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INTRODUCTION 
 

 Breast cancer is a leading cause of death in women, causing an estimated ~40,000 deaths per 

year. Mammography is the most effective method for the early detection of breast cancer, and it has 

been shown that periodic screening of asymptomatic women does reduce mortality[4].  Many breast 

cancers are detected and referred for surgical biopsy on the basis of a radiographically detected mass 

lesion or cluster of microcalcifications. Useful interpretation in mammography depends on the 

quality of the mammographic images and the ability of the radiologists who interpret those images. 

In addition to mammography, follow up imaging with the use of other modalities, such as MRI, and 

ultrasound are used for assessing malignancy of objects discovered following routine screenings.  

The long-term goal of this research is to improve breast cancer diagnosis, risk assessment, response 

assessment, and patient care via the use of large-scale, multi-modality computerized image analysis. 

The central hypothesis of this research is that large-scale image analysis for breast cancer research 

will yield improved accuracy and reliability when optimized over multiple features and large multi-

modality databases. In recent years, data mining and data driven discovery have become important 

research tools in many disciplines. Massive amounts of data may contain hidden structure and rich 

information, previously unavailable for characterization within smaller subgroups. Systematic 

search can reveal that structure and information. In our context, the opportunity is as follows: The 

digital age of medical imaging provides an ever-growing archive of data. Deep analysis of this 

multimodal imaging data can be used to train and optimize algorithms that are incorporated into 

usable clinical systems, thus improving overall breast imaging interpretation and patient outcome. 

Data mining can also enable relational discoveries between image data and cancer diagnosis, 

response, and outcome, thus adding to the potential for “patient-specific diagnoses leading to patient-

specific management.”  Aspects of optimization in this process of CADx development, were 

previously infeasible due to massive data and computation requirements.  However, now with 

advances in Grid-based computing many research avenues exist.  

 This reports covers the important initial developments in research accomplished in the past 

year leading towards these long term objectives.  During this first year of research activity, in 

addition to executing a proof of principle Grid-based computing work-flow, the recipient was mainly 

focused on identifying suitable theoretical/analytical tools for carrying out larger scale investigation 

as described above, and conducting preliminary evaluations of the usefulness of these new methods.  
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BODY 
 

Training Accomplishments 
 

 At the time of this report, the recipient of the Predoctoral Traineeship Award, Andrew R. 

Jamieson, has completed 17 out of the 20 required courses towards the Ph.D. degree in Medical 

Physics. The remaining three courses will be finished by 2010 Fall, at the latest. Some recent 

courses completed within the past year include  Machine Learning, Anatomy of the Body,  Health 

Physics, and a teaching assistantship in Computer Vision and Image Processing. 

 

Research Accomplishments 
 

 

1. Designed and Successfully Executed Proof of a Principle Grid-based Breast CADx 

Images Analysis Work-flow using Swift Script.  

 

 We designed and executed a pilot study to utilize large scale parallel grid computing to harness 

the nationwide cluster infrastructure for optimization of medical image analysis parameters.  A 

previously developed CAD scheme for mass lesions in mammography was ported onto the grid 

computing environment by wrapping the algorithm code with the Swift script workflow langauge.  

The CAD scheme was then configured into a parallelizable workflow by the grid-software.  The 

workflows were executed using two test clusters (in Santa Monica, CA and Chicago, IL) consisting 

of over 220 dual-CPU nodes combined.  Using the grid-environment workflow, parameter sweeps 

were conducted for lesion segmentation settings based on radial-gradient-index (RGI) methods.  

Specifically, the Gaussian width (GW) used in initially filtering lesion images for segmentation was 

varied by increments of 1 mm from 1 to 60 mm.  For each GW sweep the entire 850 biopsy-proven 

mass lesion database (411 benign, 439 malignant) was analyzed.  In each, 29 different mathematical 

descriptor features were calculated, followed by feature selection and merging with linear 

discriminate analysis.  Diagnostic performance was estimated by ROC analysis by calculating AUC 

(from PROPROC) values based on both individual features alone, and merged. For merged 

classifiers, AUC values were found using round-robin case-by-case removal and replacement. 

Among the resulting , computation jobs requiring over 30 CPU hours on a single lab computer were 

completed in approximately 35 minutes in this preliminary study. Merged AUC values increased 

from 0.50 (std.err.=0.018) at GW of 1mm with, to 0.81 (std.err.=0.015) at 10mm GW, with relative 

plateaus across the rest of the parameter space to 60mm.          

 In general, the parameter space sweep in GW identified trends in individual feature performance 

as well as merged results.  Large scale, computationally intensive image analysis can be carried out 

in a timely fashion, feasible for expedited experimental discovery, as well as for more thorough 

future statistical analysis. 

See Appendix A for Poster summarizing the work-flow and data found.  

 

 

 

2. Investigation of Dimension Reduction(DR) in Place of Feature Selection Breast 

CADx  
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 Recently developed unsupervised non-linear dimension reduction (DR) and data representation 

techniques were applied to computer-extracted breast lesion feature spaces across three separate 

imaging modalities: ultrasound (US) with 1126 cases, dynamic contrast enhanced-magnetic 

resonance imaging (DCE-MRI) with 356 cases, and full-field digital mammography (FFDM) with 

245 cases. Two methods for non-linear DR were explored: Laplacian Eigenmaps of Belkin and 

Niyogi,[1] and t-distributed stochastic neighbor embedding (t-SNE) of van der Maaten and 

Hinton.[2] These methods attempt to map originally high-dimensional feature spaces to more human 

interpretable lower-dimensional spaces while preserving both local and global information.   

 Due in part to the ever-growing demand of data driven science, in recent years much interest has 

emerged in developing techniques for discovering efficient representations of large-scale complex 

data.[5] Conceptually the goal is to discover the intrinsic structure of the data and adequately 

express this information in a lower dimensional representation.   Classically, the problem of DR and 

data representation has been approached by applying linear transformations such as the well-known 

Principal Component Analysis (PCA) or more general Singular Value Decomposition (SVD). [6,7] 

Interestingly, despite PCA’s age, only recently has this method been considered for the specific 

application to CADx feature space reduction.[8]In this particular breast ultrasound study, while no 

significant boosts in lesion classification performance were discovered, PCA was found to be a 

suitable substitute in place of more computationally intensive and cumbersome feature selection 

methods.[8] This efficient lower dimensional PCA data representation, i.e. linear combinations of 

the original features accounting for the maximum global variance decomposition in the data, proved 

capable of capturing sufficient information for robust classification.   However, PCA is not capable 

of representing higher order, non-linear, local structure in the data.   

The goal of recently proposed non-linear data reduction and representation methods focuses 

on this very problem. [1,2] The present methods of interest to this study, Laplacian Eigenmaps and t-

Distributed Stochastic Neighbor Embedding (t-SNE), offer two distinct approaches for explicitly 

addressing the challenge of capturing and efficiently representing the properties of the low 

dimensional manifold on which the original high-dimensional data may lie. Previous studies have 

investigated other non-linear DR techniques, including self-organizing maps (SOMs) and graph 

embedding, for breast cancer in the context of biomedical image signal processing[9,10], as well as 

for a breast cancer BIRADs database clustering[11].  To our knowledge the relationship between 

breast CADx performance and these non-linear feature space DR and representation have yet to be 

properly investigated.  These new techniques may contribute two key enhancements to current 

CADx schemes.        

    1) A principled alternative to feature selection. Both methods explicitly attempt to   preserve as 

much structure in the original feature space as possible, and thus      require no need to 

assumingly force exclusion of features from the original set, and hence unnecessary loss of image 

information.   

  2) A more natural and sparse data representation that immediately lends itself to generating 

human-interpretable visualizations of the inherent structures present in the high-dimensional feature 

data.  

 

3. Evaluation of the performance Dimension Reduction(DR) in Place of Feature 

Selection Breast CADx  

 

  For the high-dimensional feature spaces ,DR methods were tested across all modalities for a 

range of lower target dimensions and user-defined algorithm parameters.  We evaluated the classifier 

performance using the area under the Receiver Operating Curve ROC curve (AUC) via the non-
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parametric Wilcoxon-Mann-Whitney statistic, as calculated using the PROPROC software.
  

Statistical uncertainty in classification performance due to finite sample sizes was estimated by 

implementing 0.632+ bootstrapping methods for training and testing the classifiers.
 
 Additionally, 

we computed the 95% empirical bootstrap confidence intervals on AUC values as estimated by no 

less than 500 bootstrap case set re-samplings.  In all values reported, the sampling was conducting 

on a by lesion basis, as there may be multiple images associated with each unique lesion. In this 

regard, during classifier testing, the set of classifier outputs associated with a unique lesion were 

averaged to produce a single value. For the supervised feature selection methods (Automatic-

relevance determination (ARD) and linear step-wise), feature selection was conducted, up to the 

specified number of features, on each bootstrapped sample set.  Notably, the more general Markov 

Chain Monte Carlo based Bayesian artificial neural network (MCMC-BANN) was coupled with 

both the non-linear ARD and linear-based feature selection methods, while the linear discriminant 

analysis (LDA) was only with the LSW selection. As some of the calculations are computationally 

intensive, particularly the t-SNE mappings and MCMC-BANN training for the larger US data set, a 

256-CPU shared. 

 Results are summarized in depth in Appendix B. 

 

4. Investigation Breast CADx Feature Data Representation and Visualization with Non-

Linear Local Geometry Preserving Dimension Reduction Methods 

  

  Please see Appendix B and associated figures for sample breast image CADx feature data 

visualizations. 

 

 

5. Investigation of Manifold Regularization for Breast CADx using Unlabeled   

Image Data 

 

 Supervised classification, which embodies the traditional role of CADx, critically requires 

that the “truth” or true biological disease status, for instance “malignant” or “benign”, must be 

known for each case image during algorithmic training. However, accomplishing this data assembly 

step is often the most resource expensive component of conducting CADx research, and usually acts 

as a severely limiting factor.  While efforts will continue to streamline the gathering of pathological 

and radiological information associated with each clinical case, in most research contexts, a relative 

abundance of readily available unlabeled data may persist.  From a practical standpoint it is wasteful 

to completely discard this information.  Although the “truth” may be unknown, these unlabeled 

cases still contain potentially useful image information.    In particular, the unlabeled image data can 

be regarded as an additional sample drawn from the underlying marginal probability distribution 

characteristic of the combined class-categories, i.e. both “malignant” and “benign”. A large enough 

unlabeled data sample may provide sufficient knowledge of the inherent structure of the underlying 

marginal image distribution to guide the improved design of supervised classification on labeled 

cases. More simply stated, the unlabeled data may help “regularize” the training of CADx 

algorithms, and consequently improve clinical performance.            

 Recently developed unsupervised non-linear dimension reduction and data representation 

techniques, specifically Laplacian Eigenmaps (Belkin and Niyogi) and t-SNE (van der Maaten and 

Hinton), offer a principled approach for integrating unlabeled and labeled image feature data. Thus, 

the purpose of this study is to investigate the potential these methods have for leveraging unlabeled 

data information towards the design of more robust/stable CAD classification algorithms. This 
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preliminary study focuses within the context of diagnosing breast mass lesions for ultrasound.   

 The canonical methodology for training/testing CADx algorithms usually consists of the 

following distinct steps: 1) segmentation and feature extraction, 2) feature selection, 3) merged 

feature- supervised classifier training, and 4) performance evaluation.  The incorporation of 

unlabeled data into the CADx algorithm training for regularization can be accomplished by 

employing unsupervised dimension reduction in place of explicit feature selection in step two.   For 

example, in the ultrasound dataset used in this study, up to 81 features are extracted from the lesion 

images. Features may be extracted for both labeled and unlabeled cases (truth known and unknown). 

Instead of using supervised feature selection (such as automatic relevance determination), which is 

dependent exclusively upon the labeled cases, unsupervised dimension reduction can be used to map 

the high dimensional feature vectors, including the unlabeled feature data, into a lower dimensional 

representation.  The reduced dimension mapped output for the labeled cases may then be used as 

input into supervised classification training.  Crucially, the unlabeled cases have exerted influence 

on the relative mapping of the labeled cases used to train the classifier. Ideally, this influence serves 

as a regularizing force, leading to more robust performance on novel cases.  Additionally, the 

reduced dimension representations may be amenable to useful visualizations in 2D and 3D.   

 Appendix C contains graphic illustrations of the concept of dimensionality reduction as well 

as the incorporation of unlabeled into the CADx training algorithm. 
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KEY RESEARCH ACCOMPLISHMENTS 
 

 Designed and executed Swift script enabled Grid computing work-flows, and managed to 

display clear proof of principle for large scale, parallel breast image analysis.   

 Made effective use of the new 256 CPU SIRAF Shared Computing Facility at the University 

of Chicago Dept. of Radiology both as a test-bed for large scale parallel job submission and 

workflow management and to rapidly conduct new Multi-Modality Breast Image CADx 

research, culminating in a peer-reviewed journal article submission.  Estimated Total CPU time 

used: ~100,000 to 300,000 hours. 

 Investigated the use of cutting edge data-analysis/mining techniques as applied to 

Ultrasound, FFDM, and DCE-MRI Breast Image Feature Space Analysis for CADx , 

specifically, dimension reduction and data representation techniques (t-SNE and Laplacian 

Eigenmaps) for high dimensional data spaces.  These methods allow for an alternative to 

traditional feature selection methods.  Using the high-throughput cluster computing capabilities, 

performance metrics and intensive statistical cross-validation (0.632+ bootstrap and ROC 

analysis for AUC performance) were performed to gain understanding of the new techniques 

potential versus previous Breast CADx methodologies.   Results indicate the ability to rival or 

exceed previous CADx performance.   

 The dimensional reduction and data representation techniques also were shown to provide 

rich visualization output for human interpretation of the complex breast image feature space 

geometry.   

 Additionally, the promising findings and have motivated a number of new research avenues. 

 Most significantly, the incorporation and principled use of "unlabeled" (truth-unknown/non-

biopsy proven) image data for the training of CADx algorithms.  Specifically, the unsupervised 

dimension reduction techniques can use the feature space geometric structure to help regularize 

algorithmic training.  
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REPORTABLE OUTCOMES 
 

Conference Presentations and Abstracts 

 A.R. Jamieson, M L Giger, M Wilde, L Pesce, I Foster, “Grid-Computing for Optimization 

of CAD,” Poster, 50th Assembly and Annual Meeting of American Association of Physicist in 

Medicine (AAPM), Houston, Illinois, USA, July 2008 

 A.R. Jamieson, ML Giger, L. Pesce  “Regularized Training of CADx Algorithms with 

Unlabeled Data Using Dimension Reduction Techniques,” Accepted talk. 95nd Assembly and 

Annual Meeting of Radiological Society of North America, Chicago, Illinois, USA, December 

2009. 

 A.R. Jamieson, M L Giger, et. al. “ Exploring Non-Linear Feature Space Dimension 

Reduction and Data Representation in Breast CADx”, Accepted talk. 51
st
 Assembly and Annual 

Meeting of American Association of Physicist in Medicine (AAPM) Anaheim CA, USA, July 

2009 

Peer-reviewed Journal Papers 

A.R. Jamieson, M. L. Giger, et. al. “Exploring Non-Linear Feature Space Dimension 

Reduction and Data Representation in Breast CADx with Laplacian Eigenmaps and t-SNE”, 

Med. Phys, (Accepted, in revision), 2009. 
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CONCLUSIONS 
 

 Overall, the past year proved to be highly productive for the recipient of the Predoctoral 

Traineeship Award, in terms of both research output achieved, leading to the continued personal 

development as an independent investigator, as well as the intensive didactic training and education. 

 The recipient has completed all but three classes (out of the 20 required) and will finish the required 

course load by Fall 2010, at the latest.  The courses completed, both core Medical Physics and 

research oriented theoretical based electives, have helped to guide important research decisions.    

 

 The initial research effort completed during this first year has not only produced encouraging 

results but also laid an excellent foundation for beginning large scale deployment of the 

experimental techniques onto the Grid environment.   In addition to successfully deploying a proof 

of principle Grid run, we have used the local 256-CPU cluster effectively to gain research direction. 

 Specifically, we have managed to identity and learn to use newly developed data analysis methods 

which can powerfully enhance the proposed objective of uncovering important information from 

large databases of breast cancer image data. These new methods will allow us to interpret the nature 

of the underlying structure associated with image data.  By investigating the structure of the multi-

modality breast image data, we can then correlate the findings with other biological and genomic 

data towards maximizing the overall impact of such systems for future clinical deployment.  

 

 Furthermore, as mentioned in the report above, through investigation of the new dimensional 

reduction and data representation techniques, new capabilities have been identified for the use of 

"unlabeled" image feature data.  This is particularly of interest, as the vast majority of clinically 

accumulated data is never analyzed for proof of biologic origin and pathology ("labeled").  Thus, 

introduction of these new methods to our research is exciting, as not only will more data 

("unlabeled") be available to incorporate into our algorithmic development, but also, ample 

opportunity to make full use of the large scale computing power of the Grid. 
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 Appendix A: POSTER: A.R. Jamieson, M L Giger, M Wilde, L Pesce, I Foster, “Grid-

Computing for Optimization of CAD,” Poster, 50th Assembly and Annual Meeting of 

American Association of Physicist in Medicine, Houston, Illinois, USA, July 2008 

 Appendix B: PAPER: A.R. Jamieson, M. L. Giger, et. al. “Exploring Non-Linear Feature 

Space Dimension Reduction and Data Representation in Breast CADx with Laplacian 

Eigenmaps and t-SNE”, Med. Phys, (Accepted, in revision), 2009. 

 Appendix C : FIGURE: A.R. Jamieson, ML Giger, L. Pesce  “Regularized Training of 

CADx Algorithms with Unlabeled Data Using Dimension Reduction Techniques.” Accepted 

talk  95nd Assembly and Annual Meeting  of Radiological Society of   North America, Chicago, 

Illinois, USA, December 2009. 
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Appendix B 

 

MANUSCRIPT SUBMITTED TO MEDICAL PHYSICS JOURNAL 

 

Title:  

 Exploring Non-Linear Feature Space Dimension Reduction and Data 

Representation in Breast CADx with Laplacian Eigenmaps and t-SNE 

 

Authors: Andrew R. Jamieson, Maryellen L. Giger, Karen Drukker, Hui Li, Yading 

Yuan, and Neha Bhooshan 

Department of Radiology, University of Chicago, Chicago, Illinois 60637 

 

Abstract: 

 In this preliminary study, recently developed unsupervised non-linear dimension reduction 

(DR) and data representation techniques were applied to computer-extracted breast lesion feature 

spaces across three separate imaging modalities: ultrasound (US) with 1126 cases, dynamic contrast 

enhanced-magnetic resonance imaging (DCE-MRI) with 356 cases, and full-field digital 

mammography (FFDM) with 245 cases. Two methods for non-linear DR were explored: Laplacian 

Eigenmaps of Belkin and Niyogi,
1
 and t-distributed stochastic neighbor embedding (t-SNE) of van 

der Maaten and Hinton.
2
  These methods attempt to map originally high-dimensional feature spaces 

to more human interpretable lower-dimensional spaces while preserving both local and global 

information.  The properties of these methods as applied to breast computer-aided diagnosis (CADx) 
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were evaluated in the context of malignancy classification performance as well as in the visual 

inspection of the sparseness within the two- and three-dimensional mappings.  Classification 

performance was estimated by using the reduced dimension mapped feature output as input into both 

linear and non-linear classifiers: Markov Chain Monte Carlo based Bayesian artificial neural 

network (MCMC-BANN) and linear discriminate analysis (LDA).  The new techniques were 

compared to previously developed breast CADx methodologies, including Automatic Relevance 

Determination (ARD) and linear step-wise (LSW) feature selection, as well as a linear DR method 

based on Principal Component Analysis (PCA).  Using ROC analysis and 0.632+ bootstrap 

validation, 95% empirical confidence intervals were computed for the each classifier’s AUC 

performance.  Results: In the large US dataset, sample high performance results include, AUC0.632+  

= 0.88 with 95% empirical bootstrap interval [0.787;0.895] for 13 ARD selected features  and 

AUC0.632+  = 0.87 with interval [0.817;0.906] for 4 LSW selected features compared to 4D t-SNE 

mapping (from the original 81D feature space) giving AUC0.632+  = 0.90 with interval [0.847;0.919], 

all using the MCMC-BANN. Conclusions: Preliminary results appear to indicate capability for the 

new methods to match or exceed classification performance of current advanced breast lesion CADx 

algorithms. While not appropriate as a complete replacement of feature selection in CADx problems, 

DR techniques offer a complementary approach which can aid elucidation of additional properties 

associated with the data. Specifically, the new techniques were shown to possess the added benefit of 

delivering sparse lower-dimensional representations for visual interpretation, revealing intricate data 

structure of the feature space.        

 

Keywords: non-linear dimension reduction, computer-aided diagnosis, breast cancer, Laplacian 

Eigenmaps, t-SNE  
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I. Introduction 

 Radiologic image interpretation is a complex task.  A radiologist's expertise, developed only 

with exhaustive training and experience, rests in their ability for extracting and meaningfully 

synthesizing relevant information from a medical image. However, even under idealized image 

acquisition conditions, precise conclusions may not be possible for certain radiologic tasks.  Thus, 

computer aided diagnosis (CADx) systems have been introduced in a number of contexts in an 

attempt to assist human interpretation of medical images.
3
  A relatively well-developed clinical 

application for which computerized efforts in radiological image analysis have been studied is the 

use of CAD in the task of detecting and diagnosing breast cancer.
4-10

  Similar to the radiologist’s 

task, a computer algorithm is designed to make use of the highly complicated breast image input 

data, attempting to intelligently reduce image information into more interpretable and ultimately 

clinically-actionable output structures, such as an estimate of the probability of malignancy.  

Understanding how to optimally make use of the enormity of the initial image information input and 

best arrive at the succinct conceptual notion of “diagnosis” is a formidable challenge.  Although 

there may be any number of various operations/transformations involved in arriving at this high-

level end output, whether in the human brain or in silico, two common critical pursuits are proper 

data representation and reduction.  The current study aims to explore the potential enhancements 

offered to breast mass lesion CADx algorithms through the application of two recently-developed 

dimensionality reduction and data representation techniques, Laplacian Eigenmaps and t-distributed 

stochastic neighbor embedding (t-SNE).
1,2

     

 

II. Background  

II.A. Current CADx Feature Representation  
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Restricted by limited sample datasets, computational power, and lack of complete theoretical 

formalism, image-based pattern recognition and classification techniques often tackle the objective 

task at hand by substantially simplifying the problem.  Traditionally, breast CADx systems employ 

a two pronged approach, first, image pre-processing and feature extraction, and second, 

classification in the feature space, either by unsupervised methods, supervised methods, or both.  A 

review of past and present CADx methods employed can be found in referenced articles 

referenced.
3,11

  Often, instead of attempting to make use of the complete image
12

, CADx typically 

condenses image information down to a vector of numerical values, each representative of some 

attribute of the image or lesion present in the image. One can consider this first data reduction step 

as “perceptual” processing, meaning that at this stage the algorithm’s goal is to isolate and 

“perceive” only the most relevant components of the original image that will contribute towards 

distinguishing between the target classes (e.g., malignant or benign).  One of the steps in eliminating 

unnecessary image information is lesion margin segmentation. 
5,13

  Typically, features, such as those 

extracted from the segmented lesion, are heuristic in nature and mimic important human identified 

aspects of the lesion.  However more mathematical and abstract feature quantities may also be 

calculated that may represent information visually imperceptible to the unaided eye.  While the use 

of data from a segmented lesion introduces bias into the algorithm’s task as a whole, this “informed” 

bias allows for the efficient removal of much unnecessary image data, for instance normal 

background breast tissue.  From here the second main component of the CADx algorithm falls 

usually into the context of the well-formalized canonical problem found in statistical pattern 

recognition for classification
14,15

.  

After the first CADx phase of feature extraction, each high-dimensional image in the sample 

set is now reduced to a single vector in a lower-dimensional feature space.  However, due to the 

finite size of image sample data, if too many features are examined simultaneously, regions 
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containing a low density of points in the feature space will exist, resulting in statistically 

inconclusive classification ability.    This dilemma is affectionately termed the “curse of 

dimensionality.”
16

  Thus, a further reduction in the full feature space is required for a practically 

useful data representation.  This aspect is a major concern of the second component of traditional 

CADx schemes, and is succinctly known as “feature selection”.  Much literature has been generated 

on this subject matter in the explicit context of improving CADx performance 
17-19

  Some CADx 

schemes may employ only 4-5 features maximum, in which case, feature selection may not be 

necessary, since the dataset sample size, even for relatively smaller sizes, may be sufficiently large to 

avoid over-training classifiers.  However, it is reasonable to imagine CADx researchers interested in 

testing hundreds of potential features. In either case, when appropriately coupled with a well-

regularized supervised classification method, the ultimate objective of features selection is to 

discover the “optimal” data representation, or sub-set of features for robustly maximizing the desired 

diagnostic task performance. That is, the method attempts both to mimic and to maximize the 

theoretical upper bound or ideal observer performance possible over the sampled joint probability 

distribution of the selected features.   While this step is critical, finding such a sub-set is non-trivial 

and may also be highly dependent on the specific characteristics of the sample data.  Developed 

techniques in feature selection for CADx range from simpler linear methods, such as those based on 

linear discriminate analysis (LDA), to non-linear and more sophisticated Bayesian-based, such as 

the use of Bayesian Artificial Neural Networks (BANN) and Automatic Relevance Determination 

(ARD), to random-search stochastic methods such as genetic algorithms as well as information 

theoretic techniques
17,19-21

.     

The most striking quality of the methods mentioned above, in the context of CADx, is that 

during feature selection, some features are completely removed from the final classification scheme, 

and hence image information is either explicitly or implicitly discarded altogether.  However, while 
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removing out all the information associated with a specific feature not selected, by selecting a 

smaller sub-set of individual features, what is gained is greater immediate human interpretability. 

Specifically, the isolated groups of features may have clear physical or radiological meanings and 

thus may be of interest to investigators or radiologists for understanding how these characteristics 

relate to the ability to distinguish class categories (malignant, benign, cyst, etc..).  To this end, in 

order to interpret the nature of the feature space and attempt to identify characteristic trends, one 

may visually inspect plots displaying single features or attempt to capture synergistic qualities 

between two or three features simultaneously.  Above three dimensions, as it becomes non-trivial to 

interpret the structure of the feature space, often instead, the use of a metrics such at the ROC curve 

and/or AUC based on output from the decision variable of a trained merged feature classifier are 

used to interrogate the quality of the higher dimensional feature spaces. 

As such, beyond identifying which feature or features appear to hold classification utility, 

current CADx methods offer little theoretical/formal guidance in a recovering understanding of the 

inherent data structure represented by the higher dimensional feature spaces. 

 

II.B. Proposed Feature Space Representation and Reduction for CADx 

Due in part to the ever-growing demand of data driven science, in recent years much interest 

has emerged in developing techniques for discovering efficient representations of large-scale 

complex data.
22

  Conceptually the goal is to discover the intrinsic structure of the data and 

adequately express this information in a lower dimensional representation.   Classically, the problem 

of dimension reduction(DR) and data representation has been approached by applying linear 

transformations such as the well-known Principal Component Analysis (PCA) or more general 

Singular Value Decomposition (SVD). 
23,24

  Interestingly, despite PCA’s age, only recently has this 

method been considered for the specific application to CADx feature space reduction.
25

  In this 
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particular breast ultrasound study, while no significant boosts in lesion classification performance 

were discovered, PCA was found to be a suitable substitute in place of more computationally 

intensive and cumbersome feature selection methods.
25

  This efficient lower dimensional PCA data 

representation, i.e. linear combinations of the original features accounting for the maximum global 

variance decomposition in the data, proved capable of capturing sufficient information for robust 

classification.   However, PCA is not capable of representing higher order, non-linear, local structure 

in the data.   

The goal of recently proposed non-linear data reduction and representation methods focuses 

on this very problem.
1,2

 The present methods of interest to this study, Laplacian Eigenmaps and t-

Distributed Stochastic Neighbor Embedding (t-SNE), offer two distinct approaches for explicitly 

addressing the challenge of capturing and efficiently representing the properties of the low 

dimensional manifold on which the original high-dimensional data may lie. Previous studies have 

investigated other non-linear DR techniques, including self-organizing maps (SOMs) and graph 

embedding, for breast cancer in the context of biomedical image signal processing
26,27

, as well as for 

a breast cancer BIRADs database clustering.
28

  To our knowledge the relationship between breast 

CADx performance and these non-linear feature space DR and representation have yet to be 

properly investigated.  These new techniques may contribute two key enhancements to current 

CADx schemes.        

1. A principled alternative to feature selection. Both methods explicitly attempt to preserve 

as much structure in the original feature space as possible, and thus require no need to 

assumingly force exclusion of features from the original set, and hence unnecessary loss 

of image information.   

2. A more natural and sparse data representation that immediately lends itself to generating 

human-interpretable visualizations of the inherent structures present in the high-
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dimensional feature data.   

It is important to note that by employing DR on CADx feature spaces, one surrenders, to a varying 

extent, the ability to immediately interpret the physical meaning of the embedded representation.  

Yet, critically, this is a necessary and fundamental trade-off, as the conceptual focus is shifted to a 

more holistic approach, specifically, that of discovering an efficient lower dimensional 

representation of the intrinsic data structure.  The core tenant of such an unsupervised approach is to 

limit assumptions imposed on the data.   This major shift in philosophy regarding the original high 

dimensional feature space embodies the notion, “let the data speak for itself.”  It seems reasonable to 

assume that if supervised classifiers are capable of uncovering sufficient data structure in the 

extracted feature space for producing adequate classification performance, then such principled local 

geometry preserving reduction mappings should reveal structural evidence corroborating such 

findings. 

II.C. Outline of Evaluation for Proposed Methods 

 The primary objective of this study is to evaluate the classification performance 

characteristics of breast lesion CADx schemes employing the Laplacian Eigenmap or t-SNE DR 

techniques in place of previously developed feature-selection methods.  Secondly, and more 

qualitatively, we aim to investigate and gain insight into the properties of sample visualizations 

representative of lower-dimensional feature space mappings of high-dimensional breast lesion 

feature data.  Additionally, the feasibility and robustness of these non-linear reduction methods for 

CADx feature space reduction are tested across three separate imaging modalities: ultrasound (US), 

dynamic contrast enhanced MRI (DCE-MRI), and full-field digital mammography (FFDM), having 

case sets of 1126 case, 356 cases, and 245 cases, respectively.  
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III. Methods 

 III.A. Dataset  

 All data characterized in this study consists of clinical breast lesions presented in images 

acquired at the University of Chicago Medical Center.  Lesions are labeled according to the truth 

known by biopsy or radiologic report and collected under HIPAA-compliant IRB protocols.  

Furthermore, the breast lesion feature datasets were generated from previously developed CADx 

algorithms at the University of Chicago.  For a review of these techniques see Giger, Huo, Kupinski 

for X-ray mammography, Drukker, for US, and Chen for DCE-MRI. 
4-11,29

   

In each of the modalities, the lesion center is identified manually for the CADx algorithm, 

which then performs automated-seeded segmentation of the lesion margin followed by computerized 

feature extraction.  Table 1 below summarizes the content of the respective imaging modality 

databases used, including the total number of initial lesion features extracted.  Note that the 

mammographic imaging modality (FFDM) contains only two lesion class categories, malignant and 

benign.  For ultrasound and DCE-MRI a more detailed sub-categorization is provided, including 

invasive carcinoma (IDC), ductal carcinoma in situ (DCIS), benign solid masses, and benign cystic 

masses. For clarity, this initial study only considers binary classification performance in the task of 

distinguishing between the more broad identity of malignant and benign (cancerous vs. non-

cancerous). However, during qualitative inspection of the dimension reduced mappings, it will be of 

interest to re-introduce these distinctions for visualization purposes. 

 

Modality 

Total 

Number of 

Images 

Number of 

Malignant 

Lesions 

Number of 

Benign Lesions 

Total Number of 

Lesion Features 

Calculated 
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US 2956 158 

968 ( 401 mass / 

567 cystic) 

81 

DCE-MRI 356 

223 (151 IDC / 

72 DCIS) 

133 31 

FFDM 735 132 113 40 

Table 1.  Feature Database Characteristics. 

Geometric, texture, and morphological features, such as margin sharpness, were extracted across all 

modalities.  Also, the DCE-MRI dataset includes kinetic features, and the US features include those 

related to posterior acoustic behavior.
8,10

  All raw extracted feature value datasets were normalized 

to zero mean and divided by the unit sample standard deviation.   Due to page limitations, the details 

of each feature can be found in the referenced papers.
4-11,29 

 

III.B. Classifiers 

 In our evaluation of the new DR techniques, we chose two types of classifiers:  a relatively 

simple linear discriminant analysis (LDA) classifier and a more sophisticated non-linear, Bayesian 

artificial neural network, classifier (BANN). 
15

  LDA is a well-known and commonly used linear 

classification method which will not be reviewed here, for reference and examples in breast lesion 

CADx see references. 
4,30,31

  The BANN, as the name suggests, follows the usual multi-layer-

perception, neural network design, but additionally employs Bayesian theory as a means of classifier 

regularization 
15,32

.  The BANN has been shown to model the optimal ideal observer for 

classification given sufficient sample sizes as input for training.
33

  The critical technical hurdle in 

implementing BANNs lies in accurately estimating posterior weight distributions, as analytical 

calculation is intractable. As such, either approximation or sampling based methods must be 

deployed in practice.
34

  Markov Chain Monte Carlo (MCMC) sampling methods can be used to 
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directly sample from the full posterior probability distribution.
32

  We implemented a MCMC-BANN 

classifier using Nabney’s Netlab package for MATLAB.
35

  The following network architecture, k--

(k+1)--1, was used.  That is, k input layer nodes (one for each of the k selected features), a hidden 

layer with (k + 1) nodes, and a single output target as probability of malignancy.  For each classifier 

trained, we generated at least 2000 MCMC samples of the weights’ posterior probability 

distribution.  The mean value of the classification prediction (probability of malignancy) output 

from each of the different 2000 weight samples was used to produce a single classification estimate 

for new test input cases.  

 

III.C. Explicit Supervised Feature Selection Methods 

 Two previously developed feature selection methods are considered in this paper for 

comparison, and include linear step-wise and ARD feature selection.  These methods are used to 

identify a specific set of features for input into the classifier.  

 

Linear Stepwise Feature Selection 

Linear step-wise feature selection (LSW-FS) relies on linear discriminant-based functions. 

Beginning with only a single selected feature, multiple combinations of features are considered one 

at a time, by exhaustively adding, retaining, or removing each subsequent feature to the potential set 

of selected features.  For each new combination, a metric, the Wilks’ lambda is calculated and a 

selection criterion based on F-statistics is used.
17

  The “F-to-enter” and “F-to-remove” used in this 

study were automatically adjusted to allow for the specified number of features desired for US, 

DCE-MRI, and FFDM feature selection. For examples of LSW-FS use in breast CADx references 

are provided.
17,25,30
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Automatic Relevance Determination  

A consequence of the BANNs is the possibility for joint feature selection and classification 

using Automatic Relevance Determination (ARD).
15,32,34,35

  ARD works by placing Bayesian hyper-

priors, also known as hierarchical priors, over the initial prior distributions already imposed on the 

network weights connected to the input nodes. The “relevant” features are then discovered as 

estimates for the hyper parameters, which characterize the prior distributions over the respective 

input layer weights, are updated via Gibbs sampling giving the posterior hyper-parameter estimate.  

The magnitudes of the final, converged upon hyper-parameters are then used to indicate the relative 

utility of the respective feature input layer weights towards accomplishing the classification task.  

Thus, by way of the Bayesian regularization, ARD allows for one-shot feature selection and 

classifier design.  Furthermore, a key advantage of ARD feature selection is its ability to identify 

important non-linear features coupled to the classification objective, due to the inherent non-linear 

nature of BANN.
19

  Due to these qualities, ARD-MCMC-BANN classifiers were also included for 

comparison in our study.  

In this study we extend MCMC-BANN to incorporate ARD following the implementation of 

Nabney. 
35

 This methodology was previously investigated for breast feature selection and 

classification in DCE-MRI CADx.
19

  In our study, 1000 samples were calculated for the hyper-

parameters beginning with a gamma hyper-prior distribution of mean parameter value equal to 3 

and a shape parameter equal to 4.    

 

III.D. Unsupervised Dimension-Reduction Feature Mappings 

 In comparison to the supervised feature-selection methods, three unsupervised DR methods 

were evaluated here; the latter two non-linear methods are offered as a novel application to the field 

of breast image CADx.  The general problem of dimensionality reduction can be described 
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mathematically as: provided an initial set x1, …, xk of k points in Rl
 , discover a set y1, …, yk in Rm 

 

such that yi sufficiently describes or “represents” the qualities of interest found in the original set xi.  

In the context of breast lesion CADx feature extraction, the ideally lower dimensional mappings 

should aim to preserve and represent as much relevant structural information towards the task of 

malignancy estimation.  It should be noted that DR still requires, in some sense, “feature selection,” 

meaning, one must specify the number of mapped dimensions to retain for the subsequent 

classification step.  Ideally, methods designed to estimate intrinsic dimensionality of the data 

structure could be used to direct this choice.
36

   However, proper evaluation of the integrity of such 

methods in this context is beyond the scope of this research effort.  Thus, in approaching the problem 

from a more naïve perspective, as done here, focus is centered on gaining a general intuition for the 

overall major trends encountered.     

 

Linear Feature Reduction: PCA 

Mathematically, PCA is linear transformation which maps the original feature space onto 

new orthogonal coordinates. The new coordinates, or principal components (PC), represent ordered 

orthogonal data projections capturing the maximum variance possible, with the first PC 

corresponding to the highest global variance.
23,24  

Drukker, et al. used PCA as an alternative to 

feature selection for breast US CADx.
25

        

 

Non-linear Feature Dimension Reduction 

 As discussed in the introduction and background sections, the following two recently 

proposed DR and data representation methods are non-linear in nature and specifically designed to 

address the problem of local data structure preservation.  Laplacian Eigenmaps and t-SNE offer 

highly distinct solutions to this problem.  
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i. Laplacian Eigenmaps  

 Drawing on familiar concepts found in spectral graph theory, Laplacian Eigenmaps, 

proposed by Belkin and Niyogi in 2002, use the notion of a graph Laplacian applied to a weighted 

neighborhood adjacency graph containing the original data set information.
1
  This weighted 

neighborhood graph is regarded geometrically as a manifold characterizing the structure of the data. 

 The eigenvalues and eigenvectors are computed for the graph Laplacian which are in turn utilized 

for embedding a lower dimensional mapping representative of the original manifold.  Acting as an 

approximation to the Laplace Beltrami operator, the weighted graph Laplacian transformation can 

be shown, in a certain sense, to optimally preserve local neighborhood information.
37

  Thus, the 

feature data considered in the reduced dimensional space mapping is essentially a discrete 

approximate representation of the natural geometry of the original continuous manifold.   

 As Belkin and Niyogi note, the algorithm is relatively simple and straightforward to 

implement.  Additionally, the algorithm is not computationally intensive.  For our largest dataset the 

mappings were computed within a few seconds using MATLAB code.  Algorithm details as well as 

explanation of necessary input parameters for the implementation used here are provided below in 

section VIII.A of the Appendix. 

It is important to note that there is no theoretical justification for how to choose the needed 

parameters for the algorithm.  Thus, an array of parameter choices was evaluated in this study.  

Lastly, parts of the MATLAB code, related only to the implementation of the Laplacian Eigenmap, 

were modified from the publically available dimension reduction toolbox provided by Laurens van 

der Maaten of Maasticht University.
38

 

 

ii. t-Distributed Stochastic Neighbor Embedding (t-SNE) 
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 The other non-linear mapping technique considered, t-Distributed Stochastic Neighbor 

Embedding (t-SNE) of van der Maaten and Hinton
2
, approaches the dimension reduction and data 

reduction problem by employing entirely different mechanisms to the Laplacian Eigenmaps.  t-SNE 

attacks DR from a stochastic and probabilistic-based framework.  While requiring orders of 

magnitude more computational effort, such statistically-oriented approaches, provided they are well-

conditioned, may potentially offer greater flexibility in certain contexts due in part by the lessening 

of potentially restrictive theoretical mathematical formalism.  For these reasons the t-SNE method 

was considered as an interesting comparison alongside the Laplacian Eigenmap.   

t-SNE is an improved variation on the original stochastic neighbor embedding (SNE) of 

Hinton and Rowies.
39

  The basic idea behind SNE is to minimize the difference between specially 

defined conditional probability distributions that represent similarities, calculated for the data points 

in both the high and low dimensional representations.  In particular, SNE begins by first computing 

the conditional probability pj|i given by  
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and qj|i in the lower dimensional space with pi|i and qi|i set to zero.  These similarities express the 

probability that xi (yi) would select xj (yj) as its neighbor, resulting in high values for nearby points 

and lower values for distantly separated ones. The central assumption in SNE is that if the low-

dimensional mapped points in Y space correctly model the similarity structure of its higher-

dimensional counterparts in X, then the conditional probabilities will be equal.  The summed 

Kullback-Leibler (KL) divergence is used to gauge how well qj|i models pj|i.  Using gradient descent 

methods, SNE minimizes a KL based cost function.   Sampled points from an isotropic Gaussian 

with small variance centered at the origin are used to initialize the gradient decent. Updates are 
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made to the mapped space Y for each iteration.  Additionally, the parameter σi of eq (1) must be 

selected.  σi is the variance in the Gaussian centered on the high dimensional point xi.  Because of the 

difficultly in determining if an optimal σi exists, a user defined property called perplexity is used to 

facilitate its selection, defined by Perp(Pi)=2H(Pi)
.  Calculated in bits, H(Pi) is the Shannon entropy 

over Pi   


j

ijiji ppPH |2| log)(          (2) 

During SNE, a binary search is performed to find the value of σi that produces a Pi with the user 

specified perplexity. Suggested typical settings range between 5 and 50.
2
  

t-SNE introduces two critical improvements to SNE.
2
  First, the gradient  as well as cost 

function optimization is simplified by using symmetrized conditional probabilities to define the joint 

probabilities on P and Q (e.g. pij = (pj|i + pi|j)/2n) and the minimizing cost over a single KL divergence 

as opposed to a sum, 
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Second, the distributional form of the low-dimensional joint probabilities is changed from a 

Gaussian, to the heavier tailed Student t-distribution with one degree of freedom.  Roughly, this 

promotes a greater probability for moderately distanced data points in high dimensional space to be 

expressed by a larger distance in the low-dimensional map, thus more “faithfully” representing the 

original distance structure, and avoiding the “crowding problem.” 
2
  The new qij is defined as 
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After incorporating the altered qij, the final gradient for the cost function is given by 
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A step by step algorithm outline for t-SNE is provided in section VIII.B of the Appendix. 

As recommended by Hinton and van der Maaten
2
, PCA is first applied to the high-

dimensional input data in order to expedite the computation of the pairwise distances.   Lastly, as t-

SNE was developed primarily for 2D and 3D data representation and visualization, it is important to 

note that the authors warn performance of t-SNE is not well understood for the general purpose of 

DR.
2
  By applying t-SNE to the CADx feature reduction problem we hope to offer at least some 

empirical insight towards understanding its properties in such contexts. We used van der Maaten   

publicly available t-SNE MATLAB code and Intel processer optimized “fast_tsne” to generate the 

present data mappings
40

. 

 

III.E. Classifier Performance Estimation and Evaluation 

The high-dimensional feature spaces DR methods were tested across all modalities for a 

range of lower target dimensions and user-defined algorithm parameters.  We evaluated the classifier 

performance using the area under the Receiver Operating Curve ROC curve (AUC) via the non-

parametric Wilcoxon-Mann-Whitney statistic, as calculated using the PROPROC software.
41-43

 

Statistical uncertainty in classification performance due to finite sample sizes was estimated by 

implementing 0.632+ bootstrapping methods for training and testing the classifiers.
44,31

 Additionally, 

we computed the 95% empirical bootstrap confidence intervals on AUC values as estimated by no 

less than 500 bootstrap case set re-samplings.  In all values reported, the sampling was conducting 

on a by lesion basis, as there may be multiple images associated with each unique lesion. In this 

regard, during classifier testing, the set of classifier outputs associated with a unique lesion were 
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averaged to produce a single value. For the supervised feature selection methods (ARD and LSW), 

feature selection was conducted, up to the specified number of features, on each bootstrapped sample 

set.  Notably, the more general MCMC-BANN was coupled with both the non-linear ARD and 

linear-based feature selection methods, while the linear LDA was only with the linear stepwise 

feature selection. As some of the calculations are computationally intensive, particularly the t-SNE 

mappings and MCMC-BANN training for the larger US data set, a 256-CPU shared computing 

resource cluster was employed to accomplish runs in a feasible time frame. 

 

IV. Results 

IV.A. Classification Performance. 

MCMC-BANN and LDA classification performance is plotted as a function of the mapped 

or feature selected input space dimension for the three datasets, US, DCE-MRI, and FFDM, using 

the three different DR techniques, as well as the non-reduced selected features in Figure 1(a-f).  

Performance is characterized in terms of the 0.632+ bootstrapped AUC (left axis) and variability as 

gauged by the width of the empirical 95% bootstrap interval (right axis).  The t-SNE perplexity was 

set to Perp = 30 and Laplacian Eigenmaps were generated with Nearest Neighbor=45 and t=1.0.  

Overall, the highest classification performance was attained by the largest sample-size US feature 

dataset with the DR-MCMC-BANN just slightly eclipsing the LDA, achieving approximately 

AUC0.632+ ~ 0.90,while the smaller DCE-MRI and FFDM feature data produced peaks around 

AUC0.632+ ~ 0.80.  The variability in bootstrapped AUCs is also lowest for the large US dataset, 

hovering near ~ 0.07 as the number of inputs into the classifier is increased. 

A few key observations can be made from the results regarding the use of DR.  Primarily, the 

DR techniques, for both linear (PCA) and non-linear (t-SNE and Laplacian Eigenmaps), overall, 
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appear to at least match, or and in some cases exceed, explicit feature selection classification 

AUC0.632+ performance.  This is most evident when compared to the the ARD-FS coupled with the 

MCMC-BANN performance across all three imaging modalities, Figures 1(a), 1(c), 1(e) (left axis). 

 Specifically, in all cases the DR methods exhibited a more rapid rise to peak AUC0.632+ performance 

and remained higher than the ARD-based feature selection for all dimension input sizes.  

Additionally, compared to the ARD feature selection approach, the DR methods produced less 

variability in the bootstrap AUC.  Figures 1(a),1(c),1(e) (right axis) substantially highlight this 

phenomenon. In particular, for the US data, the ARD-FS variability, being greater that of than all 

the DR methods, clearly trends downward as more features are selected for input; gradually 

approaching the DR variability levels, yet usually remaining higher.  By comparison, save for a 

slight increase at 1D, the DR variability is relatively consistent from 2D to 13D. 

However, when coupled with the LSW feature selection, the MCMC-BANN produced more 

competitive results against the DR performance. For example, for this MRI data set, except for 10D 

and 11D, the LSW-MCMC-BANN edged above all the DR based methods.   Likewise, the use of 

the LSW feature selection with the MCMC-BANN resulted in substantially reduced variation in 

classifier performance compared to the ARD-FS. The LSW-MCMC-BANN variation nearly 

matched the DR output for both the US and MRI across all input dimensions. For the FFDM data, 

except for 2D-5D, the LSW-MCMC-BANN held close to the DR variation level. 

The less complex, yet more stable LDA classifier, Figures 1(b),1(d),1(f)(left axis), produced 

different characteristic results. In all cases the LSW-feature selection performance was initially 

higher, however, as the dimension input space was increased, the DR methods became comparable.  

Expectedly, when coupled with the linear LDA, the highly-non-linear stochastic based t-SNE DR 

consistently underperformed. Turning to variation for the LDA, Figure 1(b), 1(d), 1(f) (right axis), 

the LSW-FS again exhibited different behavior from ARD-FS,  in that, except for the smaller-case-
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sized FFDM data, variability does not considerably fluctuate moving from 1D to 13D for both the 

LSW-FS and DR methods.  

One manner by which to concisely analyze the performance characteristics of dimension-

reduction/feature selection and classifiers designs for a particular dataset is to plot the bootstrap 

cross-validation AUC against the variability.  An example is provided for the US feature dataset in 

Figure 2, with each point representing a different number of input dimensions.  Data points located 

in the upper left corner indicate the most preferred performance qualities, i.e., higher classification 

performance and lower expected variability. Also provided in Figure 5, is a plot displaying 

classification results for both MCMC-BANN and LDA, in terms of the bootstrap AUC for the US 

data.  Included within this plot are the empirical 95% confidence intervals to aid in gauging 

statistical significance for differences between estimated AUC values. 
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Figure 1. The 0.632+ bootstrap area under the ROC curve (AUC) (left axis) and the variation as measured by the width of the 95% 
empirical bootstrap confidence intervals (right axis) versus the selected feature {ARO,LSW} or reduced representation {PCA,t
SNE,Laplacian Eigenmap} classifier input space dimension. (a) MCMC-BANN, (b) LOA, classifier performance on the originally 81 
dimensional US feature dataset. (c) MCMC-BANN, (d) LOA classifier performance on the originally 31 dimensional OCE-MRI 
feature dataset. (e) MCMC-BANN, (f) LOA classifier performance on the originally 40 dimensional FFOM feature dataset. 
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located in the upper left corner represent the highest expected AUC as well as least 
expected variation in performance due to sampling. 
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Figure 3. 2D and 3D visualizations of the unsupervised reduced dimension representations of the entire 
originally 81 dimensional breast lesion ultrasound feature dataset; green data points signifying benign 
lesions, red : malignant, and yellow: benign-cystic. (a) Visualization of linear reduction using PCA, first two 
principal components, (b) first three principal components, 3D PCA. (c) 2D and (d) 3D visualization of the 
non-linear reduction mapping using t-SNE. (e) 2D and (f) 3D visualization of the non-linear mapping using 
Laplacian Eigenmaps. 
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IV.B.  2D and 3D Visual Representations of Mappings  

 Due to the large sample size of the US feature data, a high density of points is produced (and 

hence the clearest delineation of structures) in the reduced dimension mapping representations.  

Figure 3(a-f) provides visual representations of the entire originally 81 dimensional US feature data 

mapped into 2D and 3D Euclidean space by the unsupervised  PCA, t-SNE, and Laplacian 

Eigenmaps.  The data points were subsequently colored to reflect the distribution of the lesions types 

(malignant tumor, benign lesion, cyst) with the reduced space.       

Two key aspects are considered regarding the respective mappings: natural class separability 

and overall geometric traits characteristic of the represented structures, such as smoothness and 

sparsity.  PCA is shown in Figures 3(a) and 3(b). Certain regions are potentially identifiable as 

being associated with a specific class (such as the dominance of cystic-benign points in the bottom 

right corner of the 2D plot), however, PCA generates a relatively homogeneous, nearly spherical 

distribution of points.  Reflective of its mathematical basis, PCA representations provide primarily 

global information content, lacking the capability to represent rich local data structure.  t-SNE 

generates a dramatically different type of low dimensional representation.  As shown in figures 3(c) 

and 3(d), t-SNE produces a highly non-linear, jagged, and highly sparse data mapping. Many 

isolated “island-like” sub-groupings are identifiable in the t-SNE visual representations.  As 

predicted by the high classification performance even for 2D and 3D, t-SNE manages to clearly 

capture inherent class structure associations.  Lastly, the Laplacian Eigenmap, Figure 3(e) and 3(f), 

creates globally sparse, yet locally smooth representations.  As captured by the figures, the distinctly 

triangular form in 2D is revealed as a projected aspect of a more complex, yet smoothly connected 

3D geometric structure.  As evident by upper “ridge” of malignant (red) lesion points and broad 

cystic (yellow) “fin” on the left, the Laplacian Eigenmap also manages to capture inherent class 

associations.                               
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   The FFDM and DCE-MRI visual representations are noisier than the US due to the smaller 

sample size.  A few examples are provided in Figure 4(a,b).  The MRI dataset clearly exhibits a 

sparse arc-like geometric structure using the Laplacian Eigenmap. This structure seemingly 

separates the bulk of benign (green) lesions from the IDC (red) while dispersing the DCIS (blue) 

cases in between.   

 

V. Discussion 

V.A Dimension Reduction in CADx 

 Three major conclusions can be made regarding the use of DR techniques in breast CADx 

from this study.  First, and  most importantly,  information critical for the classification of breast 

mass lesions contained within the original high-dimensional CADx feature vectors is not destroyed 

by applying the unsupervised, non-linear DR and representation techniques of t-SNE and Laplacian 

Eigenmaps.  This observation is strongly supported by the robustness of the classification 

performance across the three different imaging modalities, US, DCE-MRI, and FFDM.   

Second, according to the statistical re-sampling validation methods, the DR-based 
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classification performance characteristics appear to potentially rival or in some cases exceed that of 

traditional feature-selection based techniques.  Additionally, both the linear PCA and non-linear t-

SNE and Laplacian Eigenmap methods often generated “tighter” 95% empirical bootstrap intervals, 

implying reduced variance in classifier output, as compared to the feature selection based 

approaches, especially ARD, see Figure (4).  For instance, in the large US dataset, the performance 

for 13 ARD selected features was AUC0.632+  = 0.88 with 95% empirical bootstrap interval 

[0.787;0.895] and for 4 LSW selected features was AUC0.632+  = 0.87 with interval [0.817;0.906] 

compared to 4D t-SNE mapping (from the original 81D feature space) giving AUC0.632+  = 0.90 with 

interval [0.847;0.919]. These findings imply that the generally non-linear manifold, on which US 

feature data exists, embedded in four dimensional Euclidean space can adequately represent the 

critical information for classification. These results build evidence for some potential benefits of 

employing the information-preserving, DR techniques in place of explicit feature selection, including 

the avoidance of the “curse of dimensionality”.        

Third, the non-linear DR techniques generated visually-rich embedded mappings with a 

geometric structure that often presented sparse separation between class categories, as demonstrated 

in Figure 3(b): malignant, benign, cyst, and Figure 4(a): benign, DCIS, IDC.  The natural class 

associations visible in the mappings are not totally unexpected since, as explored above, the 

classification performance results clearly demonstrate the reduced mapping’s capacity to retain 

sufficient information for class-discrimination.  The large sample number of the US dataset provided 

the most vivid visualizations, highlighting both the geometric forms and sparse quality of the non-

linear embeddings.  Although PCA retained high supervised classification performance, unlike the 

non-linear Laplacian Eigenmaps and t-SNE embeddings, Figures 3(d),3(f), PCA is not capable of 

adequately representing the data’s inherent local structural properties, Figure 3(b),  leading to less 

informative visualizations.  Yet, the two non-linear methods offer distinct perspectives on the data 
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structures.  The Laplacian Eigenmap appears to perhaps frame the lesions in a more globally smooth 

context as evidenced by the gradual transitions between distant regions of the geometric form, 

whereas t-SNE creates many distinct jagged “islands” of clustered lesion points.  These emergent 

characteristics reflect the theoretically motivated principles driving the respective non-linear DR 

algorithms.      

 

V.B Reduction Method Parameters 

We briefly explored the impact of the parameter selection towards performance and visual 

appearance.  To our knowledge there is no principled way to optimally select a parameter 

configuration, thus we simply choose parameters that gave reasonable mappings as discernable in 

the 2D/3D representations.  This is a problem in general for many unsupervised techniques.  In fact, 

as t-SNE creators noted
2
, the method was primarily considered for visualization purposes and not 

explicitly for DR beyond 3 dimensions.  Performance of t-SNE is not well understood for the general 

purpose of DR and subsequent classification. Future work may be of interest to discover procedures 

for identifying “optimal” or “near-optimal” subsets of parameters for CADx or similar machine 

learning purposes.     

 

V.C. Classifiers and Feature Selection 

In considering classifier design, one desires to be “as simple as possible, but no simpler,” 

meaning the most robust scheme in terms of both performance and stability (low variability in 

performance between different samples from the same underlying distribution), all while attempting 

to constrain the number of parameters, namely the input space dimension. Additionally, simpler 

models facilitate future repeatability with new contexts and datasets. The degree to which such 

pursuits are successful is dependent upon the interplay of the three main aspects affecting the 
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performances of the classifiers including: sample size, data complexity, and model 

complexity/regularization.  Naturally included within the scope of the model 

complexity/regularization is the choice of inputs to the classifier, whether in the form of DR 

mappings or a set of selected features, as this also critically influences ultimate classification 

capability.  Ideally, any classifier’s aim is to synthesize the information available from the input 

space in a complete and unbiased fashion towards accomplishing the decision task.  In general, 

classification of new input based on finite training dataset is an “ill-posed” problem, and regardless 

of the sophistication of regularization employed, instability may persist. 
15

  For these reasons both 

the LDA and MCMC-BANN were investigated.  By spanning over three different imaging 

modalities of varying data set size, using two different classifiers, and employing three different 

feature space approaches, all three of these key concepts (sample size, sample complexity, and 

model complexity) were touched upon in the course of this investigation. 

For the relatively large US dataset, with 1126 unique lesions making up 2956 lesion images, 

some of the relative strengths associated with the more general, non-linear MCMC-BANN were 

particularly apparent. Specifically, the MCMC-BANN, when paired with either the DR techniques 

or LSW-FS was able to achieve high AUC0.632+ performance, even at low input space dimensions, as 

seen in Figure 1(a).  This is in part due to the MCMC-BANN ability to generalize to any target 

distribution, yet remain relatively well regularized, thereby avoiding “over-fitting” and severe 

underperformance on testing data. Yet, critically, when relying on explicit feature selection, across 

all input space dimension sizes for the FFDM and MRI data, and when fewer than 9 features were 

selected for the US data, the MCMC-BANN’s success was contingent upon the use of LSW-FS over 

ARD-FS.  The MCMC-BANN severely underperformed when coupled with the ARD-FS, especially 

when limited to picking only a few features.   The smaller AUC0.632+. and higher bootstrap variability 

(most dramatically evident for the lower input space dimensions), reveals limitations in ARD-FS 
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ability to consistently identify smaller sub-sets of features capable of robustly contributing to the 

classification task.  This limitation may be in part due to ARD’s capacity for discovering non-linear 

associations, which may vary highly between different bootstrapped sub-samples, as well as its less 

direct approach (compared to LSW)  in feature determination.  

Turning to LDA, while not best suited to model the non-linear DR mappings, the robustness 

and stability of LDA shines when joined with LSW-FS for classification purposes.  LDA is, in a 

sense, naturally regularized by its linear nature and thus automatically avoids severe over-fitting 

situations.  Often, the relative advantage of a more complex classifier, such as MCMC-BANN, over 

LDA, may begin to erode as sample size decreases, even if the underlying distribution is not 

completely linear in nature.  These phenomena are apparent for the much smaller FFDM (245 

unique cases, on 735 images) and DCE-MRI (356 unique lesions/images) datasets, as the less 

sophisticated LDA often produced the highest AUC0.632+ values.   The LDA classifier showed the 

greatest strength with the MRI data, nearly matching the LSW-MCMC-BANN and similarly for the 

DR approaches. 

Furthermore, in examining Figure 2 again, among points falling within desirable 

performance specifications (upper left-hand corner: high classification performance/lower expected 

variability), it is reasonable to favor configurations which require the lowest input space 

dimensionality, as discussed previously (either the number selected features or target embedded 

mapping dimensions).  A potential advantage of DR is that it may reduce the amount of necessary 

parameters (not including the unsupervised transformation characterized by the data itself) required 

to form a satisfactory data representation suitable for robust classification. In fact, most motivation 

for performing DR is lost if the target dimension is not considerably lower than the original high 

dimensional space.  This is because such mapped representations become less efficient compared to 

simply making use of the original feature space or selected sub-space as dimensions are added. 
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Thus, within the framework of these criteria, in reviewing the results from the three modalities on 

whole, one may postulate, that as an overall strategy, 4D t-SNE appears likely to produce 

competitive classification performance when used as input into a non-linear classifier such as the 

MCMC-BANN.   Such classification performance coupled with the intriguing 2D and 3D 

visualizations of the overall data structure may evoke attractive research potential.    

In practice, it should be noted that, with the sole intention of maximizing classification 

performance based on finite sample training data, there may be no clear advantage for use of DR 

techniques over traditional feature selection.  Although, again, due to the “curse of dimensionality,” 

as the input space dimension for classification becomes higher in dimension, eventually cross-

validation based-performance will stagnant or even begin to regress lower. This occurs as the dataset 

sample size is not sufficient to adequately isolate a unique classifier solution (as many, potentially 

infinite, become possible) and marginal, if not none at all, new information is gained by the 

additional dimensions.  Thus, for these reasons and in order to compare each dataset on common 

ground, the tests were limited to 1D-13D.     
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VI. Conclusion 

 The ability to capture high-dimensional data structure in a human interpretable low-

dimensional representation is a powerful research tool.  The above findings strongly suggest the 

relevance of non-linear DR and representation techniques to future CADx research.  DR cannot be 

expected to replace the benefits of feature selection based approaches in many cases.  Yet, these 

techniques, in addition to competitive classification performance, do offer complementary 
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information and a fresh perspective on interpreting the overall structure of the feature data.  Of 

interest to future studies is to further investigate the origin, meaning, and physical interpretation of 

the discovered structures present in the CADx lesion data as revealed by these non-linear, local-

geometry preserving representations.  Such rich data structure representations may offer novel 

insights and useful understandings of clinical CADx image data.   
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VIII. Appendix  

VIII. A. Laplacian Eigenmaps Algorithm Outline 

Beginning with k input points, x1, …, xk, in Rl
: 

Step 1: Construct the Adjacency Graph:  Generate a graph with edges connecting nodes i 

and j  
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if xi and xj are “close.” Closeness is defined by the nodes included in the N nearest  

neighbors. This relation is naturally symmetric between points i and j.  The 

parameter N  

must be selected.  

Step 2: Choosing Weight: The “heat kernel” is used to assign weights to edge connected 

nodes i  

and j : Wij= exp(-||xi-xj||
2/t).  Otherwise use Wij = 0 for unconnected vertices.  See 

Belkin and Niyogi for kernel justification
1
.  The parameter t is user defined.  If t is 

set very high, or approximately, t =  , the edge connected node weights are 

essentially Wij =1, this option can be used to  avoid parameter selection.  

Step 3: Computing Eigenmaps: Assuming a connected graph generated in step 1, G, solve 

for  

the following eigenvector and eigenvalues: Lf = λDf. , where D is the diagonal 

weight  

matrix, defined by summing over the rows of W . Dii =ΣjWij , and L is the Laplacian 

matrix defined as: L=D-W.  Symmetric and positive semi-definite, conceptually the 

Laplacian matrix acts as an operator on functions defined by graph G’s vertices.  

Solving the equation, let f0,…, fk-1be the eigenvectors, arranged in accordance to their 

eigenvalues:0 = λ0≤ λ1≤ … ≤λk. Lf0 = λ0Df0… Lfk-1 = λk-1Dfk-1.   

Finally, the k input data points in R
l
 are embedded in m-dimensional Euclidean space using the m 

eigenvectors after the zero eigen-valued f0,     iix mi f,,f1 
. 

 

VIII. B. t-SNE Algorithm Outline 
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Beginning with k input points, {x1, …, xk} in R
l
, set Perplexity parameter, Perp, number of 

iterations T, learning rate η, and momentum α(t).   

Step 1. Compute Similarities: Compute pairwise pj|i probabilities using the σi found with   

perplexity Perp, and use symmetrized conditional probability distributions   

pij = (pj|i + pi|j)/2k   

Step 2. Initialize Solution Sample: Sample from N(0,10
-4Im

) for initial points {y1, …, yk}  

Step 3. Execute T Update Iterations on Y: Compute low-dimension similarities qij using eq. 

(4)  

and gradient using eq(5).  Update Y using )Y)(Y(YY )2()1()1()(   tt

i

tt t
y

C





   

Output: Low-dimension mapping {y1, …, yk} in R
m 
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