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EXECUTIVE SUMMARY 

 
The objective of SERDP project WP-1616 was to develop, and investigate the benefit of, nanostructured 
Zn-based alloys over current (Cd) and emerging (LHE ZnNi) sacrificial protective coatings, focusing in 
particular on the relevant properties for high strength steel fasteners.   In Phase I, a number of 
nanostructured zinc (Zn)-based alloy coatings were successfully synthesized (Zn-Co, Zn-Fe, Zn-Ni and 
Zn-Ni-Co, in particular) based on simple modifications to currently available (off-the-shelf) commercial 
bath chemistries.  The various nanostructured Zn-alloys were then subjected to comprehensive 
characterization and performance tests, including: grain size, crystallographic texture, microhardness, 
ductility, torque/tension friction, salt-spray corrosion and hydrogen embrittlement performance.  Based on 
the Phase I results, the alkaline Zn-Ni, acid Zn-Ni and acid Zn-Ni-Co plating systems where selected as 
the most promising alloys to carry forward for further development in Phase II. 
 
Upon completion of Phase I, the fine grained structures produced via pulse plating from modified 
commercial Zn-alloy plating solutions were found to have a number of significant benefits over 
conventional DC plating, including:  

1) bright, uniform, dense microstructure, 
2) uniform, equiaxed grain size throughout the thickness of the coating, 
3) increased microhardness, 
4) single γ-phase crystallographic microstructure (in the case of Zn-Ni), 
5) increased corrosion resistance compared to other Zn-Ni alloys,  
6) decreased friction (torque-tension), and  
7) passing the ASTM F519 hydrogen embrittlement (HE) test (even with a dense microstructure, 

i.e. without porosity).   
 
The benefits of pulse plating on the performance of  Zn-alloys are expected to provide superior coating 
properties similar or superior to Cd and essential to high strength steel fasteners.  
 
Phase II was carried out in five additional tasks: (1) optimization of a selected nanocrystalline Zn-based 
alloy; (2) evaluation of trivalent (Cr3+) and hexavalent chromium (Cr6+) conversion coatings to enhance 
corrosion resistance; (3) test sample production for the testing of hydrogen re-embrittlement (HRE)  
(a.k.a. in-service embrittlement); (4) further optimization of plating conditions specific for fasteners; and 
(5) evaluation of scaled-up production plating, focusing particularly on bath stability and barrel plating.   
 
The main conclusions from Phase II were as follows: 

• ZnNi coatings synthesized from alkaline bath chemistries had greater compositional 
uniformity (less fluctuation with variations in current density) compared to those from acid 
chemistries, resulting in more uniform peak to valley composition in threaded fasteners. 

• In addition to providing dense structures, pulse plated deposits typically possessed higher 
nickel content than direct current (DC) plated deposits from the same plating bath. 

• Both the hexavalent chromate conversion coating and trivalent chromium conversion coating 
were successfully applied to the pulse plated ZnNi structures, providing similar enhancement 
to salt spray corrosion performance. 

• The ability to pass the hydrogen re-embrittlement test (pass defined as four samples lasting 
longer than 150hrs when loaded to 45% of the notch fracture strength of ASTM F519 Type 
1a1 bars) highly depends on the following factors: 
o Pre-plating treatment methods: samples activated with acid activation had significantly 

decreased time to failure in the re-embrittlement test, even though the samples passed 
regular ASTM F519 testing, 
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o Porosity of coating: dense, non-porous ZnNi coatings routinely outperformed porous 
ZnNi structures, 

o Nickel content: Time to failure in the re-embrittlement test was significantly dependent 
on the nickel concentration in the deposit (i.e. a pulse plated sample with 15wt.%Ni 
passed 150hrs while the same with a 12wt.%Ni content failed in less than 2hrs).   

o The open circuit potential (OCP): The OCP was found to be highly dependent on the 
nickel content in the 12-15wt.%Ni range.  This could help explain the HRE performance 
as a nickel concentration of 15wt.% had an OCP close to that of Cd and steel, which 
would create less of a galvanic potential when coupled with steel. 

• Bulk processing of a large numbers of fasteners was successfully accomplished using pulsed 
electrical parameters while barrel plating. 

 
The results obtained demonstrate that dense, fine grained Zn-alloy structures synthesized via pulse 
electrodeposition using a commercial Zn-Ni alkaline system supplied by Dipsol of America can lead to 
the retention of numerous benefits associated with Cadmium-coating technology, including: non-line-of-
sight application, excellent corrosion resistance, low coefficient of friction, excellent coating adhesion, 
high dimensional consistency and superior surface finish.  The use of pulse plating was also found to have 
benefits over conventional ZnNi plating, including superior corrosion protection and improved HRE 
performance as a result of the dense fine grained microstructure. Furthermore, pulse electrodeposition can 
be implemented within the existing Cadmium-plating infrastructure within the defense sector for 
conventional rack plating as well as bulk plating of fasteners, e.g. barrel plating.    
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1.0 INTRODUCTION 
 
1.1 CADMIUM (CD) PLATING TECHNOLOGY 
For steel fasteners used in the aerospace and transportation industries, Cadmium (Cd) coatings are the 
choice of most major manufacturers due to its superior corrosion resistance, lubricity, and fatigue 
resistance.  When electroplated onto steel fasteners and parts, Cd provides cathodic protection in the form 
of an impermeable sacrificial coating due to its lower position on the galvanic scale compared to low 
alloy steel [1].  High lubricity allows Cd coated fasteners to be repetitively installed and reduces the 
torque required for tightening [1].  Resistance to fatigue extends the life of the plated fastener which, 
combined with the corrosion resistance and ability to re-install, results in a long-lasting reliable product.  
Electrodeposition is the most common method of coating high strength steel fasteners with Cd.  Typically 
Cd is post-treated with chromium conversion coatings to increase the durability of the part before 
installation [1].  
 
The Environmental Protection Agency (EPA) has indicated that Cd is a class B1 carcinogen resulting 
from both inhalation and ingestion.  It has been banned from most industries due to its tendency to reside 
in body tissue [2,3].  Cd electroplating produces toxic fumes which affect bath operators [2].  Cd waste 
disposal and emissions are heavily regulated in most countries to attempt to avoid contamination of food 
and water sources [2].  Risks are not limited to those created in plating shops as Cd dissolves in rainwater, 
thus extending the danger of exposure throughout the entire life of the coated part, from plating, to 
installation and usage and finally disposal [3].  

 
1.2 EXISTING CD-REPLACEMENT ALTERNATIVES 
As a result of the strict regulation of Cd-containing processes, there are significant ongoing efforts to 
develop effective Cd-replacement technologies.  The most promising concepts (such as ion-vapour 
deposited (IVD) aluminum, AlumiPlate™, standard electrodeposited acid and alkaline zinc nickel (Zn-
Ni) and metallic ceramics) have, to some extent, found acceptance in various military and commercial 
Cd-replacement roles.  In general, these replacement technologies can be grouped into two classes, ‘wet’ 
(i.e. electrodeposition) or ‘dry’ techniques.  ‘Dry’ techniques include physical or chemical vapour 
deposition methods, such as IVD aluminum.  However, when tested, IVD aluminum coatings displayed 
poor adhesion and possible susceptibility to corrosion [4].  This may be due to the fact that pure 
aluminum coatings have insufficient corrosion resistance, and thus a chromate or chromium conversion 
coating must be used to enhance surface properties [3].  Aluminum-molybdenum unbalanced magnetron 
sputter deposition is another alternative technology.  Aluminum-rich coatings can be used for corrosion 
resistance and adhesion, and molybdenum rich coatings can provide the lubricity required to replace Cd 
on high strength steel fasteners [3].  However, these ‘dry’ technologies are expensive, require significant 
investment on the industry’s behalf and work on line-of-sight applications only.  
 
Cadmium alternative programs are also being implemented by the Joint Cadmium Alternative Team 
(JCAT) [e.g. 5] and the Environmental Security Technology Certification Program (ESTCP) [e.g. 6].  The 
leading ‘wet’ Cd-replacement technology is Zn-Ni electrodeposition, not least because it provides a 
logical fit to replace industrial Cd electroplating processes.  Indeed, Zn-Ni plating has been gaining 
significant momentum as a suitable drop-in alternative, especially in the commercial aerospace industry.  
Acid-based Zn-Ni is qualified for use as a Cd-replacement alternative.  However, it is not an operator 
friendly process and is only applicable to low strength steels (< 160 ksi) [7].  The established Zn-Ni 
plating processes are not 100% efficient, which means that hydrogen will be a by-product of the desired 
metal reduction reactions during plating.  This hydrogen evolution is thought to be the cause of hydrogen 
embrittlement (HE) of the steel substrate [3].  Low and medium-strength steels are not susceptible to HE 
while high-strength steels are.  The Boeing Company, in partnership with Dipsol of America, has 
developed a Low Hydrogen Embrittlement (LHE) Alkaline Zn-Ni process (IZ-C17) specifically for 
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application to high strength steel [8,9,10].  The LHE Alkaline Zn-Ni process eliminates the use of 
brighteners to create a dull, porous coating, and currently shows promising results in regards to corrosion, 
hydrogen embrittlement (HE), and in-service hydrogen re-embrittlement (HRE) [8,9,10,11].  In particular, 
through qualification testing [e.g. 7,12] it has been shown that the LHE IZ-C17 system performs in many 
ways as well as cadmium [10].  However, the process is not yet optimized [10,]: for example, the LHE C-
17 coating is considered brittle and requires improved lubricity; HRE testing has been completed 
primarily using the incremental step load method [e.g. 11]; application of brush plating is questionable 
[e.g. 11]; and the composition plays a large role in the overall performance. 
 
If an acceptable level of hydrogen transfer can be achieved by creating a coating structure that is highly 
diffusive to hydrogen while remaining relatively smooth and non-porous, then it is likely that the proven 
corrosion-resistant capability of Zn-based coatings can be maintained and not compromised.  Moreover, if 
this can be done with a process that is close to 100% cathodic current efficiency (i.e. produces less 
hydrogen), then the probability of embrittlement of the high strength substrate will be diminished even 
further.  
 
1.3 SYNTHESIS, STRUCTURE & PROPERTIES OF ELECTRODEPOSITED NANOSCALE MATERIALS 
Integran Technologies produces nanoscale metallic coatings for various applications and has been 
actively investigating Cd replacement by evaluating possible alternative coatings.  Integran takes 
advantage of the existing infrastructure of electrodeposition and achieves nanostructured materials to 
meet many customer requests through customized bath chemistry and applied electrical parameters. By 
reducing grain size of the electrodeposited metal to the nanoscale, deposits with superior mechanical 
properties are produced.  These improved mechanical properties, such as hardness, corrosion resistance, 
tensile strength, and low coefficient of friction, would be valuable for a coating applied to high strength 
steel fasteners.  
 
Electrodeposited nanostructures have advanced rapidly to commercial application as a result of: 1) an 
established industrial infrastructure (i.e., electroplating and electroforming industries), 2) a relatively low 
cost of application whereby nanomaterials can be produced by simple modification of bath chemistries 
and electrical parameters used in current plating and electroforming operations, and 3) the capability in a 
single-step process to produce metals, alloys, and metal-matrix composites in various forms (i.e., 
coatings, free-standing complex shapes).  The earliest systematic studies on the use of electrodeposition to 
produce nanocrystalline materials (i.e. materials with grain size values below 100 nm) were published in 
the late 1980’s by the present applicants and the general conditions for producing nanocrystalline metals 
and alloys by electrodeposition are documented in US Patent No. 5,352,266 (Oct. 4, 1994) and US Patent 
No. 5,433,797 (July 18, 1995).  The nanocrystalline materials synthesized in this project were fabricated 
following the methods and covered by various US and international patents [13,14,15,16,17,18,19].  
SERDP has been instrumental in the advancement of electrodeposited nanostructures through its previous 
support of Integran in the development of a nanoscale Co-based hard chrome replacement technology 
(SERDP WP-1152), which has successfully advanced to the Dem/Val stage with a demonstration tank 
installation at NADEP-JAX (ESTCP WP-0411).  
 
Integran optimizes electrodeposited nanostructured materials through a variety of methods, including 
utilizing different electrical parameters. Altering electrical parameters includes the application of various 
current densities (mA/cm2) and pulse timings. Pulse timings can refer to varying the applied frequency, 
forward to reverse current ratios, and current on and off times. Three employed pulse timings are direct 
current (DC), pulse plating (PP), and pulse reverse (PR) plating (Figure 1).  DC is the application of a 
constant forward current and is the most common waveform applied in industry.  PP occurs when a 
forward current is applied and turned off regularly.  This approach results in a more fine-grained, defect-
free, and compositionally-uniform deposit due to the replenishment of the plating solution at the cathode 
surface during the time-off portion of the cycle [20].  PR plating is the application of a cathodic pulse 
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yield a coating process that meets or exceeds the overall performance (corrosion protection, torque-
tension, etc.) and life-cycle cost of existing Cd electroplating and is particularly applicable to the coating 
of high strength steel fasteners. In order to achieve this objective, the coating process and structure must 
be engineered in such a way that any and all evolved hydrogen is minimized and/or prevented from 
diffusing into the steel substrate, not only during the coating process itself but also in-service (i.e. 
prevention of post-plate HRE).  
 
The overall objectives for this project are to: 
 

• Investigate the benefit of a nanostructured microstructure on the properties and performance of 
various commercial Zn-based alloy coatings, and  

• Work on simple modifications to commercial electroplating techniques to develop an alloy that: 
• Meets or exceeds the overall performance (corrosion protection, torque-tension, HE, etc.) 

and life-cycle cost of existing Cd electroplating, 
• Provides a “Drop-in” replacement for Cd plating, capable of using existing Cd plating 

infrastructure. 
 

This project will develop an understanding of the effect that microstructure (grain size, crystal structure 
(phase) and composition) has on the properties and performance (sacrificial corrosion, lubricity, HE) of 
Zn-based alloy coatings on high strength steel as a method to determine an optimal microstructurally 
designed Cd-replacement coating. 
 
2.1 PHASE I WORK 
The following task plan was followed during Phase I of this project.  
 
TASK 1 – Identification of Nanoscale Commercial Coating Alloys 

• Selected Zn-based binary alloys for investigation 
 
TASK 2 – Laboratory Optimization of Nanoscale Zn-Based Alloys 

• Lab scale experiments to optimize coating microstructure for each alloy system 
 
TASK 3 – Preliminary Characterization and Testing 

• Screening testing to help development efforts in Task 2 
 
TASK 4 – Coating Performance Evaluation on High Strength Steel 

• Comparison of testing results of alloys with optimized microstructure 
 
Four different commercial Zn-based alloys were investigated in Phase I: ZnNi, ZnCo, ZnNiCo and ZnFe.  
The ZnNiCo acid system was created by Integran, based on a commercial ZnNi acid chemistry.  Viable 
Zn-alloy plating chemistries pursued for development as Cd-replacement coatings were compared from 
technical literature (academic and commercial) using a number of criteria.  Hull cell investigations and 2 
L beaker plating tests on mild steel substrates were performed to determine plating efficiency and rate.  
Coating appearance and surface morphology were investigated to confirm coating density (i.e. absence of 
macro-pores) and thickness uniformity, as well as effects of pulse plating and pulse-reverse plating.  
Examples are shown in Figure 3 for coatings produced in alkaline ZnNi baths.  It is shown that pulse 
plating is shown to produce a deposit with: increased brightness, uniformity, and density; greater hardness 
and wear properties; grain refinement; and a more ideal single γ-phase microstructure for corrosion 
resistance.  Further details regarding the system down-selection are provided in Appendix A.   
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A scoring matrix was developed to down-select specific alloy systems and plating chemistries for Phase 
II.  A summary of the Phase I work and the Phase I scoring matrix are provided in Appendix A, Section 
9.2, respectively.  The most promising waveforms/Zn-Ni chemistries for Cd-replacement alternatives 
identified/down-selected were: 
 

1. Pulse-plated Zn-Ni alkaline (based on the Atotech Reflectalloy ZNA system) 
2. Pulse-plated Zn-Ni acid (based on the Enthone Zincrolyte CLZ-Ni 6340 system) 
3. Pulse-plated Zn-Ni-Co acid (based on the Enthone Zincrolyte CLZ-Ni 6340 system) 

 
These three systems were therefore carried forth for further development in Phase II.  A Zn-Ni alkaline 
system is already being pursued by the Boeing Company as a Cd-replacement alternative on low strength 
steels.  The Zn-Ni acid bath chemistry also showed a high degree of potential as a Cd-replacement 
coating, especially with regards to the uniform, dense coating produced by pulse-plated waveforms. And 
finally, the Zn-Ni-Co ternary alloy showed the most interesting combination of physical properties when 
plated with pulse-plating conditions. As well, it is a novel bath chemistry based on the commercial Zn-Ni 
acid system, and therefore may be the most promising of the three Cd-replacement systems chosen for 
further development in Phase II. 
 
 
2.2 PHASE II WORK 
Phase II activities concentrated on scaling up the selected systems for bulk coating of high strength steel 
fasteners, namely the Zn-Ni alkaline, Zn-Ni acid, and Zn-Ni-Co acid plating chemistries.  Further 
investigation of these Zn-based alloy systems were performed to ensure that the coating properties are 
maintained with a 40 L scaled up system.  As well, optimization activities were performed to investigate 
the possibility of further improving coating properties.  Optimization included use of known techniques as 
well as techniques proprietary to Integran and developed in other programs.  Long-term bath use was 
studied to demonstrate reproducibility and process consistency.  It is imperative that the selected baths 
and conditions are repeatable in plating and performance in any volume of bath for any method of plating.  
Since the end application is high strength steel fasteners, the scaled up bath will also be tested using a 
barrel-plating mechanism which is typical of fastener plating; tests in Phase I focused on rack-plating.  
 
A critical component of Phase II surrounded the performance of down-selected Zn-based alloy coatings in 
hydrogen re-embrittlement (HRE) testing.  As HRE is a critical requirement of the in-service performance 
of sacrificial coatings on high strength steel, HRE testing was focused on during Phase II activities. 
Although coating porosity supposedly minimizes HRE, it is expected that the fully-dense, ductile, 
nanocrystalline coatings produced by pulse plating will perform well in HRE testing due to other physical 
properties. 
 
The following workplan was followed for Phase II of this project:  
 
TASK 5 – Optimization of Specific Nanoscale Alloys 

• Further optimize down-selected nano-scale alloy chemistries to develop a consistently ultra-high 
efficiency process that produces deposits with target microstructure and properties  

 
TASK 6 – Evaluation of Cr6+-free Conversion Coatings 

• Post-plate Cr6+-free conversion coatings (e.g. environmentally benign trivalent chromium, Cr3+) 
will be investigated to be paired with the Cd-replacement coating that emerges from this program  

 
TASK 7 – Sample Production and Testing  

• Perform a thorough testing regimen on the optimized Cd-replacement + conversion coating 
structure 
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o Hydrogen Embrittlement (HE) – ASTM F519 
o Salt spray corrosion – ASTM B117 
o Taber wear / pin-on-disc friction 
o Torque-tension 
o Hydrogen re-embrittlement (HRE) – after ASTM F519 

 
TASK 8 – Comprehensive Coating Performance Evaluation  

• Evaluate for high-strength steels the general performance of selected nanoscale Zn-based coating 
systems relative to current Cd-plating processes 

 
TASK 9 – Rack/Tank/Barrel Plating Evaluation 

• Investigate the compatibility of the selected processes with conventional production plating 
techniques, such as high volume barrel plating 

 
 
3.0 TASK 5 – OPTIMIZATION OF SPECIFIC NANOSCALE ALLOYS 
 
3.1 TASK OBJECTIVES 
The objectives of Tasks 5, 6, and 7 were to further optimize the alloys selected in Phase I (namely, 
commercial alkaline Zn-Ni and acid Zn-Ni, and modified acid Zn-Ni-Co) with emphasis placed on the 
development of a consistently ultra-high efficiency process in a scaled-up bath that produces 1) deposits 
with microstructures facilitating rapid hydrogen diffusion out through the coating, and 2) deposits with 
microstructures providing enhanced protection from corrosive environments which are conducive to 
premature part failure (i.e. in-service embrittlement).  
 
3.2 SCALE-UP OF BATHS TO 40 L VOLUMES 
In order to further refine the choice of bath for large-volume plating, the three baths selected in Phase I 
were scaled up from 2 L volumes to 40 L volumes. 
 
3.2.1 Zn-Ni alkaline 
The Zn-Ni alkaline bath chemistry developed in Phase I (based on the Atotech Reflectalloy ZNA system) 
was scaled up to 40 L, shown in Figure 4.  Design of Experiments (DoEs) were conducted to evaluate the 
40 L-plating functionality, including: running Amp-hours through the bath and monitoring bath stability, 
bath composition, cathodic efficiency, deposit quality, composition and microstructure.  Example results 
are presented in Section 3.2.3.  In addition, additive studies were conducted to determine an appropriate 
replenishment schedule for metals as well as chemical additives.  Custom racks were designed and built 
in order to enable simultaneous plating of: 1) multiple flat samples of mild steel (MS) for composition, 
thickness, grain size, and ductility testing, as well as Taber wear measuring; 2) multiple plates of high-
strength steel (HSS) for ASTM B117 corrosion testing; 3) multiple HSS notched bars for ASTM F519 
HE and HRE testing; and 4) multiple HSS bolts for torque-tension testing. 
 
Phase II of this work also investigated an alternative Zn-Ni alkaline commercial system: Zn-Ni PLUS 
system, Dipsol IZ-C17+, Low Hydrogen Embrittlement Alkaline.  This system has been considered a 
benchmark for minimal hydrogen embrittlement and re-embrittlement protection.  According to the 
Technical Data Sheet provided by Dipsol of America, the bath produces deposits consisting of 12-18 
wt.% Ni, hardness of 350-450 kg/mm2 VHN, and plating rates between 0.35 – 0.45 µm/min. at a typical 
current density of 50 mA/cm2.  In the present Phase, the Dipsol system was compared to that of Atotech, 
providing comparative data for hydrogen re-embrittlement and salt-spray corrosion testing.    
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3.2.5 Zn-Ni-Co acid 
A number of DoEs were performed with the Zn-Ni-Co acid system in an effort to investigate the effect of 
plating parameters on coating composition and ductility, and ultimately to find an optimal processing 
window and replenishment schedule to scale up to a 40 L volume.  Optimization included use of known 
waveform techniques (e.g. PP) as well as techniques proprietary to Integran and developed in other 
programs (PR).  DoE variables included pH, temperature, plating conditions (DC, PP, and PR) as well as 
current densities.  Deposits possessed promising ductilities, and lower wt.% Zn deposits could be 
achieved (i.e. into the desirable γ-phase), overall making this system attractive.  Promising plating 
conditions have been found for all three plating conditions, i.e. DC, PP, and PR, which largely mirror 
those for the Zn-Ni acid bath.  However, it was found that the replenishment schedule for this bath was 
more complex than the binary Zn-Ni systems.  This bath was therefore not scaled up to a 40 L volume.  
Nonetheless, the 2 L volume was used to produce samples for Task 6 and compare with the two binary 
Zn-Ni deposits. 
 
4.0 TASK 6 – EVALUATION OF CR6+-FREE CONVERSION COATINGS 
 
4.1 TASK OBJECTIVES 
In this Task (as outlined in Section 3.1), the effectiveness of chromate and chromium conversion coatings 
on the deposits produced was investigated using the three down-selected Zn-based alloy coatings.  
(“Converting” will henceforth refer to the application of chromate or chromium conversion coatings.)   
 
The acceptance of the chromate and chromium conversion coatings (or “conversion”, for short) was 
primarily evaluated optically, where typical color changes could be used to denote proper coating.  
Chromate and chromium conversion coatings were applied primarily to 1) plated mild steel (MS) test 
pieces, and 2) plated HSS plaques designated for salt-spray corrosion testing (ASTM B117).  Three 
conversion coatings were investigated for the Zn-alloy plated HSS pieces: Enthox (30% 7701M, 
hexavalent chromium), Atotech EcoTri (5% Reagent B, trivalent chromium), and for the Dipsol LHE Zn-
Ni system, the trivalent chromium conversion coating system IZ-264 was used.  For each plating bath 
(Zn-Ni acid, Zn-Ni alkaline, and Zn-Ni-Co acid) a suitable conversion coating was determined.  In 
addition, the influence of sample surface was investigated, including time between plating completion and 
bake-out and effect of post-bake re-activation.  Further evaluation of conversion coating effectiveness was 
performed following salt-spray corrosion testing.   
 
4.2 QUALITATIVE ANALYSIS OF CONVERSION COATINGS  
In the case of the hexavalent chrome product (Enthox), yellow coloration is typically observed.  In 
contrast, the trivalent chromium product (Atotech) typically displays a blue or clear coloration. 
 
4.2.1 DoE for Converting Time and Solution Concentration 
A Design of Experiments (DoE) was carried out on plated MS pieces using the Zn-Ni alkaline system.  
The recommended operating procedures for the respective conversion treatments included in the 
respective Technical Data Sheets (TDS) was appropriate for all waveforms, e.g. (Figure 15a and b).  It 
was also noted, that longer conversion times were required for the trivalent system as its usage increased, 
e.g. from a range of 30-90 seconds (Figure 15a) to between 1.5 and 9 minutes (Figure 15c).  It is clear that 
in these samples, there is a significant color variation across the test samples.  According to the TDS for 
the IZ-264 trivalent chromium conversion coating, color variation may be due to a number of factors, 
including insufficient rinsing, temperature variation in rinsing, conversion thickness variations, localized 
Zn-Ni deposit thickness and/or composition, or even localized substrate variations.  It is not known how 
closely linked color variation is to localized corrosion protection; this will be investigated in the following 
sections. 
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performed solely on HSS plaques; the second (II.2) focused on a single conversion treatment and included 
both HSS plaques as well as bolts in both the scribed and un-scribed conditions.  Plating in all cases was 
done to a thickness between 10-18 microns.  All samples were tested in a salt-spray chamber for a 1000-
hour duration, over which the existence of white and red rust was monitored. 
   
Table 3 summarizes the results for the Phase I three down-selected Zn-based alloy systems.  The Phase 
II.1 converted samples used both the Cr6+ (Enthone) and Cr3+ (Atotech) coatings, which were applied 
according to AMS 2417G Type I.  Examples of un-scribed plaques before and after testing are shown in 
Figure 21.  The Cadmium benchmark plaque displayed no white or red rust after 1000 hours.  In contrast, 
the Zn-Ni acid PR (12 wt.% Ni) plaque without conversion coating displayed significant white rust after 
1000 hours.  Furthermore, the Zn-Ni acid PR (12 wt.% Ni) plaque with Cr3+ conversion coating displayed 
no white or red rust after 1000 hours.  The results from the ASTM B117 tests lead to a number of 
conclusions: that the Cr3+ chromium conversion coating performs similar to its Cr6+ counterpart; that the 
existence of a conversion coating vastly improves the corrosion response of the plaques; and that all but 
one Zn-Ni plaque resists the development of red rust by forming a sacrificial coating.  However, the 
alkaline (Atotech) plaques all quickly developed white rust which may lead to undesirable mechanical 
properties, but none developed red rust.  Finally, the existence of a scribe in the corrosion sample further 
demonstrates the efficacy of the Zn-Ni coatings, displaying their sacrificial properties to resist significant 
red rust formation (Figure 22).  However, the extent of white rust formation varied between Phase II.1 
and II.2 deposits.  This was independent of scribing, which suggests that the coating retained its sacrificial 
composition but that other factors exist in overall corrosion resistance.     
 

Table 3:  Summary of ASTM B117 salt-spray corrosion results for down-selected Zn-based alloys.  
Numbers denote hours to white and red rusting. 

Alloy 
Electrical 
Waveform 
Optimized 

Phase II.1 
No Cr 

Un-Scribed 
White/Red 

Phase II.1 
Cr3+ 

Un-Scribed 
White/Red 

Phase II.1 
Cr6+ 

Un-Scribed 
White/Red 

Phase II.2 
Cr3+ 

Un-Scribed 
White/Red 

Phase II.2 
Cr3+ 

Scribed 
White/Red 

Cadmium DC > 1000 
Zn-Ni alkaline 

(Atotech) 
DC < 150 < 150 < 150 < 150 < 150 
PP < 150 < 150 < 150 < 150 < 150 

Zn-Ni alkaline 
(Dipsol) 

DC    ~800 ~800 
PP    ~800 ~800 
PR    ~800 ~800 

Zn-Ni acid 
DC    < 150 < 150 
PP < 150 ~ 700 ~ 600 < 150 < 150 
PR < 150 > 1000 ~ 360   

Zn-Ni-Co acid PP < 150 ~ 850 ~ 360   
PR < 150; ~ 360 > 1000 > 1000   
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Samples from the Dipsol system were also made to compare deposits produced using DC, PP, and PR 
waveforms.  The results showed that mean sliding friction values were within a close range of each other, 
i.e. spanning from 0.10 to 0.14.  Finally, Zn-Ni alkaline samples with the Sol-Gel coating (outlined in 
Section 4.2.5) were tested, and they showed similar low sliding wear and friction as the metallic coating.  
However, the difference between the minimum and maximum values was large (see Appendix B, Section 
10.1): over a 2 m wear track, for example, while the mean friction coefficient was 0.27, the minimum was 
0.13 and maximum was 0.49, suggesting rapid breakdown of the polymer during testing.    
 
 

Table 4:  Summary of pin-on-disc results for Phase I down-selected Zn-based alloys. 

Alloy 
Electrical 
Waveform 
Optimized 

Coefficient of Friction (Sliding) 

2m 100m 

Cadmium* DC 0.19 0.49 

Zn-Ni alkaline 
(Atotech) 

DC 0.32 (Cr3+) 
0.20 (Cr6+) 

0.55 (Cr3+) 
0.35 (Cr6+) 

PP 0.13 (Cr3+) 
0.15 (Cr6+) 

0.24 (Cr3+) 
0.26 (Cr6+) 

Zn-Ni alkaline 
(Dipsol) 

DC 0.10 (Cr3+) 0.47 (Cr3+) 
PP 0.14 (Cr3+) 0.34 (Cr3+) 
PR 0.12 (Cr3+) 0.32 (Cr3+) 

PR+Sol Gel 0.27 0.55 

Zn-Ni acid 

PP 0.09 (Cr3+) 
0.12 (Cr6+) 

0.23 (Cr3+) 
0.14 (Cr6+) 

PR 0.13 (Cr3+) 
0.20 (Cr3+) 

0.23 (Cr3+) 
0.15 (Cr6+) 

Zn-Ni-Co acid PP 0.13 (Cr3+) 0.15 (Cr3+) 
PR 0.16 (Cr3+) 0.49 (Cr3+) 

* Values for Cadmium were obtained from Phase I results. 
 
   
5.5 TORQUE-TENSION 
Using a Skidmore Wilhelm tension instrument in conjunction with a JETCO torque wrench, the torque-
tension relationship was determined following the procedure described in the High-Strength Steel Joint 
Test Protocol (HSS JTP) for Validation of Alternatives to Low Hydrogen Embrittlement Cadmium For 
High-Strength Steel Landing Gear and Component Applications (07/31/2003, prepared by The Boeing 
Company, Seattle WA), Section 3.4.2, for high strength steel fasteners.  This included a) the use of Grade 
9, 1/2”-13 UNC bolts, and b) a Rogard Lube 200 lubricant as well as that per SAE AMS 2518.  A Cr3+ 
conversion coating was also applied to test specimens to mirror the Cadmium benchmark.  Table 5 
summarizes the friction coefficients measured for the three Phase I down-selected alloys.  See Appendix 
B, Section 10.2 for further detail. 
 
Overall, the use of pulse deposition techniques appears to reduce the friction coefficient over that 
produced using DC approaches.  This agrees with the typical increase in hardness, reduction in grain size, 
and improvement in wear resistant achievable with pulsed metal electrodeposition.  In the case of Zn-Ni 
alkaline (Atotech), the PP friction coefficient (0.15) approaches closest the value possessed by Cadmium 
(0.12), followed by PP Zn-Ni acid and pulsed Zn-Ni-Co coatings.  A similar contrast was observed in the 
Dipsol Zn-Ni alkaline bath, where the friction coefficient decreased with pulsing waveforms, independent 
of coating thickness.  For example, measured values for PP were 0.16, 0.28, 0.17, and 0.15, while those 
for DC were 0.30, 0.31, 0.34, 0.32, and 0.16 (outliers may exist due to random error).  These results 
demonstrate benefits of using pulsing waveforms.   
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(191°C for 24 h).  Each sample was loaded to a value of 45% NFS and sustained up to 150 hours in a 3.5 
wt.% NaCl environment; failure to hold for less than 150 hours was considered a failure.  There were 
three iterations in HRE testing.  The first (Phase II.1) was conducted on un-converted samples activated 
using acidic activation.  The second (Phase II.2) focused on sample preparation using conditions 
recommended by Dipsol America for the LHE Zn-Ni system, i.e. sand blasting and rinsing without acid 
activation; and complete Cr3+ conversion coating application (3 minutes, after Figure 15).  The third 
(Phase II.3) utilized a number of components, including: as a benchmark, plating with the Dipsol America 
commercial LHE Zn-Ni alkaline plating system; Integran’s proprietary techniques applied to the Dipsol 
system, such as pulse-plating and pulse-reverse plating; and the application of Cr3+ conversion coating 
before bake-out.  Table 6 summarizes the results. 
 

Table 6:  Summary of ASTM F519 HRE results for down-selected Zn-based alloys. 

Alloy Electrical Waveform 
Optimized 

Phase II.1 
Pass/Fail 

Phase II.2 
Pass/Fail 

Phase II.3 
Pass/Fail 

Cadmium DC Marginal PASS(1) 
Zn-Ni alkaline 

(Atotech) 
DC FAIL(2) FAIL(3)  
PP FAIL(2) FAIL(3)  

Zn-Ni alkaline 
(Dipsol) 

DC   Marginal PASS(4)

PP   PASS 
PR   PASS 

Zn-Ni acid 
DC FAIL(2) FAIL(3)  
PP FAIL(2) FAIL(3)  
PR FAIL(2)   

Zn-Ni-Co acid DC FAIL(2)   
PP FAIL(2)   

Notes: 
(1) Failure times of 62, 114, and two greater than 150 hours 
(2) Failure times were all under 4 minutes 
(3) Failure times averaged ~100 minutes for acid and alkaline PP, ~12 minutes for DC 
(4) Using Dipsol-confirmed composition, structure, and plating rate: 1 sample failed at 0.3 hours, 

while remaining samples exceeded time of 150 hours 
 
These results indicate that the use of acid activation leads to nearly immediate re-embrittlement failure; 
this is unexpected considering the results in Section 5.2, wherein the same activation procedure did not 
lead to conventional embrittlement failure.  Second, the combined use of a physical surface preparation 
method (sandblasting) and sufficient Cr3+ conversion coating led to vastly improved HRE performance of 
the Zn-based deposits, most so for the bars produced with pulsing waveforms.  In particular, the acid PP 
deposit reached an average failure time of 112 min., and the alkaline PP deposit reached an average 
failure time of 96 min.  On the other hand, the DC plates all failed at a maximum of 26 min.  However, 
these improvements still fell short of the 150 hour target. 
 
In contrast, drastic improvements were obtained in Phase II.3.  For example, using the Dipsol commercial 
bath with standard DC plating conditions, only 1 of 4 samples failed to reach the 150 h mark.  Using the 
Dipsol commercial bath and pulse-plating (PP and PR) conditions, all samples passed the 150 h mark.  
One of the reasons for this improvement is the greater wt.% Ni in the deposit.  For example, in order to 
achieve a low corrosion rate between coating and substrate, the open circuit potential between the two 
materials should be as close as possible.  Additional samples were plated to investigate the role of 
composition and pulsed-deposition in HRE performance.  The results are summarized in Table 7.  These 
results show that HRE failure of both DC and pulsed deposits is closely linked with low wt.% Ni in those 
deposits.  Therefore, as pulsing waveforms produce a deposit with heightened wt.% Ni (e.g. Figure 13) – 
as well as the desirable single γ-phase microstructure as shown in Phase I – they can provide a greater 
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In general, samples possessing conversion coatings (in the Cr6+, and more so in the Cr3+ form) performed 
drastically better than their un-converted counterparts.  In addition, in some cases (e.g. acid baths using 
pulsing waveforms, and the Dipsol alkaline bath using pulsing waveforms) the generation of white rust 
was delayed until times similar to the Cadmium system, i.e. >1000 hours.  The conversion coating in 
many cases introduced a color gradient on the panel which may be related to a number of factors.  In 
specific, it may be due to including insufficient rinsing, temperature variation in rinsing, conversion 
thickness variations, localized Zn-Ni deposit thickness and/or composition, or even localized substrate 
variations.  It was considered that the rusting uniformity and time to formation may be related to the 
gradient of coloration found on the panels following conversion.  However, conclusions could not be 
drawn from the present project as there were inconsistent results between panels which overall had a wide 
range of deposit characteristics. 
 
Aside from the influence of a conversion coating, pulsing deposition waveforms also influence the 
corrosion response of the coating.  In particular, in polycrystalline metal coatings, localized attack and 
pitting will occur where the grain boundaries intersect the corroding free surface [24].  While 
nanocrystalline metals have an increased grain boundary volume fraction and may exhibit increased 
uniform corrosion rates, they also have superior pitting corrosion resistance when compared to their 
polycrystalline counterparts [25].  This pitting resistance has been attributed to a more defective passive 
layer which increases the uniformity of corrosive attack [25], an issue which would be important for high-
strength steel fasteners.   
 
Signs of the effect of grain size reduction may be observed from the salt spray corrosion results in this 
work, i.e. comparing DC and PP Zn-Ni alkaline deposits with and without conversion coatings (Figure 
29).  In the case of samples without a conversion coating, it appeared that the deposit produced through 
pulse plating promoted a more uniform distribution of white rusting, albeit with a similar amount as the 
DC-plated sample.  In the case of samples with the trivalent chromium conversion coating, a clear 
difference was seen between the two samples: the DC sample possessed significant white rusting, 
whereas the PP sample possessed minimal white rusting.  This may be due to the reduced grain size of the 
deposit.  In addition, this improved performance may be due to the increased nobility (i.e. higher wt.% 
Ni) of the deposit – a result of pulsing waveforms throughout all systems studied.  Furthermore, this 
improved performance may be due to an increased effectiveness of the conversion coating on a deposit 
with reduced grain size, although this may be less likely as the surface coloration of the DC and PP 
converted pieces looked similar (Figure 29).   
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6.2.4 Torque-Tension 
Similar to the case of Taber Wear / Pin-on-Disc testing, it was determined that the friction coefficients 
obtained for the Zn-Ni systems are similar (albeit slightly larger) to that for a Cadmium deposit.  The best 
results measured were from the Zn-Ni alkaline systems using pulse plating and pulse-reverse plating 
waveforms: in the most significant case, the Dipsol DC-plated fasteners had friction coefficients nearly 
twice that of those using pulsing waveforms, with the lower values being attributed to the smoother 
surface and finer grain structure.  Similarly, increased friction was found in the Zn-Ni acid system using 
DC waveforms over pulsed waveforms.  Although these results and those from pin-on-disc can be 
influenced by sample preparation and test environment (e.g. existence and coverage of lubricant, 
environmental state at the time of testing), together the results from these friction tests suggest that 
improved wear can be achieved using pulse plating techniques. 
 
6.2.5 Hydrogen Re-Embrittlement (HRE) 
Hydrogen re-embrittlement testing has been considered a critical measure for fastener applications.  
While the Cadmium-plated bars (2 of the 4) were shown to last up to the 150-hour goal, success for the 
Zn-Ni coatings required a number of iterations in order to achieve a coating that could successfully pass 
the HRE test, which identified the importance of surface activation methods as well as optimal coating 
characteristics,  Through the iterative analysis, the most promising conditions were Integran’s pulse 
plating and pulse-reverse plating waveforms with the commercial LHE Zn-Ni alkaline system (Dipsol).  
In particular, pulsing waveforms can produce 1) a deposit with heightened wt.% Ni, better matching the 
open circuit potential of the underlying substrate, and 2) a dense deposit with the desirable single γ-phase 
microstructure for heightened corrosion uniformity  – and thereby provide a greater HRE-coating than DC 
plating in a given bath.  It was also found that sample preparation and chromating application played a 
measurable role in the overall performance of notched bars.  It was also determined that an alternative 
Sol-Gel coating can be used as a suitable replacement for conversion coatings (trivalent or otherwise) to 
aid in low-friction as well as maintain the hydrogen re-embrittlement performance of high-strength steel 
fasteners.   
 
 
7.0 TASK 9 – BARREL/TANK/RACK PLATING EVALUATION 
 
7.1 TASK OBJECTIVES 
The objective of Task 9 was to investigate the compatibility of the selected processes with conventional 
production plating techniques, such as high volume barrel plating. 
 
7.2 EVALUATION OF BARREL PLATING 
Barrel plating was attempted primarily in the Zn-Ni alkaline systems.  The barrel plating apparatus is 
shown in Figure 30.  It was determined that two hundred (200) 1/4”-20, 3/4”-long Grade 5 steel fasteners 
could be DC plated, as well as pulse-plated, the latter producing dense and bright coatings on the 
fasteners over the surface of the “valley” of the thread (Figure 31). 
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8.0 CONCLUSIONS 
 
The focus of this project was to develop a nanostructured Zn-based alloy coating suitable for Cd-
replacement on high strength steel fasteners. Phase I evaluated the relationship between coating 
microstructure and material properties (relevant for fastener applications) in order to develop an optimal 
microstructurally designed Cd-replacement coating.  The results from Phase I revealed that fine grained 
structures produced via pulse plating from modified commercial Zn-alloy plating solutions had some 
significant benefits over conventional DC plating, including:  

1) bright, uniform, dense microstructure, 
2) uniform, equiaxed grain size throughout thickness of the coating, 
3) increased microhardness, 
4) single γ-phase crystallographic microstructure (in the case of Zn-Ni), 
5) increased corrosion resistance compared to other Zn-Ni alloys,  
6) decreased friction (torque-tension), and  
7) passing the ASTM F519 hydrogen embrittlement (HE) testing (even with a dense 

microstructure, i.e. without porosity).   
 
The benefits of pulse plating on the performance of  Zn-alloys are expected to provide superior coating 
properties similar or superior to Cd and essential to high strength steel fasteners.  
 
Phase II performed in-depth analysis and testing of the alloy systems and plating chemistries used down-
selected from Phase I (Alkaline and Acid ZnNi, ZnNiCo).  At the conclusion of the program, the alkaline 
ZnNi plating system supplied by Dipsol of America, provided the best combination of properties for Cd-
alternative applications.   
 
The use of optimized pulsed plating parameters to synthesize Zn-Ni alloys produced using the 
commercial alkaline chemistry was found to: 
 

• Possess similar properties as the conventional Cadmium coatings, such as wear, embrittlement, 
and in-service re-embrittlement; 

• Refine the microstructure to result in fully dense coating with higher hardness, greater wear 
resistance, lower friction, and greater corrosion protection against direct-current counterparts;  

• Provide improved deposit composition uniformity, higher Nickel content coatings, and single-
phase γ microstructure, which can improve corrosion protection as well as hydrogen (a.k.a. in-
service) re-embrittlement;  

• Reduce deposit porosity, which can improve wear resistance, lower friction coefficients, and 
provide improved aesthetics;  

• Provide scalable process methods to reach high outputs, i.e. barrel plating, and can be integrated 
into existing manufacturing lines.   

 
Together, the results in this report show that Integran’s waveform engineering approach provides 
additional benefit over conventional DC plating and can be successfully integrated into a commercial 
scale as a potential swap-out technology with current Cadmium-plating systems.   
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9.0 APPENDIX A – SUMMARY OF PHASE I WORK PERFORMED AND RESULTS 
 
9.1 PHASE I DEVELOPMENT OF NANOSTRUCTURED ZN-NI AND ZN-NI-CO ALLOYS 
After searching the academic literature and contacting several commercial Zn-Ni suppliers, an acid and a 
number of alkaline solutions were selected for investigation, including: 
 

1. Zincrolyte® CLZ-Ni 6340 Bright Zn-Ni alloy (proprietary acid process from Enthone) 
2. Dipsol IZ 250Y (proprietary alkaline Bright Zn-Ni process from Dipsol of America) 
3. ReflectAlloy ZNA® (proprietary alkaline Zn-Ni from Atotech) 
4. PG ZN (non-proprietary solution from the academic literature) 

 
During the Phase I work, the screening procedure used for assessment of the various Zn-Ni plating 
solutions consisted of three stages: Hull Cell investigation, Beaker Studies, and Tank Plating.  Hull cells 
provide quick information on the effects of applied waveform, duty cycle, and frequency, on coating 
quality with respect to general coating integrity, composition uniformity and microstructure.  Beaker 
plating further tested the deposit properties with respect to flow, cathode/anode placement, and current 
distribution on physical properties such as microhardness, composition, crystal structure, and deposition 
efficiency. 
 
9.1.1 Zincrolyte® CLZ-Ni 6340 Bright Zn-Ni alloy 
The preliminary Hull cell results with this acid process were very promising.  The system responded very 
well to pulse plating.  The coatings were found to have good coating integrity (no cracking, spalling, or 
blistering) and changes in the pulse conditions resulted in significant changes to the grain size and texture 
of the material. In most cases, the composition of the coating was higher than that specified in the 
technical data sheet for the process (5-9 wt.% Ni).  Previous studies with electrodeposited Zn-Ni identify 
an optimal Ni range between 14-16 wt.% with a single γ-phase crystal structure for optimal corrosion 
resistance. 
 
The results from the Hull cell tests were used to select a narrower set of operating conditions for another 
DOE using a 2L beaker.  However, it was determined that pulsing quickly degraded the organic 
brighteners in the solution, creating instability.  As a result, a new solution was mixed without adding the 
organic brighteners.  Upon completion of the Phase I DoE it was determined that PP could be used to 
obtain a bright coating with a seemingly dense microstructure, even in the absence of organic brighteners 
in the solution. An optimal set of operating conditions were identified that produced fine-grained, bright 
deposits with the desired wt.% Ni. 
 
9.1.2 Dipsol IZ 250Y Bright Zinc-Nickel PLUS 
During Phase I, numerous difficulties were encountered with the Dipsol Zn-Ni system. The Hull cell tests 
performed with this solution were plagued with solution stability issues. The solution also produced a 
large amount of bubbling during plating, indicating a relatively poor efficiency (leading to very low 
plating rate).  Due to the low plating rate, very little information was obtained beyond identifying the 
presence of the γ-phase.  However, due to the relatively small volume of the Hull cell, it was possible 
large changes in the solution chemistry occurred during the run, leading to the poor results.  In addition, 
during Phase I there was limited availability of the stock IZ-250Y solution from the Canadian supplier; 
thus, this bath was not investigated further.  In Phase II, effort was therefore made to obtain the low 
hydrogen embrittlement (LHE) Zn-Ni IZ-C17 solution directly from the Dipsol representative in the 
United States.  
 
9.1.3 ReflectAlloy ZNA® 
The Atotech ReflectAlloy solution progressed immediately to 2L beaker scale testing during Phase I.  
One of the four available make-up recipes provided by Atotech was selected for plating, namely the 
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‘Technical Finish’ Zn-Ni bath with NaOH as a chemical base.  A first DoE was performed using plating 
waveforms successful in the Enthone Zn-Ni solution; however, these resulted in a dull coating with 
various shades of grey matte color.  A second and broader DoE was conducted in order to identify an 
optimal plating condition for pulse plating. Some conditions were found which produced coatings that 
were shiny and uniform, although high current density areas tended to produce somewhat rough coatings.  
Deposits produced during the second DoE were further investigated for composition using a SEM with 
EDX, microstructure using an XRD, grain size, and microhardness.  After completion of the DoEs, an 
optimal condition was selected that produced semi-bright, uniform deposits, and possessed desirable 
physical characteristics.  
 
This bath had particular sensitivity to additive replenishment due to the operating conditions inherent in 
using an inert anode.  Due to this sensitivity, only limited pulse-plating conditions were identified which 
could maintain bath chemistry and plating behaviour; it was decided during Phase I that time would be 
used better in further developing other alloy systems and conditions.  In addition, high flow was required 
during plating for uniform deposits; on the other hand, high flow can increase the interaction between the 
ambient air and the solution, forming NaCO3, decreasing coating quality, and compromising plating 
efficiency. 
 
9.1.4 PG ZN Alkaline Zn-Ni 
Hull cell testing followed the same DoE as used for the Enthrone acid solution, including a number of 
pulse plating variables.  However, these variables were found to have less impact on the composition and 
microstructure than observed with the Enthone system.  The deposits were found to be of relatively good 
quality (no visible cracks, blistering, or spalling) and the composition range was found to be in the range 
of single γ-phase with little variation between pulsing conditions.  The deposit was primarily dull in the 
lower current density regions, semi-bright at medium current density areas, and burnt at the high current 
density edges.  The solution was found to have poorer covering power and throw relative to the Enthone 
solution, but this could be reduced somewhat with some pulse plating conditions. 
 
Based on the Hull cell results, a narrower set of conditions was identified and samples were produced in a 
2L beaker.  Initial tests revealed that the solution flow had a significant effect on the quality of the 
deposit.  While low flow conditions yielded deposits similar to that obtained in the Hull cell, higher flow 
significantly degraded the deposit.  In addition, the solution was found to be relatively unstable and large 
changes in temperature and pH were found to occur during each run.  As a result of these issues, further 
investigation of the PG Zn-Ni solution was abandoned.  
 
9.1.5 Zn-Ni-Co System 
In order to investigate a possible ternary solution, a Zn-Ni-Co alloy bath chemistry was developed by 
adding a source of Co to the acid Zn-Ni bath.  The operating conditions were primarily that of the Zn-Ni 
acid bath, which comprised the majority of the bath chemistry.  Optimal conditions identified for use with 
the Zn-Ni bath were applied to the Zn-Ni-Co bath to confirm its operation, stability, and quality of 
deposit.  These conditions were successful in producing a uniform, bright deposit for DC and pulse 
plating electrical waveforms.  The bath had no apparent sensitivity and was considered stable in 
operation.  All conditions were investigated for composition using a SEM with EDX, microstructure 
using an XRD to determine crystal structure and grain size, and microhardness.  Deposits were uniform 
and fully-dense, and had good coating integrity and appearance (no cracking, blistering, pitting, or 
nodules).  The composition of wt.% Co and Ni could be further tailored using refined pulse plating 
electrical waveforms, proving beneficial for reaching the single γ-phase and target nobility. 
 
9.2 SCORING AND DOWN-SELECTION OF PHASE I SYSTEMS FOR PHASE II WORK 
In order to narrow down the potential Cd-replacement alternatives, a decision making matrix was formed 
to determine the top three optimal conditions to be evaluated more closely in Phase II.  Selection criteria 
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were separated into three different categories: Process, Characterization, and Properties.  The criteria to 
evaluate each system and condition are explained below, with assigned weights. 
 
9.2.1 Process – 30%  
The process parameter is related to the bath operation and sample production. The process category was 
subdivided into the following six subcategories: 
 

• Plating rate (weight of 5%) – The higher the plating rate, the better to ensure that if employed in 
industry the production time would be reduced.  

• Current efficiency (weight of 7.5%) – Efficiency is related to hydrogen evolution during the 
plating process, and thus the higher the efficiency the lower the amount of hydrogen produced 
and the lower the chances of HE occurring.  

• Thickness uniformity (weight of 5%) – Thickness consistency over the entire bolt is important 
to ensure a uniform coating.  Cd coatings are uniform on bolts, and therefore the replacement for 
Cd should also be somewhat uniform to mimic operational parameters such as torque-tension.  

• Compositional uniformity (weight of 5%) – Cd is compositionally uniform and, since many 
properties rely on composition to determine their performance, a uniform coating ensures that no 
localized variance occurs between the hills and valleys on the threads of the bolts.  

• Bath stability (weight of 5%) – The stability of the bath is an important parameter when 
evaluating its operation.  Bath stability is related to any changes that occur as a result of plating, 
such as the color change witnessed in the Zn-Fe bath, that is not the result of any chemical 
alterations to the bath. 

• Bath sensitivity (weight of 2.5%) – The sensitivity of the bath to changing pH and temperature is 
of interest to evaluate. However, the weight assigned to bath sensitivity is only 2.5% because 
there are instruments that can be employed to ensure the bath is within operating conditions to 
avoid issues.  

 
9.2.2 Characterization – 10%  
The characterization category is related to the integrity of the sample, independent of its performance on 
installation requirements. These parameters, save for grain size, seem to have no effect on the 
performance parameters outlined in the next section, and therefore are assigned a low importance. The 
characterization category is subdivided into the following subcategories:  
 

• Grain size (weight of 2.5%) – The smaller the grain size of the sample, the more superior its 
physical properties, such as corrosion resistance, hardness, and coefficient of friction. Thus, grain 
size is an important parameter, but it is assigned a small weight due to the higher weight placed 
on the actual performance of the coating.  

• Crystallographic Phase (weight of 2.5%) – The phase of the coating is directly related to its 
corrosion resistance, and thus has an assigned weight of 2.5%. A single phase coating is more 
corrosion resistant than a multi-phase coating.  

• Morphology (weight of 2.5%) – Surface morphology is thought to be related to HE and HRE. 
However, the actual results of the performance testing are more conclusive and thus the 
weighting assigned to surface morphology is only 2.5%.  

• Coating integrity (weight of 2.5%) - Otherwise referred to as appearance, coating integrity is 
important in end-product assessment, but has little relevance to coating properties unless pits, 
nodules, or dendrites are formed. Thus, a low weighting of 2.5% is assigned to this subcategory. 
Good coating integrity refers to no pits, nodules, or dendrites, and a shiny, uniform coating.  

 
9.2.3 Properties – 60%  
The property parameters are related to the mandatory characteristics of the coating during installation in 
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lieu of Cd.  The following subcategories were used for evaluation: 
 

• Hardness (weight 5%) – Hardness is a relatively important characteristic as it might affect 
coating coefficient of friction, and therefore the assigned weighting is 5%. The harder the 
sample, the more likely it is nanostructured and will have a good coefficient of friction.  

• Ductility (weight of 10%) – Coating ductility is assumed to be related to HRE and thus is 
assigned a weighting of 10%.  If the coating is ductile, then it will not crack in the notch of the 
Type 1a.1 bars and has a higher chance of passing HRE testing.  

 
Deemed to be the most important coating characteristics to high strength steel fasteners are corrosion 
resistance, HE and friction.  Cd has excellence performance in all three of these areas.  
 

• Coefficient of friction and the related torque-tension relationship (weight of 15%) – These 
performance criteria are important for high strength steel fasteners to ensure repeatability of 
tension after a specific torque is applied during installation. It is also important that the coefficient 
of friction be similar to that of Cd, and therefore the assigned weighting is 15%.  

• Corrosion resistance (weight of 15%) – Corrosion resistance is also a critical requirement for 
high strength steel fasteners in service, and therefore was assigned a weight of 15%.  

• Hydrogen Embrittlement (weight of 15%) – HE is absolutely critical to the intended application 
as fasteners cannot be used if the coating is embrittling, and thus the assigned weight was also 
15%.  
 

Table 8 below outlines the scoring matrix criteria with the respective quantitative weightings. 
  
 

Table 8:  Criteria to evaluate each Zn alloy candidate 
system with respective weightings. 

Criteria Quantitative Weight (%)
Process 
Plating Rate 5 
Current Efficiency 7.5 
Thickness Uniformity 5 
Compositional Uniformity 5 
Bath Stability 5 
Operating Conditions 2.5 
Characterization 
Grain Size 2.5 
Phase 2.5 
Morphology 2.5 
Integrity 2.5 
Properties 
Hardness 5 
Ductility 10 
Friction 15 
Corrosion 15 
HE 15 
TOTAL 100 
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Using the above criteria, a decision-making matrix was employed to determine the top three best 
alternative coatings to Cd. The decision-making matrix can be viewed in Table 9.  The properties were 
given higher ratings if they were similar to that of Cd.  By evaluating the values obtained from the table, it 
was discovered that the most promising coatings for Cd-replacement alternatives are: 
 

1. PP-plated Zn-Ni Alkaline (Score = 81%) 
2. PR-plated Zn-Ni Acid (Score = 74%) 
3. PP-plated Zn-Ni-Co (Score = 74%) 

 
Note: The values that are highlighted in red indicate the condition that performs the best in the category. 
 
Table 9:  Summary of the Phase I scoring matrix for all Zn-based alloy candidate systems.  This includes 
Zn-Co, Zn-Fe, and other systems not carried forward from the Phase I work due to lower scoring. 

 

 
  

Criteria wi (%) Cij Pij fij Cij Pij fij Cij Pij fij Cij Pij fij Cij Pij fij Cij Pij fij
Process
Plating Rate 5 0.59 0.49 2.46 0.36 0.30 1.50 0.62 0.53 2.63 0.46 0.39 1.95 1.18 1.00 5.00 0.68 0.58 2.88
Current Efficiency 7.5 99.00 0.99 7.43 93.00 0.93 6.98 100.00 1.00 7.50 90.00 0.90 6.75 97.00 0.97 7.28 100.00 1.00 7.50
Thickness Uniformity 5 0.54 0.57 2.87 0.94 1.00 5.00 0.76 0.86 4.32 0.29 0.33 1.65 0.31 0.35 1.76 0.77 0.88 4.38
Compositional Uniformity 5 0.84 0.79 3.96 0.92 0.87 4.34 0.55 0.54 2.70 0.74 0.73 3.63 1.02 1.00 5.00 0.54 0.53 2.65
Bath Stability 5 10.00 1.00 5.00 10.00 1.00 5.00 10.00 1.00 5.00 10.00 1.00 5.00 10.00 1.00 5.00 10.00 1.00 5.00
Sensitivity 2.5 7.00 0.70 1.75 7.00 0.70 1.75 7.00 0.70 1.75 7.00 0.70 1.75 7.00 0.70 1.75 6.00 0.60 1.50

30 23.47 24.56 23.89 20.72 25.79 23.90
Characterization
Grain Size 2.5 52.00 0.41 1.03 27.00 0.79 1.98 41.35 0.52 1.29 24.40 0.88 2.19 59.75 0.36 0.90 56.15 0.38 0.95
Phase 2.5 5.00 1.00 2.50 5.00 1.00 2.50 5.00 1.00 2.50 5.00 1.00 2.50 5.00 1.00 2.50 5.00 1.00 2.50
Morphology 2.5 2.00 0.40 1.00 2.00 0.40 1.00 3.00 0.60 1.50 5.00 1.00 2.50 5.00 1.00 2.50 2.00 0.40 1.00
Integrity 2.5 3.00 0.60 1.50 5.00 1.00 2.50 5.00 1.00 2.50 5.00 1.00 2.50 1.00 0.20 0.50 4.00 0.80 2.00

10 6.03 7.98 7.79 9.69 6.40 6.45
Properties
Hardness 5 270.00 0.85 4.27 303.00 0.96 4.79 206.00 0.65 3.26 290.00 0.92 4.59 312.00 0.99 4.94 119.00 0.38 1.88
Ductility 10 0.70 0.07 0.72 0.80 0.08 0.82 9.70 1.00 10.00 1.18 0.12 1.22 4.90 0.51 5.05 0.50 0.05 0.52
Friction 15 0.17 0.82 12.35 0.15 0.93 14.00 0.39 0.36 5.38 0.33 0.42 6.36 0.27 0.52 7.78 0.20 0.70 10.50
Corrosion 15 705.00 0.70 10.46 916.00 0.91 13.59 310.00 0.31 4.60 699.00 0.69 10.37 604.00 0.60 8.96 361.00 0.36 5.36
Hydrogen Embrittlement 15 1.00 1.00 15.00 1.00 1.00 15.00 1.00 1.00 15.00 1.00 1.00 15.00 1.00 1.00 15.00 1.00 1.00 15.00

60 42.81 48.21 38.24 37.54 41.73 33.25
TOTAL 100 72.30 80.76 69.93 67.96 73.91 63.61

ZNNI ALKA DC ZNNI ALKA PP ZNNI ACID DC ZNNI ACID PP ZNNI ACID PR ZNCO DC

Criteria wi (%) Cij Pij fij Cij Pij fij Cij Pij fij Cij Pij fij Cij Pij fij Cij Pij fij Cij Pij fij
Process
Plating Rate 5 0.45 0.38 1.91 1.17 0.99 4.96 0.19 0.16 0.81 0.12 0.10 0.51 0.64 0.54 2.71 0.53 0.45 2.25 0.88 0.75 3.73
Current Efficiency 7.5 72.00 0.72 5.40 99.00 0.99 7.43 46.00 0.46 3.45 27.00 0.27 2.03 99.00 0.99 7.43 93.00 0.93 6.98 90.00 0.90 6.75
Thickness Uniformity 5 0.43 0.49 2.44 0.64 0.73 3.64 0.66 0.75 3.75 0.56 0.64 3.18 0.88 1.00 5.00 0.27 0.31 1.53 0.39 0.44 2.22
Compositional Uniformity 5 0.70 0.69 3.43 0.67 0.66 3.28 0.12 0.12 0.59 0.10 0.10 0.49 0.52 0.51 2.55 0.63 0.62 3.09 1.06 0.96 4.81
Bath Stability 5 10.00 1.00 5.00 10.00 1.00 5.00 3.00 0.30 1.50 3.00 0.30 1.50 10.00 1.00 5.00 10.00 1.00 5.00 10.00 1.00 5.00
Sensitivity 2.5 6.00 0.60 1.50 6.00 0.60 1.50 3.00 0.30 0.75 3.00 0.30 0.75 10.00 1.00 2.50 10.00 1.00 2.50 10.00 1.00 2.50

30 19.68 25.80 10.84 8.46 25.19 21.34 25.01
Characterization
Grain Size 2.5 58.00 0.37 0.92 37.40 0.57 1.43 48.00 0.45 1.11 39.45 0.54 1.36 23.20 0.92 2.31 31.75 0.67 1.69 21.40 1.00 2.50
Phase 2.5 5.00 1.00 2.50 2.00 0.40 1.00 5.00 1.00 2.50 5.00 1.00 2.50 2.00 0.40 1.00 2.00 0.40 1.00 2.00 0.40 1.00
Morphology 2.5 2.00 0.40 1.00 2.00 0.40 1.00 2.00 0.40 1.00 2.00 0.40 1.00 5.00 1.00 2.50 3.00 0.60 1.50 5.00 1.00 2.50
Integrity 2.5 4.00 0.80 2.00 5.00 1.00 2.50 4.00 0.80 2.00 4.00 0.80 2.00 4.00 0.80 2.00 3.00 0.60 1.50 3.00 0.60 1.50

10 6.42 5.93 6.61 6.86 7.81 5.69 7.50
Properties
Hardness 5 96.00 0.30 1.52 133.00 0.42 2.10 183.00 0.58 2.90 231.00 0.73 3.66 263.00 0.83 4.16 316.00 1.00 5.00 131.00 0.41 2.07
Ductility 10 1.10 0.11 1.13 0.76 0.08 0.78 0.50 0.05 0.52 0.50 0.05 0.52 1.15 0.12 1.19 0.75 0.08 0.77 6.25 0.64 6.44
Friction 15 0.22 0.64 9.55 0.20 0.70 10.50 0.14 1.00 15.00 0.17 0.82 12.35 0.21 0.67 10.00 0.19 0.74 11.05 0.17 0.82 12.35
Corrosion 15 427.00 0.42 6.34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1011.00 1.00 15.00 1011.00 1.00 15.00
Hydrogen Embrittlement 15 1.00 1.00 15.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 15.00 1.00 1.00 15.00 1.00 1.00 15.00 0.00 0.00 0.00

60 33.53 13.39 18.41 31.52 30.35 46.83 35.87
TOTAL 100 59.64 45.12 35.87 46.84 63.34 73.85 68.38

ZNIC PRZNCO PP ZNCO PR ZNFE DC ZNFE PP ZNIC DC ZNIC PP
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resulting run-on and break-away torque.  Run-on torque must be low enough such that installation 
machinery can torque the bolt to the necessary load; break-away torque must be high enough such that, 
while installed, the bolt does not come loose.  The bolt was then visually inspected for any flaking or 
removal of coating, and if run-on and break-away values meet standards, are tested for 5 cycles of 
tightening to 30-60% of the UTS of the bolt to obtain a torque-tension relationship.   
 
The same approach was taken in Phase II.  The coefficient of friction was calculated using the following 
equation: T = kDL [26], where T is the torque (inch-pounds), k is the friction coefficient, D is the 
diameter of the threaded part (taken as 0.5 inches), and L is the tension (pounds).  Table 10 summarizes 
example measurements taken for Dipsol DC, PP, and PR samples, and Figure 33 summarizes their 
torque-tension profiles.  This data illustrates that the deposits produced using different waveforms display 
more contrasting profiles, and that a clear difference exists between samples.  Particularly, the values 
reported in Table 5 represent average values taken from a number of bolts, typically 3-5. 
 

Table 10:  Example torque-tension readings for Dipsol bath plating conditions. 
DC Torque (inch-pounds) Friction 
Tension (pounds) Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average k 
4000 543 640 805 863 1006 771.4 0.3857 
5000 685 732 883 969 1098 873.4 0.3494 
6000 777 822 990 1078 1161 965.6 0.3219 
7000 886 935 1080 1186 1229 1063.2 0.3038 
8000 1001 999 1195 1272 1306 1154.6 0.2887 
9000 1066 1082 1241 1455 1333 1235.4 0.2745 
10,000 1136 1141 1351 1550 1491 1333.8 0.2668 
11,000 1207 1249 1430 1609 1459 1390.8 0.2529 
12,000 1320 1344 1518 1636 1539 1471.4 0.2452 

Average k: 0.299 
PP Torque (inch-pounds) Friction 
Tension (pounds) Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average k 
4000 337 368 362 325 400 358.4 0.1792 
5000 395 429 425 417 468 426.8 0.1707 
6000 454 484 493 479 542 490.4 0.1635 
7000 527 536 561 516 595 547 0.1563 
8000 581 585 603 619 646 606.8 0.1517 
9000 639 653 675 570 700 647.4 0.1439 
10,000 696 698 728 628 779 705.8 0.1412 
11,000 757 787 786 840 843 802.6 0.1459 
12,000 827 847 849 883 910 863.2 0.1439 

Average k: 0.155 
PR Torque (inch-pounds) Friction 
Tension (pounds) Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average k 
4000 283 375 456 416 434 392.8 0.1964 
5000 405 457 527 481 511 476.2 0.1905 
6000 456 507 597 545 601 541.2 0.1804 
7000 535 569 666 608 664 608.4 0.1738 
8000 592 678 716 696 727 681.8 0.1705 
9000 667 692 787 762 809 743.4 0.1652 
10,000 732 748 843 841 874 807.6 0.1615 
11,000 779 818 911 890 931 865.8 0.1574 
12,000 831 888 985 935 997 927.2 0.1545 

Average k: 0.172 
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