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ABSTRACT 

The objective of this research is to examine the fluid structure interaction (FSI) effect on 

composite sandwich structures under a low velocity impact.  The primary sandwich 

composite used in this study was a 6.35-mm balsa core and a multi-ply symmetrical plain 

weave 6 oz E-glass skin.  The specific geometry of the composite was a 305 by 305 mm 

square with clamped boundary conditions.  Using a uniquely designed vertical drop-

weight testing machine, there were three fluid conditions in which these experiments 

focused.  The first of these conditions was completely dry (or air) surrounded testing.  

The second condition was completely water submerged.  The final condition was a wet 

top/air-backed surrounded test. The tests were conducted progressively from a low to 

high drop height to best conclude the onset and spread of damage to the sandwich 

composite when impacted with the test machine.  The measured output of these tests was 

force levels and multiaxis strain performance.  The collection and analysis of this data 

will help to increase the understanding of the study of sandwich composites, particularly 

in a marine environment. 
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I. INTRODUCTION 

A. BACKGROUND 

The use of composite materials in fabrication can be attributed as far back as 

ancient Egyptian times in the use of straw and bricks, or more recently in the last century 

with the use of steel rebar in concrete.  The goal in either of these applications is the 

enhanced structural properties of a structure.  In the post-Industrial Revolution era, the 

modern era of composite use began around World War II.  Since that time, the research 

and use of composite materials grew rather modestly until a rapid rise in the 1990s and 

early 2000s [1]. 

The aerospace industry, in particular, has been very aggressive in its use of 

composites in its most critical applications when compared to other industries.  NASA’s 

Jet Propulsion Laboratory at the California Institute of Technology lists structural 

laminate composites as one of its preferred practices for the recently retired Space Shuttle 

program.  Among the chief reasons for the use of composites is the high strength to 

weight ratio [2].   

The military marine industry is seeking to follow the aerospace example and has 

been using composites in naval architecture since the post–World War II era.  Primarily, 

the use of composites was limited to component structures or smaller patrol craft.  The 

last decade has significantly changed the paradigm to how the marine industry is building 

military ships and has seen an all composite construction in European military ships up to 

90 meters in length [1].  The U.S. Navy presently is making significant strides in the use 

of composites in critical combat hardware.  The first major example aboard a 

U.S. Navy combatant is the Advanced Enclosed Mast used aboard the 

USS Arthur W. Radford (DD-968) [3].  The Radford mast was fully enclosed and 

constructed entirely of composites and led to the design currently used by the LPD-17 

San Antonio class amphibious docking ships [4].  Looking ahead and building on the 

successes of Radford and the San Antonio class, the Navy has begun construction on the 

next-generation destroyer: the DDG-1000 Zumwalt class.  The Zumwalt class will include 
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a seven-story superstructure composed almost entirely of composite materials.  The 

superstructure employed the widely used resin transfer system scheme primarily with 

carbon fiber/vinyl ester skins and balsa wood and/or foam cores, thus creating a 

“sandwich” composite. 

What is the advantage of using products like wood in a ship’s construction?  The 

idea of using balsa wood is more advanced than the construction of the Navy’s only other 

active wooden ship, the now ceremonial, USS Constitution.  The balsa wood core takes 

advantage of favorable strength to weight ratios gaining its strength with the reinforcing 

carbon fiber skins.  In addition to the strength to weight advantages, the sandwich 

composite provides an ability to simplify tooling in construction, reduce corrosion, and 

reduces the ship’s radar cross section [4].    The reduced radar cross section makes the 

ship significantly stealthier, while the other composite attributes allow for increased 

range, and an ability to increase payload.  The maintenance costs are also likely to be 

reduced over a lifetime in reduced manufacturing costs and required preventive and 

corrective maintenance requirements, which in turn reduce the number of crewmembers 

needed to maintain the ship.  Advances are also being made in rudder construction using 

the same composite technology that may help reduce cavitation resulting in reduced 

stresses on the ship’s rudders [5].  

With the rapid increase in the use of composites, the ability to predict potential 

failure modes and thresholds is critical in designing ships that can meet or exceed 

expected service life requirements.  The major drawback to sandwich composites is a 

relative lack of ductility when compared to other metallic materials. The damage to 

composites in a sandwich laminate structure is also frequently undetectable [6].  With this 

undetected damage, there may be no observable reduction in the mechanical properties 

until catastrophic failure occurs.  The materials used in this study were selected to best 

detect the onset of damage, and reduced mechanical properties while modeling the 

current technologies being used in U.S. naval applications.  Material selection and 

methodologies will be discussed in subsequent chapters. 
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B. OBJECTIVES 

Given the direction the U.S. Navy with an increased use of sandwich composites, 

it is the goal of this study to further that endeavor.  Recently, experiments conducted by 

Kwon and Owens [7, 17] and Kwon and McCrillis [8] have studied the fluid structure 

interaction (FSI) on composites with a carbon fiber plate and balsa core beams 

respectively.  This present study will combine the efforts of the two and examine the FSI 

on balsa core plate-geometries.  

This study will evaluate the dynamic response of a sandwich composite under a 

low velocity impact.  There were three basic conditions used to study these sandwich 

composites: dry, submerged-water backed, and to a lesser, extent submerged-air backed.  

It has been shown in previous studies that there is an added mass effect due to the relative 

difference in densities of a composite in water.  The balsa core sandwich composites used 

in this study are significantly less dense than water.  Due to this density differential, it is 

believed that the added mass effect will be larger on a less dense sandwich composite.  

There are several indicators that will help to draw a conclusion to the FSI effects on the 

selected sandwich composites.  Most directly, this study will measure the dynamic 

response through the use of force impact levels and a multi-axis strain response.  

Additionally, conclusions will be drawn from damage initiation, type, and proliferation 

through the sample.  Taken from the multiaxis strain response, deformation magnitudes, 

mode shapes, and calculated natural frequencies will help to make conclusions as to the 

dynamic response of the sandwich composite.  In the collection of all of these factors, the 

study will show that the FSI in water plays a critical role in the composite’s performance 

and thus any composite intended for marine use must be evaluated in this same 

environment. 
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II. EXPERIMENTAL TECHNIQUE  

A.  SANDWICH COMPOSITE SELECTION 

Thirteen sandwich composite samples were constructed and tested for analysis 

throughout the course of this research.  The Naval Surface Warfare Center Carderock 

Advanced Hull Materials & Structures Technology Division selected the materials for 

this study for their direct applicability to current shipboard U.S. Navy composite 

structures.  Following the work of Kwon and Owens [7, 17] and Kwon and McCrillis [8], 

a combination of their research was studied.  The chief components of the sandwich 

composite are the core, skin layers, and resin. 

1. Core: Balsa Wood 

A 6.35-mm end grain balsa core was used. McCrillis noted that the appearance of 

balsa wood is similar to that of a butcher block (Figure 1). 

 

Figure 1.   “Butcher block” appearance of balsa wood. 



 6 

McCrillis observed in his study that due to the inhomogeneous qualities of the 

balsa material that the absorption of resin was unequal and further magnified the 

inhomogeneous properties of the sandwich composite during testing [8]. ProBalsa Plus is 

pretreated to reduce the resin absorption during composite manufacturing to minimize 

large variations in mechanical properties across the sample. As a result, ProBalsa Plus 

was used as the composite core in this study as well.  ProBalsa Plus is characterized as a 

micro-honeycomb structure with excellent shear and compressive properties.  The DIAB 

Group manufactured the ProBalsa used in this study and provides the properties in 

Table 1 [9]. 

 

Table 1.   Technical Data for ProBalsa (From [9]). 

2. Skin: E-glass 

The skin material used in this study was a non-biased, plain weave, 6 oz E-glass.  

The thickness of the E-glass is 0.236 mm [10].  A variety of weights and weave 

constructs could be used in the construction of sandwich composites; however, this 

particular material was selected for its uniform pattern and translucent qualities after it is 

wetted out during composite manufacturing.  A significantly coarser weave pattern was 

also explored during this study, but the data scatter was significant enough to determine 
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the tighter weave would produce results that are more consistent.  The published material 

properties of E-glass can vary significantly, however, based on measurement of multiple 

10 cm square samples, the density of the e-glass was found to be nominally 842 kg/m3 for 

the samples studied.   

3. Resin: Vinyl Ester Resin 

The particular resin used in this study is Derakane 510A vinyl ester resin.  The 

vinyl ester resin has excellent fire retardant and corrosion resistant qualities making it a 

natural selection for shipboard applications.  The same translucent qualities found in the 

E-glass are additional benefits of vinyl ester resins.  Dererakane 510A has a density of 

1230 kg/m3 and is further characterized by the properties of Table 2 for a clear casting 

only [11]. 

 

Table 2.   Typical Properties of postcured resin clear casting. (From [11]). 

In addition to the resin, there are chemical hardening components that contribute 

to the overall composite manufacturing process [12].  Table 3 identifies specific mixtures 

based on the ambient conditions.   A 40–60 minute gel time was typically used to 

determine the appropriate hardening mixture. 
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Table 3.   Gel times using methyl ethyl ketone peroxide (MEKP) (From [12]). 

B. COMPOSITE GEOMETRY 

Using the above core materials in the laminate construction, a sample of 305 mm 

square defined the test area.  The actual sample size was determined to best simulate 

clamped boundary conditions on all four side of the test sample.  In order to minimize 

any movement at the boundary conditions as large as sample as possible given the test 

apparatus was constructed.  For the test apparatus used, the maximum sample size was a 

rectangular sample: 381 x 457.2 mm.  The 305 mm square was centered within this 

rectangular sample and the area to the outside of the test area was clamped as part of the 

boundary conditions.  The grid scheme in Figure 2 will be utilized throughout the course 

of this research to specifically identify exact points on the test area. The origin of the test 

area is placed at the lower left hand corner of the test sample.  The orientation of the grid 

scheme is from the underside of the sample looking up at the dropweight on the test 

apparatus.  The unit spacing is equivalent to one mm. 
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Figure 2.   Composite test area grid (bottom view looking up). 

The grid reference system in Figure 2 is of particular importance in referencing 

and comparing specific strain responses for different samples.  The impact point for all 

tests was at the center of the test area (152.5, 152.5). 

C. MATERIAL REQUIREMENTS 

In addition to the core composite materials, the fabrication of the composite 

requires additional support material and equipment.  Table 4 and Figure 3 outline the 

materials and equipment required to produce the described square geometry test area plus 

the additional area required to simulate clamped boundary conditions for the test 

apparatus.   

Composites can be constructed of a variety of materials and thicknesses and 

various techniques.  The quantities listed for materials are specific to the samples created 

in this study and a unique resin transfer apparatus.  Chemical quantities listed are specific 

(152.5, 152.5) 

(0, 305) 

(0, 0) 

(305, 305) 

(305, 0) 

(76.25, 228.75) 

(228.75, 76.25) 
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for a manufacturing at an ambient room temperature of around 20° C (68° F).  Specific 

room temperatures varied slightly during each sample production.  Nominal laboratory 

temperatures ranged from 17–20° C throughout the course of this study. Table 3 should 

be referenced for a desired gel time and chemical solution based on the ambient 

conditions present at the time of production. 

Component Size Qty 

Pro Balsa Plus (core) 381 mm x 457.2 mm (15 in x 18 in) 1 

6 oz E-glass (skin) 381 mm x 457.2 mm (15 in x 18 in) 10 

Peel Ply 482.6 mm x (19 in x 22 in) 3 

Airtech ® Resinflow 75 

Distribution Medium 

381 mm x 533.4 (15 in x 21 in) 2 

Stretchlon 200 1.5 Vacuum Bag 

Film 

584.2 mm x 660.4 (23 in x 26 in) 1 

Derakane 510-A (resin) n/a 1,000 mL 

Methyl Ethyl Ketone Peroxide 

(MEKP) 

n/a 12.5 mL 

Cobalt Napthenate (CoNAP) n/a 3 mL 

N, N-Dimethylaniline (DMA) n/a 0.5 mL 

AT-200Y sealant tape 254 cm (100 in) 1 

Teflon 482.6 mm x (19 in x 22 in) 1 

Table 4.   Required materials for VARTM composite production. 

VARTM Apparatus 
Components: 
Vacuum pump 
Vacuum hose 
Spiral wrap 

2 Liter resin bucket 
Resin trap 

Vacuum gage 
Glass foundation 

Figure 3.   Additional required equipment for VARTM composite production. 
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Other useful equipment that comes in handy during composite production is 

clamps of various sizes, small free weights (approx. 5 lbs), and duct tape.  Each of these 

materials will help the manufacturer keep the integrity of the vacuum during the resin 

transfer process. 

D. COMPOSITE FABRICATION 

1. Vacuum Assisted Resin Transfer Molding (VARTM) 

The composites were fabricated using the VARTM process shown in Figure 4. In 

general, a vacuum bag lamination molding process such as VARTM covers the layers of 

the composite core (balsa) material and laminate skins (E-glass) with a sealed bagging 

membrane (sealant tape and Stretchlon 200).  The vacuum pump and support equipment 

evacuate the interior of the membrane, reducing the internal pressure, and allowing 

standard atmospheric conditions to compress the laminate skins to the core to create a 

mold [13].  The distribution medium and spiral wrap are used together to assist in the 

even flow and infusion of the resin across the sample.  The Teflon and peel ply allows for 

easier removal from the glass preparation surface and separation from the molded 

composite respectively.  As the manufacturer becomes more experienced sample 

preparation time will likely decrease, however, Table 5 shows a nominal range of sample 

preparation times and required curing times experienced during this study.  

 
Figure 4.   VARTM Lay-up (From [8]). 
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Procedure Time 

Lay-up (cutting and air evacuation) 1–1.5 hrs 

Chemical mixture 10–15 min 

Resin Transfer 15–20 min 

Post Cure (vacuum on – room temp) 8 hrs 

Post Cure (vacuum off  - room temp) 24 hrs 

Post Cure (elevated temperature) 6 hrs 

TOTAL Approx. 40 hrs 

Table 5.   Nominal prep time for composite sample preparation. 

2. Procedure 

The VARTM procedure used for the balsa/e-glass sandwich composite is outlined 

with recommended techniques and hints in the steps below (tabulated in Table 6 for quick 

reference for future fabrication).   

Step 1: Composite Preparation 

Cut balsa core to desired size 

Cut 10 sheets of E-glass fabric (same size of core) 

Cut 3 sheets of peel ply: 4 inches larger in each direction as core material 

to completely envelope sample and allow an adequate amount material to grab and more 

easily remove the peel ply and distribution medium after molding and curing process. 

Cut 2 sheets of distribution medium: distribution medium was made 

slightly smaller than peel ply to allow peel ply to prevent jagged edges of distribution 

medium from piercing vacuum bag during evacuation. 
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Step 2: Surface Preparation 

Lay peel ply (largest surface area) on glass surface and tape edges of glass 

plate with a continuous line of sealant tape; do not remove backing.  Space between 

sealant tape and edge of peel ply is discretionary. Remove peel ply sheet from glass 

surface. 

Lay out Teflon sheets within boundary of sealant tape to facilitate mold 

release.  Previous theses have recommended waxing glass surface or using Teflon sheets 

[6,7], but significantly better results were achieved with the Teflon sheets during this 

study. 

 
Figure 5.   Composite fabrication: Lay out of Teflon sheets after sealant applied to 

glass surface. 
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Step 3: Material Layup 

Layup material in the following order from bottom to top prior to wetting: 

1. distribution medium 
2. peel ply 
3. 5 sheets E-glass 
4. balsa core 
5. 5 sheets E-glass 
6. peel ply 
7. distribution medium 
8. peel ply 

 

 
Figure 6.   Composite Fabrication: Layup prior to wetting after e-glass skins applied.  

Yet to be applied from Step 3: peel ply (x2) and distribution medium (After [8]). 

Step 4: Vacuum Hose Routing 

Cut two pieces of vacuum hose (feed and suction) to lengths necessary to 

route from resin bucket across sealant tape (feed) and from resin trap across sealant tape 

at opposite end of sample (suction).  Peel back a small portion of the sealant tape to affix 

the hose to the sealant tape at each end.  Pre-wrapping the vacuum hoses with sealant 

tape where they will cross the sealant tape barrier will significantly improve the ability to 
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bond the hose with the sealant barrier.  The use of free weights, clamps, and duct tape 

come in handy for keeping the vacuum hoses and sealant tape adhered to the glass 

surface.  Additionally, pre-kinking the feed hose will make it easier to secure the resin 

transfer process later.  Making small kinks in each of the two hoses may also make the 

vacuum hose routing process easier.  The hose is typically shipped and stored in a spiral 

and wants to return to its stored position; the kinks will “straighten” the hose to the 

desired routing.  

 

 

Figure 7.   Composite Fabrication: Prewrapping vacuum hoses with sealant tape 
allows for better adhering to sealant tape on glass surface. 

Cut two pieces of spiral wrap the approximate width of the sample plus 

the distance to insert spiral wrap in the feed and suction hoses approximately 5 cm.   

Ensure the spiral wrap is in contact with the distribution medium at each 

end of the sample.  Small pieces of sealant tape may help in keeping the spiral wrap in 

the desired position.  Best results were achieved for the infusion process when the spiral 
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wrap was on top of the bottom layer of distribution medium at the feed end of the sample 

and on top of the top layer of distribution medium at the suction end as shown in 

Figure 4.  

Placing sealant tape on any sharp edges of the cut vacuum hoses may also 

eliminate a possible puncture of the vacuum bag during the resin transfer and post curing 

process. 

Step 5: Create Vacuum 

Remove sealant tape backing 

Apply vacuum bag across layup.  “Tucking” the vacuum bag at the area of 

the vacuum hose-layup interface first helps to reduce leaks once the bag is applied. 

 

 
Figure 8.   Composite Fabrication: Tucking the vacuum bag around suction hose 

interface. 

Plug feed hose with excess sealant tape.  The plugged hose reduces the 

chance for air to enter the mold at the beginning of the resin transfer process. 
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Turn on vacuum pump and check and eliminate any leaks.  The use of 

sealant tape and kneading the vacuum bag into the seal are the most effective techniques.  

The most common sources of leaks are the interfaces of the vacuum hoses at the layup 

barrier and the interface of the suction hose with the resin trap.  A vacuum should remain 

on the mold from this point forward.  

Step 6: Combine Resin Chemicals 

Pour 1 L of Derakane 510-A 

Add 3 mL of Cobalt (stir) 

Add 0.5 mL of DMA (stir) 

Add 12.5 mL of MEKP (stir) 

Mix the chemical solution thoroughly until the resin reaction is complete 

and has no more air bubbles.  

Step 7: Resin Transfer 

Place feed hose in resin solution 

Break seal (remove sealant tape) from feed hose 

Resin will rapidly be drawn through the hose and be drawn into the spiral 

wrap and subsequently infuse through the mold. 

Continue to monitor and eliminate any leaks through the infusion process. 

It may be necessary to angle the feed bucket to keep the hose submerged 

toward the end of the infusion process as the resin level goes down.  Once the sample has 

been fully infused use the “pre-positioned” kinks in the feed hose to quickly fully kink 

and clamp the feed hose.  Place excess sealant tape on the end of the hose to prevent air 

from contaminating your sample.  
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Step 8: Curing 

After 8 hours secure the vacuum pump 

Allow sample to cure at room temperature for 24 hours 

Post cure the sample at 160° F for 6 hours  

 

 

Figure 9.   Composite Fabrication: Infusion of resin across sample. 

Step 9: Make Ready for Testing 

Using the peel ply, remove the distribution medium to expose the skin 

laminate and core.  It was found that allowing the curing process with the peel ply and 

distribution medium still attached prevented the “pulling” off of any tacky resin from the 

sample and helped to maintain a uniform application.  Because of run-off on the edges of 

the sample from the resin, it may be required to trim the sample to fit in the test rig.  If 

any are of the core is exposed, it should be treated with a carnuba wax to prevent water 

intrusion into the sample.  The sandwich composite is now ready for testing. 
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Step 1 Composite Preparation 
 Cut core material 
 Cut skin layers 
 Cut peel ply 
 Cut distribution medium 
Step 2 Surface Preparation 
 Lay out sealant tape barrier 
 Place Teflon within barrier 
Step 3 Material Layup 
 Place distribution medium on top of Teflon 
 Place peel play on top of distribution medium 
 Place skin laminate skin layers on top of distribution medium 
 Place composite core on skin layers 
 Place second set of laminate skin layers on top of core 
 Place peel ply on laminate skin layers 
 Place distribution medium on peel ply 
Step 4 Vacuum Hose Routing 
 Cut spiral wrap and vacuum hose to desired size 
 Route hoses and spiral wrap 
Step 5 Create Vacuum 
 Remove sealant tape 
 Apply vacuum bag 
 Turn on vacuum pump to reach and maintain approximately 30 in Hg 
Step 6 Combine Resin chemicals 
 Mix chemicals stirring continuously; wait for “gas-off” of bubbles 
Step 7 Resin Transfer 
 Place feed hose in resin bucket and remove seal from hose 
 Continue transfer until infused over entire sample 
 Clamp feed hose 
Step 8 Curing 
 After 8 hours secure vacuum pump 
 Cure at room temperature for 24 hours 
 Cure at 160° F for six hours 
Step 9 Make ready for testing 
 Remove peel ply and distribution medium 
 Trim as necessary 
 Apply wax as necessary to exposed core on edges 

Table 6.   Sandwich composite fabrication summary. 
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E. STRAIN GAGES 

For the majority of the samples taken, strain readings were recorded.  The strain 

gages used were rectangular, three-element 45° rosette gages.  The rosette gages allow 

for simultaneous measurement in three directions.  The rosette gage is depicted in Figure 

10. 

 
Figure 10.   Rectangular, three element 45° rosette strain gage  (After [7]). 

Given the physical deformation transferred to a change in resistance reading, a 

measurement of strain can be recorded for each of the three elements.  The strain 

transformation equations are the following [14]: 

 

 
 

 

Figure 11.   Rectangular rosette orientation (From [15]). 
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By using the orientation in Figure 11, thus setting θ1=0°, θ2=45°, θ3=90°, and 

assuming negligible shear in the xy plane for the vertical point load, the transformation 

equations simplify to the following: 

 

 
Figure 12.   Strain gage layout. 

A specific channel was assigned for the x and y strains as determined from the 

equations above and are given the assignments in Table 7. 
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Strain 
Channel 

Gage # Strain 
Direction 

1 1 εy 

3 1 εx 

4 2 εy 

6 2 εx 

7 3 εy 

9 3 εx 

10 4 εy 

12 4 εx 

13 5 εy 

15 5 εx 

Table 7.   Strain gage channels and directions. 

The #2 gage at the center of the test area was not used for some tests in order to 

better allow for a better visual determination of the onset and growth of damage during 

progressive impact tests.  The gages were bonded to the composite using a M-bond AE-

10, in accordance with Vishay Precision Group Instruction Bulletin B-137 [16].  The 

gages were further waterproofed using a non-corrosive RTV sealant, 3140-RTV.    

F. TEST EQUIPMENT 

The test equipment used was the drop weight apparatus originally designed for the 

Owens study and subsequently used by McCrillis.  As with the Owens and McCrillis 

experiments, the output of the impact test was a transient response of the sample for load 

and strain as a function of time. 

1. Drop Weight Test Rig Apparatus 

Owens describes the construction of the drop weight impactor in detail [7].  The 

impactor consisted of a drop weight and an impact rod supported by four steel guide rods 

and an aluminum frame base (Figure 13).  The drop weight was guided by four linear 

bearings and a spring was used to eliminate the number of impacts during the drop.  A 
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trigger (Figure 14) initiated the data acquisition discussed in paragraph II.F.2.  The 

boundary conditions were simulated using eight (two per side) 76 mm (3 in) c-clamps.  

The drop weight could be fitted with additional free weights to vary the loads at a given 

drop height.  The total impactor weight includes the impactor and the additional free 

weights added.  The total impactor weights are detailed in Table 8.  The drop height for 

the impactor could be varied.  For this study, the drop heights ranged from 7.6 cm (3 in) 

to 76.2 cm (30 in).  For the impactor weights used, a 76.2 cm drop height would typically 

be around the maximum load level for the load transducer. 

 

Test Condition Weight 

Heavy Weight 10.84 kg 

Medium Weight 8.75 kg 

Low Weight 6.67 kg 

Table 8.   Varying weight test conditions for drop weight impactor 

 

 
Figure 13.   Dropweight test apparatus (From [7]). 
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Figure 14.   Dropweight apparatus trigger mechanism. 

2.  Data Acquisition 

The data acquisition system was also the same system developed for the Owens 

experiment [7,17].  The LabVIEW™ software was set to record at 10,000 Hz.  The 

impactor recorded 1,000 samples over a 100 millisecond period when the trigger passed 

through the sensor pictured in Figure 14.  Depending on the drop condition (weight, 

height), the ICP® force sensor manufactured by PCB Piezotronics, Inc, (Figure 15) 

would occasionally reach its maximum rated load of 4448 N (1000 lbf).  Periodically, 

voltage spikes would cause maximum force and/or strain readings.  These erroneous 

maximum values were manually removed from much of the data. 
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Figure 15.   Force sensor. 

3.  Anechoic Tank 

To minimize reverberation, an anechoic tank was used for the three test 

conditions: dry, submerged-water backed, and submerged-air backed.  Tap water was the 

fluid medium used in the submerged cases. The tank is a 2.75 m cubic structure and a 

platform was used across the top of the tank to support the drop weight apparatus as it 

was lowered into the tank (Figure 16).   
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Figure 16.   Drop weight testing apparatus in tank (From [7]). 
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III. TEST CONDITIONS 

A. OVERVIEW 

One of the primary goals of this study was to determine the composites behavior 

as the impact force was increased and to determine a point where the damage was first 

detected.  Damage to many composites is often difficult to detect and there may be no 

observable reduction in mechanical properties until catastrophic failure occurs.  For this 

reason, it is very important to understand the behavior of composites as the impact is 

increased until the onset of damage.  It was for this reason that the 6.35-mm balsa core 

and ten skins of E-glass (five each side of the sandwich) were selected.  There were other 

samples of various combinations that were also tested in order to determine the best 

composite for the study. In considering the multiple combinations, the 6.35mm/10-ply 

composite exhibited suitable strength characteristics at low impact force levels, but yet 

yielded adequate damage as the force levels were increased.  Eleven of the thirteen 

analyzed samples were all of the 6.35 mm/10-ply construct.   

B. TEST SAMPLE ENVIRONMENT 

There were three basic environments in which the samples were tested. 

 

Figure 17.   Three different impact conditions with composite plate held in place: (a) 
dry, (b) water backed, (c) air backed (After [17]). 

 

(a)                                 (b)                                                
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1. Dry Impact 

The dry impact condition was a baseline against other phases of testing.  The drop 

weight impactor was lowered into the anechoic tank, and the water level was reduced 

well below the frame of the test apparatus.   

2. Water Backed 

The water-backed testing simulated a submerged object being impacted.  Once the 

apparatus was lowered into the anechoic tank water level was raised well above the 

impact rod and test sample.  As with the Owens study, the tank level was at least 50% of 

the plate length above the end of the impact rod.  This minimized any disturbance level 

on the frequency response [7].   

3. Air Backed 

The tank was filled to the same level and the apparatus lowered in the same 

manner as the water-backed condition.  The difference in this condition was a 330 x 330 

x 127 mm deep plexi-glass box was affixed to the bottom of the test apparatus aluminum 

support plate.  The 12.7-mm thick box was sealed to the test apparatus using the sealant 

tape and commercial “aquarium” sealant to prevent the intrusion of water into the box.  

The strain gage wiring harness was routed through a small hole in the box and then sealed 

with the aquarium sealant to prevent leakage. 

C.  DROP WEIGHT VARIATIONS 

There were two different drop weights used in this study: 10.8 kg and 6.7 kg.  The 

weights could be managed using a combination of specially manufactured free weight 

plates.  The weights were varied for the variety of the test conditions in Paragraph B. 

D. DROP HEIGHTS 

The drop weights were dropped from a height of 7.62 cm (3 in) progressively to a 

maximum height of 76.2 cm (30 in).  At the maximum drop height, it was in the range 

where the force sensor would reach its maximum recording levels.  The drop height of 

7.62 cm was low enough that for the samples tested incurred no damage.  This was 
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important in evaluating the potential onset of damage for any sample.  The initial two 

tests (Series 1) began at a drop height of 15.24 cm (6 in).  Damage was immediately 

observed at the initial 15.24 cm drop for the water-backed sample, so the initial drop 

height was lowered to 7.62 cm to better ascertain the threshold for the onset of damage 

for the remaining samples. 

E. OTHER TEST VARIATIONS 

There was also a series of tests conducted with no balsa core within the 

composite.  These tests were conducted to try and demonstrate similar composite 

responses while trying the eliminate some of the variations that occur naturally in the 

balsa wood.  Two of the thirteen samples were tested in this fashion.   

 

Sample Test Condition Balsa Core Drop Weight (kg) Strain Gages 

Dry1 Dry Y 10.8 N 

Wet1 Water-Backed Y 10.8 N 

Dry2 Dry Y 6.7 N 

Wet2 Water-Backed Y 6.7 N 

Dry3 Dry Y 10.8 Y 

Wet3 Water-Backed Y 10.8 Y 

Dry4 Dry Y 6.7 Y 

Wet4 Water-Backed Y 6.7 Y 

Air4 Air - Backed Y 6.7 Y 

Dry5 Dry N 10.8 Y 

Wet5 Water-Backed N 10.8 Y 

Dry6 Dry Y 6.7 N 

Wet6 Water-Backed Y 6.7 N 

 

Table 9.   Summary of test condition variation. 
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IV. RESULTS AND ANALYSIS 

A.  OVERVIEW 

One of the more challenging aspects of this study was getting consistent data to 

determine the fluid structure interaction on a sandwich composite.  Specifically, that 

process was made more challenging using a core material as inhomogeneous as balsa 

wood.  As mentioned earlier, the Pro Balsa Plus wood has been engineered to help reduce 

the inconsistencies in absorption of the resin during the infusion process; however, balsa 

wood is a naturally occurring material and has natural flaws that are typical of any piece 

of wood.  Like a fingerprint, there are no two pieces of wood that exhibit the same 

characteristics, even in the same sample.  The “butcher-block” appearance only 

exacerbates those differences.   

There is some variation, or “scatter,” in the data.  However, through the testing 

and analysis of the thirteen samples, some distinct trends can be observed.  While thirteen 

samples is perhaps enough to detect some general trends, the non-homogenous properties 

of composites and balsa wood in particular along with natural statistical variation lead to 

results with more “scatter” than desired.  

The relative brittle nature of composites vs. metal structures is a key reason that 

the detection of damage is so important in composite structures [18]. There is a variety of 

damage characteristics for composite structures.  In this study, the types of damage 

observed were almost exclusively delamination (Figures 20, 21, 22).  The lone exception 

to the failure type was a penetration failure (Figure 22).  However, it must be noted that 

the penetration occurred only after delamination had occurred, and after repeated 

impacts.  

The added mass effect was observed when comparing the composite response in 

the differing fluid mediums.  This effect was observed both experimentally in the force 

and strain responses of the various samples as well as analytically using the experimental 

natural frequency from the strain plots.  Depending on the fluid medium in which the 

testing occurred, there was large variation in strain response at the same locations. 
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B.  FORCE ANALYSIS 

In the previous study by Owens it was found that her carbon-fiber plate had a 

density approximate to that of water.  In this study, the balsa wood composite was much 

less dense.  The balsa wood density was measured to be 606 kg/m3, nearly 40% less than 

that of water.  Due to this difference in density, as expected, there was generally a 

significant effect of water on the sandwich plate.  One would expect then that the water 

would have a much larger impact on a less dense structure with the effect of Fluid-

Structure Interaction (FSI).  A complete summary of the force data for the thirteen 

progressive impact tests is detailed in Table 10. 

 

 
Table 10.   Progressive force impact data. 

In reviewing Table 10, the best comparisons can be observed for the samples with 

matching post-scripts series numbers.  For example, Dry1 and Wet1 samples were 

conducted at approximately the same time and with samples of the same relative age 

insofar as their postcuring shelf life.  It should be noted that there was no noticeable 

differences in composite performances based on shelf life as the period of manufacturing 

and testing was condensed to less than six months.  Perhaps this variable would produce 

some noticeable variation over a longer period of time.   

* 7.6 10.2 12.7 15.2 20.3 25.4 30.5 35.6 40.6 45.7 50.8 55.9 61.0 66.0 71.1 76.2
Dry1 n/a n/a n/a 1888 2153 2723 2888 2937 2860 2867 3386 3557 3588 3499 4161 3909 Delamination

Wet1 n/a n/a n/a 1553 1725 2524 2694 2517 3095 3319 3331 3364 3765 4198 4198 4448 Delamination

Dry2 640 1041 - 1089 1191 1866 2028 2470 2473 2551 2871 2810 3014 3199 3250 2996 Delamination

Wet2 890 1052 1035 1113 1279 1391 1808 1856 2449 2189 2216 2722 2947 3249 2993 3706 Delamination

Dry3 771 945 1158 1153 1472 1689 2274 2295 2523 2641 - 949 Delam/Penetration

Wet3 703 1106 1171 - 1659 1961 2006 2036 2503 2584 - 2863 3152 3596 3528 3634 Delamination

Dry4 1228 1416 1297 1422 1614 1661 - 2690 2699 2896 3137 3332 3301 3653 3718 3716 Delamination

Wet4 792 934.2 1208 1473 1692 - 2440 2600 2743 2897 3275 3511 3664 3886 3900 4201 Delamination

Air4** 1022 1204 1429 1600 1663 1893 2062 2432 2574 2604 2708 3133 3069 3224 3345 3539 Delamination

Dry5 395 693 919 711 1245 1611 1951 2306 2882 3237 3545 3852 4164 4265 4145 4299 Delamination

Wet5 446.7 599 557 599 810 1297 1624 1973 2420 2727 2700 3295 3405 3573 3987 4009 delamination

Dry6 1120 1461 1748 2152 2336 2287 2902 3351 3674 3895 4044 4106 4286 max Delamination

Wet6 788 1150 1364 1557 1852 2234 2471 2689 2923 3144 3144 Delam/Penetration

3 4 5 6 8 10 12 14 16 18 20 22 24 26 28 30

Drop Height (cm)
Damge Type

Drop Height (in)

Progressive Force Impact Data

*Forces in Newtons; '-' indicates test error; shaded cells indicate onset of damage                                                                                                   
** Onset of damage cannot be determined due to air box structure around composite
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While the observed force levels may indicate a lower force level for the wet 

impact at the same drop height (792 N (wet) vs 1228 N (dry) as an extreme example), 

what must be considered is any loss of stiffness in a damaged sample.    Intuitively, it can 

be shown that as stiffness increases the force on an object will be much greater.  Think of 

a billiard ball being dropped on a steel plate versus dropped on a rubber mat.  The (lack 

of) stiffness absorbs the force of the ball and as a result a force reading would be much 

lower for the rubber mat example.  The same analogy can be applied to the impact test on 

the composite sandwich.  Any damage to the composite would produce a less stiff 

member and thus lower force levels.  This is but one factor that can explain a lower force 

reading at the same drop height.  Perhaps just as significant is the lack of isotropic 

material.  Composites by nature have large variations in material properties due to fiber 

alignment and placement, differences in resin absorption, and in the case of balsa wood, 

large variations in the core material.  An empirical test does not need to be conducted to 

know there are large variations in the balsa wood.  A visual inspection of the material 

reveals large variations in density from the dark to light sections.  In addition, the seams 

of the balsa “butcher block” can also be a point where there would be large variations in 

the material property. 

Even with the larger force level for the dry vs. water-backed sample for Dry4 and 

Wet4, the water-backed sample suffered damage at a lower drop height than dry sample.    

In every case when the samples within a series are compared, the onset of damage 

occurred earlier in the water-backed vs. dry samples for samples of the same series.  

While the E-glass laminate was selected to help discern the very onset of damage, there 

may be some initial internal damage that could not be detected and contributes to the 

lower force level reading.  Additionally, a look at the strain data for the same samples 

(Figure 18) in the y-direction show nearly double the deformation for the Wet4 vs Dry4 

samples. 
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Figure 18.   Strain deformation. Series 4, εy  at Gage #1 (114.38, 190.63) mm. 

A further study of strain response will occur in the subsequent section, but Figure 

18 is used to highlight an applicable, simplified one degree of freedom view of stiffness.  

Stiffness (k) is inversely proportional to the deformation (δ), by the equation: 

k = F/δ 

From this, one can see that the larger deformation will yield a lower stiffness for 

the same force (F) level.  Since the force response is being recorded from the composite 

onto the sensor the ability to “push-back” is greatly reduced and thus yields a much lower 

force level observed in the study. 

For the samples in series 1 and 2, prior to placing strain gages on the sample, the 

composite was able to be removed after each progressive drop to capture a photograph of 

the delamination growth (if any).  Figures 19 and 20 show the Dry1 and Wet1 sample at 

an identical drop height.  The water-structure interaction vs. the air-structure interaction 

is clearly evident through the added mass effect of the water on the less dense composite. 
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Figure 19.   Sample Dry1 at 14” drop height. 

 

 
Figure 20.   Sample Wet1 at same 14” drop height. 

A closer look at the series 1 tests show the above added mass effect in water as 

well as the reasoning for lowering the initial drop height to 3 in.  Table 10 shows the 

initial force level of 1,888 N (dry) vs. 1,553 N (water backed) for samples Dry1 and 

Wet1 respectively.  Table 10 also shows the initiation of damage upon first impact at this 

drop height for the water-backed sample.  With the increased deformation and the 

reduced stiffness from the damage, the force levels were subsequently lower for the 

water-backed sample.  Lowering the initial drop height allowed for some measurements 

Faint outline of delamination pattern 
on underside of sample. 

Large radial delamination pattern at 
same drop height. 
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prior to the onset of damage.   The damaged sample only intensifies the non-homogenous 

properties between samples.  Thus, comparing a damaged sample with an undamaged 

sample does not allow for a “fair” comparison.  There was no observed damage from a 

drop any lower than six inches with the visual techniques used in this study.  As 

suggested above, this is not to say that there was not internal damage between the 

laminate skins and/or the core before impact.  The lower force levels coupled with the 

observed delamination at a lower drop height suggest the onset of damage may actually 

occur before any visual indication. 

 

 
Figure 21.   Sample Wet1 initial damage at 6 in drop height. 

An example of penetration failure is shown in Figure 22 for Sample Dry3.  The 

failure due to penetration is due to the cellular matrix breakdown after repeated impacts 

at the same location. 

 
Figure 22.   Sample Dry3 penetration failure. 
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Figure 23.   Delamination occurs earlier and generally is more widespread when the 
added mass effect is more prevalent. 

 

 
Figure 24.   Delamination vs. impact force.  Typically damage occurs first for water-

backed sample and then a “crossing” occurs where we can expect to see higher 
delamination for the same impact force in a dry sample. 
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 WATER-BACKED (cm)  DRY (cm) % Diff 

Wet1 6.4 Dry1 4.5 +30% 
Wet2 6.5 Dry2 5.7 +12% 
Wet3 Delam not discernable due to 

strain gage surface prep 
Dry3 Delam not discernable due 

to strain gage surface prep 
 

Wet4 5.7 Dry4 5.9 -3% 
Wet5 2.9 Dry5 2.5 +14% 
Wet6 5.1 Dry6 4.8 +6.3% 

 

Table 11.   Total delamination damage diameters.  Green “+” indicates % gain for 
water-backed FSI. 

In the series 5 tests, when the balsa core was removed, the hope of the study was 

to eliminate the large variation in structural properties as with the balsa wood.  Like the 

previous samples, the dry sample demonstrated consistently higher force levels.  Also 

like the previous samples, the failure of the water-backed sample occurred at a lower 

drop height than the dry case.  For these two samples the delamination failure occurred at 

a significantly higher force level than the balsa core samples, nearly 2–2.5 times higher in 

magnitude.  The ability for the skin layers to better adhere to like materials explains the 

higher threshold, as delamination is likely to occur at an interface.  The likelihood for the 

disbonding to occur between two different materials with different fibrous orientations is 

greater between E-glass and balsa wood than two sheets of E-glass. 

 

Figure 25.   Delamination vs. drop height: No balsa core.  Again, the added mass 
effect. 
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Figure 26.   Delamination vs. impact force: No-core composite.  The same “crossing” 
of the dry and water-backed sample.  This time for a shorter duration due to the 

delay in the onset of damage for the non-core sample. 

An examination of Table 10 and a close look at impact force levels raises the 

question as to why the impact force for the 6.7 kg lower weight impact is generally 

higher in the series 4 and series 6 tests than for the 10.8 kg series tests.  There are a 

couple of sources of error or inconsistencies that could lead to these results.  As 

previously mentioned, the impactor may strike a more dense location of the balsa wood 

that would be more stiff than an adjacent less dense section of the balsa.  Additionally, 

error from the test rig itself is a possible source of error.   Efforts were made to maintain a 

constant clearance between the impactor and the sample for all tests.  However, just due 

to the nature of the construction of the test rig may allow for some variation in this 

clearance.  A sample that was impacted with more clearance to the sensor, would have 

more if the impact energy absorbed by the rig’s spring prior to sample impact and thus a 

lower force level recorded.  The combination of these two factors likely contribute to a 

significant portion of  the scatter of force level data.  

There has been a great effort devoted in this section in explaining why there might 

be a lower force level for a water-backed sample.  If one is to make the argument that 
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there is an added mass effect due to the water’s relative density to the sandwich 

composite, then this result seems somewhat counter intuitive.  After all, the wide 

scattering of force levels between wet/dry, light/heavy weight samples is significant.  A 

couple of different ideas on that phenomenon are explained in relative stiffness, damage, 

and inconsistency in the composite and test rig itself.   However, the only true test in 

comparing the fluid structure interaction in various medium is to use the same sample.  

The series 4 samples sought to accomplish this.  The weight of the impactor was lowered 

to 6.7 kg and the sample was tested under dry, water-backed, and air-backed conditions at 

a drop height of 3 in.  By lowering the drop weight and using the lowest drop level, one 

can reasonably assume based on the composite performance to date that the sample 

would not suffer any damage.  In doing this, the variables mentioned previously could be 

nearly eliminated and a “fair” comparison could be conducted. In terms of force, there 

was a 16.3% higher force level recorded for the water-backed sample than that of the dry 

sample.  The air-backed wet impact sample was nearly identical in terms of magnitude to 

the dry sample.  The fluid structure interaction produced three completely different force 

shapes.  The wet impact samples peaked earlier than the dry sample and had multiple 

peaks.  The air-backed sample had multiple, nearly identical magnitude peaks, while the 

second water-backed peak was more modest.  The strain deformations also support the 

added mass effect from the water-backed samples and will be discussed further in the 

next section.  With all conditions being kept as equal as possible, the added mass effect is 

clearly demonstrated for the water-backed case. 
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Figure 27.   A clear indication of the presence of the added mass effect with the 
composite samples on a “level playing field.” 

C. STRAIN ANALYSIS 

As shown earlier, the strain performance can give significant insight into the fluid 

structure interaction and is perhaps the most direct method used in this study.  For an 

identical drop height in conditions aimed to mirror each sample as much as possible, the 

deformation of the sample can give very direct clues into the sandwich composite’s 

performance.  In general, the study shows that the wet impact water-backed samples 

displayed the largest strain deformations at each gage location.  The lone exception was 

gage #1 which had the closest magnitudes for each of the test conditions, with the dry 

sample having a much higher magnitude for the non-balsa core samples of series 5.  For 

each test, the maximum strain values varied at gage #1.  Figures 29 through 38 will give a 
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representative sampling of both the εy and εx data for each gage.  In terms of magnitude of 

strain and frequency response it is clear that an added mass effect is present for the fluid 

structure interaction in water. 

 

 
Figure 28.   Representative εy gage 1 response.  One of the few gage responses where 

the maximum magnitude was not  that of the water-backed sample. 

 
Figure 29.   Representative εx gage 1 response.  Another example of the wide scatter 

of data that was observed at gage location 1.  This is one of the only locations 
where the dry sample was observed with the maximum magnitude. 
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Figure 30.   Representative εy gage 2 response.  Directly under impact. 

 

 
Figure 31.   Representative εx gage 2 response.  Again directly under impact. 
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Figure 32.   Representative εy gage 3 response. 

 

 
Figure 33.   Representative εx gage 3 response.  The damping ratios for the air and 

water backed are similar. 
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Figure 34.   Representative εy gage 4 response.   As the gage is positioned nearer the 

clamped boundary conditions we begin to see large variation in response.  While 
two samples are in tension the other in compression; suggestive that not only the 

natural frequencies, but the mode shapes are entirely different based on the 
medium.  

 
Figure 35.   Representative εx gage 4 response.  The same erratic behavior at the 

boundary conditions. 
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Figure 36.   Representative εy gage 5 response.  Generally consistent throughout, the 

water-backed samples have the largest strain magnitude. 

 

Figure 37.   Representative εy gage 5 response.  The water-backed sample is 
consistently damped slower than the dry samples. 
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In addition to the magnitude we can make some analytical analysis to demonstrate 

the added mass effect through the natural frequency of the sample during impact.  It was 

somewhat difficult to find a strain response with a regular oscillatory pattern, particularly 

for the dry samples.  Using the method below, as with the Owens study, gages #3 

(228.75, 76.25) mm and #5 (152.5, 76.25) mm were selected for their somewhat regular 

oscillatory pattern.  The first peak at the point of free vibration after probe impact (the 

largest magnitude strain reading) was used for both the dry and water-backed samples. 

 

               
 

Figure 38.   Strain plots (εx and εy) for gage #3.  

            
Figure 39.   Strain plots (εx and εy) for gage #5.  

Using the same method described by Owens to determine natural frequency, the 

following table details critical calculations in leading to the natural frequency of the 

composite plate under varying test conditions. 
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 Period Damped Nat 
Freq 

Damping 
Ratio 

Natural Freq 

Gage 3 T (sec) ωd (rad/sec)  ωn (rad/sec 
Dry -  εx 0.012 532.5 0.053 533.2 
Wet -  εx 0.035 180.0 0.059 180.3 
Dry -  εy 0.010 637.2 0.060 638.4 
Wet-  εy 0.035 180.0 0.051 180.3 

Gage 5     
Dry -  εx 0.011 573.8 0.219 588.1 
Wet -  εx 0.034 184.3 0.057 184.6 
Dry -  εy 0.0099 634.7 0.044 635.3 
Wet-  εy 0.033 190.4 0.025 190.5 

Table 12.   Representative natural frequencies for the non-core sample. 

From the natural frequency calculations, the added mass factor (AMF), β = m*/m, 

can be obtained from Haddara and Cao’s study [19].    

ω(wet) = ω(air) * (1/(1+m*/m)1/2) 

 

In this case, the ωf is the natural frequency of the water-backed wet impact and 

the ωair is the dry samples.  Using this relationship the AMFs are tabulated below for the 

representative sample. 

Gage 3 AMF, β 
Wet -  εx 7.74 
Wet-  εy 11.5 

Gage 5  
Wet -  εx 9.15 
Wet-  εy 10.1 

Table 13.   Added Mass Factors (β). 

From Figures 38 and 39, it is clear, particularly in the x strain, that the oscillations 

of the dry samples become damped very quickly when compared to the wet samples.  

While the exact amplitudes and periods may be difficult to discern exactly on the graphs 

given the variation in some of the data, a “quick-look” at the large difference in 

frequency response and an understanding of the relationship of the natural frequencies to 
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the dimensionless AMFs will prove a clear added mass effect in the water.  The average 

AMF for this small sample was 9.6.  The added mass effect was experimentally found to 

be a 16.3% increase when the same sample was tested under identical conditions.  While 

there may be some variation in these numbers, the qualitative observation is clear. 

In the Owens study, calculated natural frequencies, yielded an average AMF of 

6.6 for her carbon-fiber composite.  Published AMF factors for steel are shown to range 

from 1.4 to 2.4 depending on the boundary conditions [7].  Despite a relatively small 

sample size, the higher AMF for the balsa wood sandwich composites is consistent with 

the trend that as density decreases, AMF will increase and the fluid-structure interaction 

more prevalent.    

With only one sample in the air-backed condition one cannot identify a clear 

trend. However, the data that was gathered does seem to support a similar response to 

that of the water-backed in terms of both magnitude and frequency response.  The air-

backed sample appears to be less damped than the dry sample and would subsequently 

also show an AMF.   From the minimal sampling on the air-backed case it would appear 

that the AMF would be something less than what was observed for the water-backed 

case.  
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V. CONCLUSIONS 

This study sought to build upon the work of fluid-structure interactions to better 

understand the dynamic response of a sandwich composite.  The results concluded that 

the added mass effect of the fluid structure interaction plays a significant factor in the 

response of a sandwich composite, both in terms of force and frequency response.   

The major findings of this study show that the dynamic response varies depending 

on the fluid in which the test was conducted.  Specifically, as the test medium becomes 

more dense (water vs. air), there is an added mass effect that effects the dynamic 

response of the sandwich composite.  The added mass effect of the fluid-structure 

interaction is intensified as the densities of the composite are lowered below that of the 

density of water.  Analytically this is observed as the AMFs were highest for the lower 

density balsa-core sandwich composites.  As the density decreased, this study showed an 

increase AMF over previously studied carbon fiber composites [7, 17] and published 

reports of steel fluid-structure interactions [7]. 

Experimentally, this study showed clear trends indicating an increasing effect of 

the fluid-structure interactions in water vs. air.  For each series of tests, it was conclusive 

that the damage occurred at a lower drop height because of the added mass effect.  In 

addition to the earlier onset of damage, the delamination patterns were generally larger at 

every drop height for the water-backed samples when compared to the dry baseline.  The 

dynamic response demonstrated through the magnitude of the strain deformations, 

showed a clear trend that the water-backed impact, was producing larger strains in almost 

every location. 

This study also found through an investigation of the strain response, particularly 

near the boundary conditions, that the frequency responses were different not only in 

terms of magnitude, but also in modal shapes.  For design considerations, this study 

highlights the need to specifically test composites in their intended operational fluid 

medium in order to properly determine natural frequencies. 
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Including FSI effect for a composite structure in contact with water is essential for 

the structural design and analysis. Otherwise, the analysis would be nonconservative. 
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VI. RECOMMENDED FURTHER STUDY 

The trend in the military marine industry to expand its use of composites will 

continue thus it is recommended that further study be conducted to continue this work. Of 

particular interest, is the submerged air-backed model.  This model perhaps best 

represents that of a submerged hull form.  Since the use of composites in critical combat 

structures in U.S. Navy applications is relatively young and growing, the effect (if any) or 

the post curing process should be studied further.  Gathering this information on 

composite performance over time may help ships to meet or exceed expected service life 

expectations. It will be very beneficial to measure the full field deformation and compare 

it between the dry and wet impact cases. Additionally, it is recommended that the 

experimental data be compared with the computational results to better understand the 

FSI effect on composite structures. 
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