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ABSTRACT 

This thesis discusses the utility of evaluating Light Detection and Ranging (LiDAR) to 

automate the recognition of roads and trails beneath forest canopy on Digital Elevation 

Models (DEMs) for use in military and forestry applications. Data were analyzed from 

three separate locations, including low elevation mixed conifer Indian Creek Watershed 

in Trinity County, CA; High elevation mixed conifer Cold Creek Trailhead area in South 

Lake Tahoe, CA; and lowland mesic forests in Kahuku training area, Oahu, HI.  LiDAR 

data were evaluated to extract a DEM from ground points and to build a point cloud 

object layer between the estimated ground and an Above Ground Level (AGL) defined 

limit of 1.8 meters.  By comparison of this point cloud data with the terrain model, small 

corridors above the forest floor extracted using linear feature detection were recognized 

as potential roads or trails.  The object layer was of limited value, due partly to point 

collection density issues, and understory density in the different forest types.  When 

evaluated using statistical classification techniques, results produced were inconsistent in 

segregating trails and roads from non-trail regions.  It was determined that automated 

classification of these regions utilizing this method was ineffective and remains 

unacceptable without further research. 
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I. INTRODUCTION  

A. PURPOSE OF RESEARCH 

A critical component in land–management mission planning is accurate and up-

to-date knowledge of the terrain.  Airborne Laser Scanning (ALS) methods have been 

developed which can be exploited to produce high resolution 3–D topographic models.  

The ability to extract high precision Digital Elevation Models (DEMs) from collected 

point data allows for the added benefit of being able to ―see‖ what is underneath 

vegetation at the time of collection.   This capability is relevant in a variety of disciplines, 

including cartography, rural and urban development, geology, archaeology, forestry and 

watershed management, and military mission planning.  Recognition of human activity 

beneath dense forest canopy, previously undetectable utilizing other methods, is of 

particular value for intelligence agencies in reconnaissance of criminal organizations or 

enemy combatants.  The ability to automate the analysis of Light Detection and Ranging 

(LiDAR) data to detect landscape changes between subsequent collections would be a 

significant improvement over current methods.  The purpose of this research is to 

evaluate the efficacy of LiDAR for automated road and trail detection beneath forest 

canopy in order to recognize these changes in landscape topography over time consistent 

with human activity. 

B. OBJECTIVE 

The primary objective of this thesis is to determine a method for analyzing 

LiDAR data in order to effectively recognize potential roads and trails under forest 

canopy with the intent to automate such a process.  LiDAR data utilized in this research 

was collected in two different regions of California mixed conifer forest environments 

with different sensors and levels of point density (Indian Creek Watershed (2002) near 

Shasta–Trinity National Forest, and Cold Creek Watershed (2010) in the Lake Tahoe 

Basin).  Commercial software used in this analysis includes Applied Imagery LLC’s 

Quick Terrain Modeler (QTM) Version 7, ILAP Bare Earth Extraction Plug–In 
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developed by The John Hopkins University/Applied Physics Laboratory, and 

Environment for Visualizing Images (ENVI) 4.8. 

Chapter II will provide a brief description of LiDAR, its historical development, 

and a review of current technologies.  Remote sensing application and use by various 

disciplines for terrain analysis will be discussed in detail, including forestry and 

watershed, archaeology, government research, military, and space systems applications.  

This section will also include a brief description of current and emerging attempts at 

automation.  

Chapter III will provide the structure of this problem and project along with a 

detailed description of each research area and accompanying data selected for analysis.  

Tools, inputs and evaluation techniques, as well as, a short explanation of some post–

processing software used in this research, are described in this chapter. 

Chapter IV will include the observations compiled from LiDAR point cloud data 

manipulation, including DEMs and grid statistic output following selected evaluation 

techniques.  This chapter will also provide analysis of the observations extracted from 

results utilizing available software tools, and provide interpretation of these results 

compared to the expected outcome. 

Chapters V and VI provide an overall summary of the analysis and conclusions 

derived from this research project.  
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 II. BACKGROUND 

A. LIDAR FUNDAMENTALS 

LiDAR is laser (light amplification by stimulated emission of radiation) scanning 

in which electromagnetic (EM) wave energy is transmitted in optical pulses, or by 

continuous wave signals, which reflects off of an object and returns to a receiving 

detector.  The time traveled between pulses can be easily converted into a distance where 

R is the range to target and c is the speed of the EM radiation.  In a continuous wave 

(CW) system, range is dependent on frequency f and phase difference   of the ranging 

signal. If a multifrequency system is used, the frequency with the longest wavelength 

(λlong) determines Rmax and the frequency with the shortest wavelength (λshort) determines 

range resolution and accuracy (Wehr & Lohr, 1999). 

 

 
Figure 1.   Measuring principle of pulse and CW lasers showing amplitudes of 

transmitted (At) and received (Ar) signals.  (From Wehr & Lohr, 1999) 
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  LiDAR can be delivered via terrestrial or airborne platforms, and can provide 

extremely high quality collections of three dimensional data. When delivered from an 

airborne platform, in combination with current global positioning system (GPS) 

technology, distance to target information and aircraft position can be used to accurately 

determine geo–referenced elevation information. Pulses are delivered across a landscape 

via cross–track scanning mirror, and occur at very high rates.  Current LiDAR systems 

are capable of delivering a pulse repetition frequency (PRF) of hundreds of thousands of 

pulses every second, and multiple returns can be measured for each pulse.  Discrete 

return, small footprint, airborne LIDAR systems were developed for the express purpose 

of mapping terrain (Wehr & Lohr, 1999). 

 
Figure 2.   Rangefinding scanning and aircraft orientation (From McGaughey, 

Andersen, & Reutebuch, 2006)  
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Lasers that are primarily used in LiDAR applications include neodymium–doped 

yttrium aluminum garnet (Nd:YAG) at 1064 nm wavelengths and Gallium Arsenide 

(GaAs) at 840 nm.  Scanning methods  vary between single or oscillating plane mirrors, a 

spinning optical polygonal mirror, elliptically scanning nutating mirror, or a pair of tilted 

mirrors in linear fiber-optic arrays.  A much more detailed description of these methods, 

components, and other basic LiDAR fundamentals can be found in this excellent 

reference (Shan & Toth, 2009). 

B. HISTORY AND TECHNOLOGY  

Ranging systems that utilize electromagnetic waves to locate a target by means of 

transmission and reception of reflection waves, have been in development for military 

application since the late 1930s, beginning with RADAR (Radio Detection and Ranging).  

Technological development has allowed ever–increasing frequencies, with corresponding 

shorter wavelengths, from radio frequencies, microwaves, infrared, light and beyond.  

LiDAR applications, also referred to as LADAR (LAser Detection and Ranging), were 

possible in the mid-1960s as Laser based sensors were first being successfully developed 

(Richmond & Cain, 2010).  Key enabling technologies that precipitated airborne LiDAR 

development include GPS and suitable scanning mechanisms, such as rotating mirrors 

(Toth, 2009). Once GPS became widely deployed, airborne surveying was enabled 

because of very precise positioning capabilities.  From the air, object elevations above 

ground level can be obtained very accurately and ground terrain features can be extracted 

from last pulse returns.  GPS enables a common interface for combining other imagery 

products with LiDAR data to complement and enhance its utility.   

Although remote sensing of the Earth, and its applications, is of most interest to 

this research, LiDAR frequencies are suited very well for accurately measuring aerosols 

and cloud particles above the earth, and this dominated the early use of LiDAR for 

atmospheric research and meteorology.  This has continued through to the present, 

evidenced by the launch of the Cloud-Aerosol LiDAR and Infrared Pathfinder Satellite 

Observation (CALIPSO) in April 2006, which allows for 3D perspectives of clouds and 

aerosols in the atmosphere.   
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Figure 3.   CALIPSO LiDAR collection, June 2006 from sea level to 30km (From  

National Aeronautics and Space Administration [NASA], 2011)   

1. Airborne and Spaceborne LiDAR 

Airborne LiDAR system components required for collection include a helicopter 

or light aircraft with a belly-loaded scanning laser emitter–receiver unit, a differentially-

corrected GPS, stabilizing Inertial Measurement Unit (IMU) and robust computer for 

processing and data storage.  Millions of points can be collected in a single survey 

numbering in the terabytes of data storage required.  The purpose of the IMU is to 

determine the aircraft’s attitude during data collection of roll, pitch, and yaw, as well as, 

altitude variations during flight.  This is critical to ensuring high accuracy calculation of 

the laser relative to the earth’s surface.  Data is represented according to Cartesian XYZ 

point cloud coordinates from reflected signals.  Signals can include multiple returns from 

a single pulse, dependent on how much light is partially blocked en-route to the ground, 

usually by passing through multi–storied vegetation (McGaughey et al., 2006).  Typical 

vertical accuracy of current systems can be achieved down to less than 5 cm and with 

pulse rates up to 500 kHz (Leica Geosystems GIS & Mapping, LLC Product Information, 

2011).  Profile measurements are constructed from area scanning in cross-track and along 

track directions of the flight to produce the positions and elevations of collected points. 

Airborne LiDAR bathymetry systems which work a little differently, measure differential 

timing of reflected laser pulses from the water surface and underwater surface to 

determine very accurate water depth measurements (Heritage & Large, 2009).   
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Spaceborne LiDAR systems work in much the same way as airborne, but the 

characteristics of the components are much different, recognizing the constraints of 

orbital regime, as well as, increased distances from the target and speed over the ground 

(Shan & Toth, 2009). 

 

 
 

Figure 4.   Illustration of LiDAR waveform and discrete recording characteristics 
(From Diaz, 2011) 

Examples of topographic products derived from airborne collected raw point data 

include Digital Elevation Models (DEMs), Digital Terrain Models (DTMs), Digital 

Surface Models, (DSMs), Slope, Aspect, and Intensity images.  These raster products are 

very useful, but a great deal of information can be derived from raw point data which 

allows us to identify and measure objects beneath other objects, conduct vertical 

obstruction analysis, and classify terrain based on statistical analysis of the data.  Many 

man-made features are often smoothed out or omitted when creating a DEM (Applied 

Imagery). 
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a. Scanning assembly 

Comprising the laser, scanning mechanics and optics, the scanner 

assembly is the heart of the LiDAR system.  Laser systems typically operate between 

wavelengths of 800nm and 1550nm with spectral width typically between 0.1 and 0.5nm 

(Vosselman & Maas, 2010).  Key considerations for laser scanning wavelengths include 

reflectivity properties of target objects, absorption of water in the visible part of the 

spectrum, and eye safety.  Swath width is determined by scan angle, typically between 5° 

and 75°, and the height above ground.  Similarly, footprint diameter of the laser is 

determined by the beam divergence, typically between 0.1mrad and 1mrad, and height 

above ground (Vosselman & Maas, 2010).  The ranging resolution of LiDAR systems 

continues to improve dramatically, typically available at 1–2 cm.  Point density on the 

ground has also improved over time as the PRF continues to increase.  Multiple pulse 

technology has allowed laser pulses to be transmitted and received in overlapping rapid 

succession with data capture rates in the hundreds of kHz  (Toth, 2009). Point density is 

governed by high PRF, small scanning angle, low aircraft cruising speeds and low survey 

heights AGL.  Pulse systems produce stop signals, with separate returns of up to four 

echoes per pulse.  Full waveform systems return an echo’s complete shape at very high 

resolution.  Full waveform systems are not currently widely used due to very high 

hardware and processing requirements, but show great promise as capabilities continue to 

improve (Vosselman & Maas, 2010). 
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Figure 5.   Leica ALS70 LiDAR airborne system components including laser, scanner, 

range counting electronics, position/attitude measurement subsystem, flight 
planning and execution software (From Leica ALS70 brochure) 

Scanning mechanisms typically use a single or pair of oscillating mirrors 

in a technique that results in a sawtoothed or sinusoidal pattern measured on the ground 

along the aircraft flight path.  Along track and cross track point distances are variable 

with larger point distances found in middle of a swath, and smaller point distances at the 

end of the swath.  Because scan angle and scan rate are variable, this mechanism can be 

configured to produce predefined point distances on the ground.  Other systems include 

rotating polygonal mirrors, nutating mirrors producing an elliptical scan pattern, and 

linear glass fibre–optic arrays which results in scan lines that run parallel to the flight line 

(Shan & Toth, 2009).  Flash LiDAR generates a complete 3D image in one shot instead 

of by scan utilizing coherent field superposition on the photodetector between returned 

signal and reference signal.  This method has spatial resolution and range limitations 

inherent in the design (Vosselman & Maas, 2010). 
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b. GPS/IMU assemblies 

GPS measures the positional information and the IMU measures 

orientation data, both essential for geo-locating each laser pulse.  Position information is 

necessary at 2 Hz or higher and IMU frequencies of 100 Hz or higher for orientation 

needed in airborne assemblies (Heritage & Large, 2009).  Platform coordinates can be 

determined to an accuracy of approximately 10 cm. 

c. Control and data recording unit 

Aircraft position data, sensor attitude data, laser pulse data and aircraft 

behavior and recording errors are all stored and controlled by this unit, synchronized by 

GPS time stamp.  Extended processing allows creation of time–stamped point clouds to 

provide the end product.  Modern scanners produce in excess of 20 Gbytes of scanning 

data per hour with only 0.1 Gbyte per hour of GPS/IMU data (Vosselman & Maas, 2010). 

2. Terrestrial LiDAR 

Ground-based LiDAR can achieve horizontal 3D images unattainable from 

overhead systems, excellent for many applications, especially urban planning, mapping, 

chronology and engineering surveying (Shan & Toth, 2009). With a tripod mounted, 

freely rotating LiDAR sensor on the ground, 360-degree ―street scenes‖ can be created 

from pulses transmitted and reflected off of all objects within range of the system.  This 

3D point cloud allows for very accurate lateral details of buildings, vegetation, and other 

objects that cannot be retrieved from airborne systems.  Vehicle mounted systems can 

also be employed utilizing GPS much like airborne platforms.  A combination of airborne 

with terrestrial scanning collections can provide fused images of exceptional quality to 

get the whole picture (IKG Research). 
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C. LIDAR APPLICATIONS 

1. Selected Forestry and Natural Resource Management Applications 

LiDAR is very well suited to forestry and natural resource management 

applications because of the high quality three dimensional data collection it provides.  In 

addition to terrain visualization, LiDAR produces multiple returns which allow for 

detailed analysis of vegetation, watershed topography, and slope stability. 

a. Forest Inventory, Mapping and Watershed Management 

Critical to inventory is accurate mapping of forested terrain, and the 

influence that different forest parameters have on the accuracy of LiDAR-derived terrain 

models.  One study by the Pacific Northwest Research Station U.S. Department of 

Agriculture Forest Service (USDA) in heavily forested lands in western Washington 

determined that these models can be extremely accurate over mature forested areas, even 

at as little as 1 return/m2.  The study was conducted utilizing Saab TopEye LiDAR 

system mounted on a helicopter in the Spring of 1999, covering 5 km2 and collecting over 

37 million points with up to four returns per pulse. 

 
Figure 6.   DEM formed from LiDAR survey under multistoried forest canopy (From 

Reutebuch, Andersen, & Carson, 2003) 
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  Canopy classes studied included uncut, heavy and lightly thinned, as well 

as cleacut areas, with nearly 350 ground checkpoints to compare results against.  It was 

found even at that time with relatively low resolution that the precise terrain modeling 

LiDAR provides of microtopography in a typical conifer forest, has excellent potential 

for many applications in the field of forestry (Reutebuch et al., 2003).  

The ability to select out individual tree crowns from LiDAR intensity data, 

combined with the knowledge of forest type and stand characteristics, has allowed for 

some level of success in classification of tree species.  A study funded by the Precision 

Forestry Cooperative at the University of Washington College of Forest Resources was 

conducted analyzing intensity values of two LiDAR data sets during leaf–on and leaf–off 

periods collected over Washington Park Arboretum in Seattle, Washington.  Data collects 

were flown at 900m and 1200m AGL, with two different Optech LiDAR systems, 

achieving point densities at 5/m2 and 20/m2, respectively.  Seven coniferous and eight 

broadleaved species were selected for analysis distinguishing broadleaved species from 

conifers, and making distinction between species within these broad groups, based on 

different reflective properties of the vegetation.  The study noted that choosing data sets 

collected from the same LiDAR systems to compare against would probably yield more 

consistent results (Kim, McGaughey, Andersen, & Schreuder, 2009). 
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Figure 7.   Display shows (a) Location of individual trees plotted over aerial 
photography and (b) LiDAR point clouds of individual trees selected out for 

study based on intensity values.  Conifers are on top displayed in white, 
broadleaved species below displayed in yellow (From Kim et al., 2009) 

  Forest inventory of stand tree heights can be collected and extrapolated 

to larger areas based on landscape relationships utilizing LiDAR and imagery (Wulder & 

Seemann, 2003). Leaf area index can also be derived from LiDAR to provide estimates 

that are useful in explaining mass and energy exchanges in forest ecosystems (Jensen, 

Humes, Vierling, & Hudak, 2008).  Another study compared the use of LiDAR data to 

intensive ground-based methods for characterization of streamside forest structure in 

order to assess the rate of delivery of large woody debris to streams.  A strong correlation 

in accuracy between the two methods was observed, confirming the potential for LiDAR 

to provide capability as a tool for watershed assessment.  Other potential applications 

were noted including stream shading studies and litterfall modeling, both important in the 

study of stream ecosystems (Fleece, 2002). 
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Terrestrial scanners have the potential to eventually replace current forest 

inventory methods in some situations, with supporting software that models production 

from standing forest volume to the mill’s final output.  Scanners can be deployed on 

slope independent terrain, effective up to 30 m per plot with less than 20 minutes for 

setup and collection time and 8 hours of operation under its own power (TreeMetrics 

Ltd., 2011).  Scanners would not work well in stands with dense, brushy understory, both 

because of the difficulty in traversing this type of vegetation with the equipment, and 

because of the need for a clear field of view between the scanner and the timber.  

     

 
Figure 8.   Description of specific method advocated by TreeMetrics software company 

for utilizing terrestrial LiDAR in timber measurement and optimization 
(From  TreeMetrics, Ltd., 2011). 
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There is some question as to the economic viability of using airborne 

LiDAR in timber inventory.  One 2004 study exploring cost considerations was 

conducted out of the Mississippi State University College of Forest Resources and 

Remote Sensing Technology Center on a 1200-acre study area located on the Lee 

Memorial Forest of Louisiana State University. This study found that timber inventory 

using LiDAR is not cost effective for determining timber volumes when compared to 

traditional methods due to the high cost of obtaining LiDAR data and the requirement for 

its use in a double-sampling approach.  Although very effective for obtaining tree heights 

and trees per acre, airborne LiDAR does not give the highly accurate diameter, taper and 

understory stand characteristics that would be achieved from ground plot inventories.  In 

this study, they found that as LiDAR plot costs fall below 35% of ground plot costs, 

double sampling with LiDAR becomes cost effective for coefficient of determination of 

0.7 or greater (Tilley et al., 2004). 

 

 
Figure 9.   Total cost of a double sampling LiDAR cruise and a fixed plot ground cruise 

for three coefficients of determination and a range of relative plot costs for a 
100,000 acre tract (From Tilley et al., 2004)   

b. Stand Characterization 

Forest stand structural characteristics can be accurately assessed from the 

capability of LiDAR to reflect from multiple levels of vegetation canopy.  Typically one 

to four returns can be collected per pulse, effectively outlining individual trees, as well 

as, subcanopy characteristics.  Useful products derived from these returns can include 
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forest biomass, canopy closure, carbon content, height distribution, and wildlife habitat 

based on stand characteristics (Reutebuch, Andersen, & McGaughey, 2005).  

 

 
Figure 10.   LiDAR derived forest canopy fuel weight map (30 m resolution) (From  

Andersen, McGaughey, & Reutebuch, 2005) 

Fire behavior models which are driven by tree position, height, and crown 

diameter can be fed from LiDAR collections at greatly reduced cost compared to 

traditional forest inventory methods (Andersen et al., 2005).   

Analyzing forest structure for predicting stand volume and growth is 

important for both commercial and ecological purposes.  A study using LiDAR to 

estimate diameter and basal area distributions for prediction of stand volume and growth 

was conducted in Southeast Norway, covering 54 ground field plots distributed in 

differing combinations of age, site quality and species of trees.  Plot volumes were 

calculated in these areas using traditional methods, then compared against LiDAR data 

results compiled from measurements of canopy height distributions further derived into 

diameter and basal area distributions.   Optech’s ALTM 1210 was used on a small aircraft 

flown at 650 m AGL at 75 m/s over 129 flight lines with 50% overlap between strips.   It 
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was found that stem–frequency distributions can be adequately derived from LiDAR data 

and that a higher precision of volume predictions are possible when based on derived 

basal area distributions rather than diameter distributions (Gobakken, T., and Naesset, E., 

2004). 

A more recent study specifically looked at the strengths and limitations of 

LiDAR in assessing forest density and spatial configuration.  This study looked at three 

separate forest areas within the rain-shadow of the Cascade Mountain Range in 

Washington State.  Stands were specifically chosen to demonstrate heterogeneity in stand 

types, yet wide variation in vertical, horizontal, and density structures.  LiDAR datasets 

were collected in June 2007 and 2008 with different sensors (Optech 3100 EA and Leica 

ALS50 Phase II) at different point densities (greater than 4 points/m2 and greater than 8 

points/m2).  The study concluded that aerial LiDAR  is effective at producing precise 

estimates of tree densities for trees greater than 20 m, but severely underestimates tree 

densities of under and midstory canopies at these point densities ( Richardson & Moskal, 

2011). 

 

 
Figure 11.   Comparison of predicted tree density to field measured tree density for all 

polts measured in the study for two height classes.  The red icons are for 
trees greater than 20 m tall and the blue icons are for trees between 5m and 

20 m tall.  Locations are the Ahtanum Multiple Use Area (AMUA), Colville 
National Forest (CNF), and Training Plots (TP) (From  Richardson & 

Moskal, 2011). 
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c. Forest Operations 

LiDAR is potentially helpful for forestry production management 

operations in revealing existing road and skid trail networks located in a harvest area 

under dense forest canopy.  A study that tested the accuracy of this claim was conducted 

in the Little Creek watershed on Swanton Pacific Ranch near Santa Cruz, CA, comparing 

the utilization of LiDAR data for road identification and mapping to traditional centerline 

survey on a typical forest haul road.  Airborne LiDAR Data were collected using an 

Optech ALTM 3100 system.  This survey provided high point densities greater than 12 

pts/m2, reducing to approximately 1 pt/m2 in ground returns.  Over 30 km of forest roads 

and trails in the study area were mapped resulting in  95% of manually digitized road 

lengths located within 1.5 m normal to the conventionally field surveyed centerline.  

Results showed exceptional accuracy from measurements of road position, length and 

gradient (White, Dietterick, Mastin, & Strohman, 2010).  It can also be used to model 

new areas for roads, skid trail networks and log landings from extracted topographical 

data, as a supplement to field investigation.  LiDAR was utilized in one study for 

mapping of the Tahoma State Forest south of Mt. Rainer as part of a forest operations 

harvest and transportation plan.  Subsequently field verified, this study revealed the many 

benefits of reducing field time by utilizing LiDAR derived topography for identifying 

possible road and landing areas, planning for harvest system designs, and improving cost 

estimates over harvest activities.   
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Figure 12.   LiDAR–derived roads in the Little Creek watershed (From White et al., 

2010) 

Although LiDAR–derived models can greatly benefit pre–planning 

harvest and road design activities, ground inspection is still necessary in all forest 

management operations (Krogstad & Schiess, 2004).  A model for estimating skidding 

costs of individual cut trees based on data retrieved from LiDAR to obtain terrain and 

tree information has been recently developed which can be used to generate optimal skid 

trail networks with adequate results (Contreras & Chung, 2011). 



 20 

 
Figure 13.   Contour lines overlayed on LiDAR-derived DEM with slope class 

coloring revealing the greater detail available than from working with 
Topographic map alone (After Krogstad & Schiess, 2004) 

2. Selected Archaeology Applications 

Mapping features underneath forest canopy makes LiDAR another effective tool 

in archaeology operations.  LiDAR is sensitive to even small variations in height and, 

with vegetation removal tools, can reveal ancient earthworks in superior detail 

(Devereux, Amable, Crow, & Cliff, 2005). 
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Figure 14.   Prehistoric, fortified enclosure known as Welshbury Hill in the Forest of 

Dean, Gloucestershire, UK.  Left image from digital imagery, center image 
is a LiDAR DTM, and right image is an extracted DEM (After Devereux et 

al., 2005)  

Airborne LiDAR has been used to effectively penetrate jungle canopy in mapping 

of Mayan ruins in Central America, revealing higher spatial data results than previous 

ground surveys.  Success was achieved by flying tight flight lines, including 

perpendicular passes, to ensure the probability of penetrating the thick canopy would be 

maximized.  In addition, flights were conducted at low altitudes of 800 m AGL and low 

speeds around 150 knots utilizing Optech Inc.’s Gemini Airborne Laser Terrain Mapper 

(ALTM) to collect approximately 4.3 billion points resulting in 20 returns/m2.   The 

survey resulted in many new features of previously undiscovered Mayan sites, which 

would probably have remained hidden without the benefits of LiDAR (Diaz, 2011). 
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Figure 15.   Rendering from airbone LiDAR point cloud surrounding Mayan pyramid 

(From Diaz, 2011) 

Efforts have even been taken by Palaeontologists to model Dinosaur trackways 

utilizing the powerful detail of LiDAR–derived products to reveal intricacies of disturbed 

earth not otherwise obvious.  One study reveals fossil tracks in high accuracy utilizing 

LiDAR at a location in the south-east Pyrenees Mountains on the Iberian peninsula.  This 

capability can help Palaeontologists understand Dinosaur movement and kinematics.  

Using a RIEGL LMS-Z420i 3D terrestrial LiDAR scanner, providing up to 12000 points 

per second at a range of 800 m, very high resolution scans were obtained of individual 

fossil tracks, allowing the data to be visually analyzed in the digital environment, 

utilizing multivariate statistical methods.  By comparing and integrating LiDAR 

collections with previous methods, it is expected that clearer interpretations of track 

morphology and formation can be derived than ever before (Bates, Manning, Vila, & 

Hodgetts, 2008). 
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Figure 16.   3D LiDAR model of a Dinosaur track, showing the multitude of 

information which can be derived for this research with this tool from claw 
marks to digit traces and displacement parameters (From Bates et al., 2008). 

3. Selected Government Research and Military Applications 

The utility of LiDAR for government research or in military application is broad 

in scope, but most relevant, is the capability it provides for geographic situational 

awareness and intelligence collection. 

a. Terrain Mapping and Vegetation Survey 

Collections can be achieved relatively quickly via multiple air and/or 

ground-based platforms, providing focused or wide area collects for terrain mapping at 

high resolution.  The National Geospatial-Intelligence Agency (NGA) provides imagery, 
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geospatial and targeting analysis, along with image sciences and modeling for U.S. 

national defense, disaster relief and safety of navigation.  (NGA)  In Afghanistan, NGA 

has deployed Flash LiDAR in aircraft to map the entire country, providing unrivaled 

terrain mapping in that part of the world for use by the warfighter in battlefield 

visualization, line-of-sight analysis and urban warfare planning (Walsh, 2011).  

The NASA–Goddard Space Flight Center’s Laser Remote Sensing 

Laboratory has designed, developed and operates the Laser Vegetation Imaging Sensor 

(LVIS).  This LiDAR sensor is a scanning laser altimeter instrument, originally designed 

as a spaceborne platform, can be flown at high altitudes for very large collections over 

extensive areas for topography and vegetation survey.  This sensor can cover 2 km 

swaths of surface from an altitude of 10 km.   

 

 
Figure 17.   Example of swath implemented by LVIS (FromNational Aeronautics and 

Space Administration [NASA], 2011b) 
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Figure 18.   Crane Glacier, Antarctica LVIS map in left image, LVIS scan and beam 

pattern shown on the right highlighting the complete coverage picture (After 
NASA, 2011) 

This research platform has been utilized to conduct major mapping 

projects of vegetation height and topography over the United States, Costa Rica, Canada, 

Antarctica and Greenland. 

b. Bathymetry and Coastal Mapping 

Although most relevant for oceanic coastline management, LiDAR survey 

of the land/sea interface in coastal mapping is of primary concern to the military in 

littoral transport, combat planning and mine detection by Navy and Marine forces.  

LiDAR reflections occur at the surface and sea floor, returning very accurate water depth 

results (Olsen, 2007).  Coastline is a dynamic environment well suited to successive 

LiDAR collections of topographic and bathymetric data, concurrent with traditional 

hyperspectral imagery, which can be utilized to pinpoint changes over time.  This has 

been well demonstrated with the Joint Airborne LiDAR Bathymetry Technical Center of 

Expertise (JALBTCX) mission, utilizing their in-house Compact Hydrographic Airborne 

Rapid Total Survey (CHARTS) system to monitor posthurricane storm impacts  (Macon, 

Wozencraft, Joong Yong Park, & Tuell, 2008). 
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Figure 19.   Bathymetric LiDAR Coverage, Hilo Bay, HI (From Macon et al., 2008). 

c. Tactical River Crossings 

The Army Corps of Engineers Cold Regions Research and Engineering 

Laboratory has compared conventional terrain analysis against LiDAR derived DEMs for 

determining suitable tactical river crossings.  These DEMs were compared at crossing 

locations against measured data where conventional transit and tape surveys were 

performed.  At each crossing site, riverbank profiles were constructed to visualize these 

comparisons between the DEM derived elevations and conventionally surveyed 

elevations.  In most cases, they found that the LiDAR DEM matched the surveyed 

surface within 6 inches and 1 foot.   Because of the increased resolution in bank slope 

profiles, along with accurate visual depictions of vegetation and road and trail recognition 

extracted from LiDAR data, this study noted an increase in over 70% in acceptable 

tactical river site selection rates over conventional methods (Coutermarsh, 2003). 
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Figure 20.   Example comparing river crossing profile of ground survey (dashed line) 

with LiDAR data results (solid line) (From Coutermarsh, 2003)   

4. Selected Space–Based Applications 

The history of LiDAR and other laser ranging altimetry in space missions can be 

traced back to the early days of NASA Goddard and their ionospheric research satellite 

BE–B (Explorer–22) launched in 1964 which carried a passive laser tracking reflector for 

orbit determination.  Since that time, several LiDAR instruments have been successfully 

launched in lunar, planetary and asteroid mapping missions:  Clementine (Moon), 1994; 

Mars Polar Lander, 1999; Hayabusa (Asteroid), 2003; and Phoenix (Mars) 2007 

(National Aeronautics and Space Administration (NASA), 21 April 2011).  Many more 

laser altimetry instruments have been utilized in space-based applications for accurate 

tracking and ranging, and most recently, precision activities from spacecraft docking with 

the International Space Station (ISS) to landing operations of crewed and robotic landing 

vehicles (Amzajerdian, Pierrottet, Petway, Hines, & Roback, 2011).   
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Figure 21.   Example of how Laser landing sensors could be utilized in spacecraft 
landing scenarios (From Amzajerdian et al., 2011) 

Listed below are selected missions utilizing LiDAR in space-to-earth based 

applications. 

a. LiDAR In-Space Technology Experiment (LITE) and Shuttle 
Laser Altimeter (SLA) 

This was NASA’s first experimental mission with a space laser profiler 

aboard the Space Shuttle flight STS-64 in 1994.  The primary purpose of this mission was 

looking at atmospheric, weather and climatic research rather than Earth’s topography and 

utilized a very large power hungry Nd:YAG laser.  The follow-up shuttle missions in 

1996 and 1997 did look at surface relief and vegetation canopies using the lighter and 

smaller 1064 nm Q-switched diode-pumped Nd:YAG Shuttle Laser Altimeter providing 

important information on improving LiDAR systems capabilities from space platforms 

(Shan & Toth, 2009). 



 29 

b. Geoscience Laser Altimeter System (GLAS) 

Launched in 2003 and deorbited in 2010, the GLAS was developed as the 

primary instrument for NASA’s Ice, Cloud, and Land Elevation Satellite (ICESat).  This 

satellite’s primary mission was to monitor the Earth’s ice sheets for changes in elevations 

over time, determining their mass balance and to recognize their contribution to sea level 

changes.  A secondary mission concentrated on finding detailed information on the global 

distribution of clouds and aerosols (Shan & Toth, 2009).  The three passively switched 

Nd:YAG laser range finders made a total of 1.98 billion laser shot measurements of the 

Earth and its atmosphere over its seven year operating lifetime.  Beyond its primary 

missions, the GLAS was used to measure vegetated surface areas as well (Shan & Toth, 

2009). 

c. ICESat–2 and Slope Imaging Multi-polarization Photon 
Counting LiDAR (SIMPL) 

NASA’s ICESat–2 mission, scheduled for launch in 2016, will employ a 

green 532 nm, micropulse, photon counting laser altimeter.  SIMPL is an 11 KHz, 1064 

nm near infrared, plane polarized micropulse laser, frequency doubled to 532 nm and 

split into four push-broom beams.  This advanced technology uses single photon counting 

modules in order to achieve simultaneous surface sampling, capable of providing high 

vertical and spatial resolution measurements of forest canopy structure and excellent for 

determining above ground biomass estimates.  This micropulse, photon counting laser 

will use a 9-beam configuration, much smaller pulse width (several nsec), high pulse 

repetition rate (10 to 15 kHz) and much lower pulse energy to conduct time-tagged single 

photon detection ranging at 532nm (D. Harding et al., 2010). 
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Figure 22.   Current Concept for ICESat–2’s 9 beam configuration (not to scale) (From 

Harding et al., 2010) 

Because micropulse width is so much narrower and the timing precision is 

so much better, vertical resolution measurements will substantially improve over 

conventional waveform collections such as those carried on the original ICESat mission.  

ICESat 2 measures six profiles in pushbroom configurations with the output of a single 

laser split into six beams.  The planned design has three tracks separated by 3 km for 

spatial coverage, each track separated by two profiles spaced cross-track.  Each of these 

profiles will be sampled by 10-m diameter laser footprints and 0.7-m spacing between 

footprints, providing much better spatial resolution as well.  Analysis of nine forest 

stands with different age, structure and tree composition were sampled using the SIMPL 

system confirmed that this new approach provides structure measurements with high 

vertical and spatial resolution (Harding, Dabney, & and Valett, 2011). 
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Figure 23.   Comparison between conventional single pulse full waveform systems and 

micropulse photon counting systems measurement approaches of forest 
canopy structure (From Harding et al., 2011) 

D. AUTOMATIC EXTRACTION OF FEATURES USING LIDAR 

The desire to develop computer based techniques which can perceive a 3D 

interpretation of images that is comparable to the power of human vision is not new.  

Known as ―computer vision,‖ researchers have been working on this puzzle since the 

early 1970s.  This effort is comparable to that of perceptual psychologists who continue 

to explore how our visual system truly works to interpret reality from an optical illusion 

(Szeliski, 2010). 
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Figure 24.   Examples of optical illusions.  Left image: Lengths of the two horizontal 

lines appear different, but are the same.  Center image:  ―White‖ square B in 
shadow and ―black‖ square A both have the same absolute intensity value.  
Right image:  As you move your eyes over figure, gray spots appear in the 

intersections (After Szeliski, 2010). 

Computer vision algorithms attempt to model the world from a limited number of 

inputs and then extract this result to the whole in order to describe that world in a 

cognitive sense.  This is an extremely challenging field that is continually advancing and 

which has many significant applications.  Because LiDAR is also relatively new, attempts 

at automating data results for specific outputs has not been intensely studied as much as 

efforts aimed at describing imagery alone.   

A very interesting effort applicable to this study is one of many being applied by 

members the University of Southern California Computer Graphics and Immersive 

Technologies Laboratory concerning computer based automation of LiDAR data.  An 

integrated approach merges optimized segmentation techniques and perceptual grouping 

theory as part of a vision–based system for automatic detection of road networks from 

several sensor resources, including LiDAR (Poullis, 2008).   In this study, it is recognized 

that pixel and region based efforts alone often fail when attempting to automatically 

extract road networks because of the wide variation of what defines a ―road,‖ including 

all of the occlusions that must be interpreted from imagery including cars, trees and 

shadows.  The approach of these researchers addresses these problems and is summarized 

in Figure below.  They first use Gabor Filtering followed by Tensor Voting to classify 

features.  In correspondence with author Charalambos Poullis, PhD: 
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The reason for choosing tensor voting in the road extraction work was to 
overcome to problem of missing information caused by occlusion.  Due to 
the global nature of tensor voting it can successfully recover missing 
information (up to a scale) based on neighborhood information, but at the 
expense of being a very slow process. 

Road features are then segmented and labeled according to orientation, then 

extracted, modeled and linearized into a final road network.  This study appears to have 

proven accurate and effective at identifying road networks in several urban environments, 

including LiDAR derived image in Baltimore, MD, demonstrated in the study. 

 

 
Figure 25.   Vision–based system overview for automatic detection and extraction of 

road networks (From Poullis, 2008). 

Another study conducted by the University of Florida Department of Electrical 

and Computer Engineering and Department of Civil and Coastal Engineering specifically 

targeted the problem of detecting forest trails under dense forest canopy from LiDAR 

utilizing an entirely separate methodology with unique results (Heezin Lee, Slatton, & 

Hojin Jhee, 2005).  The study was conducted in dense mixed coniferous and deciduous 

forest in North Central Florida.  In this study, foliage voids were identified in the point 

cloud data as potential trails based on the characteristics that the presence of a trail 
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implies an empty volume immediately above the trail surface.  The study was imaged 

with an Optech 1233 system at 33 kHz from 600m AGL in two flight lines.  Average 

point spacing was conducted at 2–2.5 returns/m2.  Penetrating shots through small gaps 

deep into the foliage resulted in an average of 0.25  returns/m2.  Expanding this idea into 

the implied linear nature of trail segments which require a vector of visibility between 

trail points, an identification algorithm was developed that connects candidate trail 

segments while discarding voids that are inherent where tree trunks reside. 

 

 
Figure 26.   Point cloud cross section from study area where small empty space above 

trail surface is visible (between 40 m and 50 m on X–axis) (After Heezin 
Lee et al., 2005). 

Applying geometric constraints of visibility vectors to remove vectors which are 

not trail, in tandem with visibility blockers and segmented ground points, walking trails 

under heavily vegetated areas were detected with winning trail candidates emerging.  The 

longest trail segment remaining is selected as the final result.  This approach shows great 

promise with future study to be conducted. 
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Figure 27.   Left figure shows GPS points of actual trail, middle figure has visibility 

vectors computed of potential trails, and right figure is the winning 
candidate trail (From Heezin Lee et al., 2005).  
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III. PROJECT DESCRIPTION 

A. AUTOMATING TRAIL DETECTION BENEATH FOREST CANOPY 

It has been demonstrated that visual inspection of DEMs extracted from LiDAR 

data can allow for reliable identification of roads and trails hidden under forest canopy in 

terrain analysis (Espinoza & Owens, 2007).  This is important in several possible 

scenarios for military application, from locating logistics routes used by adversaries, to 

paths used by drug traffickers or terrorists attempting to conduct illicit operations.  There 

is utility in this capability for the public sector as well, evidenced by the significant 

increase in large-scale narcotics operations being conducted by Mexican drug cartels in 

California National Forests. This has become dangerous to forestry and land management 

professionals working in woodland areas who face booby traps and armed gunmen 

protecting hidden drug farms.  It is also detrimental to the environment due to the 

potential habitat destruction and contamination that results from fire and harmful 

cultivation practices (McGirk, 2009; BBC News, 2011).   

Unfortunately, human analysis of large data sets can lack timeliness due to 

inefficiencies of the labor-intensive processes required in creating products extracted 

from this raw data.  The ability to utilize an automated procedure that would reliably 

recognize roads and trails extracted from raw data, and output a product in a timely 

manner for further utilization, would be an important improvement over current methods.  

In this project, several sets of data covering multiple forest types were evaluated using 

grid statistics and AGL analysis of points to isolate unique trail characteristics on a DEM 

and point cloud outputs.   

To approach the problem, the first question to ask is what makes a trail unique?  

A trail is produced by repeated compression or scarring of the earth by a small-footprint 

medium, be it a human foot, a bicycle tire, or animal tracks.   The size of the trail will 

vary in width and depth and height (thinking in 3D), dependent on the nature of the 

objects ―making‖ the trail.  Trail surface deformation can include changes to convexity or 

concavity, deviation from surrounding terrain slope characteristics, and exposure of soil, 
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rock or different levels of forest floor detritus.  What is unique when looking at a trail 

from a 3D perspective, is the recognition that a well-used trail will have voids in 

vegetation generally from the forest floor to the height of the object traversing the trail.  

This will be more obvious in multistoried stands with a heavy understory.  Because a trail 

should be the lowest point in each localized area, we can expect that last return points 

that reflect from a trail surface will be recorded as ground points, and any points 

immediately surrounding these points at a higher AGL will most likely be vegetation. 

Another consideration of trails is the intensity at which light reflects off of different 

surfaces.  Depending on the nature of exposed soils, reflectivity can be expected to differ 

between a well-traversed area and the surrounding vegetated landscape.     

Roads are similar to trails; the primary difference is that they are generally 

designed for specific wheeled or tracked vehicles, require some level of earth cut and fill 

to provide smooth slope deviations amenable to the capabilities of the vehicles for which 

they are designed, and  they are often surfaced by rock or pavement if intended for 

regular use.  Forest roads are often designed to allow adequate water drainage to pass 

over, adjacent, or under surfaces, according to multiple road design techniques.  These 

include water-barring, culvert emplacement, and slope manipulation.  Depending on the 

road surface, evidence of vehicle travel may also reveal predictable tire depression within 

the road confines.  Road networks can also be very predictable in forest environments, 

depending on steepness of terrain.  Main roads often parallel main watercourses, work 

from the highest elevations to the lowest elevations, following the shortest feasible 

distance between two points along course slopes which are less than 10%.  This means 

that roads traversing up steep, hilly terrain, can be expected to have multiple switchbacks, 

and perpendicular watercourse crossings.  Clearly, reflectivity off of paved road surfaces 

should result in very different returns from local surrounding materials, whether 

vegetation or soil.  ―Skid‖ trails are called such because they are utilized in forestry 

operations for ―skidding‖ logs by tracked or wheeled vehicles from point of where trees 

have been cut to landings on main roads where they are subsequently loaded on trucks for 

haul.  These ―trails‖ display most of the same characteristics of roads in width, earth cut, 

and network grid between nearest main roads, but often occur traversing much steeper 
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slopes.  What is different is that once logging operations have concluded, these trails are 

quickly overgrown again with first brush and other native vegetation, followed by trees.  

Skid trails can be expected to show up very well on DEMs because of these obvious 

changes to slope and movement of earth in predictable patterns across a managed forest 

floor, but may not be obvious from above ground point cloud representations.  

Knowing some of these considerations about road and trail characteristics, image 

processing techniques can be chosen which capitalize on exploiting them.  Techniques 

were applied to point cloud data to visualize those points that occur in the trail ―zone‖ up 

to 1.8 m and converted to images.  Additional images were extracted using topographic 

tools covering slope, convexity and curvature parameters. On these images, regions of 

interest were identified which could be used to recognize linear features on a local level, 

as to whether they were road, trail or other.  Using all available image bands, pixels were 

separated out into classes that represent each surface feature and the results were 

subsequently applied using a maximum likelihood probability technique across an entire 

sample area. 

B. DATA AND SITE DESCRIPTION 

1. Indian Creek Watershed 

Data from the Indian Creek Watershed in Trinity County, California, were 

collected by Airborne 1 Corporation for Sierra Pacific Industries Indian Creek LiDAR 

mapping project on July 7, 2001.  This data were at the lowest point density of the three 

collections at around 3 points/m2.  The collection area consists of low-elevation conifer 

forest, consisting primarily of Douglas fir, Digger Pine and Live Oak.  The most 

significant conifer concentrations are on north-facing slopes.  There are also large areas 

of brush on south facing slopes that are probably the result of a previous forest fire.  

Bisecting the collection area from East to West is Indian Creek itself, paralleled by Indian 

Creek Road.  The collection area contains other named roads including Mule Gulch Road 

and Joseph Gulch Road, as well as several small structures and one small pond. 
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Sensor Optech 25kHz 

Collection Date 1. July 7, 2001 

Collection Rate 2. 25,000 pulses/second 

Altitude 3. 1600 m AGL 

Overlap 4. 50% 

Scan Angle 5. ± 12° from nadir 

Point Spacing 6. 1.5 m posting 

Platform 
7. Fixed wing twin prop 

(Parte Navia) 

Table 1.   Indian Creek Watershed Collection, Optech 25kHz specifications 
(Airborne 1) 

 

 
Figure 28.   Indian Creek Watershed Collection (From:  Google Earth) 
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2. Lake Tahoe Basin 

Data from the Lake Tahoe Basin on the California/Nevada border were collected 

by Watershed Sciences, Inc (WSI) from August 11 to August 24, 2010.  Data were 

provided by the Tahoe Regional Planning Agency and the U.S. Geological Survey and 

made publicly available on the OpenTopography website, 

http://www.opentopography.org/index.php.  OpenTopography is based at San Diego 

Supercomputer Center, University of California at San Diego, and is operated in tandem 

with the School of Earth and Space Exploration and Arizona State University.  It receives 

funding from the National Science Foundation and NASA and receives operational 

support from the National Space Foundation:  Earth Sciences Instrumentation and 

Facilities Program (EAR/IF) and the Office of Cyberinfrastructure.  OpenTopography is a 

valuable public resource for obtaining high resolution topographic data sets in a myriad 

of locations throughout the U.S and beyond (currently Greenland and Haiti). 

 

 
Figure 29.   Lake Tahoe Basin collection, Cold Creek (From Google Earth) 
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The Lake Tahoe Basin dataset covers nearly 1000 sq. km. and more than 12 

billion points.  This LiDAR survey used two Leica ALS50 Phase II laser systems flown 

on a small Cessna Carvan 208B plane.  Pulse rates were at 83 – 105.9 kHz and this 

aircraft was flown at between 900–1300 m AGL.  Funded by the Bureau of Land 

Management, this dataset contains an average shot density of over 11 pts per m2 and 

2.26 pts per m2 average ground point density (see Table 2 for breakdown). 

This area is dominated by high elevation conifer forest, mostly more conical 

Ponderosa Pine, Sugar Pine, and perhaps White Fir, more widely spaced, with little 

understory vegetation except  in exposed open brushy areas and along watercourses.  

There is significant downed woody debris and rocky ground.  The survey area is 

relatively flat, except for along Cold Creek watercourse which traverses the Northern 

half.  A large cleared power-line right of way passes through the Southern half of the 

survey area, and the Northeast corner contains a portion of a South Lake Tahoe 

neighborhood containing vacation home structures.  

 

Sensor (2) Leica ALS50 Phase II 

Collection Date 8. Aug 11 – 24, 2010 

Collection Rate 
9. 83,000 – 105,900 

pulses/second 

Altitude 10. 900 – 1300 m AGL 

Spot Distribution 11. > 8 pulses per m2 

Scan Angle 12. ± 14° from nadir 

Vertical Accuracy 13. 3.5 cm RMSE 

Platform 14. Cessna Caravan 208B 

Table 2.   Lake Tahoe Collection, Leica ALS50 specifications  
(OpenTopography) 
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3. Kahuku Training Area 

Data from the Kahuku Training Area in northern Oahu, Hawaii, was collected in 

March 2005 and obtained from the NGA.  This portion of the data set was chosen for 

analysis because of work done previously in this area to specifically identify roads and 

trails under canopy from LiDAR derived products, followed by extensive ground-truth 

work in the area in May 2007.  Specifics of this study can be found in Espinoza and 

Owens (2007).   

 
Figure 30.   Kahuku training area site 6 (From Google Earth) 

Data were collected from a custom Optech 3100 system mounted on a Bell 206 

Jet Ranger helicopter.  Site 6 was selected from this collection, which has an approximate 

total area of 400 x 400 m.  Unique to this collection was the attempt made in the flight 

profile to simulate a step-stare mode during collection.  Also of note was the use of a Full 

Wave Digitizer (FWD) to collect clearer definition of understory vegetation at high 

densities.  See Table 3 for specific collection information. 
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The area was described in this previous work as being amid lowland mesic 

grasslands and forests with rugged mountainous terrain and varying degrees of 

vegetation.  Site 6 contains a hilltop in the Southeast corner which has a significant 

sloping terrain toward the North/Northwest into a heavily vegetated canyon running the 

diagonal of the area, before gaining elevation again toward the Northwest corner.  There 

is a primary road traversing around the hilltop, and a nonoccluded ridgetop dirt road that 

runs the length of the scene heavily travelled by ―offroad‖ vehicles.  Several trails have 

been mapped during ground truth work conducted by Espinoza and Owens (2007).  

  
Table 3.   Kahuku collection, Optech 3100 specifications  

(From Espinoza & Owens, 2007) 

 

C. PROCESSING SOFTWARE 

1. Quick Terrain Modeler, Version 7.1.4 

Quick Terrain Modeler is designed by Applied Imagery for use as LiDAR visual 

exploitation software  to provide 3D point cloud and terrain visualization utilities that are 

very powerful and user-friendly.  This software was the primary analysis tool used in this 

study to build DEMs from point clouds, crop point clouds at user defined AGL selection, 
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run grid statistics on data, and export GEOTIFF images for further analysis.  Also used 

was the ILAP Bare Earth Extraction Plug-In developed by The John Hopkins 

University/Applied Physics Laboratory to create DEMs, object files and cloud files which 

allowed for creating two point clouds at one user defined AGL cutoff between each files’ 

set of points.  It was also possible to export files for integration with Google Earth 

imagery. 

2. Environment for Visualizing Images (ENVI) + Interactive Data 
Language (IDL), Version 4.8 

ENVI is powerful image processing software that allows for comprehensive data 

visualization and analysis of images.  Images exported from Quick Terrain Modeler were  

fed into ENVI for analysis with Topographic Tools and Spectral Tools imbedded in the 

program for real-time extraction from multiple bands, then classification was applied to 

extract global results.  Use of these tools will be described in detail in the next few 

chapters. 
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IV. OBSERVATIONS AND ANALYSIS 

A. DATA PREPARATION 

1. Quick Terrain Modeler 

a. Data Import 

Raw LiDAR data is available in many different formats.  The two file 

types selected in this study are ASCII XYZ files with the Indian Creek and Kahuku 

datasets and LAS files with the Tahoe dataset.  The ASCII XYZ file format consists 

simply of a series of data in X, Y and Z Cartesian coordinate style columns, each 

representing Easting, Northing and Altitude for each point.  In addition, intensity values 

were included in the fourth column of each dataset.  The generic formats are converted 

into software specific forms to be used with QTM.  Model formats can be created as 

Gridded Surface (.qtt), Point Cloud (.qtc) or as Point Cloud with Attribute Table (.qta).  

The Gridded Surface model takes the points and creates a 2.5-D surface over the points, 

much like laying a tablecloth across a dataset.  When applied to all points, this can be 

very useful for quickly identifying buildings and vegetated areas, but is not very useful 

for picking out ―hidden‖ surface features.  The Point Cloud is a 3D representation of the 

points in the dataset, and with the attribute table, allows per point attributes that can be 

further evaluated in statistical analysis.   

(1) Indian Creek.  In the case of Indian Creek, files were arranged 

according to first returns and last returns.  All files were first imported in order to get an 

idea of the dimensions of the survey area and then selected files identified based on 

which would provide the best representation of trails and roads for this study.  These 

files1 were imported from both first and last returns in Point Cloud format, then merged 

together into one 3D Point Cloud file.2  With all returns, point density is at 3 points per 

m2 and each point 0.6 m apart on average.  Data were not classified according to returns 

                                                 
1 000020.xyz, 000032.xyz 
2 Indian_Creek.qtc 
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into categories of ground or vegetation type, so it was not possible to import them with an 

attribute table (this is a characteristic of the xyz ASCII format). 

 

 
 

Figure 31.   ASCII dataset import menu on the left and LAS dataset import menu on 
the right.  For ASCII, data is arranged as text in file by column as East, 

North, Z, and Intensity.  For LAS, data can be imported with intensity or 
according to classification. 

(2) Lake Tahoe.  Lake Tahoe data were downloaded in Laser Point 

File, LAS format.3  This is a common file format extension for LiDAR data, and this data 

contains classification of points allowing for import into a 3D attribute table point cloud 

file4 with all returns, as well as, importation directly into a surface model for only ground 

returns5 at 0.29m default resolution.  With all returns, point density is at over 16 points 

per m2 and each point 0.25 m apart on average. 

                                                 
3 3179_080911.las 
4 Tahoe_ColdCreek.qtc 
5 Tahoe_ColdCreek.qtt 
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Figure 32.   Indian Creek point cloud, all returns.  Colors show relative elevation 

values in meters. 

 
Figure 33.   Indian Creek point cloud model information, all returns. 
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Figure 34.   Lake Tahoe, Cold Creek point cloud, all returns.  Colors show relative 

elevation values in meters. 

 
Figure 35.   Lake Tahoe, Cold Creek model information, all returns. 
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Figure 36.   Kahuku point cloud, all returns.  Colors show relative elevation values in meters. 

 
Figure 37.   Kahuku model information, all returns. 
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(3) Kahuku.  Kahuku data were already available in point cloud 

format in legacy files from earlier thesis work (Espinoza & Owens, 2007) and separated 

into point cloud, target files and surface files.  Point cloud files were combined in their 

Site 6 area to create one file with all returns for further analysis.6  With all returns, point 

density is at over 107 points per m2 and each point 0.0963 m apart on average.  

b. DEM Creation 

Digital Elevation Models are created to represent the ground surface and 

exclude all above ground features such as vegetation or structures.  From this product, it 

is easy to visually obtain surface features that are normally occluded by trees, such as 

roads, trails, watercourses and landslides. 

(1) Indian Creek.  In order to create a DEM from this dataset, the 

ILAP Bare Earth Extraction Plugin was utilized.  With this application, many different 

parameters can be experimented with when attempting to create the best quality DEM for 

analysis.7  Unique to this application, an object layer can be created consisting of points 

up to a user–defined AGL upper limit, and a Cloud layer consisting of all points above 

the user–defined limit.  Although an object layer file was created up to approximately 1.8 

meters AGL with the idea that this is the zone of points of interest for recognizing trails 

and roads,8 this file was not looked at in the analysis.  Instead, the AGL analyst option 

available in QTM (described below) was used in order to stay consistent in method across 

all three data sets.  The resolution of the DEM could only be taken to about 2 meters 

before sacrificing quality to various artifacts known as ―Crystal Forest.‖  These are areas 

where thick foliage may become incorrectly marked as surface due to areas of few returns 

off of real ground.  A surface mode sampling input equivalent to 1 meter resolution was 

used.  Roads, skid trails, watercourses, and potential trails are clearly observable, even in 

this low point density dataset. 

                                                 
6 Kahuku_site_6.qtc 
7 Indian_Creek_surface.qtt 
8 Indian_Creek_object.qtc 
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Figure 38.   Bare earth extraction import menu. 

 
Figure 39.   Google Earth Image of Indian Creek Watershed survey area, each square 

forms a separate ASCII file covering about 1 km2  
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Figure 40.   Digital Elevation Model from Indian Creek watershed survey area 
revealing surface features beneath vegetation. 

(2) Lake Tahoe, Cold Creek.  The LAS file was directly imported 

into a surface file by specifying that only ground classified points be considered.9  With 

the higher point density, the resolution is very good at 0.29 m resolution with minimal 

artifacts.  This dataset has much flatter terrain, yet roads, watercourses, and even trails 

can be easily observed. 

(3) Kahuku.  The high point density of this dataset allowed for the 

creation of a relatively high surface model sampling at 0.5 m between points using the 

Bare Earth Extraction Plug–in with resolution at 0.5 m, but the very dense vegetation also 

resulted in a large number of artifacts.10  With this product, it is easy to see the roads, and 

surface drainage patterns in the open areas very clearly.  Finding the trails that were 

heavily ground truthed in the area are not clearly observed on any DEM created in this 

analysis. 

                                                 
9 Tahoe_ColdCreek.qtt 
10 Kahuku_site_6_surface.qtt 
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Figure 41.   Google Earth image of Cold Creek survey area in Lake Tahoe Basin 

dataset.  Survey area covers slightly more than 1 km2 

 
Figure 42.   Digital Elevation Model from Cold Creek survey area in Lake Tahoe 

Basin revealing surface features beneath vegetation 
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Figure 43.   Google Earth Image of Site 6 in Kahuku survey area, Oahu, HI.  Area 

covers about 400m x400m. 

 
Figure 44.   Digital Elevation Model from Kahuku site 6 survey area revealing surface 

features beneath vegetation. 
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c. AGL Analyst 

Above Ground Level (AGL) analysis in QTM allows measurement of 

features relative to the ground, as opposed to measurement relative to absolute elevation.  

This is very useful for peeling back the canopy into user–defined slices to concentrate on 

just those points, or portions of the canopy of interest.  For this study, concentration was 

placed on those points located just above the ground points to about 1.8 meters for 

analysis.  This is the area where changes in the surrounding vegetative layer would be 

expected to have recognizable linear features, such as trails and roads. 

The AGL Analyst tool in QTM utilizes information from the surface 

model compared to the point cloud model to build above ground analysis for every point.  

Break points can then be added to isolate points within elevation classes, and then these 

points can be displayed and/or exported into their own individual models.  Break points 

for each data set were added at 0.1m and 1.8 m (room for 6 foot human on a trail).  Then 

only these points within this range were exported into separate LAS files11 for further 

analysis. 

 
Figure 45.   AGL Analyst menu, ground estimate calculated from surface model, break 

points added at 0.1m and 1.8m, points exported into LAS files  

                                                 
11 Indian_Creek_Slice.las, Cold_Creek_Slice.las, Kahuku_Slice.las 
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With Indian Creek and Cold Creek data sets, linear gaps absent of points 

within this 3D point cloud slice corresponding to roads/trails are clearly visible across the 

landscape.  In each case, it requires use of QTM’s 3D zoom features, and manipulation of 

point size to visually enhance this result.  Each have similar understory characteristics, 

with Indian Creek containing a greater vegetated understory and Cold Creek a relatively 

open understory.  With the Kahuku data set, these gaps were not clearly evident beneath 

the thick vegetation, but still useful at identifying the main road through the survey area.  

This data set has the greatest point density, but also the most vegetated landscape.  Trails 

known to be present under the canopy from ground truth are not evident on the DEM and 

not evident within this point cloud slice, probably due to the result that light penetration 

through the dense foliage, flown with this method, is still not sufficient to extract the 

desired information. 

 

 
Figure 46.   Birds–eye view of 3D point cloud in Lake Tahoe, Cold Creek from 0.1m 

to 1.8m.  Linear gap in point cloud absent of points is clearly visible 
winding across the landscape, corresponding to identifiable trail on the 

DEM in Figure 47 



 59 

 
Figure 47.   Birds1eye view of DEM in Lake Tahoe, Cold Creek with trail clearly 

visible winding across the landscape corresponding to linear gap in point 
cloud absent of points from Figure 46. 

d. Image File Creation and Export 

In order to utilize ENVI for image analysis, QTM files need to be 

converted and exported into appropriate image files.  Each DEM model was exported in 

GEOTIFF (32–bit DEM) image format.12   

 

                                                 
12 Indian_Creek_dem.tif, Cold_Creek_dem.tif, Kahuku_dem.tif 
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Figure 48.   Export Model menu for each surface model  to be converted to image file 

for ENVI analysis 

After exporting these files, Grid Statistics were performed on each AGL 

point cloud LAS file slice and ―Number of Points‖ was selected as a variable at a spacing 

of 0.5 meter for Kahuku, 1 meter for Cold Creek, and 2 meter spacing for Indian Creek 

data.  These files were then exported, each retaining their number values, in GEOTIFF 

format.13  In creating these point density images, collection methods are clearly evident 

where flight lines overlap with corresponding large variations in point density numbers.  

Figure 50 shows the number of points statistics on the Cold Creek full point cloud and 

Figure 51 shows the number of points statistics on the corresponding AGL point cloud 

slice.  These variations should be taken into consideration during any subsequent 

analysis. 

 
 

                                                 
13 Indian_Creek_Slice_Density.tif, Cold_Creek_Slice_Density.tif, Kahuku_Slice_Density.tif 
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Figure 49.   Grid Statistics Menu, Cold Creek:  Number of Points for 0.1m to 1.8m 

AGL slice file was calculated at 1 meter spacing, and values saved in 
GEOTIFF format for subsequent ENVI image analysis 

 
Figure 50.   Lake Tahoe, Cold Creek survey area Number of Points for all points.  

Flight line overlap effects are clearly evident as strips of higher density 
points transiting the image. 
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Figure 51.   Lake Tahoe, Cold Creek survey area Number of Points for 0.1 m to 1.8 m 

AGL point cloud slice.  Flight line overlap effects are clearly evident 

2. ENVI 

a. Topographic Modeling 

Topographic tools in ENVI extract internal information from the image 

files created in QTM by fitting a quadratic surface to the digital information data and 

taking derivatives.  Topographic outputs include slope, aspect, shaded relief, convexity, 

minimum and maximum curvature information, as well as, an RMSE image, all as 

separate bands.  The creation of these bands is based on input of kernel size and file 

digital elevation data from original image.  Slope and convexity bands were selected for 

analysis as most relevant for this study, utilizing the DEM image from each survey area.  

The default Topographic Kernel size at 3.14 

                                                 
14 Indian_Creek_Topo.dat, Cold_Creek_Topo.dat, Kahuku_Topo.dat 
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Figure 52.   Topographic model parameters, selection of measures  to compute, kernel 

Size and output to file. 

Slope is measured in degrees, or percent from the horizontal, depending 

on band selected.  Profile Convexity measures rate of change of the slope along the 

profile (intersecting with the plane of the z axis and aspect direction).  Plan Convexity is 

in the plane of the z axis, intersecting with the XY plane, and measures the rate of change 

of the aspect along the plan.  Longitudinal Convexity intersects with the plane of the 

slope normal and aspect direction, measuring the surface curvature orthogonal in the 

down slope direction.  Cross Sectional Convexity intersects with the plane of the slope 

normal and perpendicular to the aspect direction, measuring the surface curvature 

orthogonal in the cross slope direction (ENVI, 2003).  Evaluation of these bands, along 

with the additional Number of Points image band in the ―trail zone,‖ was the source for 

attempted isolation and identification of roads and trails for classification, and subsequent 

automation.  Figure 53 through Figure 57 show representative output images from Indian 

Creek dataset. 
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Figure 53.   Indian Creek topographic slope band. 

 
Figure 54.   Indian Creek topographic profile convexity band. 

 
Figure 55.   Indian Creek topographic plan convexity band. 
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Figure 56.   Indian Creek topographic longitudinal convexity band. 

 
Figure 57.   Indian Creek topographic cross-sectional convexity band. 

b. Image Preparation and Layer Stacking 

When images are exported from QTM, they are often in slightly different 

spatial sizes depending on defined DEM resolution and point slice image spacing 

selections.  Also, the point slice image is exported with values of –9999.0 in pixels where 

there is an absence of points.  These results must be corrected before proceeding with 

analysis.  The point slice image problem was corrected within ENVI to facilitate routine 

analysis by setting all of these –9999.0 values to zero. 

To enable simultaneous geographic analysis between the desired bands, 

spatial sizes must be equivalent.  This was accomplished by Layer Stacking, in the Basic 
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Tools menu, to build a multiband file from all three geo–referenced images.  Files were 

stacked from each survey area in order of precedence:  Topo file, DEM file, updated 

point slice file.  Exclusive range was selected to ensure that the output file would contain 

only data where files overlap.  The output file projection was set corresponding to the 

input files, with pixel sizes at 1 m2, and resampled according to Cubic Convolution.15  

Cubic Convolution uses 16 pixels to approximate the sinc function using cubic 

polynomials to resample the image.  This method produces an image product that is 

smooth in appearance as a final analysis product (Richards & Jia, 2006).   

 

 
Figure 58.   Layer Stacking Parameters input menu.  Files are selected for stacking in 

order of precedence and output in re–sampled, 1 m2 pixels. 

c. Minimum Noise Fraction (MNF) Transform 

Analysis of the multi-layer datasets was explored with principal 

components and the MNF transforms.  This projection weighs the bands as a function of 

                                                 
15 Indian_Creek_Data.dat, Kahuku_Data.dat, Cold_Creek_Data.dat 
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the Signal to Noise Ratio (SNR).  A forward transform rotation was performed to 

estimate noise statistics from the data, and output MNF bands into a file for further 

spectral analysis.16  The goal here was to project the data into a coordinate system that 

makes it most obvious which bands provide the best data for road and trail identification. 

 

 
Figure 59.   Forward MNF Transform Parameters menu.  Transform performed on 

Layer Stacked data files and output into MNF bands file for subsequent 
spectral analysis. 

B. DATA SPECTRAL ANALYSIS 

1. Indian Creek 

a. Region of Interest Selection 

Examining the MNF, band 4 revealed that darker areas were more likely 

to be trail.  Polygon regions were drawn within known roads and suspected skid trails and 

carefully traced within these smaller linear features suspected to be ―trail–like.‖  Polygon 

regions were also drawn over differing non–trail areas across the survey area.  The tool 

that allows this is called the ROI Tool within ENVI which was used to visually draw 

                                                 
16 Indian_Creek_mnf.dat, Kahuku_mnf.dat, Cold_Creek_mnf.dat 
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distinction between trail and non-trail areas within these identified regions.  Different 

colors were used to distinguish between selected points in each region.  These regions 

containing both trail and non–trail pixels were then exported into the n–D Visualizer to 

see the distribution of points within these regions between bands. 

 

 
Figure 60.   ROI Tool for selecting regions of suspected road/trail regions (Red points) 

and suspected non–road/trail regions (Green points)  

b. n–Dimensional Visualizer Analysis 

The n–Dimensional Visualizer provides a format for visualizing all 

selected bands in their several dimensions in order to check the separability of selected 

ROIs in a scatter plot.  After export into n–D Visualizer, location, identification and 

clustering of trail points from non–trail points was very easily accomplished based on 

MNF band differences.  Outlying points were then removed in the clusters to reveal a 

well behaved distribution of trail and non–trail points. 
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Figure 61.   Indian Creek survey area, Regions of Interest over MNF band 4, 

identifying roads/trails (red selections) and non–roads/trails (green 
selections). 

 
Figure 62.   N–D visualizer scatter plot utilizing MNF bands 2 through 7 for Indian 

Creek survey area 

c. Maximum Likelihood Classification 

Maximum likelihood classification assumes a normal distribution of each 

class in each band identified as road/trail and not road/trail.  This tool then calculates the 
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probability that a given pixel in the entire landscape belongs to that specific class (ENVI, 

2004).  Once classes were identified using the n–d visualizer, maximum likelihood 

classification was performed with these inputs on MNF spectral bands 2–7 at a 

probability threshold of 0.1 and output to a class file and a rule file.17  The probability 

threshold was set at 10% such that pixels with probabilities less than this threshold would 

not be classified.  At any threshold higher than 25%, points came back without any 

classification results.  Only without a probability threshold were non–road/trail points 

classified at all with this method.  Classification results correctly identify most all 

roads/skid trails visible on DEM, however, across the landscape, false positives are 

prevalent in flat ground along the creeks, and low slope areas along ridges. 

 

 
Figure 63.   Maximum Likelihood Parameters input menu.  ROI regions are selected 

with a probability threshold of 0.5 and output to both class and rule files 

                                                 
17 Indian_Creek_max_likelihood_result.dat, Indian_Creek_rule.dat 
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Figure 64.   Maximum Likelihood Classification result, probability threshold of 10%, 

applied to Indian Creek survey area.  The red areas are classified as most likely 
to be trail.  Vast areas of the survey area are unclassified at this threshold. 

 
Figure 65.   Maximum Likelihood Classification result, no probability threshold, 

applied to Indian Creek survey area.  The red areas are classified as most likely 
to be road/trail.  The green areas are classified as most likely to be other than 

road/trail. 
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2. Lake Tahoe, Cold Creek 

a. Region of Interest Selection 

Examining the MNF bands, band 1 revealed that lighter areas were more 

likely to be road/trail and band 2 revealed that darker areas were more likely to be 

road/trail.  Band 1 was utilized for defining trail and non trail regions of interest for 

selection.  A polygon region was drawn over an obvious trail, containing both trail and 

non–trail pixels for export into n–D Visualizer to see the distribution of points within this 

region between bands. 

 
Figure 66.   MNF band 1 (left) and MNF band 2(right) images, overview.  In band 1, 

lighter areas more likely to be trail.  In band 2, darker areas more likely to 
be trail.   

b. n–Dimensional Visualizer Analysis 

After export into the n–D Visualizer, location, identification and clustering 

of trail points from non–trail points was performed based on MNF band differences.  

Outlying points were then removed in the clusters and another region drawn of only non–

trail points in order to further distinguish between trail and non–trail.   
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Figure 67.   Regions (top) drawn over MNF band 1 image, red points identified as 

most likely trail, blue points as possibly trail, and green as not trail.  N–D 
visualizer scatter plot (lower left) utilizing MNF bands 1 through 4, and 

scatter plot (lower right) utilizing MNF band 1 and band 2. 

c. Maximum Likelihood Classification 

Once identified, maximum likelihood classification was performed with 

these inputs on MNF spectral bands 1–4 at a probability threshold of 0.5 and output to a 

class file and a rule file.18  Classification results correctly identify some trails, 

particularly within the area immediately adjacent to the region of interest selections; 

however, across the landscape, false positives far outnumber positive results, rendering 

                                                 
18 Cold_Creek_max_likelihood_result.dat, Cold_Creek_rule.dat 
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this classification scheme as thoroughly ineffective.  The ―trail‖ identified areas 

correspond to the lowest slope terrain across the survey area. 

 

 
Figure 68.   Maximum Likelihood Classification result applied to Lake Tahoe, Cold 

Creek survey area.  The whiter the area, the more likely that it is a trail.  
Vast areas of the survey area are classified as trail using this method. 

 
Figure 69.   Subset of Lake Tahoe, Cold Creek survey area surrounding region of 

interest selected areas (upper left of figure that includes the green shaded 
region of nontrail points).  Classified such that the whiter the area, the more 

likely it is a trail. 
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3. Kahuku 

a. Region of Interest Selection 

Examining the MNF bands, band 1 revealed that lighter areas were more 

likely to be road/trail and this band was utilized for defining trail and non trail regions of 

interest for selection.  Polygon regions were drawn within known roads and other bare 

earth areas supporting vehicular travel.  Polygon regions were also drawn over differing 

non–trail areas across the survey area.  Lastly, positive areas of ground–truthed trails 

were carefully traced as identified in previous work (Espinoza & Owens, 2007).  These 

regions containing both trail and non–trail pixels were then exported into the n–D 

Visualizer to see the distribution of points within these regions between bands. 

 
Figure 70.   Kahuku survey area, Regions of Interest over MNF band 1, identifying 

roads/trails (red selections) and nonroads/trails (green selections).  Differing 
shades of red and green are the result of further n–D visualizer analysis. 
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b. n–Dimensional Visualizer Analysis 

After export into n–D Visualizer, the location, identification and clustering 

of trail points from non–trail points was performed based on MNF band differences.  

Outlying points were then removed in the clusters and further classified according to 

variations of red and green based on clusters within regions.  Those regions identified as 

road/trail are clearly orthogonal to all other non–trail classified points in this analysis. 

 
Figure 71.   N–D Visualizer scatter plot of points selected in Regions of Interest and 

further selected and colored according to obvious point groupings.  Red 
colored points which correspond to selected roads and trails clearly form a 

grouping orthogonal to the nonroad/trail points. 

c. Maximum Likelihood Classification 

Once points were separately identified, maximum likelihood classification 

was performed with these inputs on MNF spectral bands 1 through 4 at a probability 

threshold of 0.5 and output to a class file and a rule file.19  Classification results correctly 

identify the majority of roads; however, large areas of exposed ground along a ridgetop 

                                                 
19 Kahuku_max_likelihood_result.dat, Kahuku_rule.dat 
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that traverses the figure from the northeast corner, south toward the middle/center of the 

survey area, was also identified as road.  This ridgetop area shows evidence of off–road 

vehicle activity, and clearly demonstrates characteristics synonymous with those of roads.  

This classification method fails to identify any of the known ground–truthed trails 

beneath vegetated areas in any useful classifiable way.  If they do fall within the 

classification category, it is scattered and random, not clearly linear.  In comparison with 

imagery over the same area, roads that are identified by this method are those which 

remain mostly exposed in any case and are not largely occluded by vegetation. 

 
Figure 72.   Kahuku survey area Maximum Likelihood Classification map identifying 

red colored areas as roads/trails, green colored areas as non–road/trails, 
black areas as not classified. 
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Figure 73.   Kahuku Maximum Likelihood Probability ―Rule‖ image distinguishing 

between the first three identified road/trail classes such that the whiter the 
area, the more probable that it is a road/trail.  ―Rule‖ image is the 

probability that a pixel vector matches the mean of the region of interest for 
the training set. 
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V. SUMMARY 

The comprehensive summary of this research, represented by the observations 

and analysis in Chapter IV,  yield interesting, if not impressive results using this method.  

By looking at three very different sets of data from three distinct forest environments, the 

attempt was made to model results of any successful automation regimen which could be 

applicable to a variety of situations.  This experiment looked at three image products to 

assess the data for automated classification:  QTM extracted DEM, ENVI Topographic 

Modeling results of area slope and convexity, and QTM Point Density Grid Statistics on 

number of points in ―trail‖ zone between 0.1 m and 1.8m AGL.    

For Indian Creek, it was observed that even with low point density data, a 

descriptive DEM was created which revealed roads, watercourses, and some skid trails 

under trees very visible.  Topographic modeling of the data were useful at helping to 

further visually identify roads and skid trails, particularly the Slope and Profile Convexity 

bands.  When taking a point ―slice‖ between 0.1m and 1.8m AGL, linear gaps absent of 

points corresponding to road and skid trail locations were very easily recognizable with 

this data, even at point densities less than 1 per m2.  All bands were layer stacked and 

smoothed with an MNF transform.  MNF band 4 of the data provided the best 

discriminating image on which to segregate road and skid trail points from background 

points. Maximum likelihood classification results using a 10% probability threshold 

identified roads and skid trails, but also misidentified flat areas, watercourses, and ridge–

tops as also being probable roads/trails. 

For Lake Tahoe, Cold Creek, it was observed that with the higher point density 

data, a much higher quality DEM could be created which effectively revealed roads, 

structures, downed woody debris and even trails under vegetation.  This area had more 

level terrain with open canopy and a more open understory than the other two data sets.   

Topographic modeling of the data were useful to further visually identify roads and trails, 

particularly the Slope, Profile and Plan Convexity bands.   
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When taking the point ―slice‖ between 0.1m and 1.8m AGL, the linear gaps 

absent of points corresponding to trail locations were also easily recognizable with the 

data, particularly in the higher point density flight line overlaps.  Point density images 

contained significant variability due to these flight line overlap zones which was evident 

throughout all further analysis.  All bands were layer stacked and smoothed with an MNF 

transform.  MNF bands 1 and 2 were most useful in observing roads by dark or light 

coloring compared with the surrounding landscape.  MNF band 1 was chosen on which to 

segregate trail from non–trail on the most obvious visually identifiable feature in the 

survey area.  Maximum likelihood classification results using a 50% probability 

threshold, identified trails in the immediate vicinity of areas where trail/non–trail regions 

were selected for analysis, but also identified the majority of low slope areas across the 

landscape as most probable trail. 

 
 

Figure 74.   Birds–eye view of 3D point cloud in Lake Tahoe, Cold Creek from 0.1m 
to 1.8m.  Linear gap in point cloud absent of points is clearly visible 

winding across the landscape, corresponding to identifiable trail on the 
DEM 
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For Kahuku, Oahu, HI data, it was observed that, even with the extremely high 

point density, DEM quality suffers where vegetation is thickest, rendering most trails 

hidden.  This area has a mix of steep and flat terrain, but very thick ―jungle‖ type 

vegetation was a barrier to field identified trails.  Topographic modeling of the data were 

useful for further visually identifying the roads and a few trails, particularly the Slope and 

Profile Convexity bands.  When taking the point ―slice‖ between 0.1m and 1.8m AGL, 

linear gaps were only obvious around the major roadway in the survey area.  Known 

trails in the survey area were not obviously identifiable from the point cloud slice.  All 

bands were layer stacked and smoothed with an MNF transform.  MNF bands 1 through 4 

were most useful in observing the roads and few trails.  MNF band 1 was chosen on 

which to segregate trail, road, and non–trail regions.  Maximum likelihood classification 

results using a 50% probability threshold, identified roads very well, but also identified 

most all exposed ground across the ridge–tops as road, although at a lower probability.  

The results failed to reveal classification of any known trails beneath forest canopy. 

For all three areas and data sets, automated classification utilizing this method 

was inconsistent and unsuccessful. 
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VI. CONCLUSION 

The primary objective of this thesis was to determine an acceptable method for 

evaluating LiDAR data in order to effectively recognize potential roads and trails under 

forest canopy with the intent to automate such a process.  Although methods used in this 

study were effective in providing means by which manual visual recognition of roads and 

trails under forest canopy were enhanced, automated classification by these methods were 

ineffective and remain unacceptable without further research.   

The utility and effectiveness of airborne LiDAR for producing data from which 

high quality 3D topographic models can be derived for use in military and forestry 

applications has been shown.  Quality of DEMs produced from LiDAR data is dependent 

on point cloud densities and vegetation densities, and the ability to ―see‖ beneath the 

vegetation clearly is also affected.  Although it was attempted to model results for 

successful automation by looking at three very different sets of data from three distinct 

forest environments, more consistent results would be probably be obtained by 

comparing these sites with equivalent point density data sets.  Unfortunately, having 

equivalent data set collections across multiple locations would be cost–prohibitive and 

difficult to arrange. 

Subsequent efforts should be explored with efforts aimed at Gabor filtering, 

Tensor Voting, Visibility Vectoring and other computer vision techniques mentioned in 

Chapter II, D.  These methods may be more successful, in combination or separately 

from methods applied in this study, at further delineating between the data.  Also, it was 

decided to concentrate on  point density as a contributing factor, whereas other grid 

statistics outputs from QTM (intensity, second–order slope, z) may reveal opportunities 

for further analysis.  It would also be recommended to explore a variety of other software 

solutions available in the marketplace.  The problem is a difficult one where we can 

visually determine trail from non–trail, but pixel–based classification techniques alone 

remain inconsistent when applied to landscape solutions.   
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The ability to automate the analysis of LiDAR data to detect landscape changes 

between subsequent collections remains a significant capability for study, both for the 

value obtained from the information, and for the time–saving benefits that automation 

would provide. 
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