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An investigation of stall

on a 4.2m diameter experimental rotor
(D Petot / ONERA)

ABSTRACT

Stall on helicopter rotors has been investigated on a classical 4.2 m diameter model tested in
the Modane S1 wind-tunnel on which large thrust coefficients could be obtained. The interest of this
test lies in the fact that the model was very thoroughly instrumented W1th strain gauges and pressure
transducers so that detailed investigations could be carried out.

Stall was taken into account in the calculations through two versions of the ONERA dynamic
stall model. These models have been fitted to classical 2D wind tunnel tests independent from the ro-
tor test prior to their use on the rotor. During this procedure, a hypothesis used in the linear model had
to be refined and one of the objective of this paper is to describe this.

The ONERA dynamic stall models were tuned to 2D unsteady loops and then run on the ex-
perimental configurations. Results were compared to experiment.

On the average, calculations led to a well predicted general behavior of the stalled rotor, even
if some flaws in the calculations were encountered and corrected. More important is the presence of
a very strong unexpected negative moment at the mid-span of the retreating blade that was not repro-
duced by the models issued from 2D unsteady tests. This phenomenon needs further investigation to
achieve reliable predictions of vibration.

1. INTRODUCTION

The confrontation of predictions with the Modane rotor test was presented at the European
Rotorcraft Forum at Dresde in september 97 (ref 1). Results came from several research centers and
manufacturers. This collaborative published work must be acknowledged for the help it brought to
reach a number of important conclusions.

The objective of this paper is to show more in detail the ONERA results on the Modane rotor
as well as to present a refinement that had to be introduced in the ONERA.Edlin model which is fairly
widely used today.

ONERA results are not exactly the same here as in the European forum paper because wind
tunnel corrections are added. These were not used in the collaboration to ensure that all the partici-
pants work with the same hypotheses. Moreover the blade finite element analysis used at the time pro-
duced such a strong a torsion / flapping coupling for this nearly straight blade, that it had to be
replaced.
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2. ONERA MODELS
2.1. The comprehensive rotor code

All the calculations were performed with ROTOR which is an ONERA code (ref 2). This
comprehensive code can take into account many helicopter parameters including fuselage degrees of
freedom. The Modane rotor were equipped with articulated blades fitted with parabolic tips. No par-
ticular computing problems were encountered for this application.

The code has several aerodynamic options, the more advanced being the ONERA dynamic
stall models. These can be described as mathematical tools that reproduce the behavior of the non-
stalled and stalled flow through differential equations. Two versions exist: The ONERA .Edlin model
which uses linear differential equations and the more elaborate ONERA.BH model which uses a Van
der Pol equation.

2.2. The ONERA.Edlin model (ref 3)
2.2.1. Non stalled flow

For the unstalled flow the dynamic model for lift can be summarized by:
Ci+ACz = ACzg+ b0 + 56

In fact more terms exist. These take into account heaving motion and the unsteady free
stream. The equation is fitted to Theodorsen’s equations at zero Mach number and to theoretical re-
sults for compressible flow. This model has always led to very good results when compared to exper-
iment, even at very high reduced frequencies. As for Theodorsen, a differential equation was not
needed for the moment which keeps an explicit form.

2.2.2. Stalled flow

The stalled flow is modelled as a correction to the non stalled regime. Small amplitude tests
have shown that its behavior obeys a second order equation. The global set of equations thus has the
following form:

Cz = Cz1 +Cz,
Ci +ACz| = ACz, + b0 + 5B
.'2'2+aCz'2+rsz = —[rACz + E6]

where Cz; stands for the general linear static curve (extended in the stalled domnain) and ACz is the
steady correction to be added to Cz;, in order to obtain the true steady curve Czg, see fig 1. ACz is a
measure of stall and the equations’ parameters may depend from it.

2.2.3. Transition

The static stall angle is the point were the non-stalled regime is no longer stable and skips to
the stalled regime. This equilibrium point is of course sensitive to parameters, particularly to pitch ve-
locity. Its position is modeled through the classical stall delay proposed by BEDDOES which is as-
sumed constant when expressed in reduced time. In order to achieve this, the measure of stall, ACz,
is simply kept at a zero value until the stall delay has passed, as shown in fig 2.
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Fig 1: Definition of the steady terms Fig 2: Taking stall delay into account

2.2.4. Refining the transition

To date, the model previously described has worked properly. The differential equation can
be considered as the spring, mass and damper that describe the motion of Cz versus time, pulling it
toward the quasi-steady position. Thus, neither lift nor moment can go too far from the quasi-steady
curves (at least at the usual reduced frequencies).

The use of airfoils with more lift capabilities has brought severe negative Cm values at the
onset of stall which are beyond the reach of classical differential equations (see moment on Fig 3 be-
low). This is why the non linear differential equation model has been developed.
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Fig 3: Dynamic stall on the OA213 airfoil

The lift correction used can be considered as an additional lift brought by unsteady stall. It
was implicitly supposed in the earlier version of the model that this increase of lift capability created
no moment and thus occurred right on the first quarter-chord of the airfoil. The very negative moment
that is encountered on some airfoils shows that this is not always true.



Lift correction due to transition

Moment correction due to transition

Fig 4: Correction due to the transition

The correction to the Edlin model consists simply in letting this additional lift be convected
down the stream, at a small velocity which becomes a new parameter in the model. The use of a zero
value of velocity reproduces the previous version of the model.

2.3. ONERA.BH model (ref 4)

The BH model is an advanced version of the ONERA .Edlin model. It uses the same principle
by modelling the non-stalled regime, the stalled regime and the transition. Its main difference with the
previous model lies in the global treatment of the different aerodynamic corrections (which are out-
side the Edlin model) and the use of a Van der Pol equation for stall conditions.

2.3.1. Non-stalled flow

The same equation is valid but the Cz; term is replaced by a Czg term which takes into ac-
count the various aerodynamic corrections. Part of these corrections follow the description of the
LEISHMAN-BEDDOES model. This allows to take into account the pre-stall behavior which is often
simplified in the Edlin model.

C:+ACz = kCzS+b9 + 50

2.3.2. Stalled flow

The second order equation is replaced by a Van der Pol equation which characterizes the be-
havior of systems with transitions (the model name BH stands for "Hopf Bifurcation"). Lift (and mo-
ment) are given by expressions of the following type:

Cz = Cz; +Cz,
Ci +ACz; = ACzg+ b0 + 56
sz—co(b—g : sz)Cz'2+cn)2Cz2 = —[E8 + D8]

: . 2 ..
When stall occurs, a non-linear ng - Cz, term appears. The expression 0)( b-g-Cz Jsz

induces the oscillations at the ® Strouhal frequency that can be seen on the calculated large amplitude
loops. The parameter b then takes a negative value which is responsible for the swift response.
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2.3.3. Transition

Transition is accounted for, as in the LEISHMAN-BEDDOES model, by a stall delay which
includes both yaw and rotation effects.

3. AIRFOIL 2D TESTS
3.1. Experiment

Tests were carried out on a OA213 airfoil instrumented with 30 pressure transducers. The
Mach number was left at the low value of 0.18. Lift and moment were measured on large amplitude
oscillations, with no sweep as well as with a 22° sweep.

Measurements were performed with no averaging and several consecutive loops are shown
in dotted lines in this paper.

3.2. Dynamic stall model tuning

* Cz loops (Fig 5a): The behavior of the 2 models can be clearly seen: The ONERA .Edlin is too
simplified just ahead of the transition point and oscillations present in the experiment are seen
with the ONERA.BH model in the stalled regime. Enough information is present in both models
for the rotor analysis.

* Cm loops (Fig 6a): The negative peak of Cm is sharp in the Edlin model. It is smoother and comes
along with the Strouhal oscillations in the BH model. Here also modelling seems complete
enough to be used on a rotor.

* Loops with 22° sweep (Fig 5b and 6b): There is a problem here. The Edlin model uses the classical
yaw correction in order to deal with sweep. It is obvious that this correction is not satisfactory
here. On the other hand the BH model has its own build-in corrections for yaw and thus has the
degrees of freedom to adapt to the measured loops and has the ability to adapt to experiment.

3.3. Conclusions

* No sweep:
» The BH model with the larger number of parameters gives a better fit,
» The BH model takes the vortex shedding effects into account,
* Enough features seem present in all the results for a full rotor analysis.
» 22° sweep:
* The airfoil does not behave as expected according to the classical sweep correction,
» The BH model with its built-in yaw corrections is reasonably successful in reproducing the
experimental results.

4. ROTOR TEST (4.2m diameter)

4.1. Experiment

The experiment was carried out collaboratively by Eurocopter and ONERA. The test took
place in the ONERA S1 wind tunnel in Modane.
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The rotor is 4 bladed and has a diameter of 4.2m. The blades are articulated and have para-
bolic swept tips. The chord inboard from the tip measures 0.14m. An OA213 section (13% thick) is
used from the root to 75%R and a OA209 section (9% thick) from 90%R to the blade tip. Between
these radii, the section is interpolated.

The blades are instrumented with pressure transducers (5 sections) and strain gauges (a total
of 30 in flapwise and chordwise bending and in torsion). These strain gauges were used to measure
the blade torsion through a strain pattern analysis.

High thrust coefficients were obtained (up to C1/c = 0.125) by using a slightly reduced ro-
tational speed.

The calculated results will be shown in the Fig 7 to 11 along with the set of experimental
measurements obtained at a thrust coefficient varying from 0.075 to 0.125 and an advance ratio of
0.40 . This shows the excellent experimental continuity obtained. Good duplication was also obtained
during different test campaigns.

4.2. Calculation hypothesis

The calculations used the "official" Mach dependant quasi-steady curves of the two airfoil
sections together with the unsteady parameters derived from the single OA213 2D test. They were
performed with a classical prescribed wake (METAR from Eurocopter).

4.3. Calculations versus tests

* Cz (Fig 7): Cz is shown versus rotor thrust and blade radius. Starting from the blade tip, it is obvious
that a secondary peak of Cz appears before the end of the stalled domain. It is prominent at
70%R and merges into a very large Cz peak at SO0%R.

Both dynamic stall models reproduce the blade unsteady behavior, the stall delay and the very
large Cz values for R<50%. These large values come from unsteady linear terms propor-
tional to the incidence derivative which is huge here because of the very large incidence
angles (up to 50° at 270° azimuth and 50%R) and the very high reduced frequency (0.25)
induced by the low Mach number. -

The results would thus be very satisfactory if the model had reproduced the large second Cz
peak mentioned above. The resulting imbalance of the rotor is weak (Cz.M? is small), but
it will be shown that this phenomenon has a more important effect on moment.

« Cz.M? (Fig 8): Excellent results are obtained. The rotor has a good equilibrium. The large peak of
Cz ignored by the models is greatly reduced here and appears at 70%R and 82%R around
azimuth 300°.

* Cm (Fig 9): The calculations stall a little late. The peak of Cm at the onset of stall is there with the
dynamic stall models working well, but the same remark as for the Cz can be made: a large
secondary peak of Cm appears below 82%R at azimuth 300° which is not found in the
calculations. The large values of Cm obtained at 50%R centered at azimuth 270° are due to the
linear unsteady terms. They are negligible due to the low Mach number present here.

s Cm.M? (Fig 10): The Cm.M? curves are the most disappointing. All the problems merge here:

-- As the onset of stall is far from azimuth 2709, it is associated with non negligible Mach num-
bers and a very strong pitching moment excitation exists inboard of 50%R which is totally
absent from the calculations. The same remark is true for the secondary peak of Cm.

-- A very negative value is measured at azimuth 120°. It might be due either to a wrong steady
Cm, or to underestimated unsteady effects. Hover tests cannot solve this problems be-
cause they cannot be performed at a high enough Mach number,

-- A positive value is measured at azimuth 180°. This might also be due to an incorrect steady
curve or to a sweep effect. The unsteady effects should be weak here.
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The two previous points add up to give a poor description of the aerodynamic moment. As the
non-stalled unsteady linear model usually reproduce the experiment well (see Fig 6),
some doubts arise on the true steady curves of the tested rotor.

* Blade torsional moment (Fig 11): it is satisfying to notice that the blade moments are in agreement
with the Cm results. The blade moment at 75%R shows a positive tendency at 45° and 180°
azimuths which the calculations cannot account for. On the other hand, the negative peak due
to stall is predicted, although not sufficiently prominently.

As expected, a large moment peak appears inboard of 50%R due to the violent onset of stall
which the model is unable to reproduce.

* Blade torsion (Fig 12): experimental blade torsion is not available for C1/6=0.125. Calculations
suggest that the torsion here would simply be an amplification of the C;/6=0.113 measured
torsion. The torsion obtained at Ct/6=0.113 is consistent with the Cm at the blade tip: the
calculated torsion is too negative at azimuth 45° and 180°, while a 1° torsion at the onset of stall
is effectively predicted. The unexpected moment at 50%R is not important for torsion.
Oscillation damping is consistent with the experiment.

» Flapping and lead-lag (Fig 13): flapping is predicted very well by the ONERA Edlin model. As there
is no reason why the ONERA.BH model should not give the same results, one may conclude
that the correction due to yaw forced on the BH model by the 2D test has somehow unbalanced
the rotor.

* Chord deflection and pitch-link loads (Fig 13): pitching moment predictions are useful for the
calculation of the pitch link loads. Although a strong pitching moment exists at the onset of stall,
it may be seen here that the pitch link loads are rather dominated by the chordwise deflection of
the blade which reaches a value of one full chord at azimuth 120° far more than the
aerodynamic offset brought by stall.

5. CONCLUSIONS

The high quality of the measurements has led to a good understanding of the behavior of this
rotor. Positive results were obtained with the prediction tools:
* The comprehensive code reproduced the overall equilibrium of the rotor quite well at very
high loads,
* The dynamic stall models performed correctly at the reasonable amplitudes and low reduced
frequencies for which they were tuned.

These good results allow a good identification of the difficulties that still subsist:

* The calculated blade moment lacks the very strong aerodynamic moment at mid-span of the
retreating blade, a point that needs further investigation,

» The unstalled blade moment displays an unexpected behavior, as if the quasi-steady curves
used by the calculation were distorted. This might in fact be true, but some unsteady wind
velocity effects could play a role on the advancing blade as well as yaw effects on the fore
position of the blade. Analysis of hover conditions could partly settle the problem.

» Blade torsion is sensitive to rotor thrust in the calculations with these parabolic tip blades.
Careful blade modelling is necessary,

» The classical yaw correction was not satisfactory on the 2D tests. This point needs to be
clarified in the future.
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Test at C.l./c=0.075
Test at CT/0=0.088
Test at Cr/c=0. 101
Test at Cr/c=0.1 13
Test at Cl./0'=0.125

Rotor test
ONERA-Edlin

Fig 7: Measured and calculated lift coefficient
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Test at Cr/0'=0.075
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Test at Cl_/c=0.101
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Test at CT/c=O.1 25

Rotor test
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Fig 8: Measured and calculated lift coe_ﬂicient"ﬂlrlat:‘h2
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——— Testar C/c=0.075
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~——— Testat C/0=0.125

Rotor test
—— ONERA-Edlin

Fig 9: Measured and calculated moment coefficient
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Test at C1j0=0.075
Test at C_ljc=0.088
Test at CT/cs=O.101
Test at C,ljc=0.1 13
Test at C_ljc=0.125

Rotor test
ONERA-Edlin
ONERA-BH

Fig 10: Measured and calculated moment coefficient*Mach®
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Test at CT/0'=O.O75
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Fig 11: Measured and calculated blade torsional moment
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Rotor test
—— ONERA-Edlin
- ONERA-BH

Fig 13: Rotor parameters for thrust condition Ct/s=0.125
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GROUND/AIR RESONANCE SIMULATION OF HELICOPTER ROTOR SYSTEMS BASED UPON
FULL NON-LINEAR EQUATIONS OF MOTION

C. S. Robinson, E. R. Wood and R. L. King

Naval Postgraduate School
Monterey, California

I. INTRODUCTION

Current trends in helicopter technology and
manufacturing have favored the wuse of
bearingless rotor designs that make use of
advanced composite materials. These designs
offer many advantages over more conventional
articulated rotors when reliability and
maintainability are considered. Additionally,
future helicopter development promises the
inclusion of smart material technology and
active rotor control as engineers strive to
optimize dynamic, acoustic and performance
characteristics of the helicopter.

A potential payoff from the successful use of
the technologies mentioned above is the
damperless rotor; a design that offers major
returns in the form of decreased rotor system
weight, reduced parts count, and reduced
maintenance requirements. The designers of
such complex rotors will require reliable
simulations of the rotor mechanics in order to
take advantage of these new innovations in
rotor technology. The developed simulation
should have sufficient fidelity so that the effects
of introducing advanced technologies into rotor
system designs could be accurately evaluated.

The goal of the study described in this paper
is the development of a computational tool to
analyze the dynamic behavior of advanced
technology coupled rotor/fuselage systems. A
series of programs have been developed
utilizing the symbolic processing software,
MAPLE® the computational software,
MATLAB® and the dynamic simulation
software, SIMULINK® [Ref. 1]. It is desired
that the computational tool be simple to
understand and lend itself to easy
reprogramming.

IIl. THE COMPUTATIONAL TOOL

The computational tool is comprised of four
basic parts:

1. Derivation of the rotor/fuselage system
equations of motion by the symbolic
manipulation software MAPLE®.

2. Automatic generation of computer code
from the algebraic representation of the
equations of motion.

3. Transportation of the  generated
computer code from the symbolic
processing  environment into  the
simulation environment.

4. Implementation of the nonlinear
simulation  in  the  SIMULINK®
environment.

Initial work focused on modeling the
phenomenon of ground resonance. A helicopter
was modeled using spring restrained rigid rotor
blades attached to a spring mounted rigid
fuselage. Two cases were explored. The first
case was a simple model, similar to that used by
Coleman and Feingold [Ref. 2]. This case
allowed for rotor blade lead-lag and fuselage
translational degrees of freedom and was
absent of aerodynamic effects. The second
model was more complex, with fuselage
rotational degrees of freedom, rotor blade flap,
and aerodynamic effects.

The symbolic processing software MAPLE®
was used to systematically apply Lagrange's
equation,

d(aTJ_aT LU L3

dr oqi 0qi Oqi Odi

to derive equations of motion from Kkinetic,
potential and dissipative energy expressions in
terms of system degrees of freedom.

The program applies the necessary
coordinate transformations so that the velocity
of an arbitrary point on a rotor blade elastic axis
is expressed in inertial coordinates.

The expressions for fuselage kinetic,
potential and dissipative energy as well as the
expressions for rotor blade potential and



dissipative energy are entered into the symbolic
worksheet directly by the user.

With the energy expressions defined for each
component of the rotor/fuselage model, the
contributions are added and processed following
the Lagrangian approach by the symbolic
processing program. The result is a system of
second order nonlinear differential equations
stored symbolically in a vector of the following
form

[4(z,7,9] % = 7(2.%.9) @

where A is a matrix of coefficients of the second
derivative terms, f is a vector containing the
system elastic, dissipative, generalized force
and nonlinear terms, and X is the vector of
degrees of freedom.

The MAPLE® program then generates

computer code for use in the nonlinear
simulation, The algebraic expressions in the

matrix, A, and vector, f, are converted to

optimized C code to minimize the number of
floating point operations required in the
simulation.

The third part of the process is completed
when the generated code is incorporated into
the MATLAB®-SIMULINK® environment via the
S-function interface [Ref. 3]. An S-function is a
generically  formatted  subroutine  which
communicates the dynamics of a system to a
numerical integration routine so that those
dynamics can be incorporated into more
complex models in a straight forward manner.
S-functions can be coded in either C, Fortran, or
MATLAB® m-file format.

The equations of motion are numerically
integrated in their complete nonlinear form
using the following format,

=7 @
w=[4]"f

Eqn. (3) is used to evaluate the system state
derivatives at each time step. These state
derivatives are then used by a numerical
integration  algorithm  included with the
SIMULINK® software package (Runge-Kuita 4-5
primarily used for this study).

lll. SIMULATION VALIDATION

Presented in this section are the results of
several simulations that demonstrate the unique
capabilities and flexibility of the nonlinear
modeling method. Direct simulation allows
analysis of any number of different
configurations or scenarios, such as non-
isotropic hub, one damper inoperative, and
simulated rotor blade damage. Geometric and
mass properties can be changed at any point in
the time history, so configuration changes do
not have to be artificially implemented as initial
conditions. Though the time history plots in the
following subsections do not indicate it,
SIMULINK® offers the useful capability of being
able to visualize the dynamics of a model as it
progresses in development.

The baseline case implemented is an
articulated 3-bladed rotor which is intentionally
set up with zero damping and with a rotor speed
set approximately at the center of the regressing
lead-lag mode instability region. The first set of
simulations demonstrates the system behavior
when excited with an initial fuselage velocity.
Figures 1.1 and 1.2 show the lead-lag time
histories and the fuselage center of mass
trajectory (displacements in feet) for this case.
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Figure 1.1 Rotor Lead-lag Displacements for Basic
Parameter Case Settings, Center of Self Excited Region.

As expected, Figures 1.1 and 1.2 show the
rapid divergence of the model as a result of
being in the center of the self excited region.
The diverging spiral path of the fuselage center
of mass is a characteristic result of the
regressing lead-lag mode instability.
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Figure 1.2 Fuselage Trajectory for Basic Parameter
Settings, Center of Self Excited Region.

Figures 1.3 and 1.4 show corresponding
results for operation just below the self excited
region. Figure 1.3 shows a beat or modulation of
the blade response but no divergence.
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Figure 1.3 Rotor Leaddag Time Histories, Rotor Speed
Below Self Excited Region
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Figure 1.4 Fuselage Trajectory for Basic Parameter
Settings, Rotor Speed Below Self Excited Region
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The fuselage center of mass trajectory shown
in Figure 1.4 shows an elliptical path with the
major axis of the ellipse precessing about the
zero displacement position.

Both the beat phenomenon and the
precession type motion of the hub are
characteristic behavior of a system operating
outside the self excited region. The precessing
ellipse is also characteristic of spherical
pendulums and cannot be modeled in a linear
analysis.

Figures 1.5 and 1.6 show the results of a
simulation where rotor speed was set just above
the self excited region. Again, the fuselage
exhibits an elliptic whirling motion with the major
axis of the ellipse rotating about the zero
displacement position while the blade lead lag
motion again follows a beat pattern. Note the
increase in beat and lead/lag frequencies.
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Figure 1.7 is the Coleman stability plot [Ref.
1] for the basic configuration. The solid lines
indicate the boundaries of the self excited
region and the dashed line marks the center of
the self excited region. The X's indicate the
operating points for the three cases shown in
Figures 1.1 through 1.6.
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Figure 1.7 Coleman Stability Plot for Basic Case

A comparison was also made between the
simulation model and a time history solution of
Coleman’s and Feingold's equations. Bramwell
[Ref. 4] derives Coleman’s and Feingold’s
equation in a form equivalent to that of the
simulation model with the blade displacements
expressed in the rotating coordinate system and
the fuselage displacements expressed in the
fixed coordinate system. These equations were
solved in the fixed coordinate system using an
eigenvalue analysis and the solutions
transformed back to the rotating coordinate
system. A comparison was then made with the
lead-lag displacement time history of the
simulation model.

Figure 1.8 shows the result of the
comparison using the parameters of the basic
configuration with a moderate amount of
damping added to rotor blades and fuselage.
Figure 1.8 shows excellent agreement between
the two solutions with a departure between the
two occurring only when displacements are no
longer small. Thus, for the case of an isotropic
hub with linear spring stiffness and damping, the
new comparison validates the accuracy of the
simulation model.
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Figure 1.8 Comparison of Simulation Model to
Coleman’s Model

IV. EXAMPLE CASES

Moving on from baseline results and model
verification, a comparison is run between a case
where all blade lead-lag dampers are operating
and a case where one damper is inoperative.
The top plot of Figure 1.9 shows a rotor with all
blade dampers operating. In the lower plot, the
blade associated with the bubble-line time
history has its damper disabled by reducing the
damping coefficient by two-thirds. We note that
the neutrally stable case with full damper
operation becomes highly unstable by failing
one damper.
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Figure 1.9 One Lead-Lag Damper Inoperative

Figure 1.10 shows results of simulating
damage to a rotor blade by reducing the mass
of the blade by 20%. The undamaged blades
are seen to oscillate around a non-zero
displacement position to compensate for the
damaged blade, but amplitudes of all blade
oscillations remain constrained. This makes



Lead-lag disp (radians)

sense since overall damping remains
unchanged.
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Figure 1.10 Simulated One Rotor Blade Damaged

Figure 1.11 shows the effect of introducing
lead-lag stops in the model. The figure
compares the time history of a blade with no
stops with that of a blade with spring stops
positioned at + 15 degrees (0.262 radians).
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Figure 1.11 Effect of Lecad-Lag Stops

V. NONLINEAR SPRING RESULTS

The objective of the next set of simulations
was to examine the effect of a nonlinear
flexbeam incorporated into a bearingless rotor
design. The nonlinear behavior of the flexbeam
was assumed to be that of a Duffing spring
where the restoring moment is given by

(), =K. +Ku? @

K, is the linear stiffness and K, the nonlinear
stiffness. Simulations were conducted for
several values of the nonlinear spring constant
keeping the linear coefficient constant at 22,000
ft-lbs/radian. Results in Figure 1.13 show the
primary effect of increasing the nonlinear spring
constant is in limiting the amplitude of the lead-
lag response. The case for K; = 0 is very
unstable and would result in the loss of the
helicopter. By adding the hardening (cubic)
term, the unbounded growth in amplitude can be
checked, as is apparent from the response for
the case of K,=80,000 ft-Ibs/radian®. As the
amplitude increases, the magnitude of the
nonlinear term becomes more influential and
effectively changes the frequency of oscillation,
shifting it outside of the unstable region and
allowing the oscillations to decay. While the
limiting amplitudes for the nonlinear case of
Figure 1.13 are still large for lead-lag
displacements (on the order of 15 to 20
degrees), this limiting behavior may be enough
to prevent destruction of an aircraft if ground
resonance were excited. When lead-lag
displacements are very small, the hardening
effect of a nonlinear flexbeam would be
negligible, and could be designed to act as soft-
in-plane in order to minimize hub moments.
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Figure 1.13 Effect of Hardening Duffing Flexbeam on
Lead-ag Response

It is important to note that the elastic
behaviors of the flexbeams modeled by the
curves in the upper plot of Figure 1.13 are
purely hypothetical and were selected to



illustrate the effect of nonlinear elastic behavior
on rotor system response and stability. Further
research in this area appears promising and will
be continued.

VI. THE MOVING BLOCK TECHNIQUE

One of the drawbacks of performing direct
numerical simulation of dynamic systems is that
time histories of system degrees of freedom
only offer qualitative information on the effect
that certain system parameters have on system
stability or performance. In order to quantify the
effects of varying certain system parameters,
such as rotor speed, flex-beam stiffness, and
active control inputs on rotor-fuselage stability,
a method was needed to determine system
damping levels from the system time histories.
Moving Block Analysis, a technique first applied
at Lockheed in the 1970's, is a discrete method
of analyzing a transient time history to obtain
modal damping and frequency. The technique
is described in some detail by Hammond and
Dogget [Ref. 5] and Bousmann and Winkler
[Ref. 6].

A MATLAB® based program was developed
to apply the moving block technique to time
history traces generated from coupled rotor
fuselage simulations. For a sampled signal (in
this case, the time trace resulting from a
simulation) the Moving Block method is applied
by first estimating the frequency of interest
embedded in the signal using a Fast Fourier
Transform (FFT). A block length is selected
consisting of Ny data points. The magnitude of
the Discrete Fourier Transform (DFT) of this
block is then calculated. The block is then
shifted one time step, and the DFT magnitude is
calculated again. This process is repeated until
the time block is at the end of the signal. The
log of the magnitude of the DFT of each block is
plotted against the start times of each block.
The negative of the slope of the least squares fit
of this plot divided by the damped frequency of
the mode measured yields the damping ratio.

For this study, stability measurements were
made based on time histories of the orthogonal
components of the rotor center of gravity offset.
These time histories contain both the regressing
and progressing mode contributions. The
damping levels of these modes for various gain
and phase settings were determined using the
Moving Block program.

Figure 1.14 shows the rotor center of gravity
offset response to a lead-lag perturbation for a
baseline case. The high frequency component

present in the initial part of the simulation is the
progressing lead-lag mode which is seen to
damp out very quickly. The dominant low
frequency trace is the regressing mode, which is
unstable for this case. Figure 1.15 shows results
of analyzing the time trace in figure 1.14 with
the Moving Block analysis.
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Figure 1.14 Rotor c.g. Offset Components for Baseline
Case (K=0, $=0)

The upper plot of Figure 1.15 is the initial
spectral analysis of the time trace computed by
using a Fast Fourier Transform. The second plot
refines the resolution of the FFT about the
frequencies of interest. The third part of Figure
1.15 shows the plot of the moving block
functions [Ref. 7] for the regressing and
progressing lead-lag modes with linear least
square fits superimposed.

\ Moving Block Pt
Zost
Eoaf
-
T o2f
% T 40 %0 ) 100 120 10
(0 foquency Ha)
g
g
z2|
£
B!
% 10 20 3 40 50 ) 70
2 T ey iz ——
= H
4 UL g [
%.5_.... w %% e~ i
= i i i

i 1
0 005 0.1 0.15 02 025 03 035 04 045 05
me (sac)

Figure 1.15 Results of Moving Block Analysis on
Baseline Simulation (K=0, $=0)



VIl. CONCLUDING REMARKS

A method for formulating and automatically
coding the equations of motion of a coupled
rotor-fuselage system by use of symbolic
processing software and dynamic simulation
software has been developed. All terms are
included in the equations of motion at each time
step of the simulation. All restrictions with
respect to small angles and small displacements
have been eliminated and no ordering schemes
were used.

The resulting mathematical models were
used to perform simulations of coupled rotor-
fuselage systems in ground resonance,
Analysis of the dynamic and stability
characteristics were quantified using the moving
block technique. A simple rotor model was used
to demonstrate essential characteristics of
air/ground resonance and the effects that
parameter variations such as rotor speed,
flexbeam elastic behavior, damper failure, and
rotor blade damage have on those
characteristics. The modeling technique proved
to be a very powerful tool in that it eliminated
the time consuming process of manually
deriving and coding the very complex equations
of motion of a multi-degree of freedom rotor
system. As the simulation component of the
method, SIMULINK® provided a generic control/
simulation environment that offered a broad
range of analysis capability for exploring
air/ground resonance characteristics of both
linear and non-linear rotor.

The technique has direct application to the
design of future advanced technology rotor
systems.
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Lag-Damping Prediction of Hingeless Rotors in Trimmed Flight With
Experimental Correlation
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Summary

This paper investigates the trim and stability of isolated hingeless rotors in forward flight
with experimental correlation. A modal approach with both the nonrotating and rotating modes,
the ONERA dynamic stall models of lift, drag and pitching moment, and a three-dimensional
state-space wake model are used. The experimental rotor has four blades that are soft in lead-lag
and torsion, and it is tested at realistic tip speeds. The collective pitch and shaft angle are set
prior to each test run, and the rotor is trimmed as follows: the longitudinal and lateral cyclic pitch
controls are adjusted through a swashplate to minimize the 1l/rev flapping moment at the 12%
radial station. The database includes the lateral and longitudinal cyclic pitch controls, steady
root-flap moment and lag regressive-mode damping levels for two coning angles with variations
in advance ratio, shaft tilt and collective pitch control. The cyclic pitch controls and the
corresponding periodic responses are computed by the periodic shooting method with damped
Newton iteration; this method is based on the fast-Floquet theory and generates the equivalent
Floquet transition matrix (EFTM) as a byproduct. The modal frequencies and damping levels are
estimated from the eigenvalues and eigenvectors of the EFTM. All the structural and
aerodynamic states are included, from the trim analysis to the eigenanalysis, and the flap-
moment predictions are based on both the force-integration and mode-deflection methods. The
convergence of the damping, control-input and flap-moment predictions with respect to the
number and type of modes is included as well. A major finding is that dynamic wake

dramatically improves the correlation of the lateral cyclic pitch control.
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@ Introduction

Provision for adequate lead-lag damping is an important element

of rotorcraft design

« Requires an accurate prediction method

Lag damping prediction is sensitive to
« Approximations in modeling aerodynamic and structural components

« Trim results of control inputs and the corresponding periodic responses

Virtually imperative that the theoretical calculations are

correlated with a comprehensive database



FAU
@ Background and Motivation

Experimental Analytical Investigations
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Experimental Analytical Investigations
Investigations
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@ Contributions

————

4 Develops a flap-lag-torsion analysis

= Based on the fast-Floquet theory

4 Correlates with the updated and corrected database on trim and
stability

©Includes convergence of trim and stability with respect to the number

and type of modes

¢ Identifies the effects of quasisteady stall, dynamic stall and
dynamic wake and shows how these effects participate in the

correlation
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%j’ Experimental Rotor

=Soft inplane, four-bladed torsionally soft rotor

@ Blades have a rectangular planform with zero degree
pretwist and droop

« Also have a provision for varying precone

= (perated trimmed by minimizing the 1/rev flap moment at
the 12 % radial station

& (Collective pitch and shaft angles are set prior to the test
run; cyclic pitch controls are exercised through a
swashplate to minimize the flap moment

=>NACA 0012 airfoil section; Re = 1.26x10° in hover; M = 0.6
at the blade tip in hover
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@ Experimental Rotor  conu.
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< == Test Configurations for the Corrected and
Updated Database in Trimmed Flight
Test Collective Shaft Blade Advance
Configuration Pitch, Tilt, Precone, Ratio,
Oo(deq) s (deg) | PBoc (deg)
| 3° 0° 20 0.0 - 0.31
Il 3" - 3° 2° 0.0 - 0.31
i 3° - 6’ 20 0.0 - 0.31
\% 5.9° - 6° 20 0.0-0.36
\Y; 3° 0° 0° 0.0-0.187
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@ Modeling and Analysis

Structural Dynamics

= Elastic Flap-Lag-Torsion Model
o> Flap-lag bending and torsion degrees of freedom
> Quasisteady treatment for axial deformation

= Galerkin-type scheme

=Nonrotating and rotating normal modes
> Myklestad-type approach
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Modeling and Analysis con.

Aerodynamics

O Dynamic Stall Theory

=O0ONERA dynamic stall models of lift, drag and pitching
moment

® Quasisteady Stall Theory
=Dynamic stall characteristics suppressed

© Dynamic Stall and Wake Theory

=Relatively complete aerodynamic representation
=Dynamic stall effects based on the ONERA models

=\Wake effects based on a finite-state three-dimensional wake
model (Peters, Boyd and He)



Modeling and Analysis consa.

Trim and Stability Analyses

=Compute the lateral and longitudinal cyclic control
inputs
= Wind-tunnel trim
> Minimize the 1/rev flap moment at the 12 % radial station

=Find the corresponding initial conditions for the
periodic response




FAU
%3’ Modeling and Analysis con.

Periodic Shooting Method

= With damped Newton iteration
= Based on the fast-Floquet theory

=Generates the equivalent Floquet transition matrix
(EFTM) |

Modal damping levels and frequencies from the .
eigenvalues and eigenvectors of the EFTM




Modeling and Analysis cons.

Flap Moment - Force Integration Method

=]Integrate sectional forces and moments over the blade
span to get total flap moment

Trim equations:

2
JR[Total Flap Moment], . ., cos\ydy=0
" .

2
JTE[Total Flap Moment]| o.1op SINVAY=0
) .

Steady Flap Moment

1 2
o (JT[Total Flap M(’ment].uR dy
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Modeling and Analysis con.

Flap Moment - Mode Deflection Method

Total Flap Moment = [Flap Stiffness x Flap deflection’’] ;,p
Steady Flap Moment

12 | |
2 (J?[Total Flap Moment| . dy
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(Rotating modes)
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Lag Regressive-Mode Damping Correlation

for 3% Collective and 2° Precone
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@Lag Regressive-Mode Damping Correlation
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Lateral-Cyclic Pitch Correlation
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0o=23%and Bpc=2°
Longitudinal-Cyclic Pitch Angle (deg)

® Test Data
Shaft Tilt = -39 Shaft Tilt = —69

Dynamic Stall and Wake

Dynamic Stall and Wake

Quasisteady Stall

| Dynamic Stall

Test Data Dynamic Stall Test Data

00 01 02 03 0400 0.1 02 03 04
Advance Ratio (1) Advance Ratio (1)




Longitudinal-Cyclic Pitch Correlation
for 5.9Y Collective and 2° Precone

Longitudinal-Cyclic Pitch Angle (deg)
Shaft Tilt = -69
Dynamic Stall and Wake

Quasisteady Stall

: Dynamic Stall

Test Data

0.0 0.1 0.2 0.3 0.4
Advance Ratio (u)




FAU

=

i — — —

Longitudinal-Cyclic Pitch Correlation
for 3% Collective and 0° Precone
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Flapping Moment Correlation
(Rotating Modes)
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The preceding study

« Quasisteady stall, dynamic stall, and dynamic stall and wake
theories

« Lag regressive-mode damping level, cyclic controls and steady
root flap moment

« Function of advance ratio
« Includes convergence with respect to the number and type of
modes

><The dynamic stall and wake theory provides the
best correlation



Concluding Remarks consu.

e ——————————————————

e ——————————————————

Rotating Modes

= A structural representation with five modes in flap, two
in lag and three in torsion gives converged results for
trim and stability

Nonrotating Modes

= A structural representation with five modes each in flap,
lag and torsion:

(a)Lag regressive-mode damping levels, cyclic pitch
controls and steady flap moment based on the force-
integration method converge

(b)Steady flap moment based on the mode-deflection
method converges very slowly
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Concluding Remarks cona.

= Quasisteady stall and dynamic stall theories predict the
damping levels fairly well

= Dynamic stall and wake theory shows better correlation
« Trend of the damping level is closer to the data

= An exception occurs for the configuration with-three degree
collective and six-degree shaft tilt at high advance ratios

« Data show that the damping level decreases rapidly and
becomes nearly zero (neutrally stable)

« None of the three theories predict this; they predict nearly
identical damping showing a fairly stable lag regressive mode



Concluding Remarks cons.

= Concerning correlation of the lateral cyclic pitch angle, the
quasisteady stall and dynamic stall theories do not provide a
satisfactory correlation. By comparison, the dynamic stall and
wake theory dramatically improves the correlation and
provides satisfactory correlation

= The calculations of the steady root flap moment from all three
theories are close
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Abstract

This paper deals with the helicopter ground resonance phenomenon, more specifically, with a simplified
two-bladed hingeless rotor model analysis, which takes into account the lead-lag degree-of-freedom of a
rigid blade and the longitudinal and lateral degrees-of-freedom of the rotor support. The analysis neglects
both the blade out-of-plane motion and aerodynamics effects. The stability analysis of the dynamics system
takes the state-variable approach and utilizes the Floquet theory for solving the differential equations in
the nonrotating reference system. Results show modal frequency and damping diagrams as function of
rotor rotational speed for hingeless rotor configurations including no damping on both support and blades,
including damping on both blades, and including an inoperative blade damper. Similar results are shown
for an articulated rotor configuration including an anisotropic support. Modal damping diagrams for both
rotating and nonrotating frame analyses are presented for hingeless rotor configurations including damping
on both blades and including an inoperative blade damper. Results also include effects of inertial coupling
variation in the rotating frame. Eigenvector analysis enlightens the inherent connection of divergence and
resonance instabilities with in-phase components of displacements and corresponding time rates for all
configurations studied.

Introduction

Helicopter ground resonance is a catastrophic dynamic instability, characterized by the coupling of the
whirling movement of the combined center of mass of the blades around their respective shaft and the shaft
(support) displacement itself. Rotational energy from the rotor is converted into oscillatory energy of the
blades through the fuselage coupled oscillations. Inertia forces caused by the out-of-phase displacement of
the blades around their hinges (real, as in articulated rotors, or virtual, as in hingeless rotors) react with
the fuselage (body, support) movement. Once the rotor common mass center is offset from its support, a
possible path for it consists of a divergent elliptical spiral, characterizing the resonance phenomenon. The
movement of the rotor common center of mass is directly associated with the rotor rotational speed. As
a consequence, ground resonance depends on the rotor rotational speed range, and the design engineer Is



|
led to choose rotor elastomechanical characteristics and rotational speed domain in a way that this kind
of instability is excluded from the helicopter operational envelope. Both experimental and theoretical
research pointed out the need of placing damping on both rotor lead-lag hinges and support (in particular,
placement of damping on the landing gear). Correctly choosing the damping placement is one of the
key-points regarding ground resonance avoidance.

The classical approach for studying the phenomenon is due to Coleman and Feingold [1]. Their
work became the most comprehensive theoretical investigation ever done on this subject, becoming a
cornerstone for more recent investigation. Johnson [2] presents a detailed analysis of the ground resonance
phenomenon, following basically Coleman and Feingold’s work. It is ;treated considering the presence
of fully articulated rotor system which does not show a significant coupling of inplane and out-of-plane
blade degrees of freedom. Under this approach, the instability is govei‘ned mainly by both the lead-lag
elastomechanical blade characteristics and rotor support stiffness characteristics, with no influence of the
rotor aerodynarmics in the analytical results. As all classical work, it considers only the degrees of freedom
from the support and from the blade lead-lag motion, neglecting both blade out-of-plane dynamics and
aerodynamics loads. Based on Newton’s method, hingeless rotor equations of motion are derived, taking
into account isotropic only characteristics. This yields a stability analysis involving a constant coefficient
system of equations. Hammond [3] introduces a general analysis, treating the problem in the nonrotating
coordinate system through Floquet theory, along with a rotor and support anisotropic model.

The advent of rotor hingeless and bearingless configurations, with their inherent strong structure-
flow couplings, made mandatory the inclusion of rotor aerodynamics in the analysis, in order to improve
correlation with experimental results. Trying to correlate Bousman’s experimental results [4], Johnson [5]
showed some aspects of the influence of unsteady aerodynamics on hingeless rotor ground resonance,
opening doors for the upcoming (now current) aeromechanical type of ihvestigation.

McNulty [6] calls attention to the importance of understanding the general characteristics of the re-
sponse of periodic coefficient systems and how they differ from the constant coefficient results. In a constant
coefficient system analysis, each natural mode is completely described by its natural frequency, damping
and mode shape, the latter being a constant vector. For a periodic coefficient system, Floquet-Liapunov’s
theorem predict that the individual modes of the system will each contain responses at any number of
frequencies which are separated from each other by integer multiples of the rotor speed. The complete
response of each mode is then given by the product of a sinusoidal term with a “natural frequency,” an
exponential damping term, and this periodic mode shape vector. The usual practice is to add enough mul-
tiples of the rotor speed so one can obtain the so called “natural frequencies” of the system which indeed
are frequencies associated with the natural frequencies of an appropriate constant coefficient system. This
procedure seems to have led to a certain amount of confusion about this seemingly multivalued “natural
frequency.” This is probably due to the fact that most publications including Floquet results are focused
on eigenvalues, paying little or no attention to the periodic eigenvector. An exception can be found in
Ormiston’s [7].

Equations of Motion and Solution Approach

The derivation of the equations of motion follows Johnson’s [2] procedure and nomenclature. Figure 1
shows a drawing sketching the dynamic system model in analysis. The analysis consists basically in first
obtaining the equations of motion for the rotor in the rotating frame in terms of the differential lead-lag
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degree of freedom, and the support equations in terms of its longitudinal and lateral degrees of freedom
in the nonrotating frame, through the reactions acting upon it due to the blade spanwise forces. Then,
the equations of motion are obtained through the coupling of the just mentioned equations written for a
unified reference system. Equations can be either expressed in the rotating frame, with shaft and support
contributions being transformed into the rotating coordinates by means of & harmonic balance strategy,
which leads to a constant coefficient matrix stability analysis, or expressed in the nonrotating frame by
means of transforming the rotor equations using the multiblade coordinate transformation [8], which leads
to a periodic coefficient matrix stability analysis, here solved utilizing the Floquet method [9, 10].
The equations of motions in the rotating frame for the ground resonance dynamics are given by

(M]{y}"™ + [C] {y}* + [K] {y} =0,

where
oo i 0 IFea 0 0o 257
0o If -S5¢ 0 0o Ife, o -25F
[M] = E# _§# — ) [C] = = - ?
S5 5wt o 0 0o Miw 2M;
2 “ <% # E T
o o o M 57 S§7  -2MI MIw
oy o -57 0 W
- =#
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The state variable representation for this system of equations can be written as

i{e}" + [Al{e} = {0} = {o}" =[J17"[4]{e} = (D] {z},

_ (o _| 0 -] _ ] v
[‘”‘{o [M]]’ [A]_[[K] [G]}’ & {{y}*}

and [D] is a constant coefficient matrix.

The stability of the dynamic system depends upon the solution of constant coefficient differential
equations, yielding a solution of the type

where

{z} = {@i} ™,

where one observes that 7; and {;} are the eigenvalues and eigenvectors of the stability matrix [D],
respectively. In general, 7, is complex, and can be written as

o = Modal damping

7 =0 tiw where { w = Modal frequency

Now, the equations of motions in the nonrotating frame are given by

[M]{y}*™ + [CH{w} + [K]{y} =0,



where
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Also, within the [K] matrix, T7 = K1 + K. ,00°, where K and Ko are Southwell coefficients [2]. The
state-variable representation for this system of equations can be written as

{z}" = [J17" [A] {e} = [D] {2}, where[D (¥)] = [D (¢ + 2)].

The stability of the dynamic system depends upon the solution of a periodic coefficient differential
equations, for which the Floquet method is employed, yielding a solution of the type

{z@} =1[2 (¢ 1)) {z ()},
where [& (£,%)] is a n x 7 nonsingular matrix, named state transition matrix, which satisfies the equation
[¢E %) = [D@][EET0)], (2@, %) =]

From the theory, if [D (7)] is periodic, one can analyze the system stabiiity by observing the perturbation
solution at the end of one period. Therefore,

{z(@)}=[2(T.0)] =}

By defining the Floquet transition matrix, [Q (T)] as the state transition matrix at the end of one period,

considering the Floquet-Liapunov theorem, and defining Ay = T, the system stability equation is given
by

([@(T)] - A [11) {eo}s =0, i=12,m,

where one observes that A; and {eo}, are the eigenvalues and eigenvectors of the matrix [Q (T)}, respec-
tively. In general, 7 is complex, and can be written as '

Ay = ™l = glortiwe)T — gowT (cos wiT + isin wkT) )

The stability of the system is directly related with ok, the real part of the eigenvalue exponent. Real
and imaginary parts of the exponents are related to the eigenvalue itself as follows

1
O = Re<?lnAk>, and 7

B 1 B 1 ImAy , >
wr = Im <?].nAk> = Abs <? + (ArcTcm (ReAk> + 2n7r> )
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One observes that due to the fact that ArcTan be a multiple-valued function, the modal frequency
is undetermined through a multiple of 2% The stability analysis involves only the real part of the eigen-
value exponent 7, i.e., the modal damping ¢. The modal frequency indeterminacy does not affect the
stability characteristics of the system as predicted by the Floquet analysis. The key-point in the Floquet
method is the evaluation of the state transition matrix at the end of one period, what sets it as a suitable
computational tool to handle periodic coefficient differential equations.

Results and Discussion

A symbolic algebra software [12] is chosen for the establishment of a very concise building-block code [13, 14],
taking advantage of the software efficient way of handling problems by means of its powerful symbolic,
numerical and plotting features.

In the absence of experimental data to correlate with, an extensive comparison with Coleman and
Feingold’s results is performed. Some of the stability results obtained are shown herein. Figures from 2 to 7
show results for configuration sets involving soft inplane hingeless rotor analyzed in the rotating frame.
Figures 8 and 9 show results for an articulated rotor configuration analyzed in the nonrotating frame.
Figures 2 and 3 show results from an isotropic case application including a soft inplane hingeless rotor
in the presence of no dampers on both support and blades. Configuration data are shown on Table 1.
Diagrams in Figure 2(a) correlates modal frequency in terms of rotor rotational speed for both Coleman and
Feingold [1], displayed in dashed lines, and the present works, displayed in full lines. The uncoupled system
solution is presented along by means of curves carrying short-long dashed lines. One observes both the
auto-excited divergence associated with the shaft critical speed and rotor auto-excited dynamics vibration,
typical of helicopter ground resonance. One observes a very good agreement for both the location and
magnitude of the instability regions. These regions can be observed in Figure 2(b), where positive modal
damping shows up. Phase diagrams (eigenvectors) for each of the rotor and support displacements and
their respective time rates are presented in Figure 3, enlightening mode shapes couplings. As happened
in all of the configuration sets investigated, in the instability ranges one finds displacements and their
time rates containing in-phase components, for both rotor and support modes; this points toward unstable
mode couplings, being probably responsible for the catastrophic exchange of energy. Elsewhere, out of
the instability regions, corresponding displacements and respective time rates phasors are 90 degrees
out-of-phase, representing stable conditions. An isotropic case application of soft inplane hingeless rotor
with damping on both blades has results shown in Figures 4 and 5. Configuration data are shown on
Table 2(a). Figure 4(a) presents diagrams for modal frequency in terms of rotor rotational speed and
Figure 4(b) presents modal damping for the same range of rotor rotational speed. It can be observed in
the diagram of the modal damping that the introduction of external damping in the support and in the
rotor produces the separation of the different modes, leading to a decrease in the damping amplitude as
compared to what is observed in Figure 2(b), along with the displacement of the curves to the fourth
quadrant of the diagram. This effect of the external damping is analyzed by Gandhi and Chopra [11] for
the case of a multibladed rotor. Such effects on the modal damping, along with the disappearance of the
coalescence of frequencies in the diagram of the modal frequency, show the importance of the external
damping in avoiding the presence of rotor auto-excited dynamics vibration which characterizes the ground
resonance. It can also be noticed that the introduction of the external damping reduces the rotor auto-



excited divergence to a narrow strip of frequencies around 2 = 0.9/rev. Corresponding phase diagrams can
be observed in Figure 5. One observes that displacements and respective time rates phasors are 90 degrees
out-of-phase, representing stable conditions, for almost the whole range of rotor speed, except for the
neighborhood of the shaft critical speed. Results from an application including a soft inplane hingeless
rotor with an inoperative blade damper are presented in Figures 6 and 7. Configuration data are shown on
Table 3(a). Figure 6(a) presents diagrams for modal frequency and Figure 6(b) presents diagrams modal
damping in terms of rotor rotational speed. The frequency coalescence here carries ground resonance
instability, as evidenced by a strip with positive values of modal dampiﬁg. Corresponding phase diagrams
can be observed in Figure 7. :

Results from an application of nonrotating frame analysis are shown in Figures 8 and 9, for an extreme ‘
case involving anisotropy of an articulated rotor support in the presence of no dampers on both support
and blades. Configuration data are shown in Table 4. Figure 8(a) correiates modal frequency in terms of
rotor rotational speed diagrams for both Coleman and Feingold [1], shown in dashed lines, and present
work, shown in full lines. Figure 8(b) presents modal damping in terms of rotor rotational speed diagrams.
Corresponding phase diagrams can be observed in Figure 9. A similar analysis like the one conducted
above for the rotating frame eigenvectors is valid here. '

In order to check upon accuracy of rotating and nonrotating analyses as far as this investigation is
concerned, two comparisons of modal damping results in terms of rotor rotational speed are shown in
Figures 10 and 11. First, Figure 10 displays results from an application including soft inplane hingeless
rotor with same damping on both blades are shown (configuration data are in Table 2), for both rotating
and nonrotating frame analyses. Rotating frame results are displayed; in full lines and the nonrotating
counterparts in dashed lines. Here, one observes an overall results agreement, confirming the equivalence of
Floquet and standard constant coefficient matrix eigenvalue analysis. Second, Figure 11 shows results from
an application involving a soft inplane hingeless rotor with an inoperative blade damper (configuration data
are in Table 3). It has been decided to adopt the same procedure as in Hammond’s [3], when investigating
this phenomenon for a 4-bladed rotor. This procedure leads to the presence of an extra, degenerating
mode, which is credited in his paper to the evolution of one of the two collective modes present in the
isotropic configuration analysis. Here one can also identify the presence of an extra, stable mode, as well.

Finally, results from a rotating frame analysis on the influence of inertial coupling variation for a soft
inplane hingeless rotor configuration are shown in Figure 12 (configuration data are shown in Table 5).
Present results are plotted along Coleman and Feingold’s counterparts ‘(their parametric charts are taken
and transformed into a 3-D plot for this operation). One can observe cléarly that the region of instability
increases with the increasing of inertial coupling. Here also it is confirmed the good correlation of present
and Coleman and Feingold’s results.

Conclusions

A two-bladed rotor helicopter ground resonance simulation is performed, based on a simplified hingeless
rotor model. The model involves only the rigid blades lead-lag degrees-of-freedom and rotor support
longitudinal and lateral degrees-of-freedom. An extensive comparison is performed with classical Coleman
and Feingold’s results showing an overall good agreement for all the conflguration analyzed. Results shown
here involve soft hingeless rotor including isotropic configurations (1) with no dampers on both blades
and support and (2) with same damping on both blades, as well as an anisotropic application including



an inoperative blade damper. An anisotropic application involving an articulated rotor configuration
in the presence of no dampers on both blades and support is also presented. Comparisons of rotating
and nonrotating frame results confirm the equivalence of Floquet and standard constant coefficient matrix
eigenvalue analyses. Inertial coupling influence is also investigated, and 3-D diagrams are shown correlating
present and Coleman and Feingold’s results under a rotating frame analysis. Eigenvector analysis is
extensively applied in this investigation and phase diagrams enlighten mode shapes couplings pointing
towards a clear pattern involving displacements and corresponding time rates for both unstable and stable
rotor rotational speed ranges.
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Table 1 - Parameters for the analysis of the model including no dampers.

K, =02 K, =005 M; =30 @, =5y =10
I; =06 S; =06 ¢, =0. ¢, =¢;,=0.
Table 2 - Parameters for the analysis of the model including dampers.
a) Rotating system.
K, =02 K, =005 M; =30 o, =w,=10
[Z =06 S; =06 E;I = 02449 E;z = E; =02449
b) Nonrotating system.
K =02 K, =005 M; =30 o, = Ey =10
I; =06 S; =06 E; =02449 c' = E; =02449

Table 3 - Parameters for the analysis of the model including an inoperative blade damper.

a) Rotating system.
K, =02 K, =005 M; =30 w,=0,=10
I;=06 S, =06 ¢, =0 ¢, =¢, =02449
b) Nonrotating system.
K, =02 K, =005 M; =30 o, =0,=10
I; =06 S; =06 ¢, =01225 ¢ =¢c, =02449

Table 4 - Parameters for the analysis of the model including anisotropic support.

K =0 K, =01 M:::M;=3.0 @:1_09@:0_
I; =06 S; =06 ¢; =0. c.=¢, =0
9
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Table 5 - Parameters for the analysis of the inertial coupling variation.

I; =06 S; =0.—07348 ¢, =0. ¢, =¢,=0.

Figure 1 - Dynamical system model.
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Figure 2 - Soft inplane hingeless rotor with no dampers
(rotating frame analysis).
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(rotating frame analysis).
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Floquet Analysis in the Absence
of Complete Information on
States and Perturbations

Research Assistant Xin Wang
Protessor David A. Peters
Washington University in St.Louis




Floquet Theory

 Floquet theory is a powerful method that is still widely
used.

 Fast Floquet theory and Floquet: Theory can not be
effectively used to analyze experiment data since they
require excitations and measurements of all states. But 1t 1s
too hard and even impossible to excite and measure all

- states in real experiments. f

* We need a method that can be used to analyze data with the

absence of states or perturbations.




Embedding theory

R - A ;
=
p ¢ D

C

Embedding theory: Construct another space and project old
working space to new space by mapping.

Advantage: New space can be constructed with known states,
unknown states in the old space can be omitted

Disadvantage: May cause error.

Pseudo states: States used in the:new space but not significantly
used in the old space(or states used in the new space)




Pseduo-States

Floquet Theory solutions for nonlinear differential
equations with periodic coefficients

o+ D <t>]{x =16 (1)}
{x(T)} = [0 }{x(0)}

 Old states: X oa = [xl’ Koy Xgseee Xy ]
New pseudo-states: |
X o=, (1), x,(t + At), x, (£ + 2A0),... x, (1 + (n — DAL ]




Two-state case 1n old space

@) [A@0 A, ]le™ 0 e

_xz(t)_ _Azl(t) Azz(t)JO enth ¢

72 ]

A, () A, (;)} ST [AH ©0) A, ©0)] [x 0
=l A, @) Ay, 0 ™ |[Ay(0) A, (0) x,(0)
Transfer matrix

A, A, O™ 0 4,0 A, O]
Oia = A, (1) A, 0 ™ | A, (0) A, (0)
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Two-state case 1n new space

X () — A, (1) LA "0 [¢
(AN A C+ADE™ AL+ ADE™ | 0 €™ |,
2N I N R T () A, (0) ¢,

o (0+AD | [ AL (ADE™ A, (ADe™ || ¢,
New transfer matrix

Qnew:

Ay () A, (1) -en't 0 A, (0) A, (0) B
All(t_l_At)enlAt Alz(t'l'At)enzAt 0 ™ Au(Alf)en'At A12(AI)€"2N

- i
EE e S S S
: S e §
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Conclusions

1.New Floquet transfer matrix and old
Floquet transter matrix have the same
eigenvalues but different eigenvectors.
2.Relation between old and new states

X, (2)
x,(t+ At) |[—

A, (1) A, (@) A, @) A,(0)] [x,@0)
A, (E+ADE™ ALt +ADE™ | A, () A, (0] |x,0)




3. Relation matrix
| All(t) Alz(t) .. _—All(t) Alz(t)—
A (HADE™ AL (t+ADe™ || Ay (1) Ay (1)

will decide the error of mapping.




Pseudo-state vectors

A typical state vector for a one-blade, no-
inflow systemis

Xi=18.8¢.¢ ]

new pseudo-state vector can be

XJ=160), ft+00), 5t +240), [t +340)]
IXY=[C),C(t+ AD), E(t + 2A1), (1 + 3A1)]

Or cven

(X =180, Bla+50), Ble+240). L (e +301)]




A more general new state vector form

X (t+not) =
[x(t),x(t+n ér ), x(t+2nd¢ ). .. X(t+mn oz )]
(x canbe 5.5 ...;)

There are three variables: x, ér n

Note: dr1s one time marchmg step, the
smallest time unit used 11 the calculation.
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Conclusions

1. The smaller ¢ 1s, the better the result 1s.

For example, if only B is used as pseudo state, B can
be expressed by p

. p(t+ot)— (1)
b= Ot




2.Select X=4.8 give more accurate flap
damping, select X=¢.¢ give more accurate
lag damping. |




3.When selecting X=F6 or¢, or ..., solutions
achieve good accuracy 1if n 1s corresponding
to a better relation matrix.




Calculation:
1.How good the new method can be.

x 10 Flap
Lag 25 T | — T T T T T T T Damplng T T T T T T T T T
Damping 0.306k
27 o-Floquet Theory 1 o-Floquet Theory
*-New Floguet Theory *-New Floguet Theory
15r 0.305
1-
0.304
0.5
0.303
vo_
osr 0.302
1 1 L L 1 1 ] ] 1
! | 0 005 01 015 02 025 03 035 04 045 05

0 005 01 015 02 025 03 035 04 045 05



Comparision of Floquet theory solution and
pseudo-states solution(excite and measure

p only).

Max relative lag damping error of the new
method : 0.13%,
Max relative flap damping error :

8.6 x10 > 9




2. How to choose a good time-delay factor
n’

Use something that can show the quality of
relation matrix, such as.
a. Condition number of relation matrix- the
ratio of the largest eigenvalue to the

- smallest. - o
b. Singular Values of relation matrix found
by SVD(Singular Value decomposition).




Singular Value decomposition

SVD of A produces a diagonal matrix S, of
the same dimension as X and with
nonnegative  diagonal  elements  1n
decreasing order, and unitary matrices U and
V so that X = U*S*V’ If A 1s a diagonal
matrix, S 1s the eigenvalue matrix. U i1s the
eigenvector matrix, and V=U.




Condition number

Log Max relative error of Flap damping for advance ratio 0~0.5 L Maxim condition number for advance ratio 0~0.5 vs time delay factor
'13 L} T T T T T T T Og 8-5 T T T T T T T T
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Calculations of a four-blade system

Exact Fast Floquet Theory Solution

Fast Floquet Lag damping+ Flap damping+
Theory only frequency frequency
R |-8.943e-3+0.41961 -1.699e-1+0.10221
D |-1.093e-2+0.58811 -2.716e-1+0.83231
P {-7.094e-3+1.58801 -2.915e-1+1.86671
C |-6.707e-3+1.41561 -2.699e-1+1.0887i




Average Relative Errors of Lag Damping and Frequency

Lag E B-831 | E{ -831 | E 5 -8/31 | E ¢ -8/31
MB -8/31| *266.83 55.93 *%434.96 71.05
M¢ -8/31 17.91 3.99 41.99 3.93
MAB-8/31 | *367.68 41.61 | *446.88 53.43
ME-g/31 | 19.73 5882 | 15.03 21.69

Average Relative Errors of Flap Damping and Frequency

| Flap EB-831 |E¢ -831 | E B -8/31 | E ¢ -8/31
MBS -8/31| 3.1075 18.92 11.88 *46.74
M¢ -8/31 6.09 *14.71 5.12 10.16
M B-8/31 3.69 *12.90 6.61 *20.47
M -8/31 3.89 *16.71 6.2 7.48




Conclusions:

1. Some lag(flap) damping and frequencies are missing
when we only excite and measure flap(lag) vibration
states.

2. Exciting and measuring lag(flap) states give good
lag(flap) damping and frequencies but give bad
flap(lag) damping and frequencies.

3. The system seems more sensitive to displacement
perturbation and less sensitive to vibration perturbation.
So it is good to excite displacement states.

4. Measuring lag vibration states give better results than
measuring flap vibration states.




Least Square Method

Add More Measurements
Measurement| Average error of lag | Average error of flap
damping and frequency | damping and frequency

Mp-8 #4430 250 11.99%
MA-16 *%361.32% 4.59%
M b-24 *188.66% 5.92%
M B-32 216.40% 5.50%

M S-40 75.43% 2.68%




Add More Excitations

Excitation and Average error of lag| Average error of
Measurement damping and flap damping and
frequency frequency

Ef 4,E ¢ -4, 3.41% 16.93%

MB -4M¢{ 4

E 5-6,E ¢ -6, 2.38% 13.21%

MB -4M ¢ 4

E /-8 E ¢ -8, 2.68% 11.96%

MpB -4M¢ -4




Time Delay Factor n
Time delay, EB-2, M¢ -8/(cut to 31*31 matrix)

Time delay | Average error | Average error | Average error of
factor |of lag damping | of flap damping lag and flap
and frequency | and frequency damping and
frequency

n=1 13.76 20.47 17.12
n =2 9.55 32.69 21.12
n =3 59.66 24.46 42.06
n =4 4.77 3.11 3.94
n =5 3.19 18.16 10.68
n =6 1.88 5.50 3.69
n=7 4.48 6.71 5.60
n =8 243 5.28 3.86
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Conclusions drew from condition number

Log(condition number) for different measurements and time

delay factors

Time delay | Measure 5 |measure ¢ | Measure 8 | Measure ¢

factor

n=1 18.53 17.46 18.01 16.19
n=2 15.85 12.89 14.81 11.22

n =3 11.59 12.68 12.17 9.64
n=4 10.98 9.17 9.75 8.65
n=>5 10.13 9.74 8.33 8.49

n =6 0.95 1.47 7.78 7.71
n=7 8.29 7.70 7.14 6.78

n =8 9.16 6.79 6.41 5.20




1. Measuring lag vibration states give better
results than measuring flap vibration states.

2. It 1s good to measure velocity states.
3. Measuring 5 gives the worse results, that

1S why me missing 3 lag damping in one
previous case.




Future work

1. Find the best construction of pseudo state
vectors to minimize error.

2. Find further relationship between relation
matrix and errors.

3. Inflow damping



A Comparison of Various Methods
for Stability Analysis
of Large Scale Rotorcraft Systems

O.A. Bauchau and Y. Nikishov
Georgia Institute of Technology.
David A. Peters
Washington University

an abstract submitted for presentation at the

Seventh International Workshop on Dynamics and
Aeroelastic Stability Modeling of Rotorcraft Systems.

Due to increased available computer power, rotorcraft comprehesive anal-
ysis codes are relying on increasingly complex, large scale models. Full finite
element analysis codes and computational dynamics codes are now routinely
used as structural dynamics, and aerodynamic tools, respectively. Theses
codes should provide increasingly reliable predictions of the aeroelastic re-
sponse of rotorcraft systems.

An important aspect of the aeroelastic response is the prediction of po-
tential instabilitles which can occur both on the ground and in the air.
Typically, Floquet theory has been used for this purpose. Floquet theory
requires the computation of a transition matrix which size is equal to the
total number of degrees of freedom in the system, and extracts system stabil-
ity information from the eigenvalues of this matrix. The transistion matrix

stores the response of the system to excitations in each of its degrees of free-

dom. As the complexity and number of degrees of freedom of the simulation
increases, application of this theory rapidly becomes unmanagable.
Similarly, when performing experimental investigations, the use Floquet
theory is very difficult because the experimental system theoretically in-
volves an infinite number of degrees of freedom, and because it is difficult to
individually excite these degrees of freedom in an experimental setting. As



a result, frequency domain methods, such as Moving Block method or time
domain methods, such as Ibrahim method or Complex Exponential method
are preferred when performing experimental studies. 7

In the partial Floquet method, a limited number of degrees of freedom
will be excited, and the response of a limited number of degrees of freedom is
monitored. Stability information is then assessed from the partial transition
matrix based on the available information.

In this paper, the predictions of several methods will be compared; they
include Floquet theory, partial Floquet theory, the Moving Block method,
the Ibrahim time domain method, and the Complex Exponential method.
The limitations and advantages of these various methods will be discussed.
The ground resonance problem will be taken as an example to compare the
various methods. A full finite element simulation will be used to model
the problem. Estimations of the damping ratio based on the various meth-
ods will be presented. Predictions based on energy arguments will also be
presented. - : :
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Outline of the Presentation

Statement of the problem

Theoretical background

Comparison of the various methods

Conclusions and future work
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Statement of the Problem

e Model:
Linear system with many degrees of freedom
with periodic coefficients

e Objectives:
1. Assess the stability of the system
2. Determine the damping in the system

Georgia Institute Technolo School A FEnagz ]
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Theoretical Background

Methods presented:

e Partial Floquet Theory
e Ibrahim Time Domain Method

e Complex Exponential (Prony) Method

e Moving Block Method

Georgia Institute of Technology School of Aerospace Engineering




Partial Floquet Theory

Full Floquet Theory
requires the excitation and measurement of all degrees of

freedom of the system after one period to form Floquet
Transition Matrix

Partial Floquet Theory
requires the excitation and measurement of a limited number
of degrees of freedom after one period to approximate
Floquet Transition Matrix

Can use measurements for several periods to get
additional information from the data

Based on sound theoretical basis

Principal Problem:
select proper degrees of freedom or modes to excite and measure

Georgia Institute of Technology School of Aerospace Engineerin
e e




Full Floquet Theory: Basic Equations

Floquet Transition Matrix A is defined as:
y(T') = A(T, 0)y(0)

If Y(T) is the matrix of responses of independent excitations

Y(T) = |41, ¥z, ---, Un] then the Transition Matrix can be found as:

A(T,0) =Y(T)Y *(0)

The system damping then is defined as:

1
~d = logp(A)

Georgia Institute of Technology School of Aerospace Engineering




Partial Floquet Theory: Basic Equations

Excite and measure a limited number of degrees of freedom:
B is excitation matrix, C is measurement matrix

UT)=CY(I)B, U()=CB

Approximate Transition Matrix using Pseudo-Inverse

A=cricct'um) BB Bt

Georgia Institute of Technolog%‘ School or Aerospace Engineering
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Ibrahim Time Domain Method

Requires one excitation of all modes

Requires measurement of selected degrees of freedom
for several periods

Used mostly in the experimental work

Principal Problem:

o select proper degrees of freedom or modes to measure

o needs longer time history

Georgia Institute of Technology School of Aerospace Engineering




Ibrahim Time Domain Method: Basic Equations

Build Transition Matrix reusing measurements at periods:
A§(tn) = §tny1) or AZ =7

Approximate Transition Matrix using Pseudo-Inverse

A=2z7Y[z77

Last inverse is usually ill-determined so that
Singular Value Decomposition method seems to be more efficient.

Georgia Institute of Technology School of Aerospace Engineering
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Complex Exponential (Prony) Method

Fits the response of one excitation to the set of damped
exponential responses

Requires measurement of one degree of freedom or mode
for several periods

Curve fitting method, used mostly in the experimental work
Principal Problem:

o select proper degree of freedom or mode to measure

o needs even longer time history than Ibrahim Method

Georgia Institute of Technology School of Aerospace Engineering




Complex Exponential Method: Basic Equations I

Form the set of data measured at ¢ = ¢,, and try to fit them
to the set of exponential responses

A linear combination of the y(¢,)

q q ‘
Z/Bny(tn) — ZAk Z ﬁnen(SkT)
n=0 k—1 =0

B, are the coeflicients of polynomial equation for exponents

q
Z ﬂnen(sT) — 0
n=0

such that s, are the roots.

Georgta Institute of Technology School of Aerospace Engineering
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Complex Exponential Method: Basic Equations II

To find these coefficients rearrange the equation above

qg—1

Z /Bny(tn) — _y(tQ)

n=0
Successive applications of this procedure lead to a tull set of equations:

y(lg-1) 1( B ( y(tq) \‘
y(tq) b1 _#

B y(tq—l) y<tq) y(tQQ—2> 1\ ﬂq—l y

Use Pseudo-Inverse or Singular Value Decomposition to determine
coeflicients 3, find roots and determine damping as Re(sy).

Georgia Institute of Technology School of Aerospace Engineering




Moving Block Method

Fits the response to a single excitation to
the dominant mode determined using FF'T

Requires measurement of one degree of freedom
or mode for some time history

Widely used in experimental work

Principal Problem:

o select proper degree of freedom or mode to excite and measure

o needs very detailed time history to determine
dominant frequency accurately

o must be almost single mode response

Georgia Institute of Technology School of Aerospace Engineering
BE me N BE Ay SN iy Y B B BE 2 N G A SE BN B e




Moving Block Method: Basic Equations

Compute Fourier Transform of a single response from
some varying time 7 to 7 + T.

T+T .
F(w) / ae”“nt sin(wt + ¢)e " dt

Analytical integration gives
| [ A 1 '
In|F(w)] = —Cwr + §CSID 2(wt + ¢) +In 2 + In(wT') — —2—ng
W
Procedure:

e Compute the dominant damped frequency w from FFT

e Determine ( from least-squares fit for different 7

Georgia Institute of Technology School of Aerospace Engineering




Comparison of the methods I

Problem 1: Multiple pendulum with moving support
6 degrees of freedom model in state form

Specific feature of the problem:
structural modes does not change with time

a Instztute of Technology School of Aerospace Engineerin
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Partial Floquet Theory results

Modes decoupling: for each of 3 modes
2 experiments and 2 measurements

Support frequency (pi*rad/s)

Full Floquet results are shown as a solid curve

Georgia Institute of Technology School of Aerospace Engineering




Ibrahim Time Domain Method results 1

One experiment, all degrees of freedom measured
6 and 12 period integration

Support frequency (pi*rad/s)

Full Floquet results are shown as a solid curve

Georgia Institute of Technolo School of Aerospace Enagineerin
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Ibrahim Time Domain Method results 11

One experiment, all degrees ot freedom measured
6 and 12 period integration (zoom)

1 . 2 25 3
Support frequency (pi‘rad/s)

Full Floquet results are shown as a solid curve

Georgia Institute of Technology School of Aerospace Engineering




Complex Exponential Method results

One experiment, one degree of freedom measured
7 and 13 period integration

Support frequency (pi*rad/s)

Full Floquet results are shown as a solid curve

Georgia Institute of Technology School of Aerospace Engineering
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Moving Block Method results I

Each structural mode excited and measured
4 period integration

Support frequency (pi*rad/s)

Full Floquet results are shown as a solid curve

Georgia Institute of Technology School of Aerospace Engineering




Moving Block Method results 11

Each structural mode excited and measured
4 period integration (zoom)

26 2.8 3 3.2
Support frequency (pi*rad/s)

Full Floquet results are shown as a solid curve

Georgia Institute of Technology School of Aerospace Engineering
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Discussion

e Partial Floquet Theory showed the ability to predict exact
values of damping in different modes

e Ibrahim Time Domain Method showed good performance for
long integration time and at the same time loss
of accuracy in the unstable region

e Complex Exponential method was unable to consistently yield
qualitatively good results and also demonstrated loss
of accuracy for longer integration time

e Moving Block Method showed reasonable results for damping
values in different modes but only due to specific features
of this problem

L P
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Comparison of the methods 11

Problem 2: Ground Resonance Problem
10 degrees of freedom model in state form

Georgia Institute of Technolo School of Aerospace Engineerin
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Comparison of the results

Partial Floquet Theory:
6 experiments, 6 measurements in multi-blade modes

Ibrahim Time Domain Method:
One experiment, 6 periods, 3 degrees of freedom measured

2~

.
vvvvz\gv‘?&‘ Y AAY

]
15 20
Rotor speed (rad/s)

1
15 20
Rotor speed (rad/s)

Full Floquet results are shown as a solid curve

Georgia Institute of Technology School of Aerospace Engineering




Comparison of the results

Moving Block Method:
3 multi-blade modes excited and measured
4 period integration

L L j
15 20 25 30
Rotor speed (rad/s)

Full Floquet results are shown as a solid curve

Georgia Institute of Technology School of Aerospace Engineering
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Comparison of the methods 11

Problem 2: Ground Resonance Problem
FEM model, 257 degrees of freedom

Georgia Institute of Technology School of Aerospace Engineering




Comparison of the results

Ibrahim Time Domain Method:
One experiment, 3 periods, 3 degrees of freedom measured
(Fast Floquet used, 4 measurements per period)

1.2

1

08} -

0.6

i L I
10 15 20 25 30
Rotor speed, (rad/s)

Longer integration showed that 15 rad/s is stability boundary

Georgia Institute of Technology School of Aerospace Engineerin
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Conclusions 1

Partial Floquet Theory is shown to be an eflicient tool
to assess the stability and damping of various systems

It can be used as a post-processing tool for any Rotorcraft analysis

For some problems it provides a good method to decouple
the stability curve to several modal curves

It 1s based on a sounder mathematical basis that the other methods

Partial Floquet Theory is shown to be more efficient and
accurate than other methods when dealing with complex
computational models

Georgia Institute of Technology School of Aerospace Engineering




Conclusions I1

.o Ibrahim Time Domain Method is a particular case of
Partial Floquet Theory

e It seems to be less accurate than Partial Floquet Theory

e Moving Block Method and Complex Exponential Method
are curve fitting methods. Their approaches do not seem
to be suitable in numerical work

Georgia Institute of Technology School of Aerospace Engineerin
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Future Work ]

Application of presented Theory to aeroelastic and
contact problems

Extension to nonlinear systems

Development of post-processing routines to implement
the proposed methods

Relationship to energy flows

Georgia Institute of Technology School of Aerospace Engineering



Fast-Floquet Analysis of Helicopter Trim and Stability With Distributed and
Massively Parallel Computing

S. Venkataratnam S. Subramanian G. H. Gaonkar
Research Assistant Research Associate Professor
Department of Mechanical Engineering
Florida Atlantic University
Boca Raton, FL 33431

Summary

Prediction of helicopter stability in trimmed flight is often based on Floquet theory. It
involves a nonlinear trim analysis for the control inputs and corresponding periodic responses,
and then a linearized stability analysis for the Floquet transition matrix (FTM), and the
eigenvalues and eigenvectors of this matrix. The shooting method with damped Newton iteration
is used for the trim analysis and generates the FTM as a byproduct. The QR method is used for
the eigenanalysis. The Floguet analysis comprises the shooting and QR methods. A rotor with Q
identical and equally spaced blades has Q planes of symmetry. The fast-Floquet analysis exploits
this symmetry, and thereby provides nearly a Q-fold reduction in run time and frequency
indeterminacy of the Floquet analysis. Still, the run time for the fast-Floquet analysis on serial
computers becomes prohibitive for large models (order or number of states > 100); in fact, it
grows between quadratically and cubically with the order, and the bulk of it is for the trim

analysis. Accordingly, a parallel fast-Floquet analysis is developed for two types of mainstream

parallel computing hardware: distributed computing systems of networked workstations and

massively parallel computers; algorithmically, both types belong to the MIMD (Multiple-
Instruction, Multiple-Data) architecture. La.rge models with hundreds of states are treated, and a
comprehensive database on parallel performance and computational reliability is generated.
Computational reliability is quantified by parameters such as the eigenvalue condition number.
Similarly, parallel performance is measured by parameters such as speedup and efficiency, which
collectively provide a measure of how fast a job can be completed with a set of processors and
how well the processors are utilized. Compared to the serial fast-Floquet analysis, the parallel
analysis reduces the run time dramatically and provides a practical means of controlling the

growth of run time with the order by a judicious combination of speedup and efficiency.
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- Introduction

Floquet Theory

% Primary mathematical tool for helicopter stability in trimmed flight

* Routinely applied to small models (order or number of states < 100)

Investigation consists of:

O Trim analysis of computing control inputs for the required flight conditions
and the corresponding periodic forced response

® Stability analysis of generating the Floquet Transition Matrix (FTM), and
its eigenvalues and eigenvectors

Periodic Shooting for Trim Analysis
=> Generates the F'TM as a byproduct

QR Method for Eigenanalysis of the FTM

Collectively referred to as Floquet Analysis
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%}' Motivation

Run Time for Trim Analysis
& Becomes prohibitive on serial computers

& Increases rapidly with the system order --- between
quadratically and cubically

& Consumes nearly 99 % of the total run time

Full Potential of Structural and Aerodynamic
Sophistication is not Completely Exploited
- Even research models lead to large systems

-> Example: Flap-Lag-Torsion Analysis with 2 modes each in flap
bending, lag bending and torsion with stall and 3-D finite state
wake dynamics

12 states/blade x 4 blades + 6 states/element x
7 elements/blade x 4 blades + 55 wake states (9 harmonics)

~ 271States




Motivation Contd.

—————————S——— —— e ——————————————————

Utility of the Floquet Analysis is limited to small
models

Not Practical for comprehensive- and design-analysis
applications (Order >> 100) |
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Motivation

Why Parallel Fast-Floquet Analysis?

Contd..

Trim analysis

& Requires simultaneous solution of equations of motion and trim
& Control inputs appear in system and forcing function matrices
@ Iterative strategy --- solving a sequence of linearized problems

& Involves perturbing initial values one at a time, integrating through T,
generating the Jacobian and improving by damped Newton iteration

& The bulk of the run time is for repeated integrations

M - Model order or number of states including control settings
k - Number of iteration cycles for convergence

Number of independent integrations = k(M+1), M > 100




MOtivation Contd..
Why Parallel Fast-Floquet Analysis?

/—) T (Floquet )

Interval of

. T/Q (Fast-Floquet;

Integrations \ for a rotor with Q
identical and equally
spaced blades) Parallel

fast
Ideal for parallel Floguet
computlng
Independent

Integrations
Sequentially
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Motivation Contd.
Why Parallel Fast-Floquet Analysis?

Benefits

« Exploits the Q planes of symmetry and
performs operations concurrently

« Results in nearly a Q-fold reduction in run time

«Provides simpler means of identifying modal
frequencies (reduces frequency indeterminacy
by a factor of Q)
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Background

Serial Analysis (Fast Floquet)
McVicar and Bradley (1995)

Peters (1995)

Chunduru (1995)

Parallel Analysis

Subramanian, Gaonkar, Nakadi and Nagabhushanam
(Conventional Floquet; 1996)

Subramanian and Gaonkar (Fast Floquet; 1996)
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Objectives and Scope

« Develop a Parallel Fast-Floquet Analysis

» Suitable for distributed computing of networked workstations and
for massively parallel MIMD computers

» Exploits the fast-Floquet theory and the MIMD computational
strategy '

« Demonstrate the practical utility of the parallel fast-Floquet
analysis in comprehensive and design analysis applications
by treating models with hundreds of states
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Objectives and Scope  con.

« Present a comprehensive database on parallel performance
metrics and computational reliability
» Compares distributed computing with serial computing on a
conventional main-frame computer

» Compares distributed computing with massively parallel computing
with respect to performance and computational reliability
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@ Distributed Computing

[l Pifrallel C_grjlputing l]

I
I 1

[ SIMD | |MIMD |

[[ Distributed Computing J]

Distributed Computing

= Involves a set of networked computers (in practice, workstations)
© Minimum turnaround time and cost --- “lowly parallel computing”

© Portability --- The same algorithm/code can be run on both
distributed and massively parallel computing systems
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Conventional Floquet Analysis

—————

With unknown control input vector c explicitly stated
x = G(x,¢,t)

Condition for response periodicity

x(21, x(0) — x(0) =0

Control inputs satisfying the trim equations are
represented by

f(x,c)=0




Conventional Floquet Analysis con.

Response-periodicity condition and trim equations
are jointly represented as

f(s) =0 where s = | x,c]'

These equations are solved by combining shooting
technique and damped Newton iteration
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Conventional Floquet Analysis  cona.

{XE((:O)}k+1: {XEéo)}k |:(D1(I1)2 : I %;] {XE(ZTC)S— XE(O)}

x(0) arbitrary initial state

xg(21) nonperiodicsolutionat 2wt

0 errorinsatisfying trim equations
®1; = converges toFITM
1
=1
Ok m H‘Zki

1 Im(zy)
S _Eta (Re(z:)]
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g;y Fast Floquet Analysis

Periodic variations in blade sectional angle of attack
> air velocity components, rotor forces and moments
> period depends on the number of blades (Q)

 Forces and Moments | _, = Forces and Moments |

| Wake States ]\p:o =| Wake States ]\v:T 0

| Blade States [ | Permutation matrix |[ Blade States |
01, 0 0]
_ 10 O0L 0 _
{x W:T/Q_P{X}\V:O’ e.g. P= L 00 0 forQ=3
0 0 0 I,_

I, and I, are unit matrices of order N, x N and N, x N,
N, = number of blade fixed states
N,, = number of body fixed states
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Fast Floquet Analysis Contd.
e b e A %ﬂ—l{XE(AT) 5O ar=1/0

PT®;; = converges to PO(AT)

The general relation
P2 x{(n+1) AT] = ¢(AT) P2 x[nAT],n=0,1,...,Q—-1
Thus,
Px(AT)=P¢(AT) x(0)

- P2xQ2AT)=[Po(AT)>x(0)
PQx(QAT)=[PH(AT)IQx(0)
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@ Fast Floquet Analysis Contd..

Leads to

d(2n) = [PH(AT)IQ

where [P$(AT)]is the equivalent Floquet transition
matrix (EFTM)

From the eigenvalues 7 of [PO(AT)]

(—i( — % ln'Zk‘
3 I
G = % arg(Zk) = ZQ tan_l( Rn:((;ll({)))

Reduces frequency indeterminacy by a factor of Q
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i@){ Parallel Fast-Floquet Analysis
' Sequential Fast Shooting

There are seven instructions:

Instruction 1: Assume N+c=M initial values of initial
state x(0) and control vector ¢; s=x + ¢

Instruction 2: Form the permutation matrix P

Instruction 3: Perturb each element of s by a small
amount g;, j=1,2,...M and generate (M+1) vectors

S+Y.(,S+
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@ Sequential Fast Shooting  con.

Instruction 4: Generate the corresponding (M+1)
vectors after integration through 21t/ Q

x(21t/ Q) x(21t/ Q)
Y= S Fi=12,..M
. o 5

\

S ) S+€;

Instruction 5; Form the columns of the Jacobian or
Partial Derivative Matrix ©

L A AU A 4 U A T
£, £, e, | 7| ey




Sequential Fast Shooting  conu.

Instruction 5 (Contd.):

Or, equivalently
Jacobian or partial derivative matrix
o, -P D,
, P - permutation matrix
D=
Y D,, |
PT(I)H leads to

equivalent Floquet transition matrix (EFTM)

after convergence
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Sequential Fast Shooting  conu.

Instruction 6: Generate the error vector E. at the i-th
iteration

1 {x(zn/ Q%—Px(())}

i

Instruction 7: Improve the solution according to
Newton iteration

-1
siv1 =i — X[ ] E;




FAU Parallel Fast Shooting

g Master Part

— e —— — —

Assume a vector of initial conditions s

Improve solution
J

are exhausted?

Y
Form permutation matrix P
Y
—1 Form (M+1) sets of initial-condition vectors
re=-"s=-=s=ss=ss=s=sfsq-~"=F=s=s===- '
' -1 Parallel step,
]
' Send one vector to , —»1 Send end signal to slaves
, each slave processor \ 1
. Y : Form Jacobian matrix @
, Receive solutions from slaves : I
: : Generate error vector Ex
] ] *
! All (M+1) sets ves
: :
] ]

Yes

Check for convergence

(Output converged solution)




FAU Parallel Fast Shooting
@ Slave P_art

Receive a vector from master

Yes

End signal received?

Generate a column of Jacobian

l

Send solution to master
l

Cﬂeturn control to master)




Computational Reliability

Concerns both trim analysis and eigenanalysis
Reliability Parameters

Ocondition number of the converged Jacobian
matrix in the Newton iteration

Acondition numbers of the eigenvalues of the
EFTM that correspond to the damping levels of
interest

Ocorresponding residual errors of the eigenpairs



Performance Metrics

>Speedup S,

-¢ Defined as a measure of how a parallel algorithm, say running
on p processors, compares itself running sequentially on one
processor

S, = t/t,
t, = t; + t;, = predicted uniprocessor run time
t,, - serial portion
t,, - parallel portion

t, =t + t,,/p = measured parallel run time
tl ~ tlp

Ideal speedup = p

tpztlp/p




Performance MetricS  con.

——— — ————— —

t, =t + 1,

t, - serial portion

t,, - parallel portion
t,/t; =1 =serial fraction

t,,/t; =1 -1=parallel fraction
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Performance Metrics

Efficiency Ep

Contd..

Ep = Sp/p <1
Ep is a measure of how effectively the processors
are used

Ep=1

= we are getting to the best the processors
can do

Sp and E, provide a means of compromising between
how fast the job needs to be completed and how the

processors are kept busy




Performance Metrics Contd.

<« dominant influence of the parallel fraction

daf1]_;
dp| Ep

«f{ is an indirect measure of efficiency

« Portability is the ease with which the same
parallel algorithm can be implemented on
different machines/architectures

Message Passing Interface (MPI) is used
Facilitates development of portable algorithms
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Modeling and Results

> Isolated-rotor stability in trimmed flight

> Rigid flap-lag models

< number of blades: 5

O Airfoil aerodynamics based on the ONERA
dynamic stall models of lift and drag

< number of aerodynamic elements: 10

> Downwash dynamics based on a three-dimensional
finite - state wake model

= number of harmonics: 1 to 15

Total model order or number of states: 79 to 395
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Computational Reliability Results

Condition number of the eigenvalue Cond.(A) = lyTX ,—1

A —AX
Residual error of the eigenpair €= “ LPo( “gﬁ( ”

For M = 395

Cond.(\) = 2.6393 (Massively Parallel)
Cond.(>) = 2.6412 (Distributed Computing)
e =0.2812E-13 (Massively Parallel) i
£ =0.2223E-13 (Distributed Computing)
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=2 Run-Time Variations with the Order
and Number of Processors
IBM SP-2 Distributed Computing
5000 30

Run Time (hrs)

Run Time (seconds)

4000 M =395 | M =395

3000

2000

1000

0 10 20 30 40 50 60 700 5 10 15
Number of Processors, p Number of Processors, p




:@y Speedup and Efficiency Variations with

the Order and Number of Processors

——

IBM SP-2

Efficiency

0 10 20 30
Number of Processors, p




@) Speedup and Efficiency Variations with

the Order and Number of Processors

—

Distributed Computing

10
Ideal /~ M=39 9
8
Speedup v
= 6
== 5
// ) M =329 4
7 M=227 B 3
. 2

100

75

M = 329 %0

25

¢ Efficiency ‘

0
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Number of Processors, p
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E@y Speedup and Efficiency Variations with

the Order and Number of Processors

12 IBM SP-2 Distributed Computing 10
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Efficiency
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E@y Variations of 1/E,, with the Order and

Number of Processors

—

1/Ep-versus-p Curve

0.08
0.020
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0.012
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0.02 |
1 | 0.004
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\ IBM SP-2 Distributed Computing
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/’@y Variations of Serial and Parallel

Fractions with the Order

0.90 IBM SP-2 Distributed Computing

0.16

0.12 Serial Fraction

Serial Fraction

0.08

0.04

0.96

0.92 _
] Parallel Fraction

0.88 | Parallel Fraction |

0.84

0.80
200 250 300 350 400 200 250 300 350 400

Model Order, M Model Order, M
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<<==>¢ Run-Time Variations on Serial, Parallel
and Distributed Computing Systems

Run Time (hours)

50

Serial

25

Distributed Computing

Massively Parallel (IBM SP-2)

100 200 300 400

Model Order or Number of States
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Conclusions

——— —

= A parallel Fast-Floquet analysis is developed. It is designed
for MIMD computing architecture, which is almost exclusively
used in mainstream parallel computing systems of networked
workstations (distributed computing) and massively parallel
computers

« [t is portable in that it can be directly implemented on both the
systems




Conclusions Contd.

———

= The serial run time grows between quadratically and
cubically with the order. By comparison, both the parallel
systems reduce the run time dramatically; in fact, the
corresponding ratios of serial versus parallel run times
rapidly increase with increasing order.

= More importantly, both the parallel implementations
provide a means of controlling the growth of run time
with the order by a judicious combination of speedup
and efficiency; that is, increasing the number of
processors with the order.
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Conclusions Contd..

— e ——————

= The parallel-performance data of speedup, efficiency and parallel
fractions from the two parallel implementations are comparable;
so are the computational reliability figures from the serial and two
parallel implementations. In particular, the speedup and efficiency
figures are close to the ideal values for some combinations of
model order and number of processors.




Conclusions

= With respect to developing a parallel algorithm and turnaround
time, treating a large model with hundreds of states on
networked workstations is as routine as treating a small model
(N < 100) on a workstation. This is a measure of the practical
utility of distributed computing in treating large models and
offers considerable promise for comprehensive- and design-
analysis applications.
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STABILIZATION OF PERIODIC-COEFFICIENT FLAP-LAG
DYNAMICS THROUGH APPLICATION OF DISCRETE
CONTROL '

P.V. Bayly, J.M. Schmitt and D.A. Peters
Washington University
St. Louis, MO 63130

Presented at the Seventh International Workshop on Dynamics and
Aceroelastic Stability Modeling of Rotorcraft Systems

Abstract

Periodic flapping and lead-lag oscillations occur in rotor blades during
forward flight; the governing equations are nonlinear with periodic coeffi-
cients. Oscillations become unstable as the advance ratio of the helicopter
increases. Stabilization may be achieved by control of the mean pitch an-
gle of the blade once per period according to a discrete control law. The
control law is applied to the Poincaré map which governs samples of the
system obtained once per period. The controller stabilizes but does not
attempt to change underlying periodic orbits. This approach is particu-
larly well-suited to systems with periodic coefficients (such as rotércraft)
since the discrete version of the system is time-invariant.

1 Introduction

Rotorcraft dynamics are dominated by periodic orbits of varying stability. For
example, the flap-lag dynamics of helicopter rotor blades can become unstable
as forward flight speed is increased at a given rotor speed [1]. The equations
governing flap-lag dynamics in forward flight are nonlinear and contain strongly
time-varying coefficients [1]. . 7

Presently helicopter designs incorporate extra components such as mechani-
cal lag dampers to improve stability. “Smart” blade materials, as well as active
servoflaps, are currently being considered for use in rotorcraft [2]. Control of
rotor blade instability is complicated by three factors, however: (1) the steady
state is intrinsically periodic; (2) coeflicients are also periodic; and (3) behavior
is nonlinear. These complications are addressed by the use of the Poincaré map
which describes the behavior of samples of the system taken once per blade-
passing period. The behavior of a periodic-coefficient, continuous system near
a periodic orbit is thus reduced to the dynamics of an equivalent discrete, time-
invariant system near a fixed point.

The use of ‘a linearized Poincaré map to stabilize periodic orbits was first
proposed by Ott, Grebogi, and Yorke [3] (OGY) for the purpose of controlling
chaos. Since the original algorithm was described it has been modified by sev-
eral investigators [4, 5, 6]. and validated in experiments [6, 7, 8]. However,
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Figure 1: a) The rotor blade coordinate system and generalized coordinates 3
(flap angle) and ¢ (lag angle). The pitch angle of the blade is . The X — Y
axes rotate about the Z-axis with angular velocity €. b) The magnitude of
the largest eigenvalue of the Floquet transition matrix plotted vs advance ratio
. ¢) Amplitudes of flap (- stable, o unstable) and lag (+ stable, x unstable)
displacement as a function of p.

for a number of possible reasons [9] benefits of these methods have not been
demonstrated in practical mechanical or aerospace systems.

In this paper, stabilization of periodic orbits is investigated in an aeroelastic
system that does not exhibit chaos: a helicopter rotor blade in forward flight.
We extend the basic procedure presented by Ott, Grebogi, and Yorke [3] in
the following ways: (1) The control law is optimized, taking into account the
control effort; (2) Unstable orbits possessing two complex unstable eigenvalues
are controlled; (3) Control is implemented without knowledge of fixed point
location; (4) Constraints on the performance in steady state (“trim” constraints)
are satisfied; (5) Control strategies to cope with (i) lack of knowledge of state
variables and (ji) delay in implementation of control are used.

2 Rotor blade flap-lag dynamics

The rotor blade model was developed by Peters [1]. In this model, a thin rigid
blade rotates at a specified speed about a fixed hub. The blade is connected to
the hub by root hinges with linear torsional springs. The governing equations
of the flap-lag system are derived in a rotating coordinate system (Figure 1a).
The coordinate system is defined with the Z axis oriented along the rotor shaft.
The X — Y axes are rotated about the Z axis with an angular displacement
v = Qt.

The position of a single blade with no hinge offsets is uniquely determined
by three angles: the flap angle (), the lag angle (¢), and the pitch angle ().
Dimensionless airloads on the blade in the flap and lag directions, Fjs and Fy,
are determined through quasi-steady airfoil theory (see the Appendix). The



resulting nondimensional nonlinear equations for coupled ﬂap-lag motion may
be written as [1]

. ) 1 |
ﬁ+sinﬁcosﬂ(1+g)2+wgﬁ:/ Fardr (1)
0
. . . 1
cos® B¢ — 2sin fcos B(1 +¢)p +wgC = cosﬁ/ Fer dr. (2)
0

Dots () indicate differentiation with respect to ¥ = Qt. The parameters wpg
and w, are the dimensionless natural frequencies in the flap and lag directions
of the non-rotating system [1]. The pitch angle is prescribed to be § = 6y +
6, siny + 8, cos ¢, where 6y, 85, and . are input parameters. The pitch angle
and the advance ratio g (the ratio of forward flight speed to rotor tip speed)
affect motion through the aerodynamic forces on the blade, which also depend
on B and ¢ (see the Appendix). All other parameters are fixed at values given
in the Appendix. ‘

Trimmed solutions of these equations are found from a Newton-Raphson
technique applied to Runge-Kutta simulations [10]. Initial conditions and values
for fg, 8, and . are found that (1) provide periodic motion, (2) suppress the
first harmonic component of 4, and (3) achieve a specified coefficient of thrust;
this combination is known as moment trim [1]. ] N ]

As the advance ratio u is increased, stability of the trimmed solution is lost.
The magnitude of the largest eigenvalue of the Floquet matrix exceeds unity for
i > 0.17 (Figure 1b). The amplitude of oscillations also increases (Figure 1c),
but remains reasonably small even at large values of p. If these unstable orbits
could be stabilized, the range of useful performance of the system could be
significantly increased.

3 Discrete control methods

The general approach used here is motivated by the OGY approach to stabilizing
unstable periodic orbits in chaotic nonlinear systems [3, 6]. Several concepts
have been modified or generalized to apply control to the flap-lag system. The
control technique is applicable to continuous dynamical systems of the form
x = f(x,1; 7). In the flap-lag system the state-vector x is the vector [, 3, ¢, Q7
1 is a control parameter, which is taken to be the mean blade pitch angle
fy. A discrete Poincaré map is obtained that describes the dynamics of the
system sampled once every period, T Xn+1 = g(%,;7). A periodic orbit in the
continuous system (x(¢ + 7') = x(t)) becomes a fixed point of the associated
Poincaré map (Xn41 = Xn). Also, periodic coefficients in’ the original system
are eliminated.




3.1 Background: OGY control

The original OGY approach [3] follows the following argument. Near a fixed
point, the Poincaré map may be linearized and represented by a matrix equation:

Eni1 = A&, +hén, 3)

where £, is the location in state space relative to the fixed point: &, = x, — x;.
The characteristic matrix A in this approximation is the Floquet transition
matrix. The vector h represents the effect of a small change in the parameter 5
on the location of £,41.

Suppose (as in reference [3)) that the matrix A has one unstable eigenvalue
Ay. Let &% be the component of &, in the direction of the unstable contravari-
ant eigenvector: &% = fI¢,. Then, at each iteration the control parameter
is perturbed in proportion to the unstable component: 67, = ofl'¢,. Stabi-
lization is achieved by directing £,4+; onto the stable manifold, which occurs if
o= —X,/(h7 f,).

3.2 Generalized discrete control methods

Several shortcomings exist in the basic OGY procedure, if we wish to apply it
to a general non-chaotic system. First, the algorithm requires knowledge of the
location of the fixed point. Second, performance criteria other than stability
must often be achieved. Third, instability due to pairs of complex conjugate
eigenvalues penetrating the unit circle is not considered. Fourth, the cost of
the prescribed control effort may be excessive. Finally, changes in the control
parameter may not be instantaneous, and must often be based on incomplete
or imprecise knowledge of the system.

3.2.1 Control of the difference map

To overcome lack of knowledge of the fixed point, we use an idea presented in
reference [6] and implement control based on the difference between consecutive
iterates of the Poincaré map. Subtraction from Equation 3 the equation for the
previous iteration of the map, it can be seen that

doy1 =Ad, +he,, (4)

where d,, = X, — Xp_1 and e, = 7, — 67mn,—1. The fixed point is no longer
explicitly included in the linearized map. The stability of the map in Equation 4
is still governed by the eigenvalues of the Floquet matrix A.

3.2.2 Pole placement and optimal control

By the application of state feedback, the difference in the control parameter from
cycle to cycle (e,,) can be made a function of the difference between successive



iterates of the Poincaré map. Specifically, a linear control law can be expressed
as e, = kTd,, where k is a gain vector. The control problem is then reduced
to finding the gain vector k so the eigenvalues of (4 — hk”) are inside the unit-
circle.

The choice of gain proposed by Ott, Grebogi, and Yorke [3] is only one of an
infinity of possible values. It is the gain which leads to the most stable controlled
system. However, if control effort is not free, it is probably not the best choice
of gain. By introducing a cost function J = > °., dZQd, + Re2, one can find
a set of gains which minimizes a logical combination of transient dynamics and
control effort [11]. In this paper @ = nI and R = 1 are chosen for several values
of n. The gain vector k which minimizes J is found from: the matrix Riccati
equation [11].

3.2.3 Trim

In rotorcraft applications certain performance or trim criteria (other than stabil-
ity) must be met. For example, a rotorcraft should maintain a specified thrust.
The trim problem is posed as follows: select values for K parameters which will
drive an N-dimensional system to a steady state satisfying K constraints. The

-chosen performance measure (average thrust, for example) depends on the state

variables of the system and on the control parameters. Close to the trimmed
condition we can write the linear approximation -

Pnt1 = Jpz Xn + Jpn n + b ‘ (5)

where the vector p, contains all the trim errors for the nt* period. Subtracting
the equation governing the previous iteration to eliminate the unknown constant
vector b, and combining with Equation 4, we obtain

dnys [ A 0 [ d, ] [ h ]
= ”- 6
[ Pn+1 } Jpz 1 Pn - Jon © ©
where d,, = X, — Xn—1 and €, = 7p — Tn—1. The system is now represented
compactly in the same form as Equation 4.

3.3 Practical concerns and necessary enhancements

Limited measurements and state estimation In many situations, not all
state variables are accessible for measurement. A discrete observer is used to
control the system when only the lead-lag state variables are measured. The
output (measured) variables are expressed as y, = Cd,. A dynamic estimate
of the entire state can be formed from the input and output of the true system
[11]: i )

dn+1 = A.d, + Ly, +hee,, . » (7)




where A. = A—LCA and . = h—LCh, If L is chosen so that the eigenvalues

of A, are all small magnitude, then the estimate will converge rapidly to the
true state.

Actuator dynamics Physical actuators do not change state instantly. To
investigate the effects of a finite actuation delay, we model the actuator as
a first-order system with a specified time constant: fy = (€~0 —~ 0o)/79. The
commanded pitch position, #y could change instantly, however. The order of
the system is increased by one state variable, and the commanded pitch angle
becomes the control input.

Model and parameter identification No mathematical model acn exactly
describe a physical system. Accordingly, we attempt to stabilize the flap-lag
system (2) with gains computed for erroneous parameters, and (b) with control
laws developed from models fitted to simulated noisy data, without use of the
equations of motion. All methods are tested in the presence of white noise
measurement errors and random disturbances of the simulated system.

4 Results

4.1 Control of the ideal system including trim

To stabilize unstable periodic orbits, the eigenvalues of the Floquet matrix must
be moved within the unit circle. The eigenvalues of the Floquet matrix A, for
the unstable orbit at p = 0.4, are slightly outside of the unit circle, as illustrated
in Figure 2. An optimal gain vector k is calculated to minimize the cost function
J defined above. The eigenvalues of the Floquet matrix of the stabilized system,
(A4 — hkT) are moved significantly inside the unit circle by this algorithm, as
shown in Figure 2.

The ability to control unstable orbits in the flap-lag system is demonstrated
in simulations of the full nonlinear system (Figure 3). Simulations are started
near an unstable periodic orbit and control is then applied. The oscillations
gradually approach the stabilized periodic orbit. The required deviation in
mean pitch angle has a maximuin value near 0.01 and decays with time.

4.2 Control of imperfect systems

Noise and measurement error In the next results, random disturbances
of amplitude 5% of the RMS amplitude of each state variable are added to the
corresponding variable every period. The results of a controlled simulation are
illustrated in Figure 4; control is turned off after 20 periods to show the under-
lying instability. While the deviation in the pitch angle decreases significantly
after the initial perturbation, the control effort will fail to decay to zero.
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Figure 4: Response of the controlled flap-lag system to an initial perturbation
from the periodic orbit and additive random noise (5% of RMS amplitude of
each state variable). Discrete points from the lag (¢) response, and the mean
pitch angle (6g) are shown. Control is turned off after 40 periods (to the right
of the vertical line).

Observer-based control Control is implemented with only knowledge of the
flap angle and flapping velocity (§ and £). The poles of the observer are chosen
to be ten times faster than the poles of the controller. The resulting performance
of the controller is shown in Figures 5a-c. The success of this control strategy
depends on the observability of the system [11].

Control including actuator dynamics In the results so far, we have as-
sumed that any desired change in 6; can be made instantly. However, any
change in mean pitch angle must take a finite time to complete. A controlled
simulation in which the mean pitch angle exhibits first order dynamics with a
time constant 73 = 1.0 is shown in Figures 5d-f. The deviations in mean pitch
angle are smaller than the cases above, and the system takes slightly longer to
converge, but remains stable.

Control with imprecise models The control strategy is generally robust
to errors in model and parameter estimates. Control is applied at an advance
ratio of ¢ = 0.4 using a control gain vector estimated for g = 0.3. The results
are shown in Figures 5g-i, they exhibit rapid convergence. Models can be also
derived based on data from experiment or simulation, without the benefit of
equations of motion. We deliberately misidentify the system as two-dimensional
(2-D) and use a least-squares fit to derive an empirical model of the form xn41 =
Ax, + hr,. The results of successful a control based on this model are shown
in Figures 5j-1. Here the transient is long, indicating less effective control.

5  Summary

Unstable periodic orbits in simulations of flap-lag dynamics are stabilized by
the periodic application of very small perturbations of the blade pitch angle.
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Transient effects in weakly stable periodic orbits can also be reduced by this
method. Detailed knowledge of the equations of motion is not required to im-
plement control, so long as the stability properties of the underlying motion
can be estimated. The control law used to stabilize these orbits may also be
optimized with respect to different performance or cost functions. The control
strategy is applicable even if some states are not measurable, even if contrcl can
not be applied instantly, or even if the model is only approximate. The general
approach is particularly useful for nonlinear systems with periodic coefficients.
As active blade control becomes feasible, this general approach may be practical
for improving the performance and simplifying the design of rotorcraft.
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A Aerodynamic forces

The dimensionless aerodynamic forces in Equations 1 and 2 are [1]
Fp = £ 1[UPsin0 — Ul (cos § + 2)] 8)
a

Yrrr2 td - £4
Fe =i§[UP(cos€— 2—;)— UpUs sm@—Utz—aRJ 9
where U; and U, are the dimensionless velocities tangent and perpendicular to
the plane of rotation of the rotor blades. The force expressions are negative
if reversed flow is present, i.e. if Uscosf# + Upsiné < 0. The dimensionless
velocities are ; : -

U = (14 ()reos B+ psin(y + ¢) (10)
Up=rﬂ+/\cos,6+psinﬂcos(¢+ﬁ). (1

The inflow A is related to the coefficient of thrust by simple momentum theory:
er = 2X\/p? + A? (for zero climb rate). The coefficient of thrust is also equal
to the integrated vertical force: »

ga

27 1
er = —/ cosﬂ/ Fgdrdy - (12)
27y Jo 0

where the slope of the lift curve a = 2, the rotor solidity ¢ = 0.05, the Lock
number v = 5,’and the coefficient of drag cg, = 0.01. Frequencies are taken as
wp = 0.15 and we = 1.4. The advance ratio p is varied.
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INTRODUCTION AND BACKGROUND

e Achieving acceptable vibration levels is an important
part of the helicopter design process

e Vibration Reduction Approaches:

Passive Methods

— Dampers

— Structural Optimization

Active Methods (See Friedmann and Millott (1995))

— Higher Harmonic Control (HHCQC)

— Individual Blade Control (IBC) |
— Active Control of Structural Response (ACSR)
— Actively Controlled Flap (ACF)




INTRODUCTION AND BACKGROUND (CONT.)

e Actively Controlled Flap (ACF):

— An actively controlled, partial span trailing edge flap
located on the outboard section of the blade is used
to modify the aerodynamic loading on the blade in
such a way that the vibratory loads are minimized.

— Approach is similar to IBC approach, but retains
conventional swashplate. Actively controlled flap
has no effect on airworthiness of helicopter.

[ m—




INTRODUCTION AND BACKGROUND (CONT.)

e Actively Controlled Flap (Cont.):

— Investigated by Millott and Friedmann (1994) using
elastic blade model and quasisteady Theodorsen
aerodynamics.

— Also investigated by Milgram and Chopra (1995)
using rotor analysis code UMARC. Aerodynamics
based on a compressible, unsteady model developed
by Leishman combined with a free wake model.

— Studied experimentally by Straub (1995).




OBJECTIVES OF THE PRESENT STUDY

e To develop a new compressible unsteady aerodynamic
model for an airfoil /flap combination that is suitable for
rotary wing applications.

e ToO implement the aerodynamic model in an aeroelastic
response analysis of a flexible hingeless blade
incorporating an actively controlled flap.

e To conduct control studies of vibration reduction using
the actively controlled trailing edge flap.



UNSTEADY AERODYNAMIC MODELING

e Rotor aerodynamics modeled using a 2-D blade
element formulation, with far wake effects taken into
account through an additional induced angle of attack.

e Desired Capabilities for the 2-D Linear Aerodynamic
Model:

— Unsteady aerodynamic forces due to arbitrary
motion of an airfoil/flap combination.

— Unsteady flap hinge moment.
— Compressibility effects.

— Unsteady freestream velocity effects.




UNSTEADY AERODYNAMIC MODELING (CONT.)

e Aerodynamic Theories Developed for Rotary Wing
Applications that Include a Flap Modeling Capability:

Incompressible

— Modified quasisteady Theodorsen aerodynamics
(see Millott and Friedmann (1994))

— Finite state airload model developed by Peters and
his associates (1994)

Compressible

— Leishman ‘and his associates (1990,1994,1995)




UNSTEADY AERODYNAMIC MODELING (CONT.)

e Rational Function Approximation (RFA) Approach:

— Approach commonly employed in fixed wing
aeroelastic analyses.

— Oscillatory aerodynamic response data is used to
generate approximate transfer functions that relate
generalized motion to aerodynamic loads.

— Transformation to the time domain to produces a
state space aerodynamic model.

e Advantages:

— Compressible oscillatory response data easily
obtained using a doublet lattice method.

— Method easily applicable to any airfoil /flap
geometry.




UNSTEADY AERODYNAMIC MODELING (CONT.)

e Define the generalized motion and force vectors h(t)
and f(t) respectively as

e
h(ty=| |, f(t)=|C.(
Dy (t) o ((t))
Di(0), S

e Derivation of the aerodynamic model is carried out in
terms of nondimensionalized time ¢, given by

_ 1t
t:—/ U(T)dr.
b Jo

This transformation is necessary to properly account
for the effects of pulsating flow.




UNSTEADY AERODYNAMIC MODELING (CONT.)

e Aerodynamic system is represented in the frequency
domain as:

— Q(s) is @ matrix of aerodynamic transfer functions.
= G(3) = LEHU ()] and H(5) = L(D).
sb

— 5 is the nondim. Laplace variable, 5 = T




UNSTEADY AERODYNAMIC MODELING (CONT.)

e Rational Function Aproximation (RFA) using the Least
- Squares Approach (Roger, 1977):

— The ng lag terms produce additional states in the
time domain, forming an ‘aerodynamic dimension.’

— Poles v are assumed positive to produce stable open
loop roots.

— The matrix coefficients C;, 1 =0,ny + 1 are
identified using a fitting process.

— The approximation can be constrained at the two
ends of the reduced frequency spectrum k=0 and




UNSTEADY AERODYNAMIC MODELING (CONT.)

Least Squares Fit
of Oscillatory Response Data

0(k,)

Tabulated Oscillatory
Response Data

|
Q(k,) Imag
k. Real Imag |
0.00 - - --
0.02] -- - B
0.04 - -
0.06 :




UNSTEADY AERODYNAMIC MODELING (CONT.)

e To further increase the efficiency of the model, pole
locations are optimized such that the approximation
error is minimized:

Imag Imag

Real Real

Before Pole Optimization After Pole Optimization




UNSTEADY AERODYNAMIC MODELING (CONT.)

e Generalized Airfoil Motions:

—
U

\w

Wo W

e Generalized Flap Motions;




UNSTEADY AERODYNAMIC MODELING (CONT.)

e State Space Model:
— The Rational Approximant is rewritten as

~

Q(5)=Cy+Ci15+D(I5-R) "E5,

where 5 is the nondim. Laplace variable, 5 = 32,

D:[I I I],
- F .
ER Cs
I C
R=— & CE=|
I Y 1] Crpt1)




UNSTEADY AERODYNAMIC MODELING (CONT.)

e State Space Model:

— Using the inverse Laplace transform produces a
state space aerodynamic model:

£(t) = (Coh( )+ C -2 h(t) + Dx(t)) |

U(t) U(t)

x(t) = U—Igtsz(t) + Eh(t),

— x(t) is the vector of aerodynamic states




Rational Function Approximation of the Lift Response
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MODEL VALIDATION

e Comparison performed with an exact, incompressible
solution to the time varying freestream problem

developed by Isaacs.

e Numerical experiments were performed for unsteady
freestream conditions represented by

U(yp) = Us(1+ Asina)),

e Pitch motion:
o = O, SinY
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STRUCTURAL MODEL

e Structural model for a blade/flap combination is similar
to that used by Millott and Friedmann (1994)

e An elastic blade model with fully coupled
flap-lag-torsional dynamics is used which includes
geometric nonlinearities due to moderate deflections.

e The control surface is assumed to be an integral part
of the blade, but does not provide a structural
contribution.

e Flap deflection is assumed to be a controlled quantity.

e Four identical blades are combined to represent a
four-bladed, fixed hub hingeless rotor.




PROBLEM FORMULATION AND SOLUTION

Fixed Radial Station

°y
1., 3:> Number | | ]
s =hy

vy

e Coefficients indexed by azimuthal segment:
f=1/U (th + Cyy(b/U)h + Dx)
% = U/bRx + E;h

e As number of segments is increased the coefficients will
approach a continuous change:

f=1/U (CO(M)h + C1(M)(b/U)h + Dx)

x = (U/b)Rx + E(M)h




PROBLEM FORMULATION AND SOLUTION

e Constant inflow is assumed.

e Each station on the blade span where aerodynamic
loads are evaluated contributes a number of
aerodynamic state equations.

e T he combined structural and aerodynamic equations
form a coupled system of nonlinear ordinary differential

equations.

e Time domain response solution is obtained using direct
“numerical integration using the ODE solver DE/STEP.

e The coupled trim/response solution is obtained using a
simple autopilot type controller using a performance
index which is a quadratic function of the trim equation
residuals.




VIBRATION REDUCTION USING ACTIVE
CONTROL

e Control strategy is based on the minimization of a
performance index that is a quadratic function of the
4 /rev vibration magnitudes z at the ¢ — th time step:

T

e Flap deflection consists of a sum of 2, 3, 4, and 5/rev
harmonics

e An optimal discrete time controller is used based on a
linear, quasistatic, frequency domain representation of
the vibratory response to control.

e W, is assumed to be an identity matrix.




RFA Aerodynamic Model Parameters

Number of lag terms: 5 Lag Terms
Reduced Freq. Range: 0.0-1.5,2.0,3.5
# of Blade Stations: 9 (2 Flap)

Total Aerodynamic States: 100




Soft-In-Plane Elastic Blade Configuration

Rotor Data

Ny =4 Ly =1.0
cpy = 0.05498 Opt =0

wp = 1.123,3.41,7.62 (4, = 0.01
wr, = 0.732,4.46

w1 = 3.17

v =295.5 o=0.07
Helicopter Data

Cw = 0.00515 fCqr =0.01AR
Xpa=0.0 Zgpa=0.3
Xre =0.0 Zpe = 0.3




Change in 4/Rev Hub Loads with Number of Lag Terms
1 deg, 5/rev Flap Deflection
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Simultaneous Reduction of 4/Rev Hub Loads Using the
ACF, 1 =0.3, wr; = 3.14/rev
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Flap Deflection over One Revolution, pu = 0.3, wr = 3.14/rev
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Maximum Flap Deflection, p=0.3
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Average Control Power, un=0.3
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Control Power Requirements Over One Revolution for a
Single Flap, p = 0.3, wr; = 3.14/rev
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Change in Rotor Power With Actively Controlled Flap,
pw=10.3
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CONCLUDING REMARKS

e \With a suitable source of oscillatory response data, the
RFA approach can be used to develop a compressible
unsteady aerodynamic model for an airfoil /flap
combination that is suitable for rotary wing
applications.

e Control studies confirm the effectiveness of the actively
controlled trailing edge flap at reducing 4/rev vibratory
loads.

e T he addition of unsteady aerodynamics and
compressibility effects is necessary to properly
characterize the operational requirements of the
actively controlled trailing edge flap.




HHC AND IBC FOR A SERVO-FLAP CONTROLLED MAIN ROTOR

Fu-Shang Wei
Chris A. Tomashofski
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Bloomfield Connecticut 06002

ABSTRACT

A servo-flap rotor control system using Higher
Harmonic Control (HHC) and Individual Blade Control
(IBC) to significantly reduce helicopter vibration and
improve blade performance has been investigated. This
is achieved by maintaining the control modules in the
fixed system and transferring the control actuators to the
rotating system. The Kaman SH-2G helicopter and the
second generation composite main rotor blade (CMRBII)
are used as the baseline in the design. The servo-flap
rotor system has the inherent advantages of low control
loads, low blade induced vibration, low control system
weight, and high control sensitivity. Three different
design approaches have been considered. In order to
further lower main rotor control power and heat rejection
requirements and to enhance flight safety by providing a
fail-safe installation, the collective and 1/rev cyclic
inputs needed for normmal servo-flap flight remain
unaltered from their conventional mechanical paths. The
HHC system needs only to introduce the HHC or IBC
signal into the main rotor blade control which is
introduced in parallel with the basic control system.
From the design study, the servo-flap method of control
is ideally suited to both HHC and IBC for an advanced
helicopter main rotor control system in the future.

INTRODUCTION

It has been a long-standing goal of the rotorcraft
community to develop a practical system for main rotor
Higher Harmonic Control (HHC) and Individual Blade
Control (IBC) in order to benefit from its potential for
significant vibration reduction and performance
improvement'". Numerous research efforts have been
conducted over the years with mixed results, partly due
to the large control force and power requirements
inherent in conventional pitch horn control systems”'.
This realization has recently led to increased attention to
the servo-flap method of main rotor control™*. As the
only manufacturer with 50 years experience in fielding
successful production servo-flap controlled helicopters
223 Kaman is uniquely positioned to make a significant

Presented at the 7'M International Workshop on Dynamics and
Aeroelastic Stability Modeling of Rotorcraft Systems, St Louis,
Missouri, October 14-16, 1997.

contribution to the HHC/IBC effort.

a) Review Of Exis)ing HHC Systems:

During the early 1980's, McDonnell Douglas Helicopter
Company (MDHC) investigated HHC through wind
tunnel and flight tests™®. The flight tests were conducted
on an OH-6A helicopter and evaluated for both open
loop and closed loop higher harmonic controllers.
Vibration reductions were demonstrated for airspeeds up
to 100 knots and for limited maneuvers. The algorithms
implemented for the OH-6A HHC flight test were
designed specifically to minimize vibrations under
steady flight or for slowly varying flight conditions.

During the mid 1980's at Sikorsky, the analysis for the S-
76 helicopter indicated that HHC inputs of + 2° would be
sufficient to reduce vibration at 145 knots. The open
loop HHC system tested gave maximum higher
harmonic blade pitch amplitudes approximately + 1°.
Due to hydraulic flow capability, the ratio of design
value to flight test value was 2:1, representing only 50%
effectiveness. More hydraulic power with its attendant
weight penalty would be required to achieve the
analytically desired pitch excursions. Also, flight test
showed that the vibratory control loads were increased
with HHC inputs®'°.

During the early 1980's, closed loop HHC was
demonstrated on a three-bladed CH-47D model rotor in
the Boeing Helicopter V/STOL wind tunnel'*". Vertical
and inplane 3/rev hub forces were reduced
simultaneously for airspeeds up to 188 knots. The
reduction was accomplished with a fixed-gain feedback
control law which was simpler and faster than the
adaptive control laws previously investigated. The
controller applied oscillatory swashplate motion which
produced blade pitch up to  3.0° at high speed.

In 1986, a research program was conducted by
Aerospatiale Helicopter division to flight test an SA 349
Gazelle helicopter - using active control to reduce
vibration via HHC'. Three control algorithms were
developed and tested. Vibration reduction using a
closed-loop self-adaptive HHC system demonstrated
80% reduction in the cabin at an airspeed of 134 knots.




At Kaman, full scale wind tunnel testing was conducted
on the Multi-cyclic Controllable Twist Rotor (MCTR)'*.
The MCTR is a hybrid system which consists of a
torsionally flexible blade that is controlled directly by a
conventional pitch horn at the blade root and a servo-flap
located at approximately 75% radius. The pitch homn is
the primary control introducing collective and 1/rev
cyclic for trim. The servo-flap introduces torsional
moments with collective, 1/rev, and multi-cyclic inputs
that elastically twist the blade about the trim position for
vibration reduction, blade tracking, blade stall
alleviation, and optimum aerodynamic performance.
Wind tunnel test results showed flatwise bending
moment reduction of 22% to 30% with concurrent 83%
reductions in control loads of the MCTR at several
forward flight conditions and at advance ratios of 0.22
and 0.33. Also, flatwise bending reductions of about
50% with lesser control load reductions of 30% to 60%
were achieved with different control schedules.
However, no flight tests of the MCTR or servo-flap type
of main rotors were ever conducted on a production
helicopter using HHC.

b) Deficiencies Of Existing HHC Systems:

Previous flight testing of HHC concepts has shown some
success in reducing blade vibration. However, several
problems come to light which will not be easily resolved
based on the results of past flight testing. Significant
research is needed in these areas to produce better HHC
and IBC systems.

1. HHC Sensitivity: HHC control input requirements
have tended to be much greater than analytically
predicted, because the effectiveness of the designed
value used for pitch horn rotor HHC flight testing
can only generate approximately 50% of the
required HHC control input.

2. Power Required: Power required to achieve the
HHC inputs tend to be much greater than
anticipated, because the majority of the power
required to achieve the HHC inputs are consumed in
the shaking the swashplate in the fixed system.

3. Algorithm Requirements: The control algorithms
were only successful in steady state and slow
transient flight conditions. Most of the HHC flight
testing was concentrated in reducing rotor induced
vibration in steady state flight conditions. Very little
consideration was given to or very little success was
achieved in most transient and maneuver flight
conditions.

For example, the OH-6A HHC flight test program has
shown insufficient vibration reduction in

acceleration/deceleration between 0 and 40 knots, very
high speed maneuvers, and turbulent wind conditions.
The lack of success in these conditions can be attributed
primarily to two factors: i) The quasi-steady algorithm
cannot keep up with the varying vibration level; ii) The
underlying vibration phenomena is a dynamic process
not amenable to quasi-steady solution.

For the 8-76 helicopter flight test, the aircraft vibration
reduction would likely have been achieved if the HHC
system had provided the required control inputs. The
open loop HHC system gave maximum higher harmonic
blade pitch amplitudes only =+ 1°. A more powerful and
larger HHC system would be needed to achieve the
vibration reduction goal at most critical flight conditions.
The added weight penalty to increase the hydraulic
effectiveness was estimated to be at least double the
originally designed value which may become impractical
for the design.

For the SA 349 Gazelle helicopter HHC flight tests,
significant vibration reduction was successful for steady
state flight conditions even including high load factor
bank turns where the basic vibration level is typically
high for this type of helicopter. However, test results
indicated that the HHC system has very poor vibration
reduction through transition flight. These poor test
results may be due to the interaction of the rotor wake on
the airframe encountered at low forward airspeed. The
mechanism of the generation of vibrations in these flight
cases is very different from the other flight conditions.
More research efforts are needed in these areas.

c) Why HHC On An Advanced Servo-Flap Rotor?

There are many reasons for choosing a servo-flap
controlled rotor over a pitch horn controlled rotor for
HHC and IBC applications. These reasons are the
inherent advantages of low control loads, low blade
induced vibration, light control system weight, and high
blade control sensitivity .

Control power requirements for a servo-flap controlled
main rotor system are much lower than those of
swashplate shaking. There is a significant weight
difference between servo-flap and main rotor blades. A
typical servo-flap weighs about 6 lbs, while a typical
main rotor blade weighs about 200 lbs, therefore, a
significant control power difference exists in moving a
servo-flap versus moving a pitch horn main rotor under
steady, 1/rev cyclic and higher harmonic motion. For a
typical pitch horn controlled rotor, shaking a rigid
control system requires approximately 120 HP per inch
of motion'®. This implies that much of the horsepower



required is due to shaking the fixed control system. For a
servo-flap controlled rotor, even including collective and
1/rev cyclic control power, less than 2.5 HP per blade are
required to achieve the same amount of HHC motion®’.
Therefore, for a servo-flap rotor control system, less
control force and heat-rejection management are
required within the electrical and hydraulic control
systems.

Normally, a servo-flap main rotor control system uses
very light weight mechanical collective and 1/rev servo-
flap control to fly the helicopter which does not rely on
hydraulic boost for flight safety. The aircraft can
continue to fly and maneuver manually with relatively
low pilot workload even in the event of total hydraulic
boost failure and Automatic Stabilization Equipment
(ASE) failure. This is an extremely robust, reliable, and
naturally stable system proven by 50 years service in
military and commercial helicopters. This type of control
has very light control system weight and actuation loads.

Also, for a servo-flap controlled main rotor, control
inputs are not limited to mutually correlated harmonic
functions but can include any type of waveform and true
IBC. For a pitch horn controlled rotor, all HHC
introduced in the fixed system must be achieved by
shaking the swashplate collectively and cyclically at the
appropriate (n-1), n, and (n+1)/rev frequency, limiting
such inputs to mutually correlated harmonic functions.

The servo-flap main rotor design has the servo-flap
located at 75% radius of the main rotor blade. From the
blade aerodynamic point of view, due to the high
rotational speed about the rotor shaft, the local airspeed
and dynamic pressure at the servo-flap surface are very
high. The sensitivity of a servo-flap rotor per degree of
HHC input is much greater than that of a pitch horn
rotor. Therefore, it is much easier to design a low
vibration blade by tailoring main rotor aerodynamic
airload distribution and reducing servo-flap-introduced
aerodynamic excitation. Also, the required change in
blade pitch amplitude can be achieved with less actuator
deflection.

From the rotor control system design point of view, it is
relatively easy to place actuators in the rotating system
such that blade camber can be modified with 2/rev or
other servo-flap inputs. This achieves performance
improvements by producing variation in blade angle of
attack and airload distribution resulting in stall
alleviation and thrust improvement. The servo-flap
method of control is ideally suited to both HHC and IBC
for advanced helicopter main rotor control systems.

BASELINE ROTOR

The Kaman SH-2G helicopter (Fig. 1) and CMRBII
(Figs. 2-4) servo-flap controlled main rotor system are
selected as the baseline design aircraft. The CMRBII
rotor system, in addition to the inherent advantages
mentioned above, has better blade aerodynamic
performance and fatigue life than the original production
metal blades. It is also representative of current
composite blade manufacturing technology used
throughout the helicopter industry. Especially important
is that this type of control system has been proven in 50
years of production experience and well over 2 million
customer flight hours and it does not rely on hydraulic
boost or automatic stabilization for flight safety.

The SH-2G helicopter has a 4-bladed main rotor system.
The main rotor nominal speed is 298 rpm and the
maximum take-off gross weight is 13,500 lbs. The flat
plate drag area of the SH-2G configured for the anti-
submarine warfare (ASW) mission, inciuding all sensor
and weapon systems, is 32 square feet. The rotor shaft
has built-in 6° forward tilt and 4° lateral tilt. The
maximum forward speed is 141 knots. The blade has a
266 inch radius and a 23 inch chord. The blade planform
is rectangular and consists of a modified 230-series
airfoil transitioning linearly in thickness along the blade
span. - :

Both blade flapping and lead-lag hinge offsets are
coincident at station 8.25 inch. The inboard and outboard
stations of the pitch barrel are located at stations 17.5
and 42, respectively. The blade lead-lag hinge gives a
soft inplane frequency of 0.2/rev which uses a lead-lag
damper to increase blade inplane stability. The CMRBII
blade produces a pitch-flap coupling (8; = 23° ) that is
introduced by the combined effects of servo-
flap/feathering and servo-flap/flapping coupling during
operation. The inboard servo-flap station is 180.8 and the
outboard flap station is 217.2. The servo-flap is an
NACA 63,018 airfoil with an 8 inch chord and 36 inch
length. It is made from graphite/epoxy fabric and is
designed as a three-cell box beam.

The total pilot collective stick travel is 11.5 inches which
is equivalent to 16° servo-flap angular motion. The fotal
cyclic stick travels for l/rev longitudinal and lateral are
14 inches and 11.2 inches, respectively, which are
equivalent to 24° and 10.6° servo-flap angular motion.

TECHNICAL APPROACH

The technical épproach for the HHC system is that the
HHC system does not completely replace this highly




effective production design which already provides one
of the lowest vibration rotors in the industry today.
Rather, the HHC/IBC signal is introduced in parallel
with the basic control system. The HHC hardware is
designed to fit in conjunction with the present control
system. There is only a minimum of modification
required to accommodate the HHC system.

The actuators are mounted in the rotating system, closer
to the actuated mass than is possible with swashplate
shaking. This approach greatly reduces the adverse
effects of lost motion due to control system spring rates.
The HHC system design has features built in to handle
electrical, hydraulic, or mechanical failure separately.
The actuators have a centering and locking mechanism
which can bring the HHC actuators to the rig neutral
position and locks in case of electrical or hydraulic
failure. The mechanism also operates simultaneously for
all four actuators in the case of single or multiple
failures. The servo-flap HHC system is fail-safe for any
single electrical or hydraulic failure and has no
degradation of the present flight safety of the helicopter.

In order to avoid the adverse effects within the entire
flight test envelope, the maximum servo-flap deflection
used in the HHC/IBC design are limited as follows: i) =
1° collective control input for IBC, ii) £ 2° 2/rev cyclic
control input for IBC, and iii) £ 2° 3/rev, 4/rev and 5/rev
cyclic control inputs for both IBC and HHC.

Servo-flap blade index angle is an important design
factor which affects blade performance, helicopter
vibration (Fig. 5), and blade bending moment (Fig. 6).
Kaman's flight test experience has shown that increasing
index angle produces increased rotor vibration.
Therefore, servo-flap blade index angle will be used to
simulate the blade vibration level during the HHC flight
test without any degradation of safety.

The HHC system is installed completely independent of
the ASE. With the HHC system either engaged or
disengaged, there is no feedback to the ASE and,
therefore, will not degrade the aircraft handling qualities
with or without the ASE.

The control algorithm is an adaptive system which works
like a higher harmonic analogy to the existing Kaman
blade tracking system (Fig. 7). The blade tracking
system, which has been in production on all Kaman
helicopters since the 1950's, is a true quasi-steady IBC.
This proven system works by sensing 1/rev vibrations in
the fixed system and coupling that measurement with
phasing information from the main gearbox resolver to
determine which blade is flying out-of-track. A small

tracking motor in the rotating system is then commanded
to provide an automatic null offset to the servo-flap of
the errant blade to bring the 1/rev vibration back to zero.
The offset is applied to the control rods actively, in-
flight, in parallel to the normal trim and maneuver
control system.

In a similar fashion, the proposed HHC/IBC system can
sense high frequency tube load magnitude and phasing in
the main gearbox mounting tubes and can also share the
resolver phasing signal with the blade tracker. Using a
system similar to HALMARS, a holometric load
monitoring system developed by Kaman®, this fixed
system information can be used to determine vibratory
bending moments in the rotating system and select the
appropriate IBC waveform to send to each blade. The
calculation/refresh rate required is estimated to be about
20 milliseconds.

Existing test data of the SH-2G helicopter including
blade bending moments and transmission tube loads
were analyzed to determine vibration as a function of
such independent variables as speed, control position,
and attitude. Rate changes in control position, speed and
fuselage attitude were utilized to determine vibration in
maneuvers. Excellent comparison between the
HALMARS synthesized data and directly slip-ring
transduced transient flatwise bending moment has been
achieved using maneuver flight”® conditions. This
correlation confirms that HALMARS can be used for
HHC in maneuver flight test.

The arrangement of placing actuators in the rotating
system can modify blade airloads to achieve
performance improvements by varying blade 2/rev angle
of attack with IBC contro! inputs. The 2/rev blade angle
of attack change generates more rotor thrust in the fore
and aft direction of the aircraft to result in stall
alleviation and performance improvement.

HHC DESCRIPTION

Some of the major areas Kaman has been investigating
in the HHC design are the hydraulic power requirements
at high speed to implement HHC inputs, the sensitivity
required to minimize vibration with proper HHC inputs,
the algorithms required to achieve active control at all
flight conditions, and the impact on helicopter
performance. Kaman has been considering several
different design approaches. These include:

1. Electromechanical actuators placed in the rotating
system,;



2. Hydraulic actuators placed in the rotating system
with hydraulic power supply in the fixed system and
utilizing a liquid slip ring;

3. Hydraulic actuators placed in the rotating system
with hydraulic power supply in the rotating system,
requiring no liquid slip ring or power slip rings
(only signal slip rings are required).

Common to each of these designs is the method of
introducing the HHC/IBC signal into the blade control
linkage. Kaman helicopters already incorporate the
necessary mechanical pathway for introducing Individual
Blade Control (IBC) signals into the linkage in parallel
with the normal trim and maneuver control system
without jeopardizing the safety or robustness of the basic
flight critical controls.

The HHC/IBC input path works similarly to the Kaman
automatic, in-flight blade tracking system but is at a
different location on the blade to take advantage of the
shortest possible path to the servo-flap. This minimizes
lost motion due to linkage spring rate and maximizes
isolation of the fixed system controls from the vibratory
Input,

The inboard end of the long, spanwise rod terminates at
the midpoint of a chordwise idler crank which is rigged
as a class 2 lever. The trailing edge end of the idler is
fixed to an A-frame brace on the blade root structure
(Fig. 8), while the leading edge end serves as the input
point for the collective, 1/rev cyclic, and quasi-steady
blade tracking IBC motions. In the proposed HHC/IBC
design, the A-frame brace is modified so that it supports
the fixed end of an actuator (either electromechanical or
hydraulic) rather than the fixed fulcrum of the idler. The
idler fulcrum is instead driven by the actuator according
to any command signal received from the fixed system
flight computer (Fig. 9).

No modification is required to the blade root, to other
control rod linkages, or to the existing primary flight
controls. Thus the system is fail-safe (i.e., if the HHC
actuator fails, the idler simply reverts to fixed fulcrum
behavior), and it is robust (i.e., it retains the fleet-proven
design for primary controls--no new unproven hardware
is introduced into the flight critical path).

The benefits of using this entry point are several, but all
focus upon one overriding goal which impacts all HHC
systems: reduction of control power requirements. The
benefits can be summarized as follows:

1. The fulcrum of the idler crank is in a location which
is very sensitive to small displacements. For

electromechanical actuators this reduces power draw
by reducing the acceleration required to meet peak-
to-peak displacements. For hydraulic actuators, fluid
flow rate is the more critical parameter and is also
commensurately reduced.

2. This position is kinematically closer to the driven
mass (servo-flap), thus less motion is absorbed in
linkage flexibility.

3. Use of this point relieves the HHC actuator from the
need to supply all the control power. Collective and
I/rev cyclic primary control is still supplied by the
mechanical system. It is estimated that the HHC
portion of the control will consume only about 0.23
HP per blade , which is about 9% of the total control
power required (the majority goes to l/rev cyclic
with the remainder going to collective).

Referring again to Figure 9, the kinematics of the idler
are such that the radial component of the force supplied
by the HHC actuator, R,,, is

. R(b+atane)

R, =
* (b+y+atana)

where R is the force in the spanwise servo-flap rod and
a, b, and o are geometric parameters defined in the
figure. The HHC actuator must react, at zero deflection,
the maximum stacked collective and 1/rev cyclic loads
introduced by the mechanical primary controls. To
supply HHC motion, it must support an additional HHC
load due to increased pitching moment on the flap at the
high end of the cycle and acceleration of the flap mass:

9(2‘) =-0,0° sinat

where 6, is the peak HHC pitch angle of the servo-flap,

limited here to = 2°, and ® is the frequency of the higher

harmonic cycle, limited here to 5/rev (156 radians/sec).
The stacked primary plus HHC peak load equates to an
actuator load of:

L5 Stacked  Peak (b + atane)
“| Primary * HHC tatana

(b +y+atana)

R2.r,PEAK -

where a contingency factor of 1.5 is included to assure
adequate capability. For the case of hydraulic actuators,
the required piston area is :




A — RZx,PEAK
P

where P is the system pressure. Figure 10 shows the
required piston area for various system pressures as a
function of y. The most reasonable values for y
(minimum impact on design modifications) are shown
boxed in between 3.5 and 6 inches. For a 2000 psi
hydraulic system and y in the boxed region, required
piston area is seen to be only slightly greater than one-
quarter square inch. Clearly, piston area and thus
actuator diameter would not be a limiting factor in
creating a feasible design. Similarly, the flow rate
requirements are:

_ Volume Displaced
(% 5P Cycle)

Abp,, 60 gallons - seconds
= X
0.02013sec = 231inches’ - minute

o

where Q is in gallons per minute andJp, is the
deflection of force R,,. Figure 11 shows the required
flow rate for various system pressures as a function of y.
For a 2000 psi system and y in the boxed region, flow
rate is approximately 0.8 gallons/minute per blade or 3.2
gallons/minute total. Flow rate, therefore, will not be a
limiting factor for this design.

For the electromechanical design, shown in Fig. 12, a
miniature electric motor and ball screw assembly is
mounted directly on the A-frame and receives the
command signal from the fuselage based flight computer
via signal slip rings in the rotorhead. Motive power must
be supplied through power slip rings, also in the
rotorhead.

For both of the hydraulic designs, 2 miniature hydraulic
cylinder and servo-valve assembly are mounted on the
A-frame in place of the electric motor. The command
signal, in each case, is received by the servo-valve from
the flight computer in the same way as for the
electromechanical design. The difference lies in the
source of motive power.

For the split hydraulic design, shown in Fig. 13, the
hydraulic power supply resides in the fuselage in a
conventional manner. The high pressure working fluid
is pumped up to the rotating system through a rotary
union (hydraulic slip ring) assembly located in the

rotorhead. From there it is distributed to the individual
cylinders. Placing the servo-valves directly on the
actuators and pumping a single channel of pressurized
fluid through the rotary union is preferrable to servo-
valving the flow in the fixed system and pumping four
individual channels of metered, reversing fluid across the
union because head loss effects in the complex fluid
column will tend to wash out the command signal and
because a single channel, uniform pressure rotary union
will be much less costly and less maintenance intensive.

For the self-contained hydraulic design, the hydraulic
power supply is mounted directly on top of the control
can at the center of the main rotor hub. Mechanical
rotary power is obtained by keying the hydraulic pump
to a long drive rod which reaches down the hollow hub
centerline to anchor in the fixed system. Appropriate
pump speed can be attained either by integral gearing or
by spinning the fixed system end of the drive rod in the
opposite direction by a roof-mounted electric motor.
The internal gearing approach permits all HHC power to

"be drawn directly from the main gas turbines via

mechanical shafting without impact on the aircraft
electrical system. The counter-spinning motor option
reduces the cost, weight, and drag area of the topside
pump, but adds electrical load to the aircraft and some
additional weight penalty. High pressure working fluid
is then pumped directly to the individual actuator servo-
valves without the need to cross a rotary union. The
basic benefits and penalties of each design are also
investigated.

The estimated total weight of the HHC system, including
actuators, sensors, and electronics is approximately 35
Ibs. Most of the weight increase represents new
equipment as there is relatively little modification to the
existing servo-flap control system. The weight penalty is
less than 0.3% of the aircraft maximum gross weight.
Also, the HHC system components are designed for
convenience of access during servicing and the effects of
the additional vibratory load on the fatigue life of all
associated components are minimized by the design.

CONCLUSIONS

1. A conceptual design of servo-flap rotor control
system using HHC and IBC directly in the rotating
system to reduce aircraft vibration and improve
blade performance has been presented. This is
achieved by maintaining the control modules in the
fixed system and transferring the control actuators to
the rotating system.

2. The original mechanical collective and l/rev cyclic
control for the servo-flap remain unchanged. The
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HHC system needs only to introduce the HHC or
IBC signal into the main rotor blade control in
parallel with the basic control system.

Servo-flap blade index angle can be used to simulate
the blade vibration level during the test.

Control power requirements for a servo-flap control
system are much lower than those of swashplate
shaking, Less heat-rejection management is required
within the electrical and hydraulic control systems.
Control inputs for servo-flap rotors are not limited to
mutually correlated harmonic functions but can
include any type of waveform and true IBC.

The sensitivity of a servo-flap rotor per degree of
HHC input is much greater than that of a pitch horn
rotor. The required change in blade pitch amplitude
can be achieved with less actuator deflection.

It is relatively easy to place servo-flap actuators in
the rotating system such that blade camber can be
modified with 2/rev or higher servo-flap inputs to
achieve performance improvements by producing
variation in blade angle of attack and airload
distribution resulting in stall alleviation and thrust
improvement.

The HHC portion of the signal consumes only about
9% of the total control power required.

The weight of the HHC system, including actuators,
sensors, and electronics is estimated to be
approximately 35 lbs. The weight penalty is less
than 0.3% of the aircraft maximum gross weight.
HALMARS can use fixed system vibratory tube
loads information to determine vibratory bending
moments in the rotating system and select the
appropriate HHC or IBC waveform to send to each
blade. The -calculation/refresh rate required is
estimated to be about 20 milliseconds.

The servo-flap method of control is ideally suited to
both HHC and IBC for advanced helicopter main
rotor control systems.
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Problem Statement PENNSTATE

e

Poor damping in the lag mode can result in
aeromechanical instabilities such as ground-
and air-resonance

Traditionally, lead-lag dampers used to alleviate
these instabilities

Associated with the use of lag dampers -
» Hub complexity, weight, drag, maintenance requirements

« Elastomeric dampers - amplitude/frequency/temperature
dependent, limit cycles, susceptible to fatigue,

Can dampers be eliminated while maintaining
adequate aeromechanical stability?




Damperless Rotors PENNSTATE

Aeroelastic Couplings E
Pitch-Lag, Pitch-Flap, & Flap-Lag couplings used
Ormiston, Bousman, Gaonkar, Lowey, Gandhi,....

Active Control through Swashplate
Generally based on fuselage state-feedback
Straub, Warmbrodt, Friedman, Weller, Gandhi,....

Individual Blade Contol (IBC)

Relatively unexplored

Other Concepts - High damping flexures
- Blade-to-blade dissimilarities

PENNSTATE

et
I

Objective of Present Study

Examine the effectiveness of IBC for
aeromechanical stability augmentation

(different rotational speeds, thrust, body inertia,
ground/hover condition)

Comparison on two different model rotors
- AFDD (Bousman/Ormiston)
- UTRC (Weller)

Comparison of IBC versus
- Aeroelastic Couplings
- Swashplate Control using Fuselage State Feedback




Individual Blade Control PENNSTATE

Active Control via root pitch actuators,@
in the rotating system

Active pitch inputs proportional to blade flap
and lag states

AB = —Gp—Gp L -Gy, L%J é— GVCL%Ji

Fixed-Gain Controller (Fixed Gpy, Gp;, Gyg, Gyy)
- parametric study to examine influence of individual
gains

- Constrained optimization study to evaluate
optimial combination of controller gains

AFDD Rotor PENNSTATE

[d

] eaa—

Extensive studies examining the influence of
Aeroelastic Couplings on this model rotor

Aeroelastic Couplings: A8 =—-K B~ K,
Individual Blade Control:

#

AO =GB~ Gl - GVB[—Z—OJE— GVQL—QQ:JC

Velocity Feedback

Position Feedback

FOR THIS ROTOR - Aeroelastic couplings unable to stabilize
resonance simultaneously at low and high thrust conditions
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Influence of Velocity Feedback
- Gy ho significant influence

- Negative Gy, beneficial at resonance,
but shaft-fixed stability may be reduced
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IBC - AFDD Rotor PENNSTATE
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Influence of active swashplate control using
fuselage state feedback examined on this rotor

(Foe | (8.1
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Vector of F e | e | or ve
Loads due J L L=l ! C. | vector for
. F ¢ position
to a":tt“’f ek _ IRl (or rate)
contro |Fo, | [2 |lax feedback
n) Bl
corresponds to IBC corresponds to
(or rotor state feedback) fuselage state feedback

Mathematically, IBC directly controls lag mode
characteristics, through diagonal terms
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For AFDD Rotor - E

Conflicting control gain requirements at 0° and
5° collective

IBC with Multi-point Optimization at 0° and 5°
can stabilize ground resonance over range of
collective pitch values (Aeroelastic couplings
unable to accomplish complete stabilization)

Destabilizing trend with decreasing roll inertia
may be alleviated (with larger gains)

Hover air resonance stability margin around
nominal RPM can be improved

11




Concluding Remarks PENNSTATE

L
] =———

For UTRC Rotor -

IBC optimized at 5° can stabilize ground resonance
over range of collective pitch values (Greater
stability margins achieved at higher collective as
compared to fuselage state feedback)

Destabilizing trend with decreasing roll inertia
alleviated

Hover air resonance stability margin around
nominal RPM significantly improved

Concluding Remarks PENNSTATE

¥
IBC succesful on two different model rotors -

Some differences between the control design
process required as well as the Individual Blade
Control gains for the two rotors suggest that
generalizations may not be possible

Although it may be more challenging to
implement Individual Blade Control, it
appears to have greater effectiveness in
alleviating aeromechanical instabilities
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In the course of early rotorcraft development, the combination of feath-
ering blade and swashplate emerged as the favored form of rotor control.
Nevertheless, it may be noted that the earliest successful implementation of
1/rev cyclic control utilized a trailing edge flap [13]. Recently, trailing edge
flaps for helicopter main rotors have again received considerable attention
as a means for vibration control. An early analytic and experimental study
of servo flaps conducted by Lemnios and others [3,4] predicted considerable
reductions in vibration with single frequency 2/rev control (N, = 4). Sub-
sequent analytic studies by Millott and Friedmann [9,10,12] have suggested
that servo flap systems offer considerable potential for vibration reduction
when combined with multicyclic control algorithms.

Despite their apparent promise and successful service history in 1/rev
cyclic control applications, servo flaps incur aerodynamic and maintainabil-

1
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ity penalties related to their external location aft of the rotor blade. An
alternative configuration, the plain trailing flap, is the subject of the present
investigation. Plain trailing edge flap systems are the focus of an ongoing
study by the authors [5-8]. Here the flap is integrated into the rotor blade
in the manner of an aileron (they were in fact termed “ailerons” by Siko-
rsky [14], who considered them as a means for 1/rev cyclic control). The
proposed workshop presentation will outline this investigation and present
some results obatained to date.

The blade is modeled using spatial finite elements, one or more of which
may have trailing edge flaps with deflections prescribed as a function of az-
imuth. The Leishman aerodynamic model [1] with unsteady circulatory and
impulsive loads due to flap motion is used. A free-wake analysis is included
as well. The equations of motion are solved using the finite element in time
method integrated into a coupled trim formulation. The analysis includes
calculation of blade loads and trailing edge flap power requirements. Flap
inputs may be prescribed or determined automatically through a multicyclic
control algorithm [2]. The weighting parameters in the multicyclic algorithm
are varied to examine the influence of weighting assumptions. The analysis
is described in more detail in References 6 and 5.

An extensive correlation study has been conducted using wind tunnel
data from the McDonnell-Douglas Helicopter Systems Active Flap Rotor
(AFR) model. Correlation between predicted and measured blade natural
frequencies was fair. Results for hover thrust and power agreed well with the
experimental data. In forward flight, fair correlation was observed for the
power required and trim controls. For the rotor with no trailing edge flap
motion, overall correlation of blade loads was fair to good, although signif-
icant discrepancies were observed in individual cases. Typical results with
flap input are presented in Figure 1, which shows blade flatwise bending at
0.33R with a flap input of 6 = —4°cosb5y. The experimental data show a
pronounced 4/rev flatwise bending load resulting from the 5/rev flap mo-
tion. This is captured fairly well in the UMARC results, with the unsteady
aerodynamic model offering some improvement. However, at 4 = 0.30 the
4/rev bending is significantly underpredicted. CAMRAD/JA results (shown
for comparison) do not correlate as well. Both analyses overpredict the 3 Jrev
component, although the advance ratio trend is properly represented. For
the 5/rev bending moment, the UMARC predictions agree fairly well and
the CAMRAD/JA correlation is very good. More detailed information con-
cerning the correlation study may be found in References 8 and 5.
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Representative results from a related parametric study using the Sikorsky
S-76 as a baseline rotor are in Figures 2-3.

Figure 2 shows the effects of varying the flap length. The figure shows
the controlled objective function J, the trailing edge flap power required,
and the peak trailing edge flap deflection ||6(| as a function of flap length, I;.
Results are shown for three spanwise locations: rmiqg : 0.60,0.70 and 0.80.
Figure 2(a) shows that at every spanwise location, the peak flap deflections
increase as the flap size is decreased, until a prescribed limit of £10° is
encountered. In Figure 2(c), the controlled vibration objective function is
relatively insensitive to flap length [;, provided the peak flap deflections
are within the prescribed limit. This shows that the controller is able to
compensate for changes in flap length by increasing the flap deflections. If
the flap length is decreased past the point where the flap deflection limit is
encountered, the vibration levels increase rapidly (Fig. 2(c)). As may be
expected, the flap deflections are directly related to the spanwise location
of the flap. The deflections are greatest at {; = 0.60, where the dynamic
pressure is lowest. However, the trailing edge flap power required (Fig. 2(b))
was greatest with the flap located at I; = 0.60. Apparently, the large flap
deflections required at that location (Fig. 2(a)) more than offset the effects
of reduced dynamic pressure at that spanwise location. At I; = 0.70, the
deflections are greater than at Iy = 0.80; however, the power required is
actually lower. In this case the differences in the required flap deflection are
not as great, and the increased dynamic pressure at 0.80R suffices to increase
the trailing edge flap power requirements. The fluctuation in performance
near l; = 0.08 is attributed to a variation in the performance of the multicylic
algorithm. : ,

Figure 3 presents the controlled vibration objective function, the trailing
edge flap power required, and the peak flap deflections as a function of flap-
chord ratio, ¢;. The objective function results (Fig. 3(c)) show almost no
change as the & is varied (a similar finding is stated briefly as a conclusion
in Reference 11). This result is a reflection of the HHC algorithm’s ability to
compensate for reductions in flap-chord ratio by increasing the flap inputs.
This increase in peak flap input as ¢; is decreased is evident in Fig. 3(a).
The Figure shows that the flap deflections increase to the prescribed limit of
10° for small values of ;. As may be expected, the flap deflections are larger
and the limit is reached earlier for the smaller flap (s := 0.10). In each case,

‘limiting the flap amplitudes has the effect of reducing the ability of the flap

to reduce vibrations. The results show that the larger (I; = 0.14) flap has
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the advantage of allowing smaller flap-chord ratios without encountering the
flap deflection limit. .

The trailing edge flap power required diminishes rapidly as the flap-chord
ratio is decreased. Reference 5 shows this to be the expected result based
on linear, incompressible, quasisteady flap-airfoil theory. Clearly it is ad-
vantageous to keep the flap chord as small as possible without incurring
excessive flap deflections. From approximately ¢; = 0.06 to ¢; = 0.10, both
the {; = 0.10 and /; = 0.14 flaps produced nearly the same vibration reduc-
tion and required virtually the same power. These factors being equal, the
l; = 0.14 flap is probability the preferred configuration as it requires lower
flap deflections and is less likely to encounter difficulties caused by nonlinear
aerodynamic effects.
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Figure 1: Harmonics of AFR blade flatwise (out of plane) bending at 0.33R
with § = —4° cos 5. Wind tunnel trim at 0.10 < u < 0.30 and Cr/o = 0.65
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Figure 2: Effect of trailing edge flap length (I+) on performance for three flap
locations with & = 0.20, global model multicyclic controller with a = 0.10,
and wind tunnel trim at g = 0.35, @ = 5° nose down, Cr /o = 0.080.



June 20, 1997 8

Peak flap deflection

15 ————————
» iL=0.35
=10 - ] _
> L \ | a=0.10
=3 [ N 1
= k ‘\.\ 4
=2 SF S A
0.00 010 0.20 0.30 lap——

Flap Power Required
1.0e-06 m——m™—mMmm—————————

8.0e-06 .
6.0e-06 |- -
4.0e-06 -

P, (nondim.)
N\

2.0e-06 r

il } 1

0.0e+00 T
000 040 020 0.0

Vibration Objective Function

8¢-06 —m——m8m—————r————
—~ 6e-06 L / .
£ | Uncontrolled ]
'(c%: 46-06 - ncontrolle
5 L
ﬁ —
2e-06 _ \\-_ |
O0e+00 ——

0.00 0.10 0.20 0.30
Flap-chord ratio, ¢/

Figure 3: Effect of trailing edge flap-chord ratio (hinge location) on trailing
edge flap system performance for two flap lengths, with rp;q = 0.74, global
model multicyclic controller with o = 0.10, and wind tunnel trim at g = 0.35,
o = 5° nose down, Cr/o = 0.080.
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ABSTRACT

Active materials have been considered as the basis for designing a variety
of actuators employed in aeroservoelastic app]icatinné. The arca of smart
slructures or adaplive slructures, combining active materials, controls and
microprocessors has been burgeoning in the last fifleen yéfn‘s. Active materials
based acluation has been applied to a variety of aeroelastic and acroservoclastic
problems such as: stalic aeroelasticity and divergence coﬁtm], supersonic panel
flutter suppression, flutter and dynamic load alleviation in wings, wing /slore
flutter suppression and vibration reduction in helicoplef rotors, Among these
applications the rotary-wing applications seem {o have the highest potential pay-
offs and therefore a subsiantial body of research has been devoted to the
vibration reduction problem, Other problems thal can benefit from adaptive
materials based actuation are the blade tracking problem and alleviation of the
blade vorlex inleraclion (BVI) problem. -

Actuators built of adaptive materials for acroservoclastic applications
frequently require the construction of small scaled models that are used in wind
tunnel tests to demonslraie the feasibilily of a proposed approach. It is therefore
important to relate the behavior of the scale model to the full scale configuration.
In aeroclasticity such relations between the scale model and the full scale
configuration are usually governed by aeroelastic sca]iﬁg laws. The primary
objective of the proposed paper is to develop aeroelaslic scaling laws for rolary-
wing aeroelasiic and aeroservoelastic applications, and apply them 1o a number
of typical examples in which adaptive materials based actuators have been used.

Classical scaling laws for fixed wing applications have been based on the
concept of a typical cross, and Theodorsen type frequency domain aerodynamics.
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These scaling laws have been extended recently by the author and his associates
to situations involving actively controlled frailing edge flaps used for
aeroservoelastic applications, where flutter suppression was the objeclive.
Furthermore it was shown that computer simulations of {he system can be
combined with the scaling laws to provide scaling requirements for actuator
power, siroke and {orce or hinge moment requirements. It is shown, in the
proposed paper, that rotary-wing aeroelastic scaling laws can obtained by
recognizing that the rolary-wing équi\}a]ent of a typical cross section model uscd
for fixed wings is the offset hinged spring restrained blade model. Using
appropriale springs the model can be used to represent either hingeless or
articulated blade configurations. Aeroclastic scaling laws are obtained by
combining dimensional analysis with the dynamic equations of motion of an
offgel hinged spring restrained blade undergoing coupled f{lap-lag-torsional
dynamics in forward flight, including the geometrically nonlincar terms due to
moderale blade deflections, Rewriting the rotordynamic problem in terms of
three basic dimensions M, L and T (mass, length and time) it is shown that the
aeroelastic response problem (or vibration problem) is governed by a number of
nondimensional paramelers, such as the Mach number, the Reynolds number,
the advance ratio, the Lock number, {he Froude number, several frequency ratios,
the inflow ratio, non dimensional offgels, damping ratios and the reduced
frequency. lior complete similarity between the dynamic model and the full scale
configuration these scaling requirements can be only satisfied by using the full
scale configuration. 1t 1s shown the when one relaxes ihese requirements two
altcrnatives exist. One satisfying I'roude scaling requirements, which would be
suitable for aeromechanical stability testing involving coupled rotor-fuselage
problems where the role of gravity loads can be significant. The second
alternative is to maintain Mach number similatity, which would correspond to
siluations where vibration reduction in forward flight is the objective.
Furthermore, it is shown that {he aeroelastic scaling laws described here, have to
be combined with aeroclastic simulations to generale refined scaling laws
involving actuator power, and force and momeni requirements, stich as needed
when using adaptive materials based actuation combined with active control for
vibration reduction.

Based on the examples considered it is shown that in a number of small
scale tests due to the difficuliies associated with aeroelastic scaling, scaling

B4a-88-88 13:57 RECEIVED FROM:3182864E238 P.B63
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considerations have not been carefully addressed, and the models used have
been very soft (or flexible) so as to accommodale the limited strain and force
producing capabilily of the current generation of adaptive malerials. In such
cases it is quite difficult to extrapolate from the scale tests to a full scale
configuration. Finally, il is shown that the scaling relations developed are quite
valuable for designing improved models for lests intended to demonstrate the
feasibility of adaplive materials based actuation.
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Helicopter Rotor Blade Structural Modeling with Integral Actuation

Carlos E. S. Cesnik* and SangJoon Shin'
Department of Aeronautics and Astronautics
Massachusetts Institute of Technology, Cambridge, Massachusetts

Abstract

The technology of smart structures provides a new degree of design flexibility for advanced composite he-
licopter rotor blades. The key to the technology is the ability to allow the structure to sense and react in a
desired fashion, improving rotor blade performance in the areas of structural vibration, acoustic signature, and
aeroelastic stability.

There have been several approaches in the literature to take advantage of active materials for individual
blade control. The one of interest in the present work is the integral actuatidn through the use of interdigitated
electrode piezoelectric fiber composites (IDEPFC). This actuator concept provides a feasible way of integrally
actuating a rotor blade instead of the direct use of piezoceramic crystals. Another concepts which have been
currently studied include embedding banks of piezoceramic crystal elements in the upper and lower surface of the
blade at+45° orientation, however the maximum twist actuation obtained experimentally shows insufficient level
for possible suppression of vibratory hub loads. On the other hand, preliminary results from the IDEPFC concept
obtains the level of authority needed from the actuator. Basic material characterization and proof of concept of
an integral twisted-actuated rotor blade have been under investigation at MIT’s Active Materials and Structures
Laboratory. However, in order to explore the IDEPFC technology through different actuation mechanisms and
their interaction with the possible elastic tailoring of the blade, a full simulation environment for an active rotor
in both hover and forward flight has to be developed. ‘

The objective of this paper is to present a general methodology for analyzing advanced composite rotor
blades with integral anisotropic active plies for improving vibration characteristics of helicopter rotor blades. Its
analysis extends previous work done for modeling generically passive blades. The approach is based on the two-
step solution of the original three-dimensional blade representation by means of an asymptotical approximation:
a linear two-dimensional cross-sectional analysis and a nonlinear one-dimensional global analysis. The resulting
model will be able to correctly predict the behavior of helicopter blades, accounting for the presence of different
materials (passive and active) and actual blade shape. Different ways of actively deformmg the blade will be
numerically investigated. ,

The cross-sectional analysis revises and extends the closed form solution of a thin—walled, multi-cell asymp-
totic formulation originally presented by Badir [1995]. The variational-asymptotical method is used to formulate
the stiffness constants of a two-cell cross section with the active plies consistiligrof piezoelectric fibers. It provides
the expressions for the asymptotically-correct cross-sectional stiffness constants in closed form, facilitating design-
trend studies. These stiffness constants will then be used in a beam finite element discretization of the blade
reference line. The exact intrinsic equations for the one-dimensional analysis of rotating beams considering small
strains and finite rotations of Hodges [1990] is extended to take into account the changes in the constitutive rela-
tion. Subject to external loads, active ply induced strains, and specific boundary conditions, the one-dimensional
(beam) problem can be solved for displacements, rotations, and strains of the reference line. Eventually, these
results will be combined with information from the cross-sectional analysis in a set of recovering relations for
stress/strain distribution at each ply of the blade. Also later on, the finite-state inflow theory is expected to be
coupled with the active structural model, and aeroelastic simulations can then be performed.

*Boeing Assistant Professor.
tGraduate Research Assistant.

7th Int’l Workshop on Dynamics and Aeroelastic Stability Modeling of Rotorcraft Systems, St. Louis, Missouri, Oct. 14 - 16, 1997



Introduction

¢ Individual Blade Control (IBC): improvement in the vibration and
noise reduction

e Various actuation concepts under investigation

[ Type of Control Actuation Actuator
IDEPFC,
Shape COHUO] Integral Actuation Piezoceramic
(Twist)
Banks
Trailing-Edge Bimorph,
Camber Control Flap X Frame
Boundary Condition Blade Root
Control BC. )
Introduction

Active Twist Blade with IDEPFC
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1 ply 45° E-glass Fabric
t=0.0045" (0.11 mm)

3 plies AFC Actuators
t=0.047" (1.19 mm)

trailing edge

|
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Web
3 plies 45° E-glass Fabric
t=0.0135" (0.34 mm)
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Objectives
e Capture the effects due to the presence of active materials in com-
bination with a elastic tailored structure of realistic rotor blades.

| o

e Create a framework for designing active twist rotors (ATR) to sup-
port a joint effort between the U.S. Army Vehicle Technology Cen-
ter, at Langley, and MIT. |

—

Ffamework fof Aétiife BladéModéling

e Asymptotical Approximation: original 3-D bléde represetation re-
placed by linear 2-D cross-sectional analysis 4+ non-linear 1-D global
analysis

e 2-D Cross-Sectional Analysis: stiffness matrix (based on Badir
[1995]) and actuation forcing vector for two-cell thin-walled cross
section

e 1-D Global Analysis

— Exact intrinsic equations of moving beams ‘(sinall strains and
finite rotations) of Hodges [1990]

— Combined with finite-state inflow theory‘ for aeroelastic simu-
lations (future extention) |




* Two-Cell Thin-WaIlé& Cross;-S;Eti-d-héil An'alysisy

Basic Configuration and Assumptions

@ ) x:,9(5),uz
h(s)

L <1, b1 and £ x1

Two-Cell Thin-Walled Cross-Sﬂectional Analysis

Starting Point:

Linear piezoelectric constitutive relation:

E
€ij = Si;k10kl + dikij Bk

Shell functional:
20 ={< D" > 7_;5—2 < D*%d3 s B3 >}

+2{< D% > 7, 5— < DV dy s B3 >}pys
+ < D*7%¢2 > poppys + Y (Es)




Two-Cell Thin-Walled Cross-Sectional Analysis

Forcing and Stiffness Constants

Fy K11 Ko Kz Kig Y11 ) F*
My | _ | K2 Kz Koz Ko k1| M
Mo K13 Kas K3z Kag 2 M
M3 Kia Koy Kza Ky K3 ) M@

where all the constants are function of the geometry and material distri-
butions of the cross section, and the forcing constants are also function
of the electric field.

1-D Beam Analysis

Extension of the exact nonlinear global analysis for small strain and
finite rotations of Hodges [1990]—mixed variational intrinsic formulation
of moving beams |




" 1-D Beam Analysis (Staticé)

e Equilibrium equations
F'+KF+f=0
M +EKM+(1+y1)e F+m=0

e Constitutive equations

(a)
I Y11 Fl
M K1 M
M. [K] - (a)
2 K2 M,
M3 K3 Méa)

e Kinematical equations
y11 = el Cley +u + Eu) -1 elCley +u' + Eu) =0

K=x4+k =-C'CT+CkCT — k&

Two-Cell Thin-Walled Box Beaﬁi ’fest Case

[+45]2

«—— 25 mm ——

e 25mm —=—— 25mm —*

[-45] 2 [+45/-45] s [-45] 2




Two-Cell Thin-Walled Box Beam Test Case

r

Non-Zero Stiffness Results (N, N m, N m?) for Two-Cell Box Beam (1
extension; 2 torsion; 3, 4 bending) |

% Difference

K Present VABS

K11 | 8.560 10° 8.477 10° —1.0
Kqo | —1.827 103 | —1.794 103 +1.8
K13 | 6.434 102 6.337 102 —1.5
Koo | 1.298 102 1.278 102 +1.6
Koz | 4.569 101 4.461 10? +2.4
Ks3 | 9.855 101 9.567 10° +3.0
K | 2.106 102 2.070 102 +1.7

7Siﬂg1e-Cell Active Blade TestjCase

.006\\

E-Glass [0]

IDEPFC [+45]

IDEPFC [+45]
E-Glass [0]

————

;——’/




Single-Cell Active Blade Test Case
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Conclusions

e A framework for designing active twist rotor blades was presented:

— thin-walled two-cell cross-sectional analysis with active material
layers

— 1-D nonlinear beam equations (extension of Hodges [1990])

e Test and validation of each component of the analyses show good
correlation with available data.

e More correlation is expected against the experimental data to be
collected from the Boeing/MIT CH47-D blade test.




Nonlinear Bending of Anisotropic Tubes —
Analytical Solution Using the
Variational-Asymptotic Method

Dineshkumar Harursampath*and Dewey H. Hodges'
School of Aerospace Engineering
Georgia Institute of Technology, Atlanta, Georgia

1 Introduction

Beams of a circular cross section present a very striking nonlinéarity in bending due to the
reduction in bending stiffness with increasing deflection. This has motivated a rigorous study
of tubular beams. An infinitely long thin tube, made of a generally anisotropic material,
has been modeled as a beam, including those nonlinear effects that need to be considered,
by virtue of its special geometry, to obtain asymptotical correctness. This was achieved by
deriving its strain energy function in terms of 1-D quantities only.

The Brazier effect, exhibited in tubular beams undergoing bending, is a well-known
example of certain important phenomena that are not captured by a linear cross-sectional
analysis. Brazier' was the first to take into account the nonlinear growth in curvature of
thin-walled isotropic cylindrical tubes under pure bending due to the ovalization of the cross-
section, resulting eventually in collapse at the maximum possible moment. Later Reissner
published a series of improved results in Refs. 2 — 4. Thurston® has contributed substantially
to this field, refining these results as well as extending them to include normal pressure,
elliptic cross-sections and curved beams. Recently Li® investigated the dynamic instability
of long isotropic circular cylindrical shells. Finally, there are a few treatments of orthotropic
tubes by Spence and Toh” Kedward® and Bert and Libai’ The most recent work is that of
Tatting, Giirdal and Vasilievi® where the analysis is based on Vlasov’s semi-membrane theory
and the solution obtained using finite difference techniques. . However, an asymptotically
correct treatment of generally anisotropic circular tubes, with either analytical or numerical
results, is not found in the literature. 7 |

The Variational-Asymptotic Method (VAM) has been successfully used as a tool for di-
mensional reduction to obtain asymptotically correct closed form solutions to beam problems
in earlier papers by the authors [Refs. 11 — 12]. Starting from Classical Laminated Shell The-
ory, VAM was used in this work as a tool to carry out the dimensional reduction from 2-D
to 1-D. As a result the Brazier effect has been captured analytically. Previous results are



Figure 1: Circular Tube Configuration and Coordinate System

compared and shown to differ due to the asymptotically correct nature of the present result.
The final paper would also include a numerical solution validating the analytical solution
provided in this extended abstract.

2 Analysis

Asymptotic methods require small parameters. From the geometry of the tube, shown
in Fig. 1, the natural small parameters in this problem are the thickness-to-radius ratio
(6, = h/R) and the radius-to-length ratio (6g = R/£). The Cartesian coordinate measures
z; and the corresponding unit vectors b; are directed as indicated. In order to take advantage
of the thinness of the wall, a transformation of coordinates is best effected at this stage
by introducing the cross-sectional arc-length y, and thickness coordinate ys, along with
corresponding unit vectors as(y2) and az(ys).

2.1 Kinematics

The position vector from a point fixed in an inertial reference frame a to an arbitrary material
point in the undeformed tube is then

F(y1, Y2, ¥3) = yid. (1)

If w;(y1, v2, y3) are the 3-D displacement measures of an arbitrary material point, the position
vector in the deformed configuration is given by

R(y1, 92, %) = T + usa. (2)



The contravariant base vectors g* for the undeformed geometry and the covariant base
vectors G; for the deformed geometry are determined by standard means. We can now
evaluate the deformation gradient tensor :

A= Gigi ‘ (3)
and arrange its components in mixed bases into a matrix A. This enables determination of
the zeroth order approximation to the 3-D Green strains

ATA - I,
Lo | (4)

where I3 is the identity matrix. Using 3-D elasticity model, the strain energy per unit volume

r

1_.. .
Usp = EE”“F@'FH | (5)

is obtained. A preliminary order of magnitude analysis is performed, retaining only the
leading order terms in the energy. The mimimization of the energy gives rise to the following
zeroth order approximations to the 3-D displacements: ‘

W (y1,¥2,93) = q1(v1)

ud(y1,y2,¥3) = q2{1) + g3(y1) cos (%) — g4(y1) sin (%) (6)
2 .
WY, v s) = —BE + gu(yy) cos (%) + g3(y1) sin (1‘%)
The classical degrees of freedom extracted above are extension(g; ), torsion(gz) and bending(gs

and q4).
The 3-D displacement field is then given by

u; = u + W (Y1, Y2, ¥3) (7)

where ; is the warping field. Motivated by the smallness of §; and the linearity of the
Classical Laminated Shell Theory, we assume a linear expansion of the warping displacements
about the thickness coordinate:

Wi = wi(y1, ¥2) + ¥3bi(v1, ¥2). (8)

Note that w; are the warping measures of the middle surface material elements; ¢, are local
rotation variables; and ¢3 is a measure of change in shell thickness. Due to the extraction of
the rigid body displacements of the cross section at the zeroth order approximation, it can
be shown that the warping variables are governed by the following constraints:

<’LU]_> =0 |
<¢2 cos (%) + ¢3sin (£ =0 ©)
wy cos (£ ) + wssin (% =0
w3 cos (2 ) — wysin (2 =0

where the angle brackets denote averaging around the mid-circumference.



2.2 Strain Energy in Bending

The stiffness coefficients for Classical Laminated Shell Theory are given by
Co = B g g g (10)

where gl =1, 2 =0, g =0 and 5 =1+ %£.

Due to circular symmetry of the tube, bending in any one direction is similar to that in
any other and there is no bending-torsion or bending-extension coupling. Hence extension-
torsion and bending can be treated as two independent problems for any arbitrary material
layup. Thus, in the analysis of the bending problem, three of the four classical degrees of
freedom can be dropped for simplicity, without affecting any desired information. The only
degree of freedom to be retained is gs.

There are certain terms in the strain components which individually have an order of
magnitude larger than that of the largest strain measure. However each of these is killed by
other such terms in the same strain component. One such relation is between w; and ¢,:

wyo = g3 [gbz sin (%) — cos (%)] (11)

Upon completion of an order of magnitude analysis for the energy terms, the shell bending
strain energy density is given by

1 wll T All Blg ’LUll
Upp = = 12
2P 2{ P22 } [BIZ Doy P2,2 (12)
where A;1, Doy and Bjp are membrane, bending and coupling stiffnesses defined similar to
those in Classical Laminated Plate Theory, but with El(ll Pé replaced by C®?7 defined in
Eq. (10).
The beam strain energy density (the integral of Usp over the shell mid circumference) is

then minimized with respect to the warping field subject to Eq. (9) and Eq. (11).
This requires solving the following differential equations:

R3psin?6 A;1 9 — R cosf Bya g + R? psin® 6 By, G2 g+
R sin@ Bip ¥ s — cos 8 Doy 2 gg + sin 0 Doy 2 995 = 0 (13)
Rpcosf+ Rpsinf ¢y —1g =0 (14)

where § = 2, p = ¢3" and ¥ = w;’. These differential equations are solved by a Fourier
series approximation for an infinitely long tube. This boundary value problem has also been
solved numerically using the shooting method for comparison. The numerical results would
be presented at the workshop.



Homent [1b-in]
70000

60000

50000

40000

Present Theory|

— — Bart and Ln curvature[in™)

008.000068.00008,000)0.00012

— = = — Xedwird
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3 Results

Defining p = R_ZfiL the first order approximation to the m1d—surface warping fleld is given
(upto 4th harmomcs) by:

w = q’3(16u+(Rp)2) sin(30)

32u(Rp)2+32uq’2£Rp) +2(Rp)*+q%(Rp)* sin(26) + 4(Rp)* (46)

Wy = 3(16p+(Rp 22)2 T5(16p+(Rp)2)2 sin (15)
32#4'2(RP)2+4 Rp)*+q¢'*(Rp)* 255/—‘(RP)2+160#q’2(qu2+16(Rp)4+5q (Rp)* Y
ws 4)(416#+(Rp)2)2 12(T6p+ (Rp)2)2 cos(26)
(R
- 15(16/.L+p(Rp)2)2 cos(49)

Substituting for the warping field, one obtains the final expression for the beam strain energy
density in bending. By differentiating it with respect to the elastic curvature, an expression
for the bending moment in terms of the elastic curvature is determined:

15 7 327TR11 54 3D 57TR11 SA 3

M = 7TR3 Ay — 2T R Ant _ p° A1a° Doo p° A
p L (R p? A11+16D22)3 (R*p? A11+16 Dag)® + (R4 p2? A11+16 Da3)* 6
+ 327 R7 p8 A1,2 Dzz 47 R’ p3 Ay ‘ (1 )

(R4 p%2 A11+16 Dzz) R4 2 A11+16 Doy

For small bending moments, this result is close to that of Kedward® However it significantly
differs for large moments as shown in Figs. 2 — 4 for three different layups, the properties of
which can be found in Kedward’s paper. :

Kedward’s simple but excellent result has terms only upto O[p?]. These terms match
with the series expansion of our results. The improved result of Bert and Libai?

T R p® Ay,? n 57 RY p5 Ay,®

M=nR3pA, —
TR p AN 8 Dy 1152 Doy?

+O[p’] (17)

differs from the current result for terms of O[p°] and higher.




CHAPTER 4. OPTIMIZATION RESULTS

Table 4.1: Rotor properties

Number of blades 3
Radius of rotor disc 381 m
Blade cord 35.6 cm
Blade mass ' 47.48 kg
Precone angle 2.5 deg
Autorotation inertia 109.89 kgm?
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Figure 4.1: Blade chord distribution
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The nondimensional nonlinear bending stiffness is given by
FTe 9 _q_3eR?  15(eR)"
™ R3A11 8# 256,&2

Maximizing the moment with respect to the elastic curvature, the limit moment is obtained.
Further bending occurs at a dropping moment which characterizes a limit load instability.

— 3\/§7TR\/A11 v Dy,
4

+O0[p°] (18)

Mer

(19)

The coefficient obtained by Kedward is % instead of 3—;—/—5, resulting in an estimate 16.2%
lower than the current prediction. It should be noted that the recent numerical results
obtained by Tatting et al'? are very close to the approximate closed-form solution of Kedward.

4 Conclusions

An analytical result is obtained in this paper for the bending moment and stiffness of a long
thin-walled circular tube. The presentation at the workshop would include numerical results
validating the Fourier series solution. The warping of the cross section is obtained in closed
form. The bending moment as a nonlinear function of the curvature is compared with those
of Kedward® and Bert et al?® The limit moment instability is evaluated and is shown to be
higher than that in earlier works. Material failure and bifurcation buckling which are known
to usually occur before limit moment instability!® are not dealt with here. Whatever the
mode of failure, it is strongly influenced by the nonlinear response. Moreover the response,
by itself, is significant for tube design and analysis. And this paper provides a closed form
solution which is quite different from all existing results, including numerical ones, due to
its asymptotical correctness.
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Abstract

In this presentation, a refined theory is developed that accurately models the cross-
section elastic properties of thick-walled composite beams. The Vlasov-based model is
refined to include a correction to the torsion component of the shear strain equation. In
addition, a higher order plate theory is incorporated into the plate segment constitutive
equations. The shear strain correction influences the torsion behavior while the higher
order plate theory influences the transverse shear behavior. The theory is validated
against 3-D finite element results. Baseline Vlasov theory does not accurately capture the
thick-walled effects while the results generated by refined theory closely match the finite
element results. The refined theory is used in parametric studies to determine the limits
of Vlasov theory in predicting the cross-sectional properties of thick-walled beams.
Because of the shear strain related effects, differences in results generated by Vlasov and
the refined theory start to become significant at a thickness to depth ratios of
approximately 15%. Results show that neglecting transverse shear has a noticeable effect

on the coupling and stiffness calculations and lateral deflection under bending load
calculations.
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Benefits of composite rotor blades
* Improved fatigue life

* Hingeless and bearingless rotor designs
* Beneficial elastic couplings for enhanced
stability, reduced vibration, improved performance

Vlasov Theory can be a valuable tool for blade design

* Models multi-cell cross-sections of arbitrary shape

* Does not require detailed finite element computations
* Produces accurate results for thin-walled beams

Background PENNSTATE

Some rotor blades have thick-walled cross sections
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Related Research PENNSTATE

U
Kim and White (University of lllinois 1995-97)
* Thick-walled model that is extension of Smith and Chopra
* Validated with 3-D finite element
* Model includes both contour and thickness warping

* Developing warping function for representative blade cross-
sections can be complex

Song and Librescu (Virginia Tech 1993)
* Free vibration of thick-walled composite box beams
* Incorporated first order transverse shear into theory

Related Research PENNSTATE

McCarthy, Chattopadhyay, Zhang, Jha (ASU 1996-97)

Composite plate FE used to model thick-walled box beams

Validated only against thin-walled data and models

Model used in fixed wing flutter studies

* Higher order transverse shear distribution in plate
segments

Hodges, Cesnik, et al (Georgia Tech 1993-95)

« Composite beam and plate models based on variational-
asymptotic methods -

* Predict cross sectional properties using 6 noded
isoparametric elements




Related Research PENNSTATE
|25

Kollbrunner and Basler (1969)

* Studied the influence of thick walled effects on shear
flow behavior of isotropic beams

* Derived equations for additional shear strain and
torsional moment

—>/ €
——— zs
—

Reddy (1984)
* Developed higher order plate € nz
theory for laminated composite plates A A A A
» Stress-free boundary conditions satisfied \ 1
PENNSTATE

Related Research =

Chandra and Chopra (University of Maryland 1992)

* Refined Vlasov theory to include transverse shear
deformation of the cross-section

« Validated theory with experimental results

Centolanza, Smith, Kumar (Penn State 1995-1997)
- Refined Vlasov theory to include shear center calculation
» Performed preliminary structural dynamic analysis

« Non-uniform spanwise ply lay-up affects the twist
component of the flap-torsion mode shape




Objectives PENNSTATE

* Refine Vlasov Theory to improve accuracy of cross-section
property calculations of thick-walled composite beams

- Correction factor in shear strain eqn to account for
non-uniform distribution of shear strain

- Higher order transverse shear distribution in plate
segment constitutive eqns

* Validate refined theory with 3-D solid element results

* Conduct parametric studies to determine limitations of
Viasov in modeling thick-walled cross-sections

PENNSTATE

!

Presentation Qutline =

Introduction

Derivation of Refined Theory

Finite Element Models for Validation

Validation and Parametric Studies

Conclusions




PENNSTATE
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Baseline Vlasov Derivation

* Plate segment displacements are expressed in

terms of blade displacements (¢ ,,[e ,J. ¥, x zs )

* Plate forces expressed in terms of plate displacements
through[ ABD]| matrices (N,, N,, M,, M,,)

S\

ny

Z,Z

PENNSTATE

Baseline Viasov Derivation

s

- Blade forces are related to plate forces through the

principal of virtual work (N,M,,M,,T, M,,, |F,.F,,G,,G, |)

- Blade forces are finally related to blade displacements
through a 9x9 stiffness matrix

Tn.y s




Shear Strain Correction

PENNSTATE
[,

Shear Flow models assume uniform shear stress distribution

* Torsion component of shear strain eqn in Viasov theory is

based on this approach

v_‘

G, (s)| 0, (2)

Gt

v

Shear flow related G,
needs to be adjusted
with a correction factor

Shear Strain Correction

PENNSTATE

Wall

% Thickness Depth
/; Y

LG I

Ag

Shear strain no longer uniform through thickness




Shear Flow Correction

PENNSTATE

Additional shear strain results in
an additional torsional moment:

ATT =[t/3Jds

Shear flow eqns:

G, qin=T/2A

G ik =(T+A T)/2A
Rearranging:

Gs thick — © Gs thin

Correctionfactor: c=1+A T/T

Shear Flow Correction

Factor,

10 .t 0 40
Thicmess to Depth Ratio (%9

Shear Strain Correction

PENNSTATE

The correction factor is incorporated into the shear strain eqn

e Correction influences the stiffnesses associated with torsion

For example:

The bending-torsion coupling stiffness:

K25=.[['2 B15y+bA15ijlG—t| -20150089

+[c B4 G, cosO/Gt[] ds




Higher Order Transverse Shear Theory PENNM

|_Zov)

v_‘

The refined theory assumes that any general plate segment
is now governed by the higher order plate theory (Reddy)

* Formulation includes higher order stiffness matrices,
force resultants, and curvatures not in CLPT

N A B E|le]| (EupFuHy)= IQ“ (z3,z4,2¢)dz
M;=|B D Fik .
P E F Hl? Q,, and Q,; also included

Higher Order Transverse Shear Theory PENNS_ME_

The transverse shear in a plate segment is no longer zero

* Plate segment transverse shear strain is related to cross
section transverses shear deformations through geometric
considerations




Higher Order Transverse Shear Theory

PENNSTATE

Higher order terms now appear in the de
stiffness matrix.

For example:

Energy Eqn:

N
P —

rivation of the 9x9

II=1/2] (Ng, + Ng,o + Myx, +Mx ,  +

2 2
Px 2+ P,x,2+

| Qe op + Ry ,2)) ds

Transverse Shear Blade Force Eqn:

G, =/ (N, cos 8 4Q,sin6-4/h2R,sin6

Higher Order Transverse Shear Theory

PENNSTATE

Incorporating the higher order theory leads to a refinement
of the stiffnesses associated with transverse shear

For example:

Transverse shear stiffness:

Kes = J [ Agg €OS20 - | AggSin26 - 8/h2 Dy si

n2 |

+{16/h* Fyssin? | ] ds

10
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Introduction

Derivation of Refined Theory

Finite Element Models for Validation

Validation and Parametric Studies

Conclusions

Finite Element Models Used for Validation PENNS_TME_

Solid parametric brick elements are used in the detailed
finite element modeling of the composite blades

* Advantage of refined theory is that it gives results of
comparable accuracy to that of FEM in a fraction of the time

« Run Time: FEM - 15 minutes Refined Vlasov - 2 seconds

* Finite element results were generated using IDEAS Master
Series 3 and NASTRAN Version 69.1

11




Finite Element Models Used for Validation

PENNSTATE

Element convergence study conducted
* 1156 total elements

T I T
* 68 cross-section elements H [T TT] H
. T
T TTITTT
Solid parabolic element has mEEEEN
20 nodes with 3 dof/node /
PENNSTATE

Presentation Outline

!

Introduction

Derivation of Refined Theory

Finite Element Models for Validation

Validation and Parametric Studies

Conclusions
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Validation: Tip Twist Due to Tip Torque

PENNSTATE
o

0.0025

0

Tip Twist (rad)

15° Bending-Torsion Coupled Graphite/Epoxy Box Beam

.002 A
0.0015 -
0.001 4
0.0005 -
0 A 5
Baseline Refined
Viasov Theory

(L/D = 20)

FEM

Y —

R
A

25% Thick
Box Beam

Validation

: Lateral Deflection Due to Tip Torque

PENNSTATE

Lateral Deflection (in)

0.0036 -
0.0032 1
-4
0.0028 -
0.0024 1
T
0.002 4
Baseline Refined
Vlasov Theory

FEM

NN
_

25% Thick
Box Beam

15° Bending-Torsion Coupled GraphitelEpoxy Box Beam

(L/D = 20)
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Validation: Tip Deflection Due to PENNSTAi

Tip Bending Load =

€ oo7!
§ 0061 \\\\N
¥ 005+t \ \
2 004 -
E 005 | A
= 002 25% Thick
& 001 Box Beam
a 0 -

Baseline Refined FEM

Viasov Viasov

15° Extension-Torsion Coupled Graphite/Epoxy Box Beam
(L/D = 20)

Validation PENNSTATE

Refined theory also validated for other cases
* Other ply lay-ups (0,30,45,90 degrees)

* |sotropic materials

* E-T coupled beams

* Through the thickness change in laminate

Validation Resuits

« Baseline Vlasov theory does not accurately capture the
thick-walled effects

* Results generated by refined theory closely match the
finite element resuits.

14



Parametric Studies PENN STATE

e
———

Goal is to determine the limitations of Viasov in modeling
thick-walled cross-sections

* First study investigates the role of the wall thickness

S —»
A >

825

u\\ HVJ

* Second study determines the role of transverse shear

8~|"|Z
L A A A

lll | ﬂazs

Parametric Study: Bending-Torsion Coupling PENN STATE
as a Function of Thickness Ratio
—
g _ 1900 S
= T 140000 + -
a = Q 47
2 8 120000 | ]
© w 100000 | e®
5 1 o 10}
P o 80000 1 g gl
s & e
S 8 60000 { ‘ S— 3 61
n 2 —a—Via £
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5 O : — e 21
m 0 % 0
0 10 20 30 40 & 10 0 20 40
Thickness to Depth Ratio (%) Thickness to Depth Ratio (%9
15° Bending-Torsion Coupled Graphite/Epoxy Box Beam
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Parametric Study: Tip Twist Due To Tip Torque

as Function of Thickness Ratio

PENNSTATE

Lateral Deflection (in)

—e— Viasov

0.00025 } — =3
— - —h— Viasov ! E 40
E 0.0002 1 —i— Refined Viasov| @ _~3D$
g - ER
g 000015 ¢ £ = WL
- E3 {
o 0.0001 Qr 1.
- =

0.00005 S o

c 10 20 W 4 & 0 1 2 B 4
Thickness to Depth Ratio (%) Thickness to Depth Ratio (%)
15° Bending-Torsion Coupled Graphite/Epoxy Box Beam
(L/D = 20)
Parametric Study: Lateral Deflection Due PENNSTATE
to Tip Bending Load ﬁ
06 .
05 L
16
0a !
10 |
03}

Percent Difference in
Lateral Deflection (%)

_ | —#— Refined Viasov

] 0 20 40 60
|

} +— ¢ — Pty Angle {degrees)
20 40 60 80

Ply Angle (degrees)
25% Thick E-T Graphite/Epoxy Box Beams of
Varied Ply Angles (L/D = 20)

80
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Parametric Study: Lateral Deflection Due PENNSTATE
to Tip Bending Load | [ v

'_‘

03
0.28 |
0.26 |
0.24 ¢
022 1

02}
018 |
0.16 |
0.14 {
012 |

0.1

Deflection
- N « H [4,] [o)] ~ o 4]

Lateral Deflection (in)

Percent Difference in Lateral

o

o] 20 40
Spar Thickness to Depth Ratio (%)

0 20 40 60
Spar Thickness to Depth Ratio (%)

E-T NACA 0012 Graphite/Epoxy Blades of Varied
Spar Thickness (spar [15], skin [+/-45])

Parametric Studies: Transverse Shear Stiffness PENNM

@ 7.70E+05

e

£ 6.70E+05 1

7]

= & 5.70E+05 |

2 7
% = 4.70E+05 1 |—e—Viasov
£ 3.70E+05 | | —8— Refined Viasov |
s oV |
@ 2 70E+05 : -

= 0 20 40
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E-T NACA 0012 Graphite/Epoxy Blades of Varied
Spar Thickness (spar [15],, skin [+/-45])
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Validation and Parametric Studies

@

Conclusions

Conclusions PENNSTATE

» A refined theory was developed that accurately predicts the
cross-sectional properties of thick walled composite beams

* The refined theory was validated against 3-D solid element

» Advantage of refined theory is that it gives resuits of
comparable accuracy to that of FEM in a fraction of the time
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Conclusions PENNSTATE

+ Baseline Vlasov tends to breakdown for thickness ratios
of approximately 15% due to shear strain effects

* Transverse shear effects on bending stiffness can be
noticed for ply angles in the 15° to 45° range and for
thickness ratios greater than 20%

» Shear strain correction has a larger effect than higher
order transverse shear theory

S —

19




Asymptotically Correct Numerical Evaluation of
Shear Effects in Composite Beams

Bogdan Popescu Dewey H. Hodges

7th International Workshop on Dynamics and Stability Modeling
of Rotorcraft Systems, Saint Louis, October 14-16, 1997

Abstract

The inclusion of the along-the-axis variation of the strain measures is
considered in an asymptotically correct analysis. Consequently, the shear
effect is captured as a refinement of the classical theory of beams. This
leads to a Timoshenko-like formulation of the stiffness properties of the
beam cross section which is important for short beams and high frequency
vibrations. The way is also open for the study of other effects related to
axial variation of the strain, as the Vlasov effect which is responsible for the
restrained torsion of thin walled beams. The method applies for arbitrary
geometries of the cross section and general anisotropic material and is based
on a finite element formulation which confers the desired generality to treat
complex structural configurations.

Acknowledgments: This work was supported by the National Rotorcraft
Technology Center at NASA Ames Research Center.
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Asymptotically Correct Numerical
Evaluation of Shear Effects in Composite
Beams

Bogdan Popescu Dewey H. Hodges

Saint Louis, October 14-16, 1997




1 Motivation

e Developing a tool to rigorously (i.e., asymptotically correct) treat
beam-like structures, especially helicopter rotor blades configurations
where certain effects cannot be neglected. It is meant to cover:

1. general anisotropic material.

2. arbitrary cross-sectional geometry.

3. quick and compact results which allow for efficient structural analysis.
e This is further used in:

basic blade design.

dynamic analysis (vibrations).

aeroelastic studies of rotor blades.

> b=

global system dynamics of the rotor as a component of the whole
structure.




2 Background

e [imoshenko’s work in 1921
¢ Giavotto, Borri, Maffioli and Mussi (1983) — general cross-section.

e Berdichevschii and Starosel’skii (1983) — asymptotic theory was devel-
oped for the isotropic case.

e variational-asymptotic method is capable of taking advantage of the
presence of small parameters in the model (Berdichevsky, 1982).

2 h\?  [h\?
U=pue U N +(E) —I—(7> +....

classic trapeze Y @@l
initial « shear




3 Method of Solution

3.1 Beam Kinematics

The position vector of an arbitrary point on the cross section
B A
I(z1, T2, 23) = r(z1) + Za ta (21) (1)

_ A A
R(z1, %2, 23) = R(21) + za Ta (21) + wi(z1, T2, 23) T4 (1)  (2)

A A
T is tangent to the beam axis, B, are in the plane of the deformed beam

cross-sectional plane.

€ = max(y11,2 712, 2713, h k1, h K2, h K3)) (3)




X
.__)1

beam axis
(deformed)

Figure 1: Reference systems for the shear effect in the deformed configu-
ration




The definition of curvature due to deformation for prismatic beams

n A
Ti= B x Tj (4)
A A
Bi=r X B; (5)
(A ] (A
]/%1 1 6, —063 '/1\‘1
{Ba(=|-f2 1 0 | ¢ Ty (6)
A 63 0 1 A
| B3 | | T3 |

This leads to (by neglecting higher order terms)

P1 = K1+bOxky—03kK3
B = kp—05—02k (7)
B3 = k3—05+063k1




I
The following orders are assumed now (and will be confirmed later)
h
Harvej; hk;~e€ (8)

: 2 :
Since one can assume € ~ (%) as the case of interest for shear effects,

(6a ki) terms drop out as being of higher order.

3.2 The Strain Field

- The 3-D strain components are

M={r}, 2}, 23 3, 2r3; M3t (9)




_ /
I'—l;ggg—l—l'hew—l-l'gzu (10)

T

where the warping field and the 1-D strain are

w={w; wy w3}’ (11)
e={y1 k1 k2 K3}' (12)
0 0 0 ]
O o0 o0
Oz)
5 0 0
M = 5, (13)
0 2 0
0 0 0
913 15
o o0 -2
i Oz3 |




0
| 1 0 r3 —I2 |
0 —2z3 0 O
o z, 0o o0
=10 0 o o (14)
0O O 0 0
0 0 0 0
_ | I3
I--l — [ 03 j| (15)

The quantities of the deformed geometry are still referred to the tangential

A
- system T. The warping field must satisfy the four constraint equations
which ‘block’ the rigid body modes |

(wi) =0 (16)

(T2 w3 — z3Ww2) =0 (17)
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3.3 Next Approximation for the Shear Effect

2, : :
Terms of up to order ue 2% in the strain energy which are supposed to

render a correct shear theory.

2U =(r'"pr) (18)
Consider the perturbation in the warping field
w = iugg—l—y}/ (19)

~|>

€

The finite element discretization of the warping w = [S]V .

wo = [S]Vo; w1 =[SV (20)
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A : : : :
Vo =V € is the classical solution of the warping (strain energy asymptot-
ically correct up to order uez). Replacing in the energy

2U1 = VllT Dl€ € + VllT Dlho €+ VlT Dhe £+ VlT tho £+ VlT Dhlo €l+
VlT th V]_ + EJIT Dlos €+ EIT DthO €+ E;’T DlOlO E, + E/T DC}ZL}O V1+

ET DEE € + ET DEho € + ET D;I(;s 6, -+ 5T DEh Vl + €T DEl V]{+

e" Dpge e + & Dpgnge +€TDéZc;ho€,+ aTDgho V1 ‘|'5TDl1;zo Vi

(21)

The variational equation with respect to Vj(xq)

 EVi— Dt (Ding — Diag)| €' + H b Dhee = Hobap (22)

where . are the Lagrange multipliers which enforce the constraints on V3.
The result from the first approximation was

EVy+ Dpee = H g b Dy (23)
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the Lagrange multipliers are obtained

T
p= = [Dls + (Dipg — Dhlo)] e’ + 45 Dpe e (24)
Hence

EVy = (I — Hq ) [Dic + (Ding — Dpyy)| € (25)

_ A A
This system must be solved for V1 where V7 =V €’ was considered.
Because FE is singular a new matrix E:l_ is defined such that

EYE=1—-9yiygH (26)
and the solution is
A A
Vi= E;Il_ Dg e = Vi g (27)

where a new matrix was defined Ds = Dj. + (Dlho — Dhlo)
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Notice that Vj ~ e%

Next, the result is plugged in the expression for the strain energy which
takes the form

2U; =l Ae+2eT B + T Ce' +2el' De” - (28)
where |
A = Dee + Dpyny — (Depy + Dhge) (29)
N
B = —(D¢; — Dpyl) Vo - (30)
A A ‘ A A
C=V1EV1+D,— (Diyn V1 + Vi1 Dyy) (31)

N
D = (Dg; — Dpgt) V1 (32)
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The 1-D strain measures and their derivatives refer to quantities in the
AN
tangential system T. For Timoshenko-like beams express the bending

A
curvature in the rotated system B.
k2 = B2+ 713 (33)

/
k3 = B3 — 712 (34)
where the definitions of the shear strain measures are

Y12 = —b62; Y13 = 63
0 35
o = g1 + 3t )
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3.4 Equilibrium Equations
The equilibrium equations along the beam are
My, = eqpQp — Ma | (36)
N'=-p (37)
My =—-my (38)

Q& — P« - - (39)

For the case with no distributed applied moments

M, = e, Q3 (40)
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4  Solution for the Isotropic Case

Our goal is to write the strain energy in the more useful form (Timoshenko-
like)
_ Ta-
22Uy =€ SE (41)

where € is the extended strain vector of 1-D strain measures

£ = {11 K1 K2 K3 712 713}" (42)
For a prismatic isotropic beam matrix S will be diagonal. For now, we
look at the case when 7}, = 0, k] = 0, k), = 0, corresponding to the
Timoshenko theory of bending. This allows for the determination of the
shear rigidities

A2
Sg = =

0 (43)
Se= o
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5 Solution for the Anisotropic Case

Internal forces are obtained

My [ 09U | (@) | o .
M= { M3 } - [anaa—@] © = { Q3 } - [aylaa@] ©

using the equilibrium equations (40) one can obtain an equation

2

/
where: M = [%] E’:{ :,2 } e/ = { 0%71 }:M*QE

Hence, the energy can be written
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2U1 = ETAe—|—26TBM*QE+€TQTM*TC’M*QE:gTSg (44)

since M and @ contain elements of S, (44) we have a 21st order nonlinear
system having as unknowns the elements of S.

6 Numerical Results

For the case of a isotropic beam with a square cross section, the shear
rigidity has been obtained as

5
95 = 85 = -G A (45)

This result is an accordance with the exact theoretical results in the liter-
ature.
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7 Conclusions

e numerical results validate the theory for the isotropic case.

e for composite beams a method of solving the nonlinear system has to
be devised and tested. It can be seen that, in general, it is possible
for all the stiffness coefficients to be affected.

e other cases not considered here are to be treated separately as for (i.e.,
711 # 0, "3&75 0, kg # 0).

e the case for which K,’l =%+ 0 represents the so-called Vlasov effect - not
Timoshenko-like.

‘@ the ‘D’ term in the strain energy expression will be treated more rig-
orously at a later time.

e cases involving anisotropic materials are to be analyzed and compared
with available results in the literature.

e the physical meaning of the newly introduced shear variable should be
addressed.




Dynamic Response of Two-Celled Composite Beams with
Optimum Extension-Twist Coupling
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Overview

e Motivation
* Objectives

e Optimum Extension-Twist Two-Cell Composite Beam

Configurations
* Finite Element Predictions of Modal Characteristics
» Experimental Determinations : | EE
e Comparison of Results

 Conclusions

Seventh International Workshop on Dynamics and Aeroelastic Stability Modeling of Rotorcraft Systems October 14-16, 1997




Motivation

 Two-Cell Beams - structural configurations of practical interest

» Extension-Twist Coupling - potential for rotating lifting surface
performance enhancements

* Modal Characterization - essential step towards practical
implementation

Seventh International Workshop on Dynamics and Aeroelastic Stability Modeling of Rotorcraft Systems October 14-16, 1997




Objectives

* Generate reference FEM and experimental results for optlmum
extension-twist coupled beams for:
— analytical model validation
— assessment of response for manufactured beams

* Investigate the modal characteristics’ sensitivity to lay-up
perturbations around the extension-twist global optimum = -
configuration

Seventh International Workshop on Dynamics and Aeroelastic Stability Modeling of Rotorcraft Systems October 14-16, 1997




Optimal Extension-Twist Two-Cell Composite Beam
Configurations

e Analytical model for static response of two-cell, thin-wall
composite beams - Badir(1995)

e Optimal extension-twist coupled two-cell composite beams -
Lentz(1997)

— Numerical optimization, gradient-based method with penalty function
to impose constraints

— Constraints
» extension-twist coupling only
— Configuration - subclass of two-cell beams

* rectangular cross-section, equal cell size
 §8-ply wall thickness

* each cell - 4-ply circamferentially uniform stiffness wall
* 4-ply circumferentially uniform stiffness outer wrapping

Seventh International Workshop on Dynamics and Aeroelastic Stability Modeling of Rotorcraft Systems October 14-16, 1997




Optimal Extension-Twist Two-Cell Composite Beam
Configurations (cont’d)

4 plies

[ A
4 plies 4 plies 25.2 mm
< > < » )
32 mm
< »

Seventh International Workshop on Dynamics and Aeroelastic Stability Modeling of Rotorcraft Systems October 14-16, 1997




Optimal Extension-Twist Two-Cell Composite Beam
Configurations (cont’d)

e Material system - Fiberite T 300/954-3 graphite/cyanate

Ei 135.6 GPa
E,, 9.96 GPa
G 4.2 GPa
Vio 0.3
o 43410°C!
o 37.0 10° C*
i 0
B, 5.56 10 &/% weight
P 1415 kg/m’
Seventh International Workshop on Dynamics and Aeroelastic Stability Modeling of Rotorcraft Systems October 14-16, 1997




Optimal Extension-Twist Two-Cell Composite Beam
Configurations (cont’d)

e Optimum coupling configurations:
— global optimum
— local optima

Left Cell Right Cell Overwrap Coupling
(rad/MNm)
83.7,4 83.7, -29.2,4 61.5
85.9/86.1,/84.8 86.5/86.0/85.3/85.2  -31.3/-32.0/-31.5, 61.1
83.4, 83.4, | 83.4/-29.3, 58.9
82.9, 82.9, 82.9,/-29.5, 54.2

69.9/-80.5/-81.9/-83.6  88.6/88.2/86.0/85.3  36.2/35.8/34.4/37.3 53.0

Seventh International Workshop on Dynamics and Aeroelastic Stability Modeling of Rotorcraft Systems October 14-16, 1997




Finite Element Predictions of Modal Characteristics

e Model configurations
— cantilevered boundary conditions
— beam length: 422 mm
— lay-ups :
 global optimum
 lay-up perturbations by +3°

e ABAQUS Finite Element Code

* Reduced integration quadrilateral shell elements (S4R)
e Model size: 2400 elements

e Solution maximum D.O.F. wavefront: 258

Seventh International Workshop on Dynamics and Aeroelastic Stability Modeling of Rotorcraft Systems October 14-16, 1997




Finite Element Predictions of Modal Characteristics
(cont’d)
Modal Characteristics of Global Optimum Lay-up Beam

Mode | Frequency |Mode shape description
No. (Hz)
1 112.0 First vertical bending
2 143.7 First horizontal bending
3 677.0 Second vertical bending
4 815.3 Second horizontal bending
5 1037.3 | First extension-twist coupled mode
6 1733.6 | First shell mode
7 1763.9 | Third vertical bending
3 1830.9 | Second shell mode
9 1939.4 | Third horizontal bending
10 2300.4 | Third shell mode

Seventh International Workshop on Dynamics and Aeroelastic Stability Modeling of Rotorcraft Systems October 14;1 6, 1997




Finite Element Predictions of Modal Characteristics
(cont’d)

First Vertical Bending Mode Shape
112.0 Hz

No significant in-plane warping of the cross-section

Seventh International Workshop on Dynamics and Aeroelastic Stability Modeling of Rotorcraft Systems October 14-16, 1997




Finite Element Predictions of Modal Characteristics
(cont’d)

First Horizontal Beﬁding Mode Shape
143.7 Hz

No significant in-plane warping of the cross-section

Seventh International Workshop on Dynamics and Aeroelastic Stability Modeling of Rotorcraft Systems October 14-16, 1997




Finite Element Predictions of Modal Characteristics
(cont’d)

TLLTLY
QLBRRREEY

Second Vertical Bending Mode Shape
677.0 Hz

Noticeable in-plane warping of the cross-section

Seventh International Workshop on Dynamics and Aeroelastic Stability Modeling of Rotorcraft Systems October 14-16, 1997




Finite Element Predictions of Modal Characteristics
(cont’d) |

.
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Second Horizontal Bending Mode Shape
815.3 Hz

Significant in-plane warping of the cross-section
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Finite Element Predictions of Modal Characteristics
(cont’d)

First Extension-Twist Coupled Mode Shape
1037.3 Hz

No significant in-plane warping of the cross-section

Seventh International Workshop on Dynamics and Aeroelastic Stability Modeling of Rotorcraft Systems October 14-16, 1997




te Element Predictions of Modal Characteristics
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(cont’d)
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Finite Element Predictions of Modal Characteristics
(cont’d)

Third Vertical Bending Mode Shape
1763.9 Hz

Significant in-plane warping of the cross-section
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f Modal Characteristics
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Finite Element Predictions of Modal Characteristics
(cont’d)
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Third Horizontal Bending Mode Shape
1939.4 Hz

Significant in-plane warping of the cross-section
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Finite Element Predictions of Modal Characteristics
(cont’d)

Third Shell Mode Shape
2300.4 Hz

Significant in-plane warping of the cross-section
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Finite Element Predictions of Modal Characteristics
(cont’d)

Variation of Natural Frequencies with Global Lay-up
Perturbation Angle Near the Global Optimum

Mode -3° Global +3°
Optimum
Hz. % Diff. Hz Hz % Diff.
VBI1 105.8 -5.54 112.0 119.4 6.61
HB1 135.4 -5.78 143.7 153.2 6.61
VB2 643.5 -4.95 677.0 716.3 - 5.81
HB2 772.5 -5.25 815.3 862.4 5.78
TE1 1083.2 4.42 1037.3 999.0 -3.69
S1 1678.3 -3.19 1733.6 1775.3 2.41
VB3 1696.9 -3.80 1763.9 1840.7 4.35
S2 1766.7 -3.51 1830.9 1883.1 2.85
HB3 1871.2 | -3.52 19394 2010.0 3.64
S3 2194 .4 -4.61 2300.4 2402.8 4.45
Seventh International Workshop on Dynamics and Aeroelastic Stability Modeling of Rotorcraft Systems October 14-16, 1997




Finite Element Predictions of Modal Characteristics
(cont’d)

Natural Frequencies for Global Optimum and
Near-Global-Optimum Configurations
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Experimental Determinations

e Two-cell beam with global optimum lay-up manufactured and
tested

* GenRad 2515 Test System used for data acquisition/primary
processing

— Impact excitation provided at selected locations with instrumented
hammer (piezoelectric force transducer)

— Response measured with piezoelectric accelerometer at selected
location

— Response time series converted to Transfer Function by FFT
processing for each excitation/response location pair

 Star System PC software used for data processing

— Ensemble of Transfer Functions processed by global curve-fitting
algorithm to extract modal characteristics of structure
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Experimental Determinations
(cont’d)

Instrumented Two-Cell Composite Beam
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Experimental Determinations
(cont’d)

Instrumented Two-Cell Composite Beam - Side View
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Experimental Determinations
(cont’d)
Transfer Function - Bode plot

: :664. 92, #H:664.00 YH:-92.94
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Experimental Determinations
(cont’d)

Transfer Function - Modal Identification by Curve Fitting
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Comparison of Results

Finite Element and Experimental Values for Natural Frequencies

Mode FEM Experiment
Hz Hz % Diff.
VBI1 112.0 117 4.46
HB1 143.7 146 1.60
VB2 677.0 662 -2.22
HB2 815.3 778 -4.58
TE1 1037.3 1050 1.22
S1 1733.6 1420 -18.09
VB3 1763.9 1500 -14.96
S2 1830.9 1690 -1.70
HB3 1939.4 2000 3.12
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Conclusions

 FEM and experimental investigation of two-cell beams with
optimum coupling undertaken

e Good agreement between the two sets of results obtained for most
modes

* Sensitivity of modal characteristics to lay-up perturbations around
global optimum investigated

* FEM results appear to substantiate a hypothesis of in-plane
nondeformability of the cross-section for low order mode shapes
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Vitali V. Volovoi; Dewey H. Hodges]
Georgia Institute of Technology, Atlanta, Georgia

Victor L. Berdichevsky,i
Wayne State University, Detroit, Michigan

and Vladislav G. Sutyrin®
Detroit, Michigan

1 Introduction

The intent of this paper is to provide some insights into general scheme for construction of re-
fined beam theories with inclusion of end effects and high frequency vibrations: Such a refined
theory is constructed by the introduction of new 1-D variables in addition to the four classi-
cal ones associated with extension, torsion and bending in two orthogonal directions. These
additional 1-D variables represent high-frequency modes of vibration with a corresponding
cross-sectional displacement field calculated by solving the appropriate 2-D problems over
the cross section. Next, the asymptotic analysis is performed to ensure correct description
of long-wavelength vibrations. As shown in this paper, this can be conveniently achieved by
using frequency spectrum information available from the code described in Ref. [2]. So-called
short wavelength extrapolation (i.e. change of variables that does not alter long-wavelength
approximation) is further conducted to insure hyperbolicity of the resulting equations as well
as proper description of the interaction between the various modes of vibrations.

Although the proposed model is not fully analytical in the sense that it does require
numerical computations over the cross section, the amount of calculations is very small
compared to 3-D finite element models, and parametric studies are easily conducted. Fur-
thermore, once obtained, the 1-D stiffness coefficients for a given cross-sectional geometry

*Post Doctoral Fellow, School of Aerospace Engineering. Member, ATAA, AHS.
tProfessor, School of Aerospace Engineering. Fellow, ATAA. Member, AHS.
tProfessor, Department of Mechanical Engineering. Member, ATAA, ASME.
§Consultant



and material properties can be applied repeatedly for various end conditions. Thus, this
model is particularly suitable for tailoring and design of both wings and rotorblades.

2 Background and Present Approach

Due to the fact that properties of prismatic beams do not depend on the axial coordinate
z1, fundamental beam solutions have the form

ui(@n, 23)e (1)

where u; are displacements, z,, T3 cross-sectional coordinates; £ and w are wavenumber and
frequency, respectively. The k and w and are solutions of an eigenvalue problem over the
cross section, and as such they are connected by a transcendental equation (dispersion rela-
tionship). For a given real w there is an infinite number of complex values k. However, for a
relatively low frequency of vibrations there are only four real k corresponding to propagating
waves along the beam. All other values of k are complex, and (k) has the sense of a decay -
rate as the waves travel away from the ends of the beam. The classical theory of beams with
free lateral surfaces can be viewed as a truncated representation of the displacement field by
the use of the first four of the basis eigenfunctions. The dispersion equation can be solved
numerically for arbitrary geometrical and material cross-sectional properties by discretizing
2-D domain?

The need for an approximate beam or plate theory to give a good correlation of the
resulting dispersion relations with those given by 3-D elasticity was well recognized at least
as early as the beginning of this century. It was the discrepaﬁcy between the 3-D disper-
sion relationships and those given by classical beam theory that prompted Rayleigh? to
take into account the inertia of cross-sectional rotation. Similarly, the introduction of shear
deformation by Timoshenko® further improved correlation between dispersion equations of
approximate and exact theories for a circular cross section. However, it was Mindlin who
most likely should be credited for the first direct application of the 3-D dispersion rela-
tionships to constructing approximate theories. First it was done for plates® in which the
so-called first “cut-off” frequency (i.e., the non-zero frequency for very long waves, in this
case corresponding to the thickness-shear motions) was matched with the values given by
the Rayleigh-Lamb solutions. Let us recall that Reissner’s approach to the same problem’
involved the assumed stress distribution and application of a complimentary variational prin-
ciple. Both approaches provided remarkably close values for the so-called shear correction
factor (72/12 and 5/6, respectively). Then, similar concepts were employed for deriving a
so-called tree-mode system of 1-D equations® for axially symmetric motions of an elastic rod
with a circular cross section. The variational-asymptotic method® 19 provided a significant
step toward understanding which 1-D variables have to be 1ntroduced in order to match the
3-D dispersion curves. The present approach follows the procedure that was applied origi-
nally to plates!! subsequently to shells!® '3, and finally to the extensional modes of vibration
in isotropic beams4 "



2.1 Discretized formulation

The following procedure is similar to the one described in Ref. [3] and [15] with the differences
emphasized herein. Variational formulation of the dynamic 3-D elasticity problem requires
minimization of the following functional per unit length:

T = (I7DT) - (™) (2)

where v is 3-dimensional vector of displacements, dots refer to time derivatives, ( ) is inte-
gration over the cross section, D is the 6 x 6 matrix of material coefficients, p is density and
I' is the 6 x 1 strain matrix that can be split into two parts:

I' = Tho+ I (3)
where prime refers to partial derivative with respect to axial coordinate and
"0 0 0 ] (1 0 07
% o0 010
6%3 00 0 01
Th=14 2 0 I = 0o o (4)
0 % o= 000
| 00 & 0 0 0]

Discretization over the cross section allows for the following representation of the dis-
placement field

v(z1, To, T3, t) = S(z2, z3)V (1, 1) (5)

Here S is a 3 x N matrix of shape functions, and V is N-dimensional vector of nodal
displacements. Substitution of Egs. (3)—(5) into Eq. (2) yields

T= %Eo (VIEV +VTEV' + V™DV’ — VT MV) (6)

where symmetric matrices E, Dy, M, and skew-symmetric matrix E; are given by the fol-
lowing formulae:
E = ([[4S]" DT,S)
B, = ([0WS]" D*1\S) — ([TuS)T DTwS)
Dy = ([[wS)" DI,S)
M = <pST S >

(7)
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Figure 1: Dispersion curves (frequency spectrum) for anisotropic I-beam

Extraction of the fundamental solution in the form Eq. (1) is equivalent to the following
eigenvalue problem:

(E — ikEy + k*Dy — w*M) u = 0. (8)

Solutions of this eigenproblem represent the set of dispersion curves or frequency spectrum.
Since for most of the interesting cases, k is either purely imaginary or real, it is convenient
to use 2-D plots with the left part reserved for S(k) and the right part for R(k) (due to
the intrinsic symmetry of the eigenproblem both these quantities can be considered positive
without a loss of generality). A typical set of dispersion curves for anisotropic I-beam
with a symmetric layup is depicted on Fig. 1. Frequency is normalized with respect to the
equivoluminal (shear) wave which propagates the distance of a characteristic dimension of
the cross section a in 1 second. Also, note that w, = \/% where (G is characteristic elastic
modulus. ‘

On the other hand, following the variational asymptotic procedure® in obtaining main

terms with respect to small parameter ¢ where is = the diameter of beam, £ = the charac-




teristic wavelength, requires two steps:

1.

“Zeroth” approximation:
(B-w?M) Vo = 0. (9)

Solutions of this problem provide choice of 1-D variables ®,, p=1... K: there are four
solutions g , a = 1...4 for w = 0 - which are low frequency or classical 1-D variables,
the rest of the solutions for w # 0 corresponds to the high-frequency vibrations. Choice
of the high frequency vibrations to be included ¥,: p=5... K in the problem depends
on the cross-sectional properties and the range of frequencies for application of the
resulting beam theory!

Finding main terms in the Lagrangian with respect to the small parameter %. This
requires perturbation of “Zeroth” approximation displacement field by “warping” W,
retaining main terms in the Lagrangian with respect to the small parameter, and
minimizing the resulting expression with respect to W. Generally speaking, different
high-frequency modes have different w,, so that displacement field considered in the
form ' :

(I)P(:El: t)wp(IZa IS) -+ Wp (10)

where W, is “warping” which is orthogonal to the ¥, so that WM, = 0 can be
expressed in the following form: '

(B - w?M) W, =
(U By + B Dy — DA M) 1 (11)

here we have taken into consideration that vibration of this mode has frequency close
to wp and introduced Lagrange multiplier A, to enforce orthogonality with ,. For
low frequency vibrations it is also possible to choose %), in such a way that W, will

‘depend only on corresponding ®, and represent warping in exactly the same form,

taking into consideration that w, = 0. Let us note that the latter representation is
somewhat unusual: The resulting “classical” beam equations are orthogonalized in a
sense that corresponding displacement fields 1), are generally speaking a combination
of a torsional mode, two bending modes, and extensional mode, so that stiffness matrix
is diagonalized and the 1-D equations are decoupled. For example for the anisotropic
I-beam with symmetric lay-up (see Fig. 1) which exhibits bending-torsional coupling,
two of the corresponding diagonalized 1-D variables correspond to coupled motions.
Of course, for isotropic beams this reduces to traditional torsional, bending, and exten-
sional variables, and in general 1-D equations can be easily written in terms of those
quantities.

Solutions of the eigenproblem posed by Eq. (8) satisfies Eq. (11) if terms with k are neglected
compared to unity. This can be directly checked by substitution of the displacement field



Eq. (10) into Eq. (8) and recognizing that terms with 1, vanish on the left hand side of the
equation, whereas terms with W, can be neglected on the right hand side compared to the
terms with v,. Therefore, the eigenvectors of Eq. (8) taken for small k provide solutions for
Eq. (11). The resulting displacement field is then given by:

K |
V= Z Sty + (I):Ingp + (I):an (12)

p=1

This displacement field is then substituted into Eq. (7) to obtain 1-D functional per unit
length. Note that the last term should be considered only for “bending” variables, i.e. when
low frequency variable corresponding to ¥, contains a bending ﬁjode and the corresponding
contribution into Lagrangian due to &, that stems from the bending variable vanishes.

The next step is to perform a change of variables which does not alter long wavelengh
approximation, but leads to the resulting 1-D system of equations being in hyperbolic form
and accounts for interaction between the modes of vibration. Connecting shear high fre-
quency branches with corresponding “bending” branches by factoring out a square term in
the strain energy and making corresponding change of variables results in Timoshenko-like
terms in the strain energy! while a similar procedure with kinetic energy couples the ex-
tensional mode with two other high frequency branches, resultlng in equations similar to
Mindlin’s for circular cross section (see Ref. [8, 14]).

3 Intended Applications

The I-beam first studied has a symmetric cross section and is made from graphite-epoxy
material with a [0°/90°], layup in the web and a [(0°/90°),/(6°)s] in the flanges (see Fig. ??).
Geometry is defined by the following ratios a/b = 0.5 and h/b = 0.04, where constants a,
b and h are the height of the web, the width of the flanges, and the thickness, respectively.
Dispersion curves depicted in Fig. 1 are for the angle 6 = 15°. For comparison, an isotropic
beam of the same geometry has been studied, and the Fig. 2 deplcts dispersion curves for
Poisson’s ratio v = 0.42. ‘

For rectangular cross section high frequency (HF) branches are enumerated in order of
ascending cut-off frequencies.

Comparing Fig. 1 and Fig. 2 with Fig. 3 vividly illustrates the differences between solid
cross sections and thin-walled, open ones. In the latter case HF1 correspond to shear defor-
mation and is effectively a bending mode which “strayed” from the hyperbolic path predicted
by Euler theory. This explains the importance of Timoshenko theory. In the latter case this
high frequency branch is relatively unimportant since there are other more significant effects:
There is a evanescent branch stemming from point A on Fig. 2 with very slow decay rate
that certainly has to be taken into consideration. Hence, the importance of Vlasov theory16
Detailed study of this theory !7 revealed expected but still remarkable coincidence of the
first non-classical branch with the torsional displacement of a cross section which is in full
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Figure 2: Dispersion curves (frequency spectrum) for an isotropic I-beam
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agreement with Vlasov’s theory (see Fig. 5). Moreover, excellent quantitative correlation for
the decay rate as provided by Vlasov’s theory was observed. Fig. 4 demonstrates the results
of parametric study for anisotropic I-beam. The angle 8 of the two top plies for both top
and bottom flanges is the varying parameter; h/b was also varied, while a/b = 0.5 is kept
constant, and predictions for the decay rate were compared to numerical 3-D results. Note
that in accordance with the asymptotic theory the rate of the decay varies linearly with the
thickness, so it is convenient to normalize the decay rate with respect to the decay rate of
some reference thickness (we have chosen h = 0.04b as such reference point, because that
was the thickness of the beam studied by the cited references). After this normalization all
asymptotic curves will collapse into one. As expected correlation is the best for low h/b
ratios, and the difference between asymptotic and 3-D results is indeed of order h/b. It is
interesting to notice the decreasing sensitivity of the decay rate with respect to the varying
ply angle as the thickness increases. In addition to “Vlasov” mode a different motion
corresponding to HF1 mode can be important for higher frequencies. This relates to the
fact that this different mode of vibrations starts to penetrate deeper into the interior of the

'
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An Accelerated, High Resolution Hée-Vortex Wake
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Abstract

The formulation and mathematical basis of the Mary-
land Free-Wake (MFW) Analysis is reviewed. The
MFW can be used to predict the vortical rotor wake
structure and inflow velocities for rotors operating in
hover, forward flight, and during steady-state maneu-
vers. Another feature of the MFW is that it can
solve for the interacting wake structures generated
by multi-rotor configurations such as tandems and
coaxials. For high resolution wake predictions, such
as for aeroacoustic analyses, special acceleration algo-
rithms have been developed to reduce the computa-
tional times but without loss of predictive accuracy.
Several examples are presented showing rotor wake
predictions and numerical convergence trends.

Nomenclature
ay Turbulent viscosity factor
Cr Rotor thrust coefficient
h Perpendicular distance between a point

and a straight line segment, m
27,k Unit vectors, Cartesian coordinate system

kmaz Maximum number of collocation points
on a vortex filament

[ Maximum number of blade azimuthal
locations

dl Elemental unit vector, m

Ny Number of blades

Ng Number of Biot-Savart induced velocity
evaluations
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tems, Washington University, St. Louis, Missouri, Octo-
ber 14-16, 1997. Copyright ©1997 by A. Bagai and J. G.
Leishman.
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Number of bound vortex segments
Number of free/far vortex segments
Number of discrete azimuthal locations
Number of free collocation points per vortex
filament 7

Number of free-wake revolutions; vortex
velocity profile

Nondimensional steady pitch rate, ¢/
Radius, m

Radial distance, m

Position vector of a point, m

Normalized radial distance, 7 /7

Vortex core radius, m

Free vortex segment position vector, m
Bound vortex segment position vector, m
Collocation point position vector, m
Position vector of the I** collocation point
on the vortex filament trailed from

the k** azimuth location, m

nt? iteration corrected position vector, m
Trailed vortex radial release point, m

nt? iteration predicted position vector, m
Time, s = -

Velocity vector, m/s

Induced velocity vector, m/s

Free stream velocity vector, m/s

Vortex tangential velocity, m/s

Global, fixed Cartesian coordinate system
Rotor control input correction vector

Rotating, blade fixed coordinate system ,
Centroid of vorticity, blade fixed coordinates, m
Rotor shaft angle, rad.

Blade coning angle, rad.

Vortex circulation strength, m2/s

Far /free vortex strength, m?/s

Bound vortex strength, m?/s

Azimuthally averaged tip vortex strength
Turbulent viscosity coefficient

Rotor rotational frequency, rad./s



w Relaxation parameter

A Vortex filament angular discretization
step size, rad.

¢ Wake age, rad.

Cx kth collocation point along vortex filament

g Angle subtended between point of influence
and influencing vortex line, rad.

A; Uniform induced inflow

! Rotor advance ratio

v Kinematic viscosity of air, m?/s

Xz, Xy, Hub position vectors in fixed frame

Xz coordinates, m

Ay Rotor azimuthal discretization step, rad.

P Blade/rotor azimuth angle, rad.

Py Blade azimuthal location, deg.

05 jth rotor discretized azimuth location

Introduction

The ability to predict accurately the rotor aero-
dynamic environment is essential for the design of
new rotorcraft with improved performance, increased
maneuverability, minimized vibration levels, and re-
duced noise. Therefore, a great deal of emphasis
is being placed on greatly improving the capabili-
ties of predictive tools for use in the design of ad-
vanced rotary-wing aircraft. Because of the multidis-
ciplinary nature of rotary-wing aircraft design, there
are many constraints on the allowable levels of predic-
tive methodologies. This is particularly the case for
the aerodynamics modeling, where the need for com-
putational efficiency or the need to have the model in
a specific mathematical form can seriously limit the
allowable level of sophistication.

The blade tip vortices are the most dominant struc-
tures in the rotor wake, and these are the primary
flow features that must be modeled accurately. The
tip vortices induce high local flow velocities and con-
tribute significantly to the unsteady airloads pro-
duced on the blades. Accurate predictions of the
rotor induced velocity field are important from the
standpoint of predicting rotor performance, rotor
aeroelasticity, and also the aircraft flight dynamics.
Distortions to the wake structure during steady-state
maneuvers, such as pitching and rolling, can produce
significant changes in the wake structure and can be
important for undertstanding counter-intuitive rotor
behavior, such as the rotor off-axis response (Refs. 1-
4). Furthermore, close interactions between blades
and tip vortices can produce unsteady airloads of high
magnitude and short duration that result in the gen-
eration of impulsive noise (e.g., Refs. 5,6). Key to
all these issues is a robust and physically accurate
mathematical model for the rotor wake.

While there are a multitude of numerical methods
for predicting the effects of a rotor wake, ranging from
simple momentum theory to modern computational

fluid dymamics, free-vortex methods offer the great-
est short-term potential for the accurate and compu-
tationally efficient prediction of the wake. In free-
vortex methods, the vortical filaments trailed from
the blades are allowed to convect under the action of
the local velocity field to force-free locations. This
behavior is governed by the vorticity transport equa-
tion, see for example Ref. 7. While, in general, ‘free-
wake’ methods provide a high degree of versatility
and accuracy with minimal dependency on empiri-
cism, the large number of ‘free’ vortex elements re-
quired to model a rotor wake means that they are
inherently costly for routine use. Furthermore, the
inherent nonlinearity of the problem means that the
formulation of efficient, numerically robust, and phys-
ically accurate algorithms is a very challenging ob-
jective. To this end, numerous free-wake solution
methodologies have been developed, but have met
with varied success, e.g. Refs. 8-16 and Refs. 17-22.

In a typical free-vortex scheme, the vortex fil-
aments in the rotor wake are discretized along
their lengths into segments connected by collocation
points. The total induced velocity field at each collo-
cation point is determined by the sum of the external
velocity field and the velocity contributions induced
by all the other vortex filaments in the rotor wake.
The later is performed using the Biot-Savart law inte-
grated along the lengths of the vortex filaments. This
in itself, is not a computationally intensive task on a
per element basis. However, because the vortex fila-
ments must be discretized into short segements in ar-
eas of high curvature, the total number of evaluations
required to determine the effects of each vortex seg-
ment on every collocation point in the wake can incur
very large computational costs. For aeroacoustic pre-
dictions, the minimum azimuthal discretization reso-
lution may be of the order of one degree or smaller.
In such cases, the overhead required to compute a
free-wake solution can easily become prohibitive for
routine rotor design, even on a modern high end work
station.

Several attempts have been made to improve com-
putational efficiencies of free-wake methods. Schemes
have been developed to optimize the algorithmic
structures and exploit parallel computing capabilities
(e.g., Ref. 23). Some methods have used simplified
wake models based on ring vortices, limited wake dis-
tortion degrees of freedom (e.g., Refs. 24-26), or an-
alytical approximations for curved vortex segments
(Ref. 27). The most common approach, however, has
simply been to reduce the number of induced veloc-
ity field calculations. This can be done by updating
the induced velocities less frequently, by using fewer
vortex elements in the discretized wake, or by subdi-
viding the wake into near-field and far-field regions of
weak and strong influence — see for example, Refs. 28-
34. However, although successful in decreasing exe-
cution times, the resulting velocity field errors usually
undermine the accuracy of the wake predictions.



Overview of MFW Analysis

The MFW algorithm, which was first reported in
Refs. 35-40, is based on a non-Lagrangian relaxation
approach. Specifically, the equations governing the
rotor vortex wake structure are solved iteratively
by means of a unique pseudo-implicit, predictor-
corrector, relaxation method. This scheme has been
shown to give the wake predictions excellent numeri-
cal stability and convergence characteristics, and can
be applied over the entire flight regime, ranging from
hover through to high speed forward flight, including
vertical ascents and descents. Moreover, the scheme
can be applied to predict the wake under steady-state
maneuvering flight conditions, such as pitching or
rolling motions. The MFW is also multi-rotor capable
and can be used to model twin rotor systems such as
tilt-rotors, tandems and coaxials — the aerodynamic
interactions and mutually induced wake distortions
between both rotor wakes being fully accounted for
in the analysis.

In the MFW, the rotor wake may be modeled
with varying (user selectable) degrees of sophistica-
tion. This may include concentrated tip vortices, ad-
ditional secondary vortices, free or prescribed inboard
trailers, as well as shed vortex elements to account for
time-varying or azimuthal variations in blade loading.
Under some flight conditions where secondary trailed
vortices may be trailed only over a portion of the ro-
tor azimuth, such as from a large spanwise gradient
induced by a vortex, these are allowed to merge back
into the main tip vortices over the remainder of the
rotor revolution. The strength of each vortex element
in the wake is mapped to the time (azimuth) when
it was first created and trailed into the wake. Vor-
tex circulation strengths may be assumed to remain
constant over the discretized elements, or for some
improved realism and a minor increase in cost, the
strengths may be allowed to vary linearly over the
segment lengths. )

The vortex model itself has a direct bearing on
the wake solution. In the MFW, vortex tangential
(swirl) velocity profiles are represented using a va-
riety of (user selectable) desingularized algebraic or
exponential models. By default, a desingularized al-
gebraic model that closely resembles the measured
velocity profiles of actual rotor tip vortices is used.
The viscous decay (core diffusion) of aging vortices
is modeled in a manner consistent with experimen-
tal observations of rotor tip vortices. As an option,
the vortex filaments can be modeled assuming mul-
tiple concentric cores of specified radii and strengths
to emulate more complex vortex profiles.

One of the most significant features of the MEW is
the ability to compute very high fidelity wake solu-
tions than has been previously possible. Two special
algorithms have been developed to reduce the num-
ber of Biot-Savart (induced velocity) calls and reduce
execution times, but without sacrificing the predic-

tive accuracy or numerical robustness of the MFW
algorithm. The first method uses unequal discretiza-
tion step sizes in Tthe azimuthal direction and along
the length of the vortex filaments. This method re-
sults in reduced per iteration run times. The second
method is based on an adaptive grid sequencing ap-
proach where the wake solution is initiated using a
low resolution wake geometry. As the wake relaxes
with iterations, the resolution is increased sequen-
tially until only the final few iterations are performed
at the highest fidelity. Using these schemes, it is pos-
sible to compute accurate wake solutions of the order
of one degree of azimuth or smaller, but at practi-
cal execution times. Such high resolution wake pre-
dictions are very important from the stand point of
computing high fidelity blade airloads for acoustics
analyses.

Mathematical Basis of the
- MFW
The free-wake problem is governed by the vorticity
transport equation. This states that elements on a

vortex filament convect with the fluid, and the re-
sulting relationship can be written simply as

aF(, ) o
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where (1, ¢) defines the position vector of an elemen-
tal segment lying on a vortex filament that is trailed
from a rotor blade located at an azimuth ¢ at time
t, and where ( defines the age of the element relative
to when it was trailed into the wake. For the rotor
problem, Eq. 1 can be rewritten in terms of ¢ and ¢
a'S HIR

The right-hand-side velocity field (source term), ac-
counts for the net, instantaneous, velocity encoun-
tered by an element on a vortex filament in the rotor
wake. In addition to the free-stream and maneuver
velocity contributions, the source term is comprised
of the self- and mutually-induced velocities resulting
from all the vortex filaments in the wake, as well as
the induced contributions from the rotor blades.
The formulation used in the MFW model to inte-
grate Eq. 2 involves three steps. 1. Discretization
of the physical problem. 2. Transformation of the
governing partial differential equations into finite dif-
ference equations. 3. Development of a numerical
integration scheme. The present approach to solv-
ing Eq. 2 is based on a non-Lagrangian or relaxation
method where the rotor time is discretized into a
finite number of azimuthal increments of size A,
with vortices of finite length trailed behind each ro-
tor blade. Each vortex filament, in turn, is subdi-
vided into segments of equal angular resolution, A(.




A collocation point at the inter-segment junction of
each vortex segment on a particular filament defines a
family of points that are interconnected with straight
line vortex segments to represent that filament. Each
vortex filament is attached to its respective blade at
its point of origin, which defines the boundary con-
dition in the ¢ direction. Additional inboard trailed
vortices, if required, are modeled in an identical man-
ner. As the blades rotate, the wake collocation points
are allowed to convect under the influence of the local
velocity field and integrated over a finite time step or
azimuthal increment. The PDE given in Eq. 2 gov-
erns the behavior of each and every wake collocation
point. The actual number of collocation points de-
pends on the number of trailed vortex filaments, the
length of the vortices, the number of segments per
filament, and the angular resolution in the azimuthal
direction.

The induced velocity at an element in the wake
can be determined as a sum of the induced contribu-
tions from the free vortex elements and also from any
‘bound’ elements such as the rotating blades. This
velocity is written in terms of the Biot-Savart law as
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where 7(1, ) is the position of the elemental vortex
segment in the flow field, influenced by the total con-
tributions of the j** free vortex located at 7 (¢, ¢)
and of strength I'f(v;,¢), plus the influence of the
ith bound vortex segment of the j** blade. The sum-
mation for the free vortices is carried over all Ny,
free vortices in the rotor wake (trailed and shed).
The second term on the right-hand-side, accounts
for the 7,,, vortex segments that make-up the Ny,
bound vortices that represent the blades. Because the
strength of each bound vortex segment is dependent
on its radial position along the blade span as well as
the blade azimuth angle, its strength is represented

Note that the limits of integration over each free
vortex filament in Eq. 3 extends from ¢{ = 0 cor-
responding to the vortex-blade attachment (release)
point, to the end of the filament at { — oo. The in-
tegral for the bound (and shed) vortex elements are
evaluated over their finite individual lengths. Fig. 1
shows the individual contributions of all the vortex
elements in the rotor wake that contribute to the in-
duced velocity at some free collocation point p on
a vortex filament. Note that the blade ‘bound’ cir-
culation and any specified prescribed trailed vortex
filaments are not free vortices per se, but will con-
tribute to the induced velocity field at free points in
the wake.

Eq. 3 is a general expression for the induced veloc-
ity, and must be reduced into a more convenient form.

Blade bound
circulation

vortex

Evaluation point
PO

Figure 1: Induced velocities on a vortex element: free
and bound vortex contributions

While the bound vortices are straight line elements,
for which the Biot-Savart integral can be solved an-
alytically, this is not possible for arbitrary curved
vortex filaments. However, any curved filament can
be modeled using a sufficiently large number inter-
connected straight line segments. Vortex collocation
points at the inter-segment boundaries (see Fig. 2)
are then convected through the flow-field at their re-
spective local velocities. Eq. 3 is applied to each free
collocation point and the induced velocities can be
readily determined from geometrical considerations
for the straight vortex filaments. The free collocation
points convect through the flow field and change their
positions under the influence of the induced velocity
field as the wake evolves. The Biot-Savart law must,
therefore, be re-evaluated repeatedly for each collo-
cation point as the tip vortex geometries are allowed
to evolve during the free-wake iterations. This is the
primary cost in all free-wake models.

In the MEW, the discretization of the problem de-
scribed above results in transforming the continuous
physical domain into a discretized domain comprised
of a finite number of elements. However, the gov-
erning equation in Eq. 2 still cannot be solved ana-



Rotor blade

Straight line segment

Curved lip vortex filament

Figure 2: Straight line segment approximation of the
tip vortices
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Figure 3: Discretized computational domain

lytically. A numerical integration scheme, therefore,
must be developed. This requires the transformation
of the PDE’s into finite difference equations (FDE’s).
This is best described by first transforming the dis-
cretized physical domain into a computational do-
main. If the abscissa represents the ¢ direction and
the ordinate the ¢ coordinates, the computational do-
main can be represented as shown in Fig. 3.

In the MFW, the partial derivatives of Eq. 2 are
approximated in terms of finite differences using a
five point central differencing and velocity averaging
scheme, (Refs. 35-37). Using the notation defined in
Fig. 3, the resulting FDE form of Eq. 2 can be written
as
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Note that in the discretization process described
above, both the ¥ and ¢ coordinates now represent
the spatial locations of the collocation points in the
rotor wake, and the time-domain has been by-passed.
The evolution of the wake, therefore, cannot be de-
termined by integrating Eq. 4 in a Lagrangian sense,
but must involve an iterative procedure. The so-
lution of the FDE in Eq. 4 is essentially governed
by the unsteady, non-linear velocity or source terms
on the right-hand-side of the equation. There is one
such equation for each collocation point in the flow
and this relates the position vectors of the collocation
points to the local velocity field.

Numerical schemes used to integrate the FDE’s us-
ing the procedure described above must be both nu-
merically stable and accurate. From the stand point
of most applications in rotorcraft problems, it is also
essential to develop an highly efficient methodology.
The numerical integration scheme used in the MFW
analysis is essentially explicit. However, by includ-
ing information that has already been calculated at
‘upstream’ points ih the current iteration, a degree of
implicitness can be introduced into the scheme. This
results in a so-called pseudo-implicit method, which
results in faster information propagation through the
wake solution. To further enhance the numerical sta-
bility characteristics, the integration scheme is imple-
mented as a two-step predictor-corrector sequence.

Let n represent the iteration index such that r’;
represents the position vector of the kt* collocation
point on the vortex filament trailed from a rotor blade
located at i; at the current, n!* iteration. Analo-
gously, 7"~ ! represents the position of the same
point at the previous iteration, and r; x»*1 will be its
location at the next iteration. Using this notation,
the pseudo-implicit, predictor and corrector steps de-
rived from Eq. 4 can be presented in the following
point-operator notation,

Predictor:
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Corrector:
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The velocities used by the corrector step are given by
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Note that both, predictor and corrector steps have the
same degree of implicitness embedded within them.
The predictor step is used to determine the approx-
imate geometry at the current (n*h) iteration based
on the velocity field computed from the previous iter-
ation. This geometry is then used to approximate the
source terms (induced velocity field) that corresponds
to the predicted wake geometry. The corrector step
then uses an average or weighted average of the veloc-
ities from the predictor step, as well as the velocities
from the previous iteration that were originally used
by the predictor step. The parameter, w is a ‘relax-
atlon parameter’ that can be adjusted to compute the
weighted velocity average used by the corrector step.
Typically, w = 0.75.

Because the original PDE (Eq. 2) is first-order in
time and space, it requires the specification of an
initial condition in the 1 direction and a boundary
condition in the ¢ direction. However, because the
non-Lagrangian nature of the above formulation, the
initial condition degenerates into a second boundary
condition in the 1 direction. The boundary condition
in the ¢ direction, i.e., along the length of the vortex
filaments, requires that the vortices be attached to
the blades from which they are trailed. The boundary
condition in the azimuthal or ¢ direction implies wake
periodicity, i.e., the wake structure is self-preserving
and repeats itself every rotor revolution under steady-
state conditions.

In addition to the implicitness of the iterative
scheme, a further degree of implicitness can be in-
troduced into the solution process by choosing a pre-
ferred direction of information propagation (Refs. 39
and 40). This is done by using the known or spec-
ified boundary conditions in the ¢ direction, but by
computing the free-wake solutions around the rotor
azimuth as opposed to along the lengths of the vor-
tex filaments. Such an approach is referred to as an
implicit boundary conditions scheme, where wake col-
location points are continuously updated in azimuthal
sweeps thereby reducing the dependency on approx-
imate, mid-iteration collocation point information.
This is described in greater detail in Refs. 39 and
40.

Convergence Criterion

It is necessary to impose a convergence criterion on
any relaxation scheme. In the present analysis, this
is based on a measure of the Ly norm of the change
in the wake geometry between successive iterations.
In practice, this RMS change can be written in the
following form

1 Lz Kz 2
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Note that the RM S is normalized with respect to the
number of free collocation points in the wake. Con-
vergence is reached after the RM .S value, normalized
with respect to the first iteration RM S, drops below
a certain prescribed threshold between two successive
iterations. The normalized convergence threshold has
been defined to be of the order of 1074, and the RM .S
change must fall below this value to ensure that the
walke structure has properly converged. For an RM S
value of this order of magnitude, the wake geome-
try exhibits no appreciable change between successive
wake iterations. This then also ensures that the wake
geometry has truly converged to a steady solution,
and not just exhibited an initial convergence trend
and reached a local minima.

Vortex Model

From the above discussion, it is clear that the free-
wake is highly dependent upon the vortex induced
velocity field as determined from the Biot-Savart
law. In its original form as introduced in Eq. 3, the
Biot-Savart law assumes an ideal or potential vortex.
This, however, produces a singularity at an evaluation
point that lies on the influencing vortex. Likewise,
the induced velocities at points very close to the vor-
tex will experience unrealistically large induced veloc-
ities. These can cause the evolving wake to become
unstable, or at the very least, will result in a grossly
over-distorted and non-physical wake solution. This
is a problem common to most, if not all, free-wake
methodologies.

In the MFW, a physical viscous core vortex model
based on experimental measurements of rotor tip vor-
tices has been used (Refs. 41 and 42). Vortex mod-
els used in free-wake analysis are typically defined
in terms of their tangential or swirl velocity profiles.
One series of general desingularized velocity profiles
for rectilinear vortices may be written as (Ref. 43)
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Note that n is an integer variable and r is the dis-
tance along a radial emanating from the center of the
vortex. The maximum tangential velocity occurs at



7 = 7¢, which is defined, by convention, as the vis-
cous core radius. From Eq. 9, note that if n — oo,
the Rankine vortex profile is obtained, and if n = 1,
the Scully (Kauffman) velocity profile is recovered.
While both these models have been popularly used
in previous free-wake analysis, seemingly small dif-
ferences in the assumed tangential velocity profile of
the vortex model for the same core radius can have
some effects on the computed wake induced velocities.
Care must, therefore, be taken in selecting a vortex
model. By default the MF'W uses the n = 2 velocity
profile, although the other models may be selected by
the user.

In addition to the choice of vortex velocity pro-
file model, the induced velocities are also sensitive to
the dimensions of the vortex core radius. Physically,
the initial size of the tip vortex core radius of heli-
copter rotors is known to be of the order of blade
thickness, or typically 10-15% of mean blade chord
(e.g., Ref. 42). However, for some numerical models
used for rotor loads, performance, and acoustics, it is
often necessary to select a larger than physically re-
alistic core radius to avoid numerical problems. This
is physically incorrect because the size of the vortex
core radius has direct bearing on the predicted struc-
ture of the free tip vortex geometries in the far wake.
Therefore, a physically correct vortex model and core
size must be used, which must match as closely as
possible the actual characteristics of rotor vortices.

In the present analysis, the vortex core model al-
lows for viscous diffusion with age. One simple ap-
proach uses the Lamb-Oseen vortex diffusion model.
Here, the variation of the vortex core radius, r, with
time or age, t, can be determined as (Ref. 44)

e = 1.12v4vt (10)

In the MFW analysis, vortex diffusion has been ac-
counted for using a modified form of Eq. 10 so as to
include an ‘eddy,’ or turbulent viscosity coefficient 6,
such that

re = 1.12v4vét ' (11)

Also, the ideal tip vortex starts with a zero core ra-
dius that grows with the square-root of time, and no
assumptions need be made with regard to a starting
core radius. In practice, however, the physical roll-up
of a rotor tip vortex is very complicated, and usually
produces a vortex that is already in some stage of
decay. Eg. 11 can be modified to represent a variety
of initial core radii and growth rates, which can over-
ride the default values and be specified by the user
if required. For rotor applications, Eq. 11 can be
rewritten in terms of rotor time or the age of a vor-
tex element as t = (/. Substituting v = 1.46 x 10~°
for air into Eq. 11 and simplifying gives

T¢ = o + 0.00855 6£

) (12)

where 79 is an initial (measured) vortex core radius
at £ = 0 and ¢ is an experimentally determined co-
efficient. The effect of ¢ is to increase the rate at
which the vortex core grows with time. For a lami-
nar vortex, 6 would have a value of unity, however,
in practice, it is found that the resulting diffusion of
the vortex is non-physically slow. The eddy viscosity
coefficient can be written as a function of the vortex
Reynolds number, I' /v, as

6—1—|-a1F‘wg

(13)
Because the strength of the tip vortex veries with
azimuth, an average vortex strength has been used to
define 6, which is given by
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Tavg=—— > T (14)
J'ITLCL:D j=1 i

In general, 6§ will vary between fixed- and rotary-wing
models, as well as between full and scaled rotor sys-
tems. In the MFW, the default value is a; = 0.1 =
constant. This value has been determined through
numerical experimentation and comparison of pre-
dicted wake geometries with experimental measure-
ments (Ref. 35). A more complete discussion on the
effects of 6 on the wake solution can be found in
Refs. 35 and 37.

Acceleration Algorithms

The FDE’s that define the free-wake problem must
be evaluated for each and every collocation point
in the rotor wake. The computational cost associ-
ated with free-wake iterations can be estimated di-
rectly as a function of the number of evaluations that
must be performed to compute a wake solution. Let
Ny = 360° /Ay be the number of discrete azimuthal
grid points. Likewise, for a vortex filament that is n
rotor revolutions old, the number of free collocation
points (= number of ‘free vortex elements on that fil-
ament), is N; = n 360°/A¢. Therefore, a total of NZ
Biot-Savart evaluations must be performed for each
free vortex filament at each of Ny, locations to account
for the total self-induced velocities at each colloca-
tion point from every other vortex element. Assuming
that the wake is modeled using only a smgle (tip) free
vortex filament, this results in Ny, N evaluations to
define the wake at all azimuth angles. For a rotor with
Nj blades, a further Ny (N, — 1) Ny NZ evaluations
must be performed to account for mutually induced
effects. The total number of Biot-Savart evaluations
required per free-wake computation is given by

Ng = (1+ Ny (Np — 1)) Ny N2 (15)

For equal step sizes, Ay = A{ = N¢ = nNy, and so
the total number of evaluations becomes

Np=(1+Ny (Ny—1))n N3 (16)




For a typical four bladed helicopter rotor, assum-
ing three revolutions of free-tip vortices and equal
discretization step sizes of 10 degrees, Eq. 16 shows
that the Biot-Savart integral must be evaluated over
1.8 x 108 times to cover the entire computational do-
main just once. Doubling the resolution (i.e., us-
ing step sizes half the original size, such that Ay =
A(¢ = 5°) requires eight times that number, or over
14.5 x 10°% evaluations. For acoustic analysis, where
typically Ay = A¢ = 0.5°), over 10® induced ve-
locity evaluations must be performed. For additional
free vortex filaments, the mutual interactions between
all the free vortices must also be computed, leading
to further increases in computational effort. Clearly
then, even a relatively modest reduction in the num-
ber of velocity field evaluations can potentially trans-
late into significant reductions in CPU time.

A measure of the gain in computational efficiency
can be made in terms of the CPU times required be-
tween coarse and refined wake grids. Assuming that
the CPU time is directly proportional to the number
of operations leads to the following hypothesis:

CPU time «x Number of operations o< Number of
Biot-Savart evaluations o« Number of free collocation
points oc Number of trailers, length of free vortex fil-
aments, discretization resolution.

Based on the above proportionality assumptions,
and by utilizing Egs. 15 and 16, a computational cost
index, CI, can be defined as a measure of the gain in
computational efficiency. Three cost indices can be
defined as the reciprocal of the ratios of relative CPU
cost
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CPUj, corresponds to the execution time required for
a discretization resolution corresponding to step sizes
Ay, Aly. CPU; is the execution time required for
a coarse resolution with step sizes Ay = NAYyg
and/or Ay = NA¢. From Eq. 17, it will be seen
that doubling the azimuthal step size relative to the
baseline results in an algorithm that requires half the
time (on a per iteration basis) of the baseline. Dou-
bling the step sizes in the ¢ direction reduces the CPU
time by a factor of four, whereas doubling both the ¢
and ¢ step sizes increases the computational efficiency
eight-fold.

The computational enhancement algorithms devel-
oped for the MFW accelerate the solutions by system-
atically decreasing the total number of Biot-Savart
evaluations, and therefore, the CPU time required,
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Figure 4: Rotor azimuth and vortex filament dis-
cretization
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Figure 5: Discretized computational domain for lin-
ear velocity interpolation, Ay > A(.

while also maintaining the fidelity of the predictions.

Linear Velocity Interpolation

The underlying principle for using linear interpolation
with unequal step sizes is to perform fewer explicit
induced velocity evaluations, while retaining the ac-
curacy and fidelity of the wake obtained with small
equal discretization step sizes. This acceleration algo-
rithm uses larger step sizes with linear interpolation
to map the azimuthal and vortex filament discretiza-

- tions. The induced velocity terms, denoted by Ving in

Eq. 4, are treated as before using velocity averaging
and relaxation parameters (Refs. 36-38).

'The computational economy of an interpolation al-
gorithm is a consequence of not having to evaluate the
Biot-Savart law for each and every collocation point
in the computational domain. The position in space
of every collocation point (whether calculated or in-
terpolated) is still determined the same way. How-
ever, the self- and mutually-induced velocity fields
are computed explicitly only between the free colloca-
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tion points. Linear interpolation is used to determine
the local induced velocity field at the interpolated
or pseudo-free collocation points. This local, inter-
polated velocity field is then used at the pseudo-free
collocation points to convect them to force-free loca-
tions in the rotor flow field, just as for the truly free
points. Note again, however, that it is not the spa-
tial positions of the collocation points that are being
interpolated, but the local velocity field itself.

Note that two velocity interpolation algorithms are
possible, depending upon the discretization ratios be-
tween the rotor azimuthal and vortex filament step
sizes. If AY/A¢ > 1, with Ay being an integral
multiple of A(, then interpolation is performed in
the azimuthal direction. The discretized computa-
tional domain for this case is shown in Fig. 5. The
solid symbols represent the explicitly computed col-
location points, whereas the open points are those
where the induced velocities are interpolated. The
interpolation algorithm is applied to determine the lo-
cal induced velocity field at each interpolated (open)
point, and not to directly interpolate the spatial lo-
cations. All wake collocation points are allowed to
convect through the flow field. While simple displace-
ment interpolation could have been used, this would
have resulted in a wake solution no different than that
obtained using a coarse discretization with additional
collocation points superimposed on the solution. In
such a case, it would not be possible to obtain a so-
lution approaching the predictive accuracy of a high
resolution wake. Note that interpolation is performed
between points that lie on different vortex filaments
but on the same characteristic line (direction of infor-
mation propagation) — i.e., points “C”, “D” and “E”
are interpolated using information at points “A” and
“B‘” ~ N

Interpolation along the vortex filaments is applied

when the discretization step in the ¢ direction is
larger than the discretized azimuthal step size, i.e.,
AC/AY > 1, and, A¢ is an integral multiple of A
For such cases, collocation points are interpolated be-
tween the originally specified, calculated collocation
points along the length of the same vortex filaments.
For example, in the discretized computational domain
shown in Fig. 6, points “C” and “D” (open) are in-
terpolated using information from calculated points
“A” and “B” (solid) lying on the same vortex fila-
ment. The velocity field at each of the calculated,
free collocation points is explicitly computed by in-
voking the Biot-Savart law, and these sparse, free
collocation points are, again, assumed to be inter-
connected by straight line vortex segments. The lo-
cal induced velocity field at each of the pseudo-free
collocation points is linearly interpolated in the ¢ di-
rection. This approximate velocity field is then used
to convect these points.

The gain in computational efficiency in using veloc-
ity interpolation, therefore, comes from the savings
from performing fewer evaluations of the Biot-Savart
law because it is not evaluated at the interpolated
points. When applying interpolation algorithms, the
characteristic lines of information propagation match
the equal step sizé cases, these concepts also being
illustrated in Figs. 5 and 6.

Adaptive Grid Sequencing

The adaptive grid sequencing algorithm starts the
free-wake solution using a coarse grid. As the free-
wake iterations proceed, the grid resolution is adap-
tively refined. As explained previously, wake con-
vergence is measured as an L;-Norm or root-mean-
square (RMS) change in geometries between succes-
sive iterations, normalized with respect to the num-
ber of free collocation points in the wake, and rela-
tive to the first iteration RMS. The final few wake
iterations are performed at the highest grid resolu-
tion. Using a low resolution grid during the initial
iterations provides better initial condition to begin
the subsequent higher resolution iterations. Gains in
computational efficiency result as a consequence of
faster convergence and by performing fewer overall
induced velocity evaluations.

The initial iterations are performed assuming a
coarse level wake. At each iteration level, only those
rotor azimuthal locations and wake collocation points
that correspond to the current level of discretization
are treated freely. The ‘interior’ wake collocation
points are not computed explicitly, but are treated
as pseudo-free and are allowed to convect through the
rotor flow at the interpolated velocity field. When the
iteration block corresponding to a given resolution is
complete, a new iteration block is then initiated using
a higher resolution than before. The previous itera-
tion solution is used as a starting value or initial wake
geometry for this new iteration block. The process is



repeated until the final few iterations are performed
at the highest resolution desired. This results in a
wake geometry that is essentially identical to that
obtained by performing all the iterations at the high-
est resolution, but with up to an order of magnitude
reduction in computing effort.

Results and Discussion

Axial Flight

Axial flight conditions can often prove to be challeng-
ing for free wake models from the stand point of nu-
merical stability. Many existing schemes exhibit non-
physical numerical instabilities in the solution for the
tip vortex locations, especially in hover. The MFW
has demonstrated to be free of these numerical insta-
bilities.

Sample results, obtained from a coupled, rotor
trim/free-wake solution are presented in Fig. 7 us-
ing two revolutions of free wake and for a discretiza-
tion resolution of Ay = A( = 10°. The figures
show isometric views of the wake for a four bladed
rotor of solidity, ¢ = 0.095, operating at a nominal
thrust coefficient of Cr = 0.008. In pure axial as-
cent, Fig. 7(a), the wake extends far below the rotor
and contracts smoothly in accordance with classical
momentum theory. The smooth contraction of the
walke is also apparent from Fig. 7(b), from which it is
also clear that the solution is free of non-physical nu-
merical perturbations or distortions. Axial descent,
Fig. 7(c) exhibits a more interesting trend. The wake
for this flight condition lies entirely above the rotor,
and expands radially outward, a result that is again
consistent with momentum theory. The predicted
wake geometries are azimuthally symmetric, as ex-
pected under axial flight conditions.

Forward Flight
Steady, Level Flight

Tip vortex predictions in forward flight for advance
ratios ranging from p = 0.05 to 0.3 are shown in
Fig. 8. The progressive increase in wake skew an-
gle with increasing advance ratio is clearly apparent.
Moreover, the lateral roll-up of the trailed wake, down
stream of the advancing and retreating blades can
also be seen.

The corresponding fore and aft vertical displace-
ments of the tip vortices in the longitudinal plane of
the rotor are shown in Fig. 9(a) and (b) versus wake
age. Of interest are the forward wake boundaries,
which show the trajectories of the tip vortices passing
above the rotor tip-path-plane. This has also been ob-
served experimentally (e.g., Ref. 45). Moreover, the
effects of blade passage events on the wake (axial) dis-
placements can also be seen. Comparisons between

Figure 7: Isometric wake geometries in axial flight,
(a) vertical ascent at A, = 0.72, (b) hover, (c) vertical
descent at A, = =0.72

wake predictions from the MFW analysis with exper-
imental measurements have demonstrated the phys-
ical accuracy of the wake solution for various flight
conditions — see Refs. 35-36.

Descending Flight

Descending forward flight can be simulated by spec-
ifying an aft tilt of the rotor shaft, oy, = 2° for
Cr = 0.008, and g = 0.1. The vertical displacements
versus wake age at the front of the rotor disk are
shown in Fig. 10. Compared with Fig. 9, it is clear
that the tip vortices trailed from the blades at the
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Figure 8: Predicted wake geometries in forward flight,
Cr =0.008, oy = —2°, (a) £ =0.05, (b) p =0.1, (¢)
p=02,(d) p=03 '

front of the disk travel well above and further down-
stream before passing back down through the rotor
disk. It is well known that under such descent con-
ditions, blade-vortex interaction (BVI) events can be
severely exasperated, leading to increased rotor noise
and vibration. Contour maps of the instantaneous
inflow velocities for forward and backward shaft tilts
of the rotor at an advance ratio of 0.2 are shown in
Fig. 11. In the regions of high velocity gradients,
large temporal aerodynamic loads are produced on
the blades. From Fig. 11, it can also be seen that the
likelihood of BVI increases on the retreating side of
the rotor.
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Maneuvering Flight

The MFW analysis can be applied to determine
wake structures under steady-state maneuvering con-
ditions, such as constant rate pitching and rolling.
Sample wake predictions have been performed for a
rotor in forward flight (1 = 0.1), executing a steady
nose-up pitch maneuver at a rate of § = 0.008. A



Figure 11: Wake induced inflow in steady level flight
(upper), and descending forward flight (lower)

comparison of the wake boundaries in the longitu-
dinal plane of the rotor between the maneuvering
and level flight cases serves to illustrate the modi-
fied wake structure produced by the pitching motion
— see Fig. 12. The rotor induced velocity field is also
modified as a consequence — the effects on the rotor
response have been identified as a possible source of
rotor cross-coupling (Refs. 1-4).

Wake Convergence

Numerical convergence trends of the wake for the
flight conditions discussed above are shown in Fig. 13.
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Figure 12: Pitching wake boundaries
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Figure 13: Wake convergence trends in axial and for-
ward flight

In general, it can be seen that the wake converges
faster (in fewer iterations) with increasing advance
ratio. It can be seen that the solutions relax smoothly
in all cases, and convergence is monotonic and abso-
lute.

Wake Acceleration

The results presented above were for a nominal dis-
cretization of 10° in the azimuthal direction and along
the vortex filament lengths. Although considerably
more refined than most previously available free-wake
analyses, the application of free-wake schemes to de-
termine high resolution blade loads for acoustics anal-
yses require even finer resolutions. However, because
the cost increases approximately with the cube power
of the number of wake elements, very high resolu-
tion wake predictions suffer from very high run times.
Some wake models also impose a lower bound on the
level of discretization to avoid numerical problems.
The wake acceleration schemes described previously
have been developed to allow for very high resolution
wake geometries to be computed at reasonable exe-



cution times and without sacrificing the accuracy of
the predicted solution.

Using linear interpolation with Ay = 1° and A¢ =
10°, tip vortex geometry predictions for a tandem ro-
tor configuration have been obtained, providing an
effective wake resolution of 1 degree. The specified
rotor geometry and spacing is representative of a CH-
47D configuration, with a significant overlap between
the two rotors and their wakes. The operating ad-
vance ratio is 0.1 and both rotor shafts are tilted for-
ward 1 deg. Top, side and rear views of the predicted
wake geometries are shown in Fig. 14.

It is clear that the wakes from the two rotors un-
dergo significant mutually induced distortions, partic-
ularly in the region where the two rotors overlap each
other. The rear portion of the wake from the front
rotor is convected closer to the rotor tip-path-plane
(Fig. 14, side view) under the influence of the wake
from the rear rotor. Such interactions can potentially
lead to significant increases in BVI and the associated
generation of impulsive noise and vibration. The fore
portion of the wake from the rear rotor is also signif-
icantly distorted, with increased vertical tip vortex
displacements. Recall that the full mutual interac-
tions between both rotor wakes have been accounted
for in these calculations.

For twin rotors, wake convergence is monitored sep-
arately for the vortices trailed by both rotors. The
convergence characteristics of the tandem rotor wakes
are shown in Fig. 15, and like the single rotor, demon-
strate that convergence is absolute and monotonic for
both wakes. .

Predicted wake geometries for a tilt-rotor configu-
ration in forward-flight with multiple trailed vortex
filaments including the effects of the shed wake are
shown in Fig. 16. The wake was discretized using
vortex element step sizes of A = 15° and a rotor
azimuthal discretization of Aw = 5°. The wake con-
vergence threshold was specified to within a 0.09%
relative change in wake structure between consecu-
tive iterations. As for the tandem-configuration, wake
convergence was monitored independently for all free
vortices from both rotors — see Fig. 17.

Summary and Conclusions

The basis and mathematical formulation of the MFW
free-vortex wake analysis has been reviewed. The
MFW is based on a non-Lagrangian pseudo-implicit,
predictor-corrector, relaxation algorithm. The MFW
can be used to predict the vortical rotor wake struc-
ture and inflow velocities for rotors operating in axial
and forward flight. Solutions can also be obtained
during steady-state maneuvers, such as coordinated
turns. Another feature of the MFW is that it can
solve for the interacting wake structures generated
by multi-rotor configurations such as tandems and
coaxials. Acceleration schemes have been formulated
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Figure 14: High resolution wake geometry for a tan-
dem rotor configuration using linear interpolation; 1
deg. effective discretization (A{/Ay = 10)

to reduce the execution times for wake geometry pre-
dictions, but without loss in predictive accuracy or
numerical robustness of the method. Some of these
acceleration schemes are generic, and can be applied
to other wake models.

The MFW allo“}s for various user selectable options
to allow the rotor wake to be modeled with varying
degrees of sophistication — these ranging from sin-
gle tip vortices to multiple trailed filaments and shed
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Figure 15: Convergence characteristics for the tan-
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circulation elements. Various desingularized vortex
and viscous diffusion models can be used, some of
which are user selectable. Examples of the predicted
wake geometries for various flight conditions, rang-
ing from axial flight to steady maneuvering forward-
flight, have been presented to demonstrate the ca-
pabilities of the scheme. Very high resolution wakes
for multi-rotor configurations can also be computed,
which are useful for aeroacoustic analyses. Abso-
lute convergence of the numercial solutions has been
demonstrated for all flight conditions and levels of
wake discretization, demonstrating the robustness
and stability of the wake scheme. The numerical
attributes and wide range of possible applications,
along with realistic computational costs, make the
MFW ideally suited for inclusion into comprehensive
schemes for rotor performance, aeroacoustics, aeroe-
lasticity and flight mechanics analyses.
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AEROELASTIC OPTIMIZATION OF A COMPOSITE TILT ROTOR

Omer Soykasap and Dewey H. Hodgeé

School of Aerospace Engineering,
Georgia Institute of Technology,
Atlanta, Georgia

ABSTRACT:

Composite tilt rotor aeroelastic optimization is performed by using the mixed
variational formulation based on exact intrinsic equations of motion for dynamics of

moving beams by Hodges along with the finite-state dynamic inflow theory by Peters and
He. "

A composite box beam model is used to represent the principal load carrying
member of the rotor blade. The blade is discretized using finite elements. Each wall used
to model the box beam is made of 24 laminated orthotropic composite plies.

For the optimization, design variables are blade twist, box width and height,
horizontal and vertical wall thicknesses, the ply angles of the laminated walls and
nonstructural masses. The rotor is optimized for the figure of merit in hover and the axial
efficiency in forward flight while keeping the same thrust levels in both flight modes.
Blade weight, autorotational inertia, and geometry are considered as constraints.
Davidon-Fletcher-Powell technique is used for the unconsrained optimization. Results
obtained are presented in the paper for effects such as extension-twist coupling, choice of
layups, and cross-sectional geometry of the blade. ‘
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INTRODUCTION

o Tilt rotor aircraft 1s one of the most important
vehicles that are capable of vertical take off and

landing (VTOL).

e The tilt rotor aircraft combines the high-speed
efficiency of a turboprop aircraft with VTOL
capabilities of a helicopter. |




In this study, composite tilt-rotor aeroelastic
optimization 1s performed by using

e the mixed variational formulation based on the

exact intrinsic equations of motion for dynamics
of moving beams by Hodges

eand the finite-state dynamic inflow theory by
Peters and He.




AEROELASTIC ANALYSIS

e A composite box beam model 1s used to
represent the principal load-carrying member of
the rotor blade.

e The blade is discretized using finite elements.
Each wall used to model the box beam 1s made
of 24 laminated orthotropic composite plies.




Figure 1. The blade cross section




e Acroelastic analysis uses Shang’s code
AEROSCOR, extended to include axial flow.

e Structural Analysis:

Cross-Section Analysis

Beam Analysis




Cross-Section Analysis

eThe beam stiffness coefficients are obtained
from anisotropic thin-walled closed-section
beam theory (Berdichevsky et al.), based on
asymptotic reduction of shell theory.

eFor a realistic cross-section, analysis can be
done by VABS.




Beam Analysis

e A nonlinear beam theory based on exact
intrinsic equations for dynamics of beams in a
moving frame by Hodges 1s used.

eThe theory presents a compact and complete
variational formulation that 1s 1deal for finite

element analysis.




eThe intrinsic equations are derived from
Hamilton’s principle, which is written as

tﬁ _5(K—U) éw_drdt =N

[ oL _

where K and U are kinetic and strain energy
densities per unit length, respectively, and oA is
the virtual action at the extremities of the space-
time domain.




e The internal force and moments vectors Fz and
Mp, and linear and angular momentum vectors
Pg and Hp are related by the beam constitutive
laws to the strain and force measures, and
velocity and momentum measures:

h —I’}A 7
_[s})” 1d

K m 1
- -




The finite-state dynamic inflow theory by Peters
and He 1s used in the aerodynamic modeling.

e The blade sectional aerodynamic lift, drag and
moment developed are based on an unsteady
thin airfoil model.




e The unsteady induced flow 1s computed from a
3-D dynamic wake theory.

e The inflow 1s expanded as

i)=Y, SOl sl

m=On=rmt] i 3,...

where the ¢'»’s are the radial inflow shape
functions.




OPTIMIZATION
IMPLEMENTATION

e The optimum rotor is posed as a constrained
maximization problem with multiobjective.

e Design variables are blade twist, box width and
height, horizontal and vertical wall thickness,
the ply angle of the laminated walls and
nonstructural masses.




e The optimization problem 1s stated as

Maximize FXEKKE,+K7,
Subjectto  g.(X)<0 fori=1,m
h;(X)=0 for j=1,2

X <X <X for i=1,n

where Fy=Tv/P and n,=TV/P




It is assumed that the optimum rotor must be
capable of the same thrust levels in both flight
regimes:

hl :Thover _(Thover)rqv =0 _
h2 =1 e _(Yzmise)rqv =0 ‘




Inequality Constraints

Constraints imposed on the optimization are blade
mass, autorotational 1nertia, strength, and
geometry:

e The first constraint imposed 1s blade mass as

gl = m/mref _1SO




e Next, the wall thickness 1s constrained so as not
violate the modeling approach:

g. =10(t,/h), -1<0 fori=23,...13
g =10(t /b). -1<0 fori=1415,..., 25

e Then, the blade mass inertia for autorotation 1is
considered as a constraint: |

g26 = 1_IA[IAref S O




e To prevent the blade stall, angle of attacks for
both flight regimes are constrained:

-1<0
-1<0

gy =0/

ref

g =0,

ref

e Finally, Tsai-Wu failure criterion 1s used to
prevent the material failure:

g, =F-1<0
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eThe ADS (Automated Design  Synthesis)
optimization code 1s used as a optimizer




OPTIMIZATION RESULTS

e The reference rotor 1s an existing three-bladed
gimballed rotor based on the XV-135.

e The typical operating points are

Hover ;. Cr/0=0.13, =565 rpm at sea level
Forward flight: C/6=0.05, 2=458 rpm, and V=300
knots at 16000 ft




e Rotor properties are

Number of blades 3
Radius of rotor disc 381 m
Blade cord 35.6 cm
Blade mass 47.48 kg

Precone angle 2.5 deg

Autorotation inertia 109.89 kg m”




Figure 2. Blade chord distribution Figure 3. Blade twist distribution
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e The box beam 1s made of AS4/3501-6. The
blade 1s divided into 12 finite elements. Each
wall used to model the box beam 1s made of 24
laminated plies.

e Orientation angles of the laminates are assumed

to be same for each wall to take advantage of
extension-twist  coupling and ease of
“manufacture.




Design Sensitivity

e The design sensitivity 1s the rate of change of Fy
and 1., (normalized by the trimmed values) with
respect to a design variable.

e Sensitivities are obtained by using the finite-
difference technique, and are given on the
following figures.




Figure 5. Sensitivity for ply angle Figure 6. Sensitivity for twist
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e The performance 1s more sensitive to ply angle
and twist than to other design variables.

e The performance is more sensitive to box width,
height, and thicknesses around the quarter chord

whereas it 1s more sensitive to lumped mass
inside the box and leading edge weight near the

tip.




e The baseline tilt rotor was designed to perform
both hover and forward flight capability. The
weighting factors are taken to be K;=K,=0.5.

e To accomplish the multiobjective design goal, a
multistep approach 1s applied.




eTo see the extension-twist coupling effect on
the performance, the results are obtained for the
unconstrained optimization problem taking into
account the ply angle as a design variable.

e Davidon-Fletcher-Powell technique 1s used for

the problem considered. Optimum solutions are
given for hover, forward flight and for both

tlights.




The

Ply angle
(deg)

Increase
(%)

Baseline

5

Hover

-10.736

1.60

Forward
flight

-33.501

87659

5.58

Optimum
for both

-22.561

15064

87478

3.39

effect of ply angle on the rotor performance
1s shown on the Figure 13.




e Next, twist angle at each finite element of the
blade 1s considered as a design variable as well
as ply angle. Starting from the previous
optimum ply angle, objective function 1s
maximized.

Increase (%)

Baseline -

Optimum




e Finally, the box beam design variables and non-
structural masses are included in the
optimization problem, which requires total 73
design variables. Starting from the optimum ply
angle, objective function 1s maximized.

Fum N |Increase (%)

Baseline 83025 -

Optimum 87523




Figure 13. The Effect of ply angle on the performance
Figure 14. Optimum twist distribution

0.90

0.88

0.86 -

0.84 --+--baseline

—a—optimum

0.82

S A Ao Y SRR Ao A-~‘
0.80 - )

—e— Figure of merit
0.78 - —m—axial efficiency
076 | - - & - - objective function

JM
0.74

0.72

Performance

Twists distribution, deg

0.70 T T z ‘ T T r r
45 -40 -35 30 -25 -20 -15 -10 -5

Ply angle, deg

Figure 15. Optimum horizontal wall thickness Figure 16. Optimum vertical wall thickness

1.6

-
sy

---e-- baseline--

-y
N

—a—oplimum

-
(=]

o
o

--+--baseline

Wall tickness, cm
Wall thickness, cm
o ‘
@

—&—oplimum

o
~

o
o

Q
o
o




CONCLUSIONS

e This study has described the progress in the
development of an aeroelastic optimum design
of a composite tilt rotor. At this stage the
problem 1s considered as an unconstrained
optimization problem.




e Optimizing the extension-twist coupling for the
rotor performance yields significant
improvements. Optimum design 1s compared
with the XV-135 tilt rotor performance.

e Design sensitivity show that the performance is

more sensitive to twist angle and ply angle than
to other design variables. |

¢ Constraint problem will be a future study.




THEODORSEN LIFT DEFICIENCY FUNCTION
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ABSTRACT

The finite state paradigm of dynamic wake has been recognized as the viable applied
aerodynamic theory, and it is an exact solution to the three dimensional potential flow
equations. This theory has been successfully applied to both rotary wing and fixed wing
(stopped rotors) in aeroelastic analysis. However, its application is limited to a low range
of reduced frequency (0 < k < 0.15). The limitation is due to the convergence of the
harmonic expansion of flow field. This expansion converges effectively and efficiently for
the average or uniform inflow while it does not converge for the gradient of induced flow.
This limits the application of present finite state model to reduced frequencies for which the
gradient is not important.

Theodorsen function is first expressed in terms of Bessel functions that are equivalent
to uniform inflow and gradient of inflow. Then, it is compared with the results of finite
state approximation. The results show that the effect of neglecting the inflow gradient
becomes critical at k=0.3 for the real part of Theodorsen lift deficiency function and k=0.15
for imaginary part of the function. Also, an emphasis is given to determine the inflow
gradient by 2-D finite state model assuming that the uniform inflow is known from
Theodorsen model. This study gives a better understanding of the problem and serves as a
building block for a hybrid model with uniform inflow from 3-D theory (outer expansion)
and inflow gradient from 2-D theory (inner expansion). Such a model would remove the
limitation on reduced frequency and expand its range of application.
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f SCOPE OF WORK N\

TO UNDERSTAND THE LIMITATION IN THE
CONVERGENCE OF THE HARMONIC EXPANSION OF
FLOW FIELD

ANALYTICAL EXPERIMENT ON THEODORSEN
FUNCTION AND TO FIND THE EQUIVALENT OF
INFLOW GRADIENT

TO SERVE AS A BUILDING BLOCK FOR A POSSIBLE
HYBRID MODEL WITH 3-D UNIFORM INFLOW AND
2-D INFLOW GRADIENT

N /




/ FINITE STATE PARADIGM \

ITIS A VIABLE APPLIED AERODYNAMIC THEORY TO
MODEL THE DYNAMIC WAKE FOR ROTORCRAFT
AEROELASTIC PROBLEMS.

IT IS BASED ON THE EXACT SOLUTION TO THE
THREE DIMENSIONAL POTENTIAL FLOW
EQUATIONS.

THE INDUCED FLOW IS EXPRESSED AS A SET OF
HIERARCHICAL LINIEAR DIFFERENTIAL

\EQUATIONS. /




INDUCED FLOW

OA 9™ _ 1 dr/dt
ot Ix 2 (b-x)

\ = Z)}\ncos(nq)) X=Db COS((P)

-b<x<b




INDUCED FLOW EQUATIONS
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THEODORSEN FUNCTION

H(k)
HP(k H+iHG k)

Ck) =




FINITE STATE APPROXIMATION

1 +—21—7\1
Ck) = 7
1 +k0+-2—k1

Ck) =
1 +7\.O




FINITE STATE PERSPECTIVE

For 1 =1
;\021_1 LM:I_Z_ -1
| 2 1
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ALTERNATE APPROACH

FOR 0=1
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ANALYTICAL EXPERIMENTS

1. STUDY THE VARIATION OF THEODORSEN
FUNCTION WITHOUT THE TERM EQUIVALENT TO
INFLOW GRADIENT.

2. STUDY THE SIMILAR BEHAVIOUR FOR THE FINITE
STATE APPROXIMATION TO THEODORSEN
FUNCTION.

3. STUDY THE HYBRID FORMULATION WHERE THE
UNIFORM INFLOW IS FROM THEODORSEN
THEORY AND GRADIENT OF INFLOW IS FROM
FINITE STATE THEORY.

4. DETERMINE THE INFLOW GRADIENT BY FINITE
STATE METHOD ASSUMING THAT THE UNIFORM
INFLOW IS KNOWN FROM THEODORSEN THEORY.
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CONCLUSIONS

THEDORSEN FUNCTION IS FOR THE FIRST TIME
EXPRESSED IN TERMS OF BESSEL FUNCTIONS
THAT ARE EQUIVALENT TO UNIFORM INFLOW
AND INFLOW GRADIENT.

THE EFFECT OF INFLOW GRADIENT ON
THEODORSEN FUNCTION IS IDENTICAL FOR
BOTH EXACT MODEL AND APPROXIMATE FINITE
STATE MODEL.

THE COMPUTED INFLOW GRADIENT FOR GIVEN
UNIFORM INFLOW IS ALMOST AGREE WITH
EXACT MODEL FOR n=2, IN THE RANGE 0O<k<1.
HOWEVER, FURTHER STUDY IS REQUIRED.
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® Ground Contact, Hover and Trimmed
Forward Flight

@ Sensitivity of the Damping Predictions to
Modeling Wake Dynamics (from no-inflow to
dynamic inflow to full wake dynamics)

© Parametric Study

O Correlations
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Wake Equations

Inflow on the i-th blade

Aot = S g () [ (8) cos(rape) + B (1) sin(ri)]

r=0 j=r+41,r43

Inflow parameters

V =

[,“2 + (/\t + Am) ]

s+ 38) =i




Wake states are governed by

M {&;} + VLS {of } = 0.5 {r)*}

MG+ VL) = 05 ()
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Coupled Rotor-Body-Wake =2
Equations

X = £(X,C,t)

X = Rotor-Body-Wake States
(lag, flap, pitch, roll and wake states)

C = Control-Input Vector

(Collective pitch 6,, Cyclic Pitch Components
O, and O, and shaft tilt angles o ;. ., and o))
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Illustration:

Number of Blades

Number of Harmonics

< O
n o
b

. X has 26 states:
10 wake states
4 body states
12 blade states in multiblade coordinates of
flap and lag
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Analysis

@ Periodic Shooting With Damped Newton
Iteration

2] Floquet Analysis

(The finite-state wake model introduces
periodic coefficients even in axial flight)




Outline

= Convergence of the control inputs, periodic responses and
damping levels with respect to the number of wake
harmonics for increasing advance ratio ' and thrust level

CT /0
0<pn<04and0.05<C/o<.15

- ®@Parametric study
@ Advance Ratio (0 < 1 < 0.4)
Thrust Level (0.05 < C,/o < .15)
Number of Blades (Q = 3,4 and 5)
® Comparison of the predictions from the finite-state
and dynamic inflow models




Outline

= Correlation

@ Bousman’s database in the ground-contact
conditions

® Comparison of the correlations from the finite-
state wake,

dynamic inflow and vortex models
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Fig. 22 c. Mode Frequencies With Increasing Rotor Speed for
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@ Conclusions

Convergence of Predictions: Control Inputs, Periodic
Responses and Damping Levels

0 < AdvanceRatioL < 0.4; 0.05 < Thrust Level Ct/6< 0.15

PAFor0< <04 and 005<Cr/o0<015, the predictions
with nine harmonics converge in the sense that the
maximum error relative to the predictions with 10 or
more harmonics is less than 5%.

><'The number of harmonics required for convergence
generally increases with increasing advance ratio 1 and
thrust level Cr /0 —
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Parametric Study
(Dynamic Inflow and Full Wake Dynamics; Trimmed
Flight; Parameters: ) < Advance Ratio [l < 0.4;
0.05 < Thrust Level Ct /6 < 0.15; 3 < Number of BladesQ < 5)
PD}AThe differences in the predictions with the dynamic

inflow and finite-state wake models generally increase
with increasing thrust level and advance ratio

><'The damping level of the lag-regressing mode increases
with increasing advance ratio

></The damping levels of the body modes show a bucket-like
variation with increasing advance ratio

P<I'The basic characteristics of aeromechanical stability are
not sensitive to the number of blades
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Correlation Study
(Configuration 1 and 4)

><Overall, a good correlation is obtained from the finite-state
wake model for the lag regressing, body roll and pitch, and
flap regressing modes

><For the lag regressing mode, the correlations from the
finite-state wake and dynamic inflow models are nearly
identical | |

P><For the body pitch and roll modes the correlations from
the finite-state wake, dynamic inflow and vortex models
generally agree
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D<[For Configuration 1 (no data), the predictions from the
finite-state wake and dynamic inflow models are fairly
close. Despite the similarity of the predictions from the
finite-state wake and vortex models, there are
appreciable quantitative differences; this merits further

investigation

P<'Within the data range (Configuration 4, 500 < Q <1000
RPM), the finite state wake, dynamic inflow and vortex
models provide nearly identical correlation.




Coupled Rotor/Fuselage Vibration Analysis for a Teetering Rotor and
Comparison with Flight Test Data

Hyeonsoo Yeo Inderjit Chopra

Alfred Gessow Rotorcraft Center
Department of Aerospace Engineering

University of Maryland, College Park, MD 20742

A comprehensive vibration analysis of a coupled rotor/fuselage S};stem for a two-bladed tee-
tering rotor using finite element methods in space and time is developed that incorporate
consistent rotor/fuselage structural, aerodynamic and inertial conplings and a modern free
wake model. Coupled nonlinear periodic blade and fuselage equations are transformed to the
modal space in the fixed frame and solved simultaneously. The elastic line airframe model
of the AH-1G helicopter from the DAMVIBS program is integrated into the elastic rotor
finite element model. Analytical predictions of rotor controls, bleide loads and vibration are
compared with flight test data. Predicted rotor control angles, blade torsional, and chord
bending moments show relatively good agreement with test data..j Blade beam bending mo-
ments overpredicts test measurements and needs further investigation. Calculated 2/rev and
4/rev vertical vibration levels at pilot seat show good correlatic;n with the flight test, but
predicted lateral vibration levels are much higher than measurements particularly at high
advance ratios. In future, parametric studies will be carried out tn investigate the sensitivity
of different design parameters and modeling refinements on the prediction of blade loads and

vibration.



Coupled Rotor/Fuselage Vibration Analysis
for a Teetering Rotor and
Comparison with Flight Test Data
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Graduate Research Assistant Professor & Director

Alfred Gessow Rotorcraft Center
University of Maryland at College Park

Presentation at the Seventh International Workshop on Dynamics
and Aeroelastic Stability Modeling of Rotorcraft Systems
Washington University, St. Louis October 14-16, 1997

University of Maryland

Motivation

* Helicopter vibration
- Structural fatigue of
components
- Human discomfort

l Nb/rev
hub forces

& moments

e Ride quality
System reliability
Maintenance cost
Equipment performance

¢ Prediction of vibration
at early design stage is
essential




Objective !

University of Mryland

* Develop a comprehensive vibration p;'ediction
methodology '

- Coupled elastic rotor/fuselage system

- Consistent rotor/fuselage structural, aerodynamic and
inertial coupling modeling

- Finite element methods in space and time

» Teetering rotor modeling
* Comparison with flight test data

State-of-the Art

University of Maryland

Flapping blade - Rigid fuselage
Hohenemser & Yin (1979) : concentrated inertia & support spring

Flapping blade - Elastic fuselage
Hsu & Peters (1980) : unifrom beam (plunge, roll & pitdh motions)

Elastic blade (flap, lag, & torsion) - Rigid fuselage

For aeromechanical stability analysis |

Elastic blade (flap, lag, & torsion) - Elastic fuselage
Vellaichamy & Chopra (1992,1993), Chiu & Friedmann (1995,1996)

Elastic blade (flap, lag, & torsion) - Elastic fuselage - Refined
aerodynamics (free wake+unsteady aerodynamics)

Yeo and Chopra (1997)




DAMVIBS 1]
Universi of Maryland

— A

DAMVIBS :
* Design Analysis Methods for VIBrationS

* NASA Langley and Bell, Boeing, McDonnell Douglas,
Sikorsky involved

Goals :
* Airframe finite element modeling

» Difficult components modeling refinement

¢ Coupled rotor-airframe vibration analysis

¢ Airframe structural optimization

Challenges to Helicopter Vibration Analysis

e Highly flexible rotating blades
- Nonlinearity and couplings

» Complex and unsteady aerodynamic environment
- Compressibility effects at advancing blade
- Dynamic stall and reverse flow at retreating blade
- Blade tip vortices
- Blade/vortex interaction

» Rotor-fuselage couplings and interactions



Nb/rev Feedback of
hub loads fuselage motion

Modeling Assumptions

Fuselage vibration excited by main rotor
- Rotor/body interactional aerodynamics neglected

Tracked rotor | X

- All blades are identical and
have the same periodic motion

- pNu/rev harmonics transmitted to the fuselage
(p integer)

Steady vibration
- maneuver, transient flight, gust response
not considered

Rotor shaft is assumed rigid




Modeling & Analysis 1]

University ofaryland

. Elastic blade model

- Based on UMARC

- Slender beam with flap and lag bending, elastic twist
and axial deflection

- 15 DOF finite element model
- Incorporation of six hub degrees of freedom

» Elastic fuselage model
- Finite element stick model ey bty
- Lateral & vertical bending, twist, and axial deflection

Teetering Rotor

University of Maryland
S
Br = Teetering angle N
Bp = Precone angle
. deformed
w = elastic flap bending elastic axis

w_ undeformed
B elastic axis

L AT
p

Teetering equation : Blade flap moment =0




Equations of Motion

University of Maryland
Hamilton’s variational principle
ST1=[" (8U - 5T -3W) dt = 0
Ty

ou = L b2='18Ub-| + 0Ug Strain Energy

I_ Nb .l . ] ) :
oT = L bz_’PT"J + 0T Kinetic Energy

L
W = L bz=’1BWbJ + OWe Work Done

blades fuselage

Nonlinear equations of motion are derived epricitiy in fixed frame
Ordering scheme is applied to neglect higher order terms

Kinetic Energy

University of Maryland

« Blade velocity in the deformed frame

v=(V, +V,)i +(Vhy + Vi, )i+, + v, )k

Vix =31 =¥ cos(ﬁp + ,BT) ~zBr

Viy = 31 - x1 00(B, + B ) - z; sin( B, + Br)

Vi = 21 + %1 Br +yysin(B), + ﬁT)

Vi = (&, o, — yeoiy, Joosy + G+, + xcoyr, Jsiny

Vg =—(i, - ha, - yeous, Jsiny + G + ke, + xea¥, )COVSII/ XY,
V=, + X0, COSY — X6, SNy + X0, =Ygl

Xt, Y, 2f = hub velocities Br = teetering angle
d.sy $sy Ws = hub angular velocities




Aerodynamic Model

University of Maryland

e Local blade velocities consist of

- Free stream
- Blade motion relative to the hub
- Hub motion relative to the inertial frame

» Velocities and blade loads are calculated in the
deformed frame

e Compressibility and reversed flow effects included

* Time-domain unsteady aerodynamics (Leishman model)

¢ Pseudo-implicit free wake model (Bagai-Leishman model)

Aerodynamics

University of Maryland

» Blade velocity in the rotating deformed frame

EQE; = (if ~ho, = Yo )COS‘//"‘()"f +h‘i’: +xca‘f’:}iﬂw

U . . . : . .
—QT;? = (,tf - ha, - ycal//x)sinl,(/ cos8, + (yf +hos + xCGl,l/:)cos wsiné,
U, _
+sin 6, (z'f — ¢ xsiny + &, xcosY + xpplf, — ycc¢s)+ xy/, cos6,
Ur Un U R
# = sineo((fcf —ha, — yca',i/_r)sinl{/ - ()')f +ho, + xcal[/:)cos l,l/)

+cosé, (z'f — ¢, xsinWy + 6, xcos W + xcaor, — ycc¢:)

8, = rigid pitch angle due to control pitch and pretwist
= 05 + Oy (WR -0.75) + 04,c08 Y + B48in Yy



Blade Loads

Universi o Mryland
* Force summation method
A ! It . ‘
LongitudinalLu=Lu+Lu+Lu Torsion Mx=-Lvw+Lwv+Mu
A | |
Lateral Lv=Lv+Lv+L\f/ Beam My=L, w-L,Xx+Myv

Vertical Lw=LlAv+Llwa+ Ly Chord Mz=-L,v+L,X+Mw

l{} =-m|iscosy + ¥ siny — hacosy +hgssiny —2x 7, + (xcg SN W — yeg cost,(/)ll}s]
L{f =—m[yf cosY = X siny + hxg siny + hojs cosy + (x+ XcGCosY +yCG Sinl,!/)ljis]

Lfvf = —m[if +(xcosy +xpg) & —2x0 siny —(xsin W+ yCG) s — 2xd§s cosw]

Analysis Procedure

University of Maryland

¢ Normal mode form

* Fixed frame coordinate transformation

Mer Mrt Mrse &, Crr Crt Crte &
Mir My Mute BT + |CuCy Cye Br
Msr My Mee b-fe Cir Ci Cre éfg
Kir K,y Krfe g Frr - Mrr T’fr -Cy bf,
+ |KeKaKie | [Br} = | Fit- Mur Py - Cyr Py

Kir Ki Kired | Pre Fite - Cetr Pir



Analysis Procedure

dle

University of Maryland

—

e Simultaneous solution of rotor and fuselage

equations

* Finite element method in time
used to calculate coupled
rotor-fuselage response

e Periodic boundary condition for both rotor and

fuselage

e Equilibrium of vibratory hub loads

Rotor Properties

University of Maryland

AH-1G helicopter

Number of blade

Rotor radius

Chord

Rotor Speed

Lock number

Precone angle

Twist angle at tip

Control system spring rate
Pitch link moment arm

Lift curve slope

2

22 (it)

27 (in)

324 (RPM)

5.078

2.75 (deg)

=10 (deg)

396000 (in-Ib/rad)
9.067 (in)

6.159




Blade Frequencies

‘ University of Maryland

» Collective mode (hingeless boundary condifion)

Present Analysis C81

flap 1 1.04 1.04

flap 2 2.79 2.9

flap 3 4.81 4.74 (/rev)
lag 1 1.43 1.3

torsion 1 2.58 2.33

Fuselage Model

University of Maryland

- Elastic-line model of AH-1G helicohter
- 36 beam elements

Pilot Seat



Fuselage Frequencies

g

Universiy of Maryland

Present Analysis NASTRAN
vertical 1.44 1.47
bending 3.16 3.31
5.1 472 (/rev)
lateral 1.36 1.26
bending 3.07 3.09
Results

University of Mryland

- Effect of aerodynamic modeling

- Rotor control angles

- Blade torsional and chord and

beam bending moments

- Hub forces

- Vibration at pilot seat




Effect of Aerodynamic Modeling

. . ;, 1
4/rev acceleration at pilot seat University of Maryland

e

4 bladed hingeless blade + elastic line body

Vertical Acceleration Lateral Acceleration
0.3 0.16 ‘
—e—linear inflow + quasis%ady
—o- - linear inflow + unsteady
0.121
0ol free wake + unsteady |
g 0.064
g
o1}
0.04+
f———0n | 0 = T T
%% 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4
Advance Ratio Advance Ratio

Rotor Controls

University of Maryland

1
o0 e TestData o
10 o ©° &5 Collective
o o —m
5 a
o— E—— Latqgral
degree - Ge cyclic
o
L J
e % cydic
-1

0.1 0.2 0.3 0.4
Advance Ratio ‘




Blade Torsional Moments
at advance ratio 0.15

University o Maryland

1/rev 2/rev 3/rev

1104
""" Hub Fixed
81037
= = = Rigld Body Motior
6102 1 ; Elastic LIne Body
=] Flight test
41097 '
210 3} g n
o
[ . o o
ey I ] T — o 2
0 L L T T T T =T L —T T T T
00 02 04 06 08 1000 02 04 06 08 1000 02 04 06 08 1.0
Blade Radius Blade Radius Blade Radius
Chord Bending Moments

at advance ratio 0.15 University of Maryland

1/rev 2/rev 3/rev
110
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] = = = Rigld Body Motion
s104 ™ Elastic Line Body
' O Filghttest

T, . \

Q T T —
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Blade Radius Blade Radius Blade Radius




Beam Bending Moments
at advance ratio 0.15

University of Maryland
__
1/rev 2/rev 3/rev
5104
""" Hub Fixed
41041 = - - Rlgid Body Motion
Elastic LIne Body
3104 .
=] Flight test
2104 |
Pl \-\
1104 o\
e
0 a a o ~ o [ i "
00 02 04 06 08 10 00 02 04 06 08
Blade Radius Blade Radius Blade Radius
Blade Torsional Moments
at advance ratio 0.32 University of Maryland
1/rev 2/rev 3/rev
15104
""" Hub Fixed
12104 = = - Rigld Body Motion
91031 Ellaslic Line Body
by, a Flight test
610 34 o
3109 . "
]
0 %

0.0 0.2 0.4 0.6

Blade Radius

02 04 06 08
Blade Radius

1000 02 04 06 08 10

Blade Radius



Chord Bending Moments i
at advance ratio 0.32 Universioy of Maryland
1/rev 2/rev 3/rev

2105
1.6 1051
1.2 1051

8104}

4104J

— = - Rigid Body Motion
Elastic Line Body
[n] Flight test

i """ Hub Fixed

L E— T

08 02 04 06 08 10 00 02 04 06 08 1000 02 04 o6 08 10
Blade Radius Blade Radius Blade Radius
Beam Bending Moments
at advance ratio 0.32 University of Maryland
1/rev 2/rev 3/rev
110%
""" Hub Fixed
8104 = = = Rigid Body Motion
sl | Elastic Line Body
s10 o Flight test
41041
&I
2104, ? ]
0 L) u L u Ll u T 4 -
00 02 04 06 08 1055 o2 04 06 08
Blade Radius Blade Radius Blade Radius
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2/rev Hub Forces W

University of Maryland
longitudinal lateral vertical
0.02
ootel 11y |l Hub Fixed
= - = Rigid Body Motion
0.012] 0 Elastic Line Body
0.008
0.004 :"_—'_‘_.{A
0
0.1 02 03 0.4 01 0.2 0.3 0401 0.2 0.3 0.4
Advance Ratio Advance Ratio Advance Ratio

Vertical Acceleration at pilot seat

2/rev 4frev

0.5
0.4
0 Test Data
- 0.3
(9)
0.21
o a
0.11
0 L L4 L LS
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Advance Ratio Advqnce Ratio

i



2/rev Hub Forces

University of Maryland

R

longitudinal lateral vertical
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ootsl ! Q""" Hub Fixed

= = -~ Rigid Body Motion
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0.008
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Vertical Acceleration at pilot seat 1
University of Maryland
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Lateral Acceleration at pilot seat

University of Maryland

2/rev 4/rev

0.5

047 o Test Data

0.31 4

0.2

0.14 J
a o g o @
0 g B o

I 1 -T- T
0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4
Advance Ratio Advance Ratio

Conclusions

University of ryland

e Unsteady aerodynamics is important at high advance
ratios and free wake is essential for the prediction of
vibration at all forward speeds

* |n general, there is good agreement in rotor controls

 Comparison between calculated blade torsional and
chord bending moments and measured data shows
relatively fair agreement, but beam moment
significantly overpredict measured data and need to
be investigated further



Conclusions :

& X3 1
University of Maryland

R AR

« Estimated 2/rev and 4/rev vertical acceleration at pilot
seat shows satisfactory correlation with flight test
data

e 2/rev lateral acceleration level at the pilot seat is
overpredicted at all advance ratios and 4/rev lateral
acceleraion level shows good agreement at low
advance ratios and overpredicts at high advance
ratios
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Vibration and Dynamics
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1) Motivation
2) Derivation of Equations
- exact
- approximate
3) Finite Element Approach
- stiffness matrix & load vector
- solution methods
4) Numerical Results
5) Conclusions

2




*Add extensibility to helicopter rotor blade equations
—nonlinearity
—1D — 2D problem

*2G-CHAS

—FE code diverges




DERIVATION OF EQUATIONS

Basic Geometry and Order of Terms

ya
C
Q

x=0 undeformed rotor blade —

u
let: €=0.1 .-V—VzO(E) -—ZizO(ez)
R R
W =~ 0(€) U~ 0(62)

K = O(E) Rw" ~03~ O(E) -Ru" =~ 0(62)

'szm ~1=~ O(EO) 'R2 L O(EZ)




VT
o Bk

IN OF EQUATIONS
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Basic Geometry and Order of Terms (continued)

Rotor Blade Cross-Section

: 4 N 52 ~3x10~°

R R

L1 340
R 12R

L EN<< EA

. mCY’ R’

El

2 D4

mC) R
EA

~3x10°

~ 3x10°




DERIVATION OF EQUATIONS

Stress-Strain Relations

-undeformed length = Ax
-length of deformed centerline = (1 + &)Ax

A =x(+&)Ax

-length of any arc = A,B(l +{)
K

=(1+ & +x( + &xl)Ax

Deformed Element

(l+&+x( +exl)dx —dx

-engineering strain : & =
dx

&=&+Kk( +&KE




Do SVATION OF EQUATIONS

Stress-Strain Relations (continued)

-stress: o=E(e+as’) (where a = 0 if the material is
linear for engineering strain &)

- combining stress and strain relations and using terms up to O(€°) :

oc=FEE+x{+exi+as’ +ax’(’ +2ask()




DERIVATION OF EQUATIONS

Tension and Bending Moment

«assume E is constant across the cross-section and along the length of the blade
eassume A and I are constant along the length of the blade

tension: T =04 = ”E(&+K§+&K§+a&2 +ax’(’ +2aek)dndl

ifa=0

T =FEA(s&+as’)+El ax’ g— T =EAes

lo EI
bending moment: M =—"—=—"(&+x({ +&x{ +as’ +ax’’ +2aax()

fa=0

M=Elk[l+Qa+)s| | = | M=Elr




AB=k(l+&)Ax = p'=k(l+¢&)

let «k=x(1+&) .. p'=k




DERIVATION OF EQUATIONS

Geometry Relations (continued)

w=]‘(l+go)sinﬂd§ uz]’(l+go)cos,8d§—x

w =(+&)sin f u' =(1+&)cos f
W' = B'(1+&)cos f+ebsin B u" =-F'(1+&)sin f+&ocos f

~ -solvingfor &’: |- =u"cos f+w"sin

(w"cos f—u"sin f3)
(1+&)

.solvingfor p': f'=| Kk =

10




DERIVATION OF EQUATIONS

,

Approximations

*substituting approximations for cos § and
sin 3 and using terms up to O(e3):

|
ERU+—W" | |
2 Slnﬂzw
/ 1 I3 [
Lrw——w'—wu
3 cos f3 l——w"
K~ W”(l—u'—'w'z)—u”w'

11




DERIVATION OF EQUATIONS |

Equilibrium |

small element of blade ‘

12



DoiiVAe N OF EQU

Equations

wm?ﬂ
o

N e,
-
PR
:,1'% -’Mj
T4

balancing forces yields the exact equations:

!

mu—[Ml Sm'B+Tcos,B} =(x+u)ymQ’ —L(1+&)sin
+&

!

—Tsinﬂ] =L(+&)cos

m1'4>+[M cos f3
I[+e&

-using equations for T and M (o = 0), approximations for f3, € , and «, and
terms up to O(e?), the approximate equations are:

mii — EA(u" + w'w") = (x + u)m€)’ — L(w')

mw+ Ew"" — EA(u"w' +u'w" + ; w'w")y = L(1+u')

13




FINITE ELEMENT APPROACH

Energy and Virtual Work

T= J}im[uz +W +Q2(x+u)2]dx

1
V= E[EA&)2+ER2]UZx
0

oW = I]-L[cos Pow—sin ,B&t](l +&)dx

where: K ~ W (l—u'—w")—u"w

’ 12
& U +yw
2

14




. é TEELEM: =T AP OACH

Static Equilibrium Equation

static displacement
small perturbation = Z r(HY.(x)

W = static dlsplacement
w =small perturbation = qu (1D, (x)

let u=u+u where

u
and u

let w=w+w where
and

-Lagrange applied to energies and virtual work:

r=L( q,)[M]{;} %(r q,-)[Km,]{;’J }+<f’, G F S

2
- % r a WK 1{;’1 } +Hr a)F..)




FINITE ELEMENT APPROACH

Static Equilibrium Equation

«forming the static equilibrium equation:

[K K -K 4 ={F —F —-F } where:
mat rot aero lift con rot K__, = material stiffening
K, = rotational stiffening
K,.,, = aerodynamic stiffening
K., = lift forces
F_ . = conservative forces
F_,, = rotational forces

]

using terms up to O(e?), the static equilibrium equation is written as:

—~ where :
[K] {X } ={F'} [K = stiffness matrix, [K (&7, 7", 7", %, %", %", ®,0', " WP P
(F} = load vector, {F (7, i, ii", w, W', ", ®,0,®" ¥, ¥ ¥

{)? } = nodal vector

16
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P T APPROACEH

Smeseibrynad

Nondimensionalization

helicopter rotor blade

IOt =i 7 tip
|.___> X x=R
F— ¢ c=1
‘nondimensionalize w.r.t. X d 1 d
blade length (underbar ): E=— > =
R dx R d&
enondimensionalizeuandw % = Ru W =Rw
- terms (and their derivatives): 7 =R _Zz = RE
1
*multiply both sides of static equilibrium equation by: s
m€)°R
KX} = {F)
mQ’ R’ mQ’ R’
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FINITE ELEMENT APPROACH

Discretization
by,
!
TOOt =ty ‘ ﬁ , | tip
— & Skt ik E=1
l 3 element k ]
—y y=1
*mapping for finite element: ederivatives:
y = & —Spe :§—§k—1 ()':_1_()_'_ here-
St~ S h, Rh (Y :%x
1 SRR I = SRV
- dy = dé O =G0 0%
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FINITE ELEEC T APPROZ

Shape Functions

«choose Hermite cubic shape functions for both ® and ¥

— physical meaning for nodes (displacements and slopes at element ends)
— 2nd order differentiable (required by stiffness matrix and load
vector in both u and w directions)

qf A" CP P
4 ) i
— Z (t)\IJ (JC) ,’, P p r4

=iq,.<r><b,.<x>

rl_,_>

/‘
r'd

Iy

+ ﬁnlte element k

6—-’—», . I ,,

/7

'«,/

node k

node k+1
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FINITE ELEMENT APPROACH

Shape Functions (continued)

4 | q# B d> CP AT
=" r ()Y (x) ’ i

i=1 ',,' — — ,,11‘4
¢ I'\—<>¢ finite elementk ¢—<"» |
W= ¢, 7 [ TR 1T

|

r
2
node k node k+1
M 2T T 0 0%5 l1
0.1 /\ 05+ ‘O_I‘L
0 0.5 | 0 o5 — 0 o3 h 027
d, & ¥, D, &Y, D, & 'V, D, &,
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FINITE EL 27T APPROACH

Element Stiffness Matrix [K*+]

1
[—== ngz—‘P*‘Pd
m
0
1 EA +_1
[ YT Y T e N T
0

1 mQ’R* bt
AT
0

0

0 EI ++ —++ LPH + gt ++ gttt
[ L0 ) W) B (5 )y
0

1

0

!
|
|
|
|
|
|
|
|
|
|
|
2 I
W e YT
,++ ;——H—F ’++ J++—+ :
|
l
)
1
|
|
|
¢ L |
+ —W¥w “d |
InQRh g |

0

< mQ’R’? K
EA 1 o
mQ'R* W wdy toE o | W u
_ I Q2R4[ [ = [+ D[ D! - X
El 0 _

I mOrR B

: ,
awrwt ou” 2t 2w 1

+ O —= +®@ O +i=——|1d

( h J [h4 h5 h3 ]] 7

o!——.— o!—,— Q'.—,.-.

—chz ‘P[ lzfzjdy
mQO°R 2h

[CI)“‘I’ (2‘**)+c1> \P**(—‘*)+c1>*+qﬁ+(_ )dy |
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FINITE ELEMENT APPROACH

+

T mQ°R

Element Load Vector {F¥}

1 L T W+2
| 1+ 2y

20°

0
1

[Wh(E+D)dy

0
1

L1 EA Wt oot
— PH=—4=_|d
) R '(fﬁ h}y

0
l-

b | =
2
%E
+
—
)
> |I=
IN L8
+N
N—
+
=S
p
N
N
N
|=)
+
N~ —
&

Lo hit)dy

2

1
f
0
1 —t—t  —F
a5
1
I
0

1 EI 2wt
- ® | =—|d
2 mQ*R* ( n )7
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Finite Element Meshes

1) fixed length
2) tip variable

3) tip and root variable

4) quadratic

tip and root variable quadratic

tip variable

rotor blade

= tip

root C
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FINITE ELEMENT APPROACH

Solution Methods

1) [K]'*{F} Method iterate :
[KITHF)} ={X} = #andw
w,, =i, +i

W, =W, +W

hew

until convergence of # and w

2) Secant Method

use method on a system of equations

for a single function (1 DOF):

X, —X,
Yo =% = G )

where f(x)=Kx—-F
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FINITE ELEMENT APPROACH

Solution Methods (continued)

X}, =00}

. _ = = _—+_—--H—_O .
=U,=U, =wW,=vw, =W, = initial guess

=2
3

where n =1 (iteration #1)

|

(X}, = u,u,u, w,w, w,"” = compute: [K], and {F},

n —n —n

f J

(X3, =[KT,'{F},

advance iteration index: n=n+1

. T, = (D), J
ﬂ (X }, = compute: u, W,
— — — do the same for ()" and ()"
X =14}, +{X3,

|

compute:
end yes U,,=u,+U, dothesame for
iteration ™ “and ()"
<—— wo =w, +w O
process
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FINITE ELEMENT APPROACH

Solution Methods (continued)

3, =0

. — _—+_—-H-__— =ttt PN
Cu, =, =U, =W, =W, =W, =0 1nitial guess

—n n —n _

2) SECANT METHOD

where n =1 (iteration #1)

J

(X}, = w,u,u,'w,w,w,” = compute: [K], and {I'},

I J

advance iteration index: n=n+1 B _ of T
— — {X}n = {X}n - _J f n
E {X}n+1 = {X}n " 77 aX’ n { J}
where: f :;Kj,kfk -F
Ky
no ox, ¢ ax, ' T oax

J

end yes {X} = compute: u, W
iteration : n+l Zntl Zn+l
process do the same for ()" and ()*
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NUNM® i CAL v SULTS

MBB helicopter rotor blade
Q) =45 rad/sec
R=2001n
A =2in?
m = 0.3 Ib/in
EA=1x10"1b

"EI =5 x 10° Ib-in?
c=111n

Model Parameters

nondimensional
parameters

|

EA
mQ°R

=1.5x10°

El
mQ*R*

L X
mQ’R (E]’B °
where S, =0.052356

=1.8x10°




NUMERICAL RESULTS

First Iteration - W vs. Blade Length

FE Data Plotted With Approx. D.E. Solution - ZERQO INITIAL CONDITIONS
MBB Helicopter / Hingeless Blade / 5 Fixed FE / [K]'{F} Method

T T
0.5 T L wwwwwww A [ ” » ’ 7 10‘0”
04 |-—— —* 80>
.° -

22.5% of|Total Lift| ,«° -

6031

W (dimensionalized, in.)

W (nondimensionalized, in.)

{40”
207
0
ol 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Undeformed Blade Length (nondimensionalized, R=200) 78




NUMEGCAL KeSULTS

Convergence Wall & Refined Method

convergence obtained for lift values up to 22.5% of total using [K]*'{F} method
(number of elements and/or mesh size has no effect on convergence)
—zero value initial guesses for u and w (and their derivatives) cause the
w-direction result of the first iteration to be up to 50 times larger
than the last iteration (converged solution)
—poor results from the first iteration cause divergence when seeking
greater than 22.5% lift

good initial guesses for u, u’, and u™" are key!

erefined [K]1{F} method: 1) get 0% lift solution 2) use 0% lift solution as initial
guess for seeking 100% lift solution; results for the MBB/hingeless case are:

START — 0% lift —> 100%lift —  CONVERGENCE
(2 iterations) (3 iterations)
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NUMERICAL RESULTS

U vs. Blade Length

MBB Helicopter / Hingeless Blade / 5 Fixed FE / Refined inv[K]{F} Method
Final Iteration (convergence)

0.002
-~00015}———-St— L _efl-T."
c
Q
E
©
c
[o]
E
> 0.001 — _ |
100% Laift
0.0005
04

R

0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9

Undeformed Blade Position (nondimen.)

0% lit —W—1%lift —A—5%lift —e—10%Ilift —e—15%Ilift - -0 - 20% Lift - -A - 30% Lift
- -0 -40%lift - -0~ - 50% lift @ 60% lift <coogppmr 70% lift ~ipowens 80% lift -~ W Q0% Jift  ~vocers 100% lift
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W (nondimen.)

]

T

NUM: #iCAL RESUL" -
W vs. Blade Length

MBB Helicopter / Hingeless Blade / 5 Fixed FE / Refined inv[K]{F} Method
Final lteration (convergence)

]
0.05 v
: !

0.04 : —

‘‘‘‘‘‘‘ e o B i

" \r‘,/"( - JS;-FM(W e "_,_J"M. i
0.03 — ;ﬂ[ s
- ~ . I e s

0.02
0.01

04 0.5 0.6

Undeformed Blade Position (nondimen.)

0% lift

—m— 1% lift —A—5%Ilift —e—10%Ilift —e—15%lift - -O - 20%lift - -A - 30% lift
= =0 = 40%lit - -0- - 50% lift ---w 60% lift s 70% lift oot 80% lift o~ 0% lift  ~oerem 100% lift

100% Laift

0%
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1) [K['{F} METHOD:

convergence obtained using lift up to 22.5% of total (with zero
initial guess for all w’s and u’s)

*modify method: use results from 0% lift program run as the initial guess
for program runs with lift >20% (convergence in 5 iterations for 100% lift)

*mesh-size refinement does not reduce the number of iterations
needed for convergence

eincreasing the number of elements does not reduce the number of
iterations needed for convergence; it does, however, increase the
computation time (minimum # of elements needed is one)

2) SECANT METHOD: does not converge for any percentage of lift
32




ENERGY PRESERVING/DECAYING SCHEMES FOR
NON-LINEAR ELASTIC MULTIBODY SYSTEMS

M. BORRI, C.L. BOTTASSO, AND L. TRAINELLI

Dipartimento di Ingegneric Aerospaziale, Politecnico di Mz'la.n‘o, Milano, Italy.

1. INTEGRATING ON MANIFOLDS WHILE PRESERVINLG INVARIANTS

In this work, we are concerned with the time integration of non-linear flexi-
ble multibody systems. In general, the term multibody assumes slightly different
meanings in the context of different applications and in the use of different scientific
communities. For our purposes, we define a multibody as a Finite Element Model,
where the elements idealize rigid bodies, mechanical constraints, beams, shells etc.
We are interested in systems with complez topologies, where each body undergoes
large displacements and rotations (but only small strains). Clearly, the definition
of a multibody given, for example, by a control engineer interested in real-time
robotic simulations could be significantly different. The typical applications that
we have in mind deal with the modeling of helicopters (complete vehicle, rotors,
transmissions), but are clearly not limited to these. ‘

The dynamical systems that are the object of our study axe governed by equations
of motion that are stiff in nature. There is a very rich literature on the integration
of stiff ODE’s and of DAE’s; so rich that we will not even attempt to review it,
but simply refer the reader to comprehensive works on this subject, as for example
4, 6]. b

Papers on multibody formulations are produced at a phenomenal rate, as a quick
look at some of the major computational mechanics journals will prove. The usual
approach for developing a new code is typically based on (%) deriving the equations
of motion, (ii) applying some known integrator with suitable (usually only linear)
properties to the numerical discretization of the equations in the temporal domain.
In general, the integrator knows little about the actual structure of the equations
being solved. In particular, it seldom knows at all that it is dealing with the proper
rotation group SO(3) (the real heart and soul of anything that has to do with rigid
bodies, beams and shells).

As the literature clearly shows, this approach works quite well in the majority
of the situations. However, there are a few cases when conventional integrators will
badly fail. If our original goal was the development of a robust general purpose
piece of software, then we are in trouble, since we know that sooner or later our
code will crash (to the dismay of the poor user that knows nothlng about non- hnear
stability).

A simple but nasty example (not even a multibody) was glven by Simo et al. in
Ref. [8]. Simo and his collaborators showed that an apparently harmless simulation

Paper presented at the 7th International Wbrkshop on Dynarnics and Aeroelastic Stability
Modeling of Rotorcraft Systems, Washington University, St. Louis, October 14-16, 1997.
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2 M. BORRI, C.L. BOTTASSO, AND L. TRAINELLI

of a beam in free flight can crash the midpoint rule, the trapezoidal rule and a
fourth-order Runge-Kutta scheme (and probably any scheme not associated with
non-linear conservation laws).

184

164 ]

FI1GURE 1. The dynamic simulation of a beam in free flight.

In our search for robustness, we could at this point turn to other integrators,
until we find one that does not crash for the particular problem in question. But
will this approach solve the problem once for all? Clearly not.

A possible solution, and a nice solution indeed, is to reverse the development
process. Once we have realized that the equations of motion that we are dealing
with have a special structure, we can design specific algorithms (rather than us-
ing generic schemes) that “understand” the equations they are integrating. This
“understanding” is then exploited for designing schemes that ensure the exact algo-
rithmic conservation of important invariants of the solution (typically the energy,
which is associated with the concept of non-linear unconditional stability).

This idea was applied with success to rigid bodies [9], shells [7], beams [8], and
finally multibodies [1]. But the success was probably due to the fact that only
relatively simple, nice and smooth examples were tried in those papers. In fact, it
is very well known that one usually needs some form of numerical dissipation for
preventing energy transfers from the lower modes of a discretized elastic system
to the higher (usually meaningless) modes. It is clear that an energy preserving
scheme can not have any such dissipation mechanism.

Depending on the problem, the performance of an energy preserving scheme
will therefore range from excellent to unacceptable. If higher modes of the sys-
tem are excited during the simulation, the numerical response will be affected by
high frequency oscillations. This numerical “noise” could in principle be filtered
in a post-processing phase. But, when the state of the system contributes to the
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determination of the forces acting on it (read always, in practice, for realistic prob-
lems, eg. the aerodynamic loads), this noise will bring the system on the wrong
trajectory. :

But not only can we get the wrong solution, we can even get no solution at alll
We do not need complex examples to show this. Consider in fact the swing depicted
in Figure 2, first discussed in [2].

Rigid Link

Rigid Link

Load

FIGURE 2. The swing problem, that easily crashes energy preserv-
ing schemes.

The trajectories of five points on the swing are plotted in Figures 3,4. The
first plot shows the results obtained using four spatial elements. After the lining
up of the left link and the beam, the motion becomes highly oscillatory until the
program crashes (failure to converge during the Newton process). Things become
even worse refining the mesh. Figure 4 shows the trajectories of the same points
computed using a spatial discretization of eight elements. The program crashes
earlier in the simulation in this case. The reason is clear: a finer discretization
means a greater number of degrees of freedom, which results in higher frequency
components being excited.

To understand the reason of this failure, we can simply take a qualitative look
at the time histories of some quantities, for example the axial stress in Figure 5
and the horizontal velocity in Figure 6. The oscillatory behavior of the response
hinders the convergence process and causes the computation to blow up, even if the
average (filtered) values of the responses have a nice and smooth behavior.

So, how can we control the high frequency content of the system being inte-
grated, and at the same time have a non-linearly 7'urit:0nd'11‘iiona11y stable process?
A possible solution is to design schemes (again, building on the “understanding”
by the algorithms of the equations being integrated) that are associated with an
energy decay inequality. We essentially require the energy of the system at the end
of an integration step to be equal to the energy at the beginning of the step plus a
small dissipated (negative) energy. This idea was first pursued in {2] and {3].

Apart from this “reversed” design process, our approach differs from the usual
practice in another important aspect. The classical approach for dealing with me-
chanical problems with rotations derives first the equations of motion, and then,
referring the equations at the center of mass, decouples them into purely rotational
and purely translational parts. In reality, while this is always possible when dealing
with one single rigid body, the same practice is usually not possible or not conve-
nient in the analysis of beams and shells. Moreover, by decoupling the problem,
one misses completely the intimate structure of the compléte equations.
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Trajectories of the beam nodas A,B,C,D,E - EP (4 elements)

T T — T T T un T ——

0.5 i
0.4L 1
0.3k -

0.2 1

o.1r 4

Vertical displacement (m)

0.2 1 - . L " P L !
0.1 02 0.3 04 .05 0.6 0.7 0.8 0.8 1
Harizontal displacement (m)

FIGURE 3. Energy preserving integration, four spatial elements.
Trajectories of the beam nodes A,B,C,D,E - EP (8 elements)

T —T — T T T T T T

04r 1

Verlical disptacemant {m)

0.2 . . 1 L - A 1
0 0.1 0.2 03 0.4 0.5 06 0.7 0.8 0.8 1
Horizontal displacement (m)

FIGURE 4. Energy preserving integration, eight spatial elements.

In this work we attack the problem in a slightly different way. We write the
equations of motion at a fized pole (rather than a moving pole, as usually done in
mechanics). We argue that these, rather than the equations of pure rotational dy-
namics in SO(3), are the true prototype equations for mechanical systems involving
rotations. This way, we are able to generalize the concepts of vector, orientation
tensor and cross product to a six-dimensional space. The resulting configuration
space is here termed SR(6). As for the reduced problem of pure rotation, two
“points” in this extended space are related by an ezponential map, that can be
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Stress in element 2 - EP (4 elements)
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FIGURE 5. Energy preserving integration, time history of the axial stress.
Velocity of point B - EP (4 elements)
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25 L . L ; . . . . ;
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FIGURE 6. Energy preserving integration, time history of the hor-
izontal velocity. ‘

expressed in finite form thanks to some recursive properties of the generalized cross
product. This is the starting point for our algorithmic developments.

For obtaining numerical approximations of the equations of evolution, we con-
sider the vast class of Runge-Kutta (RK) methods. There is great wealth of theo-
retical as well as practical (implementational) knowledge concerning these methods.
In fact, RK schemes provide a powerful framework for deriving effective algorithms
for stiff and non-stiff problems. Classical references on the subject are [4, 5, 6].
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Our first goal is that of deriving integrators that, by design, remain on the
manifold We accomplish this result by modifying the basic RK scheme so as to
accommodate configuration updates performed via the exponential map. This way,
we obtain modified RK methods that, for any choice of the tableau, can be shown to
guarantee the conservation of fotael momentum in the absence of external loading.
This methodology defines a procedure for integrating the equations of motion using
standard RK tableaux, and at the same time (i) preserving the structure of the
differential manifold, (%) and preserving an important invariant of motion.

Generalizing our previous work [3], we show that our modified RK format ac-
commodates as special cases both the energy preserving and the energy decaying
schemes. This gives us a unified framework for dealing with the integration of
structural equations defined on non-linear differential manifolds. Under the same
umbrella, we can use standard RK tableaux of any order for the integration of
“well behaved” problems. However, we also have the option to switch to energy
preserving or energy decaying versions of the integration procedure in case of more
difficult situations, or whenever non-linear conservation laws become necessary.

This algorithmic framework opens the way to automated adaptive procedures,
where suitable error indicators drive the selection process of the time step size h, of
the order of accuracy p, and of the method (tableau in this case), in order to ensure
efficiency and reliability of the computation. We leave the design of such an error
indicator an open question, for now.

2. NUMERICAL RESULTS

2.1. Three-dimensional Beams. The first example that we propose deals with
the free flight of a three-dimensional beam. Figure 7 shows the overall motion of the
beam in the first seconds of simulation, with deformed shapes sketched at intervals
of one second.

N

15

10+

-5

20 -10

FIGURE 7. The right angle beam in free flight.
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Figure 8 shows the time histories of the total and normalized mechanical energies
of the systems obtained with the energy decaying scheme. The first plot shows that
the energy is essentially constant during the free flight of the beam. However, the
second plot proves what predicted by the analysis: at each step a small amount of
energy is dissipated, making the energy strictly decaying.

250 T T — T T

T T
Ensrgy Dacaying Schame, h = 0.003125 —

200 ! -

150 | e

Total Energy

100 | ) J

50 i

0 : L L

25 3 35 4

2
Tims (sec)

0 T T T
Energy Decaying Schems, h = 0.003125 —

-28-07 F E

+Be-07 | E

(T()-T(2s))/T(25)

-1e-06 |- i -

1.28-06 | -

-1.40-06 . L L
2 25 ) 35 § 4
Time {sec)

FIGURE 8. Mechanical energy for the right anglé beam in free
flight. Top: total energy; bottom: normalized energy.

A second example sheds some light on the energy dissipation mechanism. We
consider a beam hinged at the root, shown in Figure 9. The beam is initially at
rest and is loaded at the tip with a short triangular pulse in time. The conserva-
tive integration give rise to high frequency oscillations which are “filtered” in the
dissipative case. This is clearly shown in Figure 10, where we show the result of a
Fourier analysis conducted on the computed axial force at the beam root.
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Load
FI1GURE 9. The hinged beam.
1
Z 4
3
5 i
=
E h
RGN —_-
% 50 100 150 200 250 300 @50 400 450 500

Frequency (Hz)

FIGURE 10. Frequency content of the axial stress resultant for the
hinged beam.

2.2. Flexible Multibody Systems. We conclude this brief description of our
work, by going back to the swing problem of the Introduction. In Figures 11,12 we
present the time histories of the horizontal velocity and axial stress at two points on
the beam, computed with both the energy preserving and decaying schemes. The
ability of the latter scheme to get rid of the oscillatory components of the solution,
even in this dramatic case, is particularly striking.

3. CONCLUSIONS AND FUTURE DEVELOPMENTS

We have developed a family of RK integrators that, by design, remain on the
manifold and are momentum preserving. This was obtained with a sort of “re-
versed” development process, that ensures that the algorithms “understand” the
problem being solved and its structure. This family of methods include, as special
cases, Energy Preserving and Energy Decaying schemes. These methods has been
extended to deal with constraints, both of the holonomic and non-holonomic types.
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Stress in element 2 — EP vs ED (4 elemenls)
T T T T - T

150r

100F

Axlal component (N)
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—s0}

-100F

. . . ! L . L L .
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Time (s) '

FIGURE 11. Energy preserving and decaying integrations, time
history of the axial stress.
Velocity of point B — EP vs ED (4 elemenls)
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|
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FIGURE 12. Energy preserving and decaying integrations, time
history of the horizontal velocity.

We therefore have a general framework for modeling mechanical systems composed
of rigid bodies, beams and shells. 1

Our next developments will try to address realistic applications of engineering
interest (eg. helicopter rotors and transmissions), and we will start working on
error indication techniques as a first step towards including automated adaptive
capabilities in our code. i
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This paper presents the recent developments in the analysis and experimental testing for transient
rotor engage and disengage operations, which includes:

1. Experimental and Theoretical Analysis of Helicopter Rotor Blade-Droop Stop Impacts

A theoretical an experimental study of the transient response of an articulated rotor blade
experiencing a droop stop impact was conducted. During a rotor blade and droop stop impact, the
boundary conditions of the blade change from a hinged to a cantilevered condition. Refinements in
the transient response algorithm at the moment of impact are presented and are shown to improve
the correlation with experimentally measured transient response results. Material damping in the
model beam was measured by hammer impact tests. The measured material damping is used in the
analysis and also shown to result in improved correlation with the experimentally measured transient
response results.

2. Transient Analysis for Engage and Disengage Operations of Gimballed Tiltrotors

A transient response analysis for gimballed tiltrotors undergoing engage and disengage operations is
developed. Initially, a two degree of freedom rigid blade analysis was formulated. Using this simple
analysis, simulations of the gimballed rotor response showed that excessive flapping motions and
high hub spring loads could occur during engage and disengage operations. Simulation results for a
two bladed teetering rotor were validated against model wind tunnel results. For improved
accuracy, an elastic blade flap-torsion finite element model for the rotor blades was formulated.
Using the finite element model, transient response analysis results for a three bladed gimballed rotor
are presented and ongoing work is introduced.
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Background and Motivation PENNSTATE

* Potential for blade-fuselage contact due to
excessive aeroelastic flapping at low rotor speeds
(< 20% full RPM)

* Particularly bad problem for shipboard operations
and adverse weather conditions

* Motivated by H-46 Sea Knight “tunnel strikes”
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'H-46 Tunnel Strike History

100 + ?
P Tunnel Strikes . 4Tunne| Strikes _
— I
1964 1974 - 1984 1997 | 2025
Timeline
H-46 .
Projected tse
PENNSTATE

Background and Motivation

*Many unique factors to simulate ‘
-Ship airwake environment - Ship motion

-Rotor RPM vs. Time - Inputs to rotor system
-Blade elasticity - Droop/gimbal stop impacts
50
40
Rotor 30
Speed
(%NR) 20
10
0 5 10 15
Time (s)
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- Refinements in the
Analysus for. Droop or-
. -Gimbal Stop lmpacts

Formulation of a Transient
Analysis of Teetering and
Gimballed Rotors
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—> ¢ Background and Objectives
¢ Approach and Results
- Algorithm Refinement
= Material Damping

® Conclusions

Background and Motivation PENNSTATE

o —

* Droop stop impact contributes to excessive elastic
bending of rotor blade
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Related Research PENN m

* Leone, 1964 (AHS Journal)
- Blade-droop stop impacts at full RPM
- Measured and predicted root bending moments
» Fathi and Popplewell, 1994 and Lo, 1980 (J. of Sound&Vib.)
- Cantilever beam impacting rigid stop
- Used unconstrained modes only
* Molnar, et al. 1976 (J. of Pressure Vessel Technology)
- Gap restrained piping systems
- Used unconstrained modes only
- Compared direct vs. modal solution efficiencies
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* Rogers and Pick, 1976-77 (Nuclear Engr. & Design)

- FEM solution of pipe vibrating between rigid stops

- Used both unconstrained and constrained modes
. Daviés and Rogers, 1979 (Nuclear Engr. & Design)

- Use of either unconstrained or constrained modes

- Undamped motion described using either set of modes
» Keller and Smith, 1997 (SDM Conf. Proceedings)

- Model rotor blade impacting droop stop

- Used both constrained and unconstrained modes

- “Discontinuities” found in solution

Obijectives PENNSTATE

R
I

» Refine algorithm for blade-droop stop impact
* Measure material damping of model blade
* Include material damping in analytic solution

» Assess effect of algorithm refinement and damping
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* Background and Objectives
* Approach and Results
— = Algorithm Refinement

- Material Damping

®* Conclusions

Model Beam Schematic PENNSTATE
B
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Linear Motion
Potentiometer Accelerometer

Droop Stop
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No droop stop _
contact —> K;=0

Cantilevered modes

Droop sto
cor?tactp=>KB =108 fm g x dx

PENNSTATE

Analysis Approach

* Two sets of natural frequencies and mode shapes

- No Droop Stop Contact
[Kbeam - Cl)zl\"beam] ©=0
=> (l)h (Dh

- Droop Stop Contact

[Kbeam + K|3 - szbeam] =0
= o, O,




“Modal Swapping” - Old Method PENNSTATE

i

18535

l Mg +Cq+Kq=F l

“Modal Swapping” - NEW Method PENNSTATE

Mq+Cq+Kq=F l %

| Letq=d« |

ere modes
witched

ere modes
switched?

Shape Is Continuous! ,
\ q (I)hah qc

l
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* Background and Objectives
® Approach and Results
- Algorithm Refinement
— - Material Damping

® Conclusions
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* Fixed Response / Roving Input test
- Excitation by roving hammer impact (11 points)
- Measured by fixed accelerometer |
- Tests performed with hinged and cantilevered BCs

Mode Hinged £ Cantilevered C
(o/f'c.»critical) (o/"Ccritical)
Rigid Body =0.0 N/A
1st Bending 4.5 =0.0
2nd Bending 0.9 0.4
3rd Bending 0.2 0.9
5.5° Drop Angle PENI l
6 T T T T 7 L — T T
]
5 Without
4 Damping
Hinge 3 :
Angle Experiment
(deg) 2 of %
1 T
0 Bl DDDE‘ID:'DDC’:DIE‘JD' D‘:’JD“U: : .?
664 0z 03 04 05 -

Time (s)




o PENNSTATE
5.5° Drop Angle i
0.15 I | |
Experiment
0.1 7 .
With Without 57
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Deflection _
wir) 0 :
-0.05
N\ , Static Tip |
-0.1 { ] Deflectioni
'0-15 - L | — 4;4;4: ) L ) ) L A;j
0 0.1 0.2 0.3 0.4
Time (s)
PENNSTATE

5.5° Drop Angle

1500 — ] | %

Wlithout
With , i« Damping
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¢ Background and Objectives
¢ Approach and Results |
- Algorithm Refinement
- Material Damping

— ®* Conclusions

Conclusions PENNSTATE

* Rotor blade-droop stop impacts key factor in tunnel strikes
¢ Utilized FEM approach to simulate impacts |

* Modal amplitude “correction” essential when modes are
swapped

* Performed hammer impact tests to measure material
damping

* Material damping improves correlation in hinge angle and
strain simulations but does not effect tip deflection
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Refinements in the Analysis for
Droop or Gimbal Stop Impacts
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" Transient Analysis for Engage
i and Disengage Operations of
i Gimballed Tiltrotors-

PENNSTATE
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—— ¢ Background and Motivation

¢ Approach and Analysis
Rigid Blade Gimballed Rotor Modeling
Elastic Blade Gimballed Rotor Modeling

* Further Work

PENNSTATE
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Background and Motivation

* No studies of engage/disengage
« USMC purchasing 100’s of V-22s
* 3-bladed gimballed rotor

* Shorter blades - highly twisted

* Excessive gimbal tilt angles can
occur during engage/disengage

Air on all 3 blades contributes to;
high gimbal flapping at low Q




Gimballed Rotor Schematic PENNSTATE

The Gimballed/Teetering Rotor
Aeroelastic Research

PENNSTATE
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Teetering Rotor:

*Shamie and Friedmann, 1976, AHS Forum

Aeroelastic Stabllity of Complete Rotors with Application to
a Teetering Rotor in Forward Flight

«Kawakami, 1977, J. of Sound and Vibration
-—— Dynamics of an Elastic Seesaw Rotor

Gimballed Rotor:

*Johnson, May 1974, NASA TN D-7677
Dynamics of Tilting Proprotor Aircraft in Cruise Flight

*Nixon, 1993, Ph.D. Dissertation

Aeroelastic Response and Stability of Tiltrotor with Elastically
Coupled Composite Blades
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Objectives

* Formulate Transient Response Aﬁalysis

for Gimballed Rotor

— Rigid gimballed rotor blades

= Elastic gimballed rotor blades

e Validate With Newman’s Experimental Data

* Preliminary Parametric Study

Transient Analysis for Engage and PENNSTATE
Disengage Operations of Gimballed Tiltrotors Vin

L85 S

¢ Background and Motivation |

—> ¢ Approach and Analysis
Rigid Blade Gimballed Rotor Modeling
Elastic Blade Gimballed Rotor Modeling

®* Further Work




Rigid Gimballed Tiltrotor Model

PENNSTATE

Hub Spring

— /'%” Flapping
Gimbal Angle

Restraint

Modeling Approach

- Precone

PENNSTATE

5
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Structural Modeling
* Variable Rotor RPM

* Hub Spring

* Rigid Rotor

Aerodynamic Modeling
* Quasi-Steady

* Unsteady/Dynamic Stall

* Modifications of Very High

e Gimbal Restraint Angle of Attack
_i KBGC 0
B R (E R e
0 11{Bass 20 J|Bgs 0 __Z_Kﬂcs B s
N I, QF
2 ul ! m m 2 kre:traim(B max B re.rlral'nl)
_]7,;,(5'-1;" rdr)cosy 7 + ~ 7.0° cCoSVY ..
2 & ! . 2 kresrain (B mar = B resiram ) .
i Fm dr Sln m + — restraint max restraint S”’Z o
NMZ”(J,r) v R y




Analysis of Gimbal Restraint Contact PENNSTAi

corresponding azimuth of rotor

@
Calculate the maximum tilt angle and
Poc

Wmax=tan-1( ) ’ ﬁma)(:BGccos(WmaX)“'BGSSin(\Vmax) -
BGS

Brmax <Baroop /K Brmax> Baroop GC max Bgs

mez>

/
Without the effect Include the stiffness due to
of gimbal restraint gimbal restraint contact

Analysis Method PENNSTATE

* model

* time integration
e 4th Order Runge-Kutta

y=Ay+f
where

0 | 0 _ (g
A e ey Tla 7=l
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UK 2 Blades, Teetering Model Test P
Teeter Angle Rotor  Teeter Angle Rotor
(deg) Speed (deg) Speed
(RPM) (RPM)

Bapand Tire (ascw) ; ’ 1‘0 ) 720 3b 40 5‘0 680
Elapsed Time (sec) Elapsed Time (sec)
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Wind Tunnel Tests Theoretical Prediction

Source: Newman, University of Southampton Dactoral Thesis, March 1995

PENNSTATE
Transient Response Prediction —%
Gimballed Rotor Properties
Number of Blades 3
Radius, ft 19
chord, in 25.07
rotating speed, RPM 397
Flapping Spring rate, ft-lb/deg 250
Lock Number 4,9
Vg 1.02

Sl WTE I Nl N N N B R B B Em



Transient Flapping Prediction PENNSTATE
of V-22 Rotor o

Flapping Angle
(deg)

Gimbal L

= T <=
VIO, ===

=10+

Gimbal Restraint Contacts

y
ub & blades
load?

-15

0 1 2 3 4 5
Elapsed Time(sec)

.......... \\l,::;gt:ziz —_— V}m vvertlcal =20%V

Elastic Blade Gimballed Rotor PENNSTATE
Finite Element Modeling %
blade 2#




Elastic Blade Gimballed Rotor
Finite Element Equations
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Hamilton’s Principle for Gimbalied Rotor

t
ST = Itz(ST—SU + 8W)dt = 0
1

where N
Variation of Strain Energy SU = (Zg(jb) +8U, +8U.
m=J] _— ==
blade hub  gimbal

spring restraint

N
Variation of Kinetic Energy §T = (Z 5T, )

gy’
N
Variation of Virtual Work SW = (Z ow, )
m =1
Elastic Blade Gimballed Rotor PENNSTATE
Finite Element Equations i

tA
1855

N R
6I1 = _[:F (z qu(M b.q.m + Cb~qm + K, 9, — Fb_ )dy
. - ~muiti-blade
F w
+ .[:, [E)wlll'ad> ’lekﬁ ]{¢ ;II} + K re:traint(B max B restraint )6B max)d"p
gimbal spring gimbal restraint
[lqil: k.. s y+k, sty —k,_cosysimy-+k, _cassing
—77%0: CDSW.SW'F]‘.’BG WW’ 'I%zr .S'l?’lz\U +]q3cr a)gij

where

B = (W COSY =0, ST JCOS, +(W], ST+, COSY )SIY

OB, = (SW;J cosw _&bu ST )COSS +(6w;,) sy +8¢1,1 cosy ) siny, .
OY (_(w1,1 cosy _¢1,1 SN ) SIS, +(M,I siny +¢1,1 mg\l/)mwm)

- (ij siny +b,, cam/) dy_ = % ;4 W,
=Ilan - ., o 2 2 2 2
Ve W, cosy =0, siny W+, W+,

&)l.l



Elastic Blade Gimballed Rotor
Finite Element Equation
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|
Global Assembled System Equation
M{i+Cq+Kq-F=0
q= 5551,151,1:4)1,1[::WJ,z:WJ',z:(l)I,z:d)ua:W1,3rw;,31¢1,31"':
blade 1
!
210 W 2. W) 2:£2:¢2_2a:wz,3:“/2,3:‘1)2,3" blade 2
D
'4
¢N,,,Ia'WN,,,Z’wN,,,2’¢N,,,2’¢Nb,2a’WN,,,3’WN,,,3’¢N,,,3""
blade N,
W, =w,cosy +0,siny
&y =W} Simy + 9, cosy
Transient Response Prediction PENNSTATE
Two-Blade Teetering Rotor ‘ %
I
Rotor Blade Tip Rotor
Teet(zreg)n gle m Speed Deflection Speed
(RPM)  wiR (RPM)
15 I 0 o
B ol . )
TR KTTHnE & :
5 ’ ™ i ! Foo)
° Wi \ a vy ' &n
0 ' 0 0 ' &0
[ II + 40 " 40
5 m €10 ao
w0t u/u D 0n am
| — 1D 0
5 0 4D 0
an & 17 191 25 AP AR 48 0o 0 17 191 25 318 AR 4%
Elapsed Time (sec) Elapsed Time (sec)

------- rigid blade
- glastic blade




Further Work PENNSTATE
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* Refinement of Aerodynamic Model

Improve modeling of high angles of
attack

« Structural Modeling

Add lag Degree to finite element model of
gimballed rotor blades

» V-22 Transient Analysis and Validation

* Examine Blade and Hub Loads During Engage
and Disengage Operations
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 —

¢ Introduction
- — Background
— Development of the control law
e Theoretical Analysis
— Steady-state and transient performance
— Numerical simulation
¢ Experiments on a Cantilever Beam
— Piezoceramic linear actuator
— Terfenol-D nonlinear actuator

e Conclusions
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e Development of the Control Law
e Theoretical Analysis
| — Amplitude- and frequency-response curves
— Numerical simulation
e Experiments on Cantilever Beams
— Piezoceramic linear actuator
— Terfenol-D nonlinear actuator

e Performance Evaluation
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Background Virginia Tech

e Nonlinear vibration absorbers
- — Passive pendulum absorber - Haxton and Barr (1972)

— Semi-active pendulum absorber - Cartmell and Lawson
(1994)

e Control using internal resonance
— Active quadratic coupling - Golnaraghi (1991, 1994)

— Experimental application with a circuit - Oueini and
Golnaraghi (1996)

— Digital implementation — Khajepour and Golnaraghi
(1997)

=
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Development of the Control Law Virginia Tech |

e Fiquation of plant

i+ 2p0 + wu = Fcos(Q) + T

where
O~ w

e biquation of controller and control signal

B4+ 2¢C0 + Nv = auv
where ‘ ! -
& §Q and T(t) = vyv*
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Perturbation Analysis Virginia Tech |

e Approximate solution
1
u =~ acos(— V) and v = bcos i(ﬂt — ¢ — U)
e Modulation equations

o= —pa + yb*sin® + fsin¥
b=—(b— cabsin®
aﬁzbe cos® — fcosW
bo =aabcos®

where

¢ =7t—20+0 and ¥ = gt —0
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| || Equilibrium Solutions Virginia Tech ||

e Linear solution
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| || Equilibrium Solutions Virginia Tech |

e Nonlinear solution
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| || Steady-State Analysis — Force-Response Curves Virginia Tech
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| || Steady-State Analysis — Frequency-Response Curves \S/lilrzfii;igl'i‘eei:li (

0.01 T
0.008}
0.005| ; \

0.004} ’ \

0.002 - S~

_0'05 L] 1 1 1 1
-15 -10 -5 0 5 10 15




Shafic Oueini

Numerical Simulation — Equations of Motion Virginia Tech ||

e Plant and controller

i+ 2pu + u = F cos(Qt) + yv?
1
v+ 2Cv + 1(22’0 = QUV
e Simulation parameters
Q=1 F = 0.02

= 0.01 ¢ = 0.00001
a = v = 0.0026 |
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Numerical Simulation — Effect of Varying « Virginia Tech

"

] 1 ]

-1 . Ll 1 L ] 1
0 200 400 600 BOO 1000 1200 1400 1600 1800 2000
Time (sec)

Plant response when 2 =w =1 and F = 0.02
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Numerical Simulation — Effect of Varying ~ Virginia Tech L

Plant Response Controller Response
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o
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| @@ o
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Plant and controller response when ) = w =1 and F' = 0.02
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Piezoceramic Actuator — Actuator and Sensor Location Virginia Tech

Accelerometer ) ) .
Piezoeleciric  Strain

) ) Actuator Gage
@-0@ M= /A
- - -




‘The Experimental Setup

Piezoelectric Actuator

N Signal
Generators

RO

Power

Amplifier |

First

| Controller

Piezo
Amplifier

---}

Jih

' Controller 1 !

Nth
Contr oller

100-1b Shaker

Strain Gage
Signal Condition

-

(

Low-Pass
Filters

|t

Oscilloscope

LOCTTOV T TRTURNTYT

Data Aquisition
Computer




Piezoceramic Actuator — Single Mode Control

Response of Beam

08

T T

>——§

Response of Controller

Strain (V)
(=)

08

Lo

T T T

he)

=
[ 4
E’ 0
3
>

-2

_4 ] ] 1 1 ] 1

0 50 100 150 200 250 300 150
Time (sec)

Closed-loop response for increasing forcing.
Q~11.5Hz




Piezoceramic Actuator — Two-Mode Control

| .

1 L | 1
0 20 10 GO 80 100 120 140 160 180 200

Time (scc)

Closed-loop response for constant foreing,.
(0 ~ 4.3 Hz and €y =~ 26.5 11z
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Terfenol-D Actuator — Construction and Constitutive Law  virginia Tean ||

Prestress Housing
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Terfenol-D — Actuator and Sensor Configuration \S/lilragfglclig%(:cl}i |
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T Terfenol-D Actuator — Control of Second Mode Virginia Tech
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Cantroller Response (V)
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Beam and controller response when 2y &~ 47.5 Hz
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Piezoceramic Actuator — Effect of Varying v Virginia Tech

Beam Strain Controller Response

{a)

Voltage (V)

(b)

Voltage (V)

(©

Voltage (V)

20 40 60 80 0 20 40 60 80
Time (sec) Time (sec)

Beam and controller response when ; ~ 11.5 Hz
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Beam Sirain Controller Response

o
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(a) 0 ——*
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{b)
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%% 20 40 60 80 % 20 40 60 80 )
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Beam and controller response when 2, ~ 11.5 Hz
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C

e Devised a novel active nonlinear vibration absorber
based on the saturation phenomenon

e Investigated the steady-state and transient pertormance
of the strategy

e Successfully tested the technique through linear and
nonlinear actuators

e Demonstrated the performance of the strategy with
strain and acceleration feedback




The Influence of Low Strain Amplitude, Temperature, and Precompression

on the Dynamic Behavior of Elastomeric Damper Materials

Christian R. Brackbill L. Eric Ruhl
Doctoral Candidate Graduate Research Assistant
George A. Lesieutre Edward C. Smith
Associate Professor Assistant Professor

The Pennsylvania State University
Department of Aerospace Engineering
233 Hammond Building
University Park, PA 16802

Abstract

The dynamic behavior of elastomeric damper materials is investigated experimentally
and analytically. Experimental stress-strain time histories are generated for a range of strain
amplitudes (0.1 - 30%), frequencies (0.05 - 40Hz), and temperatures (-40 - 200°F), with and
without static precompression (22%). VThe experimental results show that the material dynamic
properties change rapidly as strain amplitude increases, and are relatively independent of
temperature, frequency, and precompression at higher amplitudes.

An initial linear viscoelastic model is developed to capture the material behavior over a
range of frequencies and temperatures. This model is shown to fit the experimental data at a
given strain amplitude. The amplitude-dependence is addressed by incorporating nonlinear
functions of the material stress into the linear relaxation equations. This nonlinear model shows
trends similar to those observed in the experimental data; however, the amplitude dependence is

currently not fully captured over a broad frequency or temperature range.
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Presentation Outline

o

—>¢ Background & Motivation
* Experimental Approach and Results
* Analytical Approach and Results

® Conclusions & Future Work




Background and Motivation:

Helicopter Applications

PENNSTATE
| X

Elastomeric components have demonstrated
the potential to perform effectively and reliably:

Centering Bearing  Spherical Bearing

CH-53D Hub Schematic

Examples of Rotorcraft with
Elastomeric Components

*Bell (Model 412, V-22)

« Boeing . (Model 360, V-22)
«MDHS (AH-64, Explorer).
* Sikorsky (CH-53, UH-60)
* MBB (BO-108, BK-117)

Background and Motivation:

Helicopter Applications

PENNSTATE

et

Schematic of a Typical Bearingless Rotor

Torque
Tube

Elastomer Dynamic
Properties Depend On

'+ Straln Amplitude _

*" Fraquency

Y

. ’T‘e‘m‘perkat‘ure,: =

. Elagtomerle
Shear Damper

B

BMPSEN «— —— Flexbeam

- sphercal”
Elastomeric Bearing

Focus of Current Research

“'Frequency Dependence -

. Statle Precomptession

Comblnad Temperature &

Low Straln Amplitude .
Nonllnearity (0.1-30 %) .




Background and Motivation:

PENNSTATE

Rotorcraft Elastomeric Damper Research @
Elastomeric Damper Models:
Gnmplex \

¢ Complex Modulus Based Models:
~ McGuire (Lord, 1976)
— Felker et al (NASA/Bell 1987)
— Hausmann and Gergley (MBB, 1992)

®* Time Domain Models:
— Gandhi and Chopra (UMD, 1894)
- Ingle, Tarzanin, Panda (Boeing, 1994+)
— Smith, Lesieutre, et al, (PSU, 1994+)
Kunz (MDHS, 1996)

Madull
. Storage

' /LL
\ oo o Strali Amplituda J
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Background and Motivation:

Penn State Elastomeric Damper Research Activities

PENNSTATE

Experimental Characterization

* quasi-static behavior
®* harmonic shear testing

¢ transient testing

Analvytical Modeling

® helicopter elastomeric dampers
®* Anelastic Displacement Fields
(ADF) material model

® strain dependence (large strains)

o —

‘—low strain amplitude

— temperature dependence
material self-heating
static precompression

]

Multiple-ADF model for:
1} temperature
) frequency
3) low-strain nonlinearity




Presentation Outline PENN %E_

®* Background & Motivation
> Experimental Approach and Results <3
¢ Analytical Approach and Results

® Conclusions & Future Work

Experimental Approach: ‘ PENNSTATE
Key Related Research =

®* Beale, 1995, PSU, Harmonic shear testing
— medium to high dynamic amplitudes (>= 10%)
— single & dual frequency
— static strain offset

* Byers, 1996-97, PSU, Temperature Effects
— medium to high dynamic amplitudes (>= 10%)
— single frequency, - 40° F to +200° F
— material self-heating (thermography system)
— Validation of Hausmann’'s approach using PSU data

®* Payne, et al, 1962, UK N
Complex Storage
. Moduli : Loss ’

— Carbon black-filled natural rubber
— Strain range: 0.1% to ~50%

® Sternstein, et al, 1997, RPI

— Extended Payne's work to Silicone
— Strain range: 0.1% to 10%

" Strain Amplitude




Experimental Approach: PENNSTATE
Penn State Elastomeric Damper Research Activities @
N
Experimental Characterization
® quasi-static behavior — low strain amplitude
* harmonic shear testing — temperature dependence

— material self-heating

¢ transient testing — static precompression

Multiple-ADF model for: -
1) temperature
2) frequency ;
3) low-strain nonlinearity

b, Aical odelid /
-

i i

_
2

Experimental Approach: PENNSTATE

Motivation @

¢ |Low Strain Amplitude

1) Comanche low-amplitude limit cycle instabilities
(Panda & Mychalowycz, Boeing)

2) Little existing research (Payne, Sternstein)

* Ambient Temperature Dependence
Army certification: -60° F to +120°F

®* Material Self Heating
Problems with V-22 Hub Springs

® Static Pre-compression
Pitch bearings: high centrifugal loading




Experimental Approach: PENNSTATE

Research Objectives ﬁ

® Generate experimental data to support model
characterization:

low dynamic strain harmonic data at various
temperatures and frequencies

¢ Generate additional experimental data to support
model validation:

time-domain data at various temperatures, including
dual-frequency, quasi-static, and transient loadings

* Experimental study of precompression effects
L—i gy = V,,,

Experimental Approach: PENNSTATE
Schematic of Characterization Facility | i

Window for
Thermography
Testing

d Temperature
Contraller

PC for Data’™.
Collection
i and Analysls

Grlp Controller




Experimental Approach:
Test Specimens

PENNSTATE

'Force @ 0.1%
strain amplitude:

W —

® -asws Elastomer j .
s> H <[
S b 3
7] i E 7]
Q g—=>1 11 =B
Bl |1 lie=l3
g Horllg
Medium to High Shour T j_ 3 L<__ 3
Amplitude Specimen  Shear : gj E;
i 1
Specimen Types: ; ii
3 High Damping / Moderate Stiffness : l
1 Low Damping / High Stiffness = ol
1 Low Damping / Low Stiffness Low Amplitude Specimen
Experimental Approach: PENNSTATE

Current Test Matrix

Shear Strain Amplitude (%)

0.10}0.15]0.25/0.35)| 0.50| 0.70| 1.00 1.50 | 2.00| 3.50 5.00
5 2 I AaRV G SSian

Frequency (Hz)

’~

Temperature ( °F)

440 0 | 32 | 75 | 100 | 150 | 212 |J

Precompression ( % Strain )
L0l10/22




Experimental Approach:
Typical Results

PENNSTATE
| Ty,

ﬂg * Material Hysteresis at Low Strain Amplitude
ﬁ‘ ®* Material Hysteresis - Temperature Effects

Variation of moduli with amplitude and
temperature

® Variation of moduli with amplitude and frequency

® Variation of moduli with amplitude and

precompression
Typical Experimental Results: PENNSTATE
Material Hysteresis at Low Strain Amplitude -

Variation of material hysteresis with strain amplitude:

High Damplng Elastomer, Room Temperature, 1 Hz
60

Nearly linear: -
‘(elliptical}at-
low amplittide

40t
20}

o A

Stress (psi)

-20}
-40}

-20 -10 0
Strain (%)

Strain (%)




Typical Experimental Results:

Material Hysteresis - Temperature Effects

PENNSTATE
| iy

High Damping Elastomer, 4 Hz forcing:

10% dynamlc strain

Shear Stress (psl)

Shear Stress (psi)
(=]

100% dynamic straln L

—r————r

5 sec 5 min

1st cyFIe

a
[/} 50 100
Shear Straln (%)

Ambient Effects: -

~slope and area decrease with
inereasing temperature ..

'slope and

. Self ‘HéaEing Effects:

 area decrease with

time (material hysteresis)

Typical Experimental Results:
Variation of Material Complex Moduli

PENNSTATE

% —

Variation of moduli with amplitude and temperature:

Slllcone Elastomer, 4 Hz

400 —r T T
1 of
\; sereasing « 40degF ndependent
300 £ et % 0dagF k temperature at
‘., i * 70degF high amplitude
u ie
(psT) slreln M
100 [ {“llllllllllllﬂ
minimum strain 0 . . — : -
amplitude: 5 % 150 '
L . decreasing
§ 100 ¢ . wmpgratiice 3
0SS =
Modulus - ® . . — |
3 . .
L R L IL LI
“‘AaAA::::::::::::
o 1 1 [ L
0 20 40 60 80 100

Shear Straln Amplitude (%)




Typical Experimental Results:

Variation of Material Complex Moduli

PENNSTATE
)

Variation of moduli with amplitude and temperature:

5000
4000
Storage
Modulusaooo
(psl) 2000
1000
minimum st,[aln 1000
amplitude: 0.1%
800
Loss 600
Modulus
(psl) 400
200 F

oba

High Damping Elastomer, 1 Hz

0 L

F 7 e f0degF independent of
3 * temperature at
F. 75deg F\ high amplitude
. e ..
o~ L, A
] o . 1 [5% strain.
oo | dodegF ¢ amplitude.
r . b
VYT . ]

75degF - .. i

L., .

0.1 '

1 10
Shear Straln Amplitude (%)

Typical Experimental Results:
Variation of Material Complex Moduli

PENNSTATE

o

Variation of moduli with amplitude and frequency:

High Damping Elastomer, Room Temperature

2500 Independent of
2000 F 0, increasing N ?-a"'z ] frequency at-
., Fraguency . 10 ':z high amplitude
Storage 1500 ““‘ | * 20 Hz
Modulus ®o, |
(psl) 1000 F ":‘%'
500 £ [ .-.. .
: ‘ “em, ,
minimum strain Gog ‘ '
amplitude: 0.1% ' ' - —
P 500 b X ".& ‘& P 5% strain
[P .o‘o‘ o <
400 F #a®a " v T,
Loss * T 2
Modulus 300 | le M,
(psl) 200 F T
Increasing '. =
100 £ Fragusncy LIV
LY 10

1
Shear Straln Amplitude (%)




Typical Experimental Results:
Variation of Complex Moduli with Precompression

PENNSTATE

% —

Variation of moduli with amplitude and precompression:

High Damping Elastomer, Room Temperature, 1Hz
2000 o _— a

Storage 1500

Modulus
wsly 1000 J¥

a
a
LY

® No Precompression
4 22% Stallc Precompresslon

N

i} Independent of
precompression
at high amplitude

recompression

Material .
softens with
o]

1 10

Displacement Amplitude (%)

Uncompressed Thickness

Experimental Results:

Discussion

PENNSTATE

W —

¢ Hysteresis tre

* Moduli trends

nds

— Hysteresis loops become elliptical at very low strains
— Slope and area decrease with increasing temperature

— Characteristic nonlinear shape at high amplitude

— Peak in loss moduli coincides with the largest rate of
change of the storage moduli

— Storage modulus independent of temperature, frequency,
and precompression at high amplitude

— Moduli appear to level off at very low & very high strains




PENNSTATE

Presentation Outline | Pl

¢ Background & Motivation
¢ Experimental Approach and Results

=>>¢ Analytical Approach and Results <=

® Conclusions & Future Work

Analytical Approach: PENNSTATE

Key Related Research E

Low Strain Amplitude Nonlinearity:

® Hausmann & Gergely,

1992, MBB Cntlzlgndpdﬁx Storage

¢ Gandhi and Chopra, Loss

1994-96, U.Maryland
_Enfq,r}ced»,ﬁ“lzggfgj’»:da‘l"nping Strain Amplitude
-at-“zero” amplitude

®* Panda, et al, 1995-97, Boeing
— “Variable Friction Damping” / Nonlinear Spring model

— Addressed dual frequency and low-amplitude limit cycle
behavior




Analytical Approach: PENNSTATE

Key Related Research E

Penn State Modeling Approaches:
®* Govindswamy, et al, 1994-95, PSU

— Characterization and Validation of a nonlinear Anelastic
Displacement Fields (ADF) Model

— Limited to larger dynamic amplitudes (>= 10% strain amplitude)

— rigid blade aeroelastic stability analysis

— single frequency

¢ Brackbill, et al, 1995-96, PSU, temperature effects
— medium to high dynamic amplitudes (>= 1% strain amplitude)
— broad temperature range: - 70° F to +300° F
— materlal self-heating

— introduction to multi-ADF model (improved temperature &
frequency performance)

Nonlinearities: short-time (elastic) response, material
" relaxation be‘hav)io‘r,qrrlgétl]g  static response

.

Analytical Approach: PENNSTATE

Key Related Research ﬁ

Nonlinear Viscoelasticity:
® Strganac, Texas A&M, 1997

— focus on “nonlinear time-dependent response”
— concept of “time-stress superposition”
— related to research by Schapery

® Johnson, et al, Army Research Lab, 1993-1997
— large-strain nonlinear viscoelasticity
— “stretch ratios” as internal variables
— time-domain finite element modeling

Concentrate on nonlinearity in the
_material relaxation behavior




Background and Motivation: PENNSTATE
Penn State Elastomeric Damper Research Activities -Iﬂ

‘ 4///5///#/%4//44%%

... ~\— static precompression:-

Analytical Modeling

¢ helicopter elastomeric dampers

Multiple-ADF model for:
1) temperature
..2) frequency
" 3) low-strain nonllneanty

* Anelastic Displacement Fields
(ADF) material model

® strain dependence (large strains)

Analytical Approach: PENNSTATE

Objectives E

¢ Develop an initial linear model for combined
temperature and frequency dependence
Method of Anelastic Displacement Fields

® Develop a refined nonlinear modeling approach
Improved performance over low strain amplitude range

¢ Validate the material model
Compare to time-domain experimental data




Analytical Approach: PENNSTATE
Multiple Anelastic Displacement Fields =

Initial linear multi-ADF model for temperature and
frequency dependence:

Constitutive Equations Material in Simple Shear

c = Gu(u'—i u,.'A\)

X =y
Anelastic strain

Unrelaxed dynamic shear modulus

2z 7 CiGu (¥4 .
O',-A =G, (u —ciu,-A )=, o O u,." (N equations)

ba ;

Total strain Inverse of relaxation time

Coupling parameter Temperature Shift Function
Analytical Approach: PENNM
Multiple Anelastic Displacement Fields @

In general, a multi-ADF model is used for materials with
“weaker” frequency dependence (i.e. elastomers):

1-ADF Model

multi-ADF
Model

Increasing Frequency =——=

Storage
Modulus

=> Multi-ADF model is more effective over a broad
temperature and frequency range




Analytical Approach: PENNSTATE
Linear Curve-fit Example L
I
2000 . , —
[ Dynamlc Strain Amplitude: 1%
® Fit linear Multi-ADF 2 1500 [ N e Lord Corporation Data
model to Jow- e 3 ADF Curve-flt
. S E N o | emmem- 1 ADF Curve-fil
amplitude data ERLLUS Storage ‘
=} [
* Data should be nearly |° = s00 9 g G I °
linear and include : ¥ Loss cenillng,, N
: 0 mrmpst” N I =
se\éefral tempgratures 100 0 100 200 300
and frequencies Temperature (deg F)
1000 . :
* Note: Example uses ~ 800
1% strain amplitude - z I
too large g 600
e — E 400
= T 9 ;
= 200
0
0.1
Frequency
Analytical Approach: PENNM
Nonlinear Model for Amplitude Dependence =

¢ Current approach: modify the internal relaxation
behavior of the material using nonlinear functions
of the anelastic stress

¢ Curve-fit nonlinear equations to experimental
stress time-histories

—— F - F
Linear ‘Nonlinear.
Dashpot: -Dashpot:
ﬁgﬁ:;‘gﬁ’ Concentrate on nonlinearity in the]
& Panda material relaxation behavior




Analytical Approach:

Nonlinear Model Synthesis

Multiple Anelastle Temperature
Displacement Shift
Fields Model Function

PENNSTATE

o

T i PR, PRTIEANNN——— Y

Fit to Low-Strain
Amplitude
Complex Moduli

=T

I

Formulate Nonlinear Equations I

m»ﬁ@xwl e r—

Fit to Low-Strain Harmonic
Stress Time Histories

[ = D —

ADF model\

Experithent

2
of @10 10% mirain kmpMuce N
é b Storage :150 005 01 015 02 025
2 Storage || . Loss A Tso ADF model
F Los [] o [ 1 E’ ol Erpfr‘u?‘
' Temlperature %requer;cy ; 720 \
s - i [ "6 oos ot 015 o2 o025 |
T = - = Time (sec) )
“Initial Linear Model for __ km— =
Temperature & Frequency L
‘ Dependence . r Final Nonlinear Model—l
Analytical Study: PENNSTATE

Variation of Material Hysteresis Behavior

10

kv 4 |

' Stress (psi)

=20 =10 L] 10 20

Strain (%)

Model “A”

* Stlffness (slope) similar to data
* Damping (arefé)'traglya}ge “

Stress (psi)

-100

o
—
Model “B”

M Stiffness (slope) too large-: . -
* Damping (area) similar {q data| -

-20 -10 Q 10 20

Strain (%)




Analytical Study: PENNSTATE
Variation of Material Complex Moduli o
T
Variation of Moduli with Amplitude and Frequency
for a High Damping Elastomer at Room Temperature
Analytical Trends: . Experimental Trends:
* S ove., 10Hz
Storage L
Modul
ocuius 1Hz \ﬂ‘\ R
a 'A.‘.‘ e,
o .A.:-A
Loss .t &1 H‘:u"“ Jone 3
Modulus .t
01 1 10 00 03 1 10
Shear Strain Amplitude (%) Shear Straln Amplitude (%)
Analytical Results: PENNSTATE
Discussion P

® |nitial linear model

— Linear Multi-ADF model fits material complex modulus data
over a range of frequencies and temperatures

— Initial characterization used data at 1% strain amplitude: NOT
linear data

® Nonlinear model

— Peak in loss moduli coincides with the largest rate of change
of the storage moduli - trend matches experimental data

— Nonlinear predictions are not accurate over a broad
frequency and temperature range: most likely due to

incorrect linear characterization
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Conclusions PENNS TéTE
Experimental: % E—

® Low strain amplitude harmonic data was generated
over the following ranges:

— Amplitudes: 0.1 to 50%

— Frequencies: 0.05 to 40Hz

— Temperatures: -40 to 200°F

— With and without precompression

¢ Dynamic material property trends:
— Linear behavior at very low strains

— Dynamic properties change rapidly as strain amplitude
increases

— Properties are relatively independent of temperature,
frequency, and precompression at high amplitude




PENNSTATE

Conclusions %
Analytical Model: :

¢ A nonlinear model was developed in the following
manner:

— An initial linear model was developed to capture the material
temperature and frequency dependence

— Nonlinear relaxation behavior was introduced to model the
material amplitude dependence

¢ Analytical modeling trends

— Dynamic material properties are captured over a range of
frequencies and temperatures at a specific strain amplitude
(linear model)

— Dynamic material properties are captured over a range of
strain amplitudes for a specific frequency and temperature
(full nonlinear model)

PENNSTATE
Future Work —m

* Low strain amplitude harmonic data is currently
being generated using the 5 new test specimens

¢ Time domain data for model validation will be
generated in the following forms:
— dual frequency — transient loadings
— quasi-static — material self-heating

® The linear model will be characterized using very
low strain amplitude data

¢ Nonlinear model characterization and validation will
then proceed




Rotorcraft Lag Damping Using Highly Distributed Tuned
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Abstract

Damping of the rotor blade lag mode is especially critical in soft in-plane rotors.
Lag damping is typically provided by hydraulic or elastomeric dampers. An alternative
approach to providing damping over a broad frequency range is presented. This is
accomplished with multiple individual vibration absorbers which are highly distributed in
both space and frequency. The mass for the absorbers comes from a portion of the mass
of the leading edge weight structure already incorporated into the blade. These absorbers
are modeled as frequency dependent mass which is distributed along an elastic blade. By
varying the number of discrete tuning frequencies, mass per unit length of the absorber
system, loss factor of spring material and frequency range of the absorbers, the amount of
damping produced can be varied. Through careful selection of these design parameters,
substantial damping over a broad frequency range is obtained. In an initial conceptual,
these absorbers are embedded inside the blade leading edge weight structure, which
reduces total rotor weight, complexity and drag. In addition, future research issues
critical to the effective implementation of this concept are addressed.



Rotorcraft Lag Damping Using
Highly Distributed Tuned
Vibration Absorbers

Chad A. Hébert
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Overview

* Background : Lag Damping

* Concept : Highly Distributed Vibration Absorbers
* Model : Blade with Absorber System |

* Results

* Summary & Future Research



Rotorcraft Lag Damping

* Soft in-plane rotors, air & ground resonance

* Hydraulic

* Elastomers

* Active Constrained Layers
* Electrorheological Fluids

* Magnetorheological Fluids

L.ag Dampers

* Current approaches

* Increase total rotor weight
* Increase complexity of rotor system

* Increased rotor hub drag

* Proposed approach
* Use mass of existing leading edge weights
* Provide adequate damping

» Reduce rotor weight, complexity, drag

N



Damping Using Highly Distributed
Tuned Vibration Absorbers

g9 .. 289

¢ Zapfe, 1997
* Multiple individual vibration absorbers highly aistributed
in both SPACE and FREQUENCY

* Frequency dependent elastic foundation,

distributed damping or distributed mass

Vibration Absorber System In Blade

* Leading edge weights approx. 15 - 20 %
of blade weight :

* Portion of L. E. weights used in
vibration absorber system

T ———

* Previously inert mass now productive in damping



Frequency Dependent Mass

* Absorber system modeled as a frequency dependent

complex mass per unit length

N 0?1+ in
pAg(@) =2 p?('1+'j1(11_;_]22

N - number of discrete tuning frequencies
pA; - mass per unit length

o, - natural freq. of i" portion of absorber

n; - loss factor of spring material

Frequency Dependent Mass

* Combination of Individual Vibration Absorbers

F N =1 Single Absorber “ Building Block "

N=30
Multiple Absorber System

[ pA4 |

-100
-150
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-200 A ‘ - , -
0 10 20 30 40 50 60 70 80
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Blade Model
Itu ' J

* Hingeless blade modeled as an elastic beam

¢ Lag motion
PAV+El(v') =PV = pAQ? =P, (x 1)

L
where P = _[pAsz1dx1 —» CF Load

X
* Finite element discretization

[M]{a} + KT+ ¥ ([Ke ]-IM]) b= {Fea )}

Nominal Blade / Rotor Parameters

* Operating speed : Qyomina = 28 rad/sec
* Non-dimensional rotating lag frequency : v, = .62 / rev
* Blade length = 8 m, blade chord = 0.5 m

* Blade mass = 139 kg




Blade with Absorber System Model

[l - Nl

* Qutboard of blade flexure
* |nitial collocation of section mass centers
* Distributed continuous system

* Complex mass and stiffness

Model used to study dynamic behavior
of blade with absorber system

* |terative eigensolution

Design Parameters

* N - number of discrete tuning frequencies ( w; )
* pA, - mass per unit length of absorber system
* 7, - loss factor of spring material

* Frequency range of absorbers

»



Absorber Tuning Frequency Range

* Range of absorber tuning frequencies should include:
» Blade natural vibration frequencies
» Progressive low frequency lag mode

20

—
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Q /
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— 6t Y,
©
i s
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0 k== ;
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Rotation Speed (Q) rad/sec

Relationship Between N and T

3 . . : T —

| pA |

Z PA

-200

0 5 10 15 20 25 30 a5 40
Frequency (rad/sec) ‘

» Desire Smooth Response with Frequency
* N small for producibility
* Reasonably high n;



Selecting Loss Factor of Absorbers

0.08 ———
® 007 - -3 —_— - -
- s = N = 30
Q Q=35
£
S, 0.06+
I 2<w <34
S o5l
g M pAd = 39,
= Q=25 reud
o 0041 pAg
(=
a
E 003} ]
3 X Q=15

0.02

0.05 0.06 0.08 01 012 044 016 018 02

ni

= n; = .07 for optimal damping at various
rotation speeds

Selecting Absorber / Blade Mass Ratio

0.12 T . T : —— —_—

0.1} N =30
0.08| 2<@; <34
0.06 ;= 0.12

0.04t

Damping ratio of lag mode ({)

0 5 10 15 20 25 30 35 40
Rotation Speed (Q)

» Damping ratio increases with mass ratio
and rotation speed

Co



Selecting Tuning Frequency Range

* Constant absorber / blade mass ratio =3 %
0.12 !

7
o1t 6-30 (rad/s) - 1
P

2-34 |
. (rad/s)

Damping ratio of lag mode (()
o
3

0 5 10 15 20 25 30 35 4d
Rotation Speed (Q)

» Smaller tuning range yields higher d‘amping

Conceptual Design

* Mass surrounded by rubber embedded
in leading edge weight structure



Summary & Conclusions

* Multiple vibration absorbers highly distributed
both in SPACE and FREQUENCY

* Inert mass now productive

* Promising damping results without
added weight, complexity and drag

* Optimization of design ( N, n;, w;, pA; )
provides substantial damping of the lag mode

Future Research
* Physical realizations
« Fit within leading edge weight envelope

» Stroke must not impact inner cavity of blade

* Effect on c.g. of blade cross-section

« Blade flap - lag - torsion coupling; aerodynamics

* Helicopter and blade stability

* Experimental Demonstration
« Effective implementation
* Performance

-
o



