microns. A hard epoxy 
bonding layer 250 microns thick was used in the model to couple energy into the 
composite. The model had a grid element spacing of 250 microns, which resulted in 560 x 
800 x 100 = 44,800,000 elements. A symmetry plane was located at the midpoint of the 
sample in the transverse direction (z-plane) extending along the sample geometry length.        
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FIGURE 3.  Schematic of 3D finite element model geometry (upper left), cross-sectional details (center), 
and digital images of specimen (right).  
 
 The material properties of the composite were treated as being isotropic and 
homogeneous in the current model with a density of 1500 kg/m3, a longitudinal velocity of 
3946 m/s, and a shear velocity of 1941 m/s. Free-boundary conditions were applied to all 
of the exposed surfaces of the model. The excitation pulse and FFT spectrum for the 100 
kHz excitation used in the model are depicted in Figure 4, respectively.  Discretization of 
the domain was set to 60 elements per wavelength, which provided adequate stability and 
convergence of the model, and an accurate representation of the Lamb wave propagation 
and scattering features.  Model run times were typically 200 usec with a Dt = 0.0397 usec. 
  

        
  
FIGURE 4.  Finite element model 100 kHz excitation signal (left), and its frequency spectrum (right). 
 

Figures 5 and 6 depict model results for the composite joint studies. Figure 5 
depicts x-displacement component amplitude levels for different time steps between 11.9 
usec and 111.1 usec, where circularly symmetric wave can be seen propagating away from 
the piezoelectric actuator location with reflections from the sides and left end of the sample 
occuring at 20 usec and 30 usec, respectively. Figure 6 depicts x-displacement amplitude 
levels occuring on the top and bottom surfaces of the sample, where anti-symmetric 
motions occur between the two surfaces, consistent with A0 mode propagation.  Figure 6 
also depicts a B-scan image (left bottom) and a detected signal (right bottom) for the y,z = 
(60mm, 25mm) position, where an A0 phase velocity of 1485 m/s was estimated. Reflected 
wave features due to the restricted geometry are observed in both cases for R1, R2, and R3.   
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FIGURE 5.  Model-based x-displacement amplitudes for 3D composite joint at increasing times. 
 

    
 

    
 

                 
   
FIGURE 6.  X-displacement model results: top/bottom skin surface images (top), B-scan for centerline of 
bottom surface (bottom left), and detected signal at y,z = (60mm, 25mm) on bottom surface (bottom right).  
   
Model Validation using Scanning Laser Vibrometry 
 
 In recent years, the use of advanced methods for characterizing and imaging elastic 
wave propagation and scattering processes has increased, where for example the use of 
scanning laser vibrometry (SLV) has been used very effectively to identify propagating 
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modes, scattering phenomena, and damage feature properties [15,16].  A typical scanning 
laser vibrometry system provides a means for measuring the local velocity or displacement 
levels on a material surface with spatial resolutions approaching 1 micron.  In the present 
effort, a scanning laser vibrometry system was used as a validation tool for the finite 
element modeling results presented in the previous section.   
 Figure 7 provides a comparison of model generated and scanning laser vibrometry 
measurement results for the bottom surface of the 3D composite joint specimen. A single 
bonded piezoelectric sensor disk was used to generate Lamb waves in the sample for the 
SLV measurements at the same location on the top skin used in the model studies (see 
Figure 3). Three examples of the ultrasonic displacement field are shown in Figure 7 (top 
sets of images) for the x-displacement on the bottom surface of the composite skin. Good 
agreement is observed between the propagation speeds and wave characteristics in all three 
cases. A comparison of B-scans extracted for the x-displacement along the centerline of 
the bottom surface of the composite skin is presented in Figure 7 (center set of images).  
Reasonable agreement between the model and experimental measurements is again 
observed. Estimations of the A0 phase velocity were made using the B-scan results and 
were 1485 m/s and 1462 m/s for the model and scanning laser vibrometry signals, 
respectively. A comparison of x-displacement signals at y,z = (0mm, 25mm) and (100mm, 
25mm) are shown in the bottom left and right plots in Figure 7, respectively, where good 
qualitative agreement is seen in the results.  
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FIGURE 7.  Comparison of finite element model and scanning laser vibrometry results; x-displacement 
images (top), B-scans for centerline of bottom surfaces (center), and signals at 50 mm and 100mm (bottom).  
 
CONCLUSIONS 

 
The present research utilized finite element analysis models to study Lamb wave 

propagation and scattering in a restricted geometry composite structural joint. Selective 
mode tuning with a 100 kHz pulse generated the lowest order antisymmetric A0 mode in 
the structure, which was verified by comparing model-generated displacement fields on 
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the top and bottom surfaces of the composite skin. Due to the restricted geometry 
conditions, which included a 50 mm wide by 200 mm long composite structure, significant 
reflections occurred in the sample, which were semi-coherent in nature and were 
distinguishable in the modeling results through B-scan and displacement signal analysis. 
Validation of model predictions was accomplished using scanning laser vibrometry 
measurements, where excellent agreement was seen for model versus experimental results 
for displacement field images, B-scan analyses, and displacement signal content.        
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