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LONG-TERM GOAL

The long term goals of this project are to understand and quantify light scattering from ensembles of
both spherical and non-spherical objects in ocean water, to characterize the effect of ensembles of
micro-organisms and inorganic particulates on the propagation of polarized light through sea water, and
to assess the feasibility of computer simulated artificial neural network to extract optical properties of
marine particulates from polarized light scattering measurements.

SCIENTIFIC OBJECTIVES

The scientific objectives are to develop a numerical or analytical model that predicts angle-dependent
scattering of polarized light from ensembles of non-spherical marine organisms, detritus, and inorganic
particulates, and to verify and examine the validity and range of applications of the model by
comparison with exact calculations and/or experimental results as appropriate.  Specific tasks toward
these objectives are:

(1) to develop an artificial neural network to recognize features in the Mueller matrix elements
associated with the optical properties, size distribution, and irregular shape of ocean scatterers,

(2) to make experimental measurements in the laboratory of light scattering from samples of micro-
organisms and inorganic particles in ocean water, and

(3) to continue to refine and enhance analytical models such as the coupled-dipole method for
predicting polarized light scattering from non-spherical particles.

APPROACH

Experimental measurements and mathematical modeling continue to be important, however, much of
the current work is concentrated on an inverse problem.  That is, given the values of the Mueller matrix
elements as a function of scattering angle, what are the optical properties and size distribution of the
particles that scatter the light?  The complexity and nature of this task suggests the use of artificial
neural networks, computer systems comprised of a number of simple, interconnected processing
elements, called neurons or nodes, operating in parallel.

Analytical calculations of the scattering matrix elements rather than experimental data were used in
order to provide well-characterized training data for the neural networks.  Mie calculations were made
for a log-normal distribution of sphere sizes, a physically realistic distribution for marine
microorganisms. The equation below shows the equation of the log-normal distribution used in the
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calculations.  In this equation, x is the particle size parameter and N(x) is the fraction of particles having
a size parameter, x.  The quantity xm is the average value of the particle size parameter, xp is the value
of the size parameter that has maximum probability of occurrence, and Vg is the standard deviation of
logx.
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Four values were needed to make a light scattering calculation, 1) the size parameter at which the log-
normal distribution has its maximum value (SP), 2) the standard deviation from the mean for the log of
the size parameter, sigma (SG), 3) the real part of the complex index of refraction (NX), and 4) the
imaginary part of the complex index of refraction (the absorption coefficient), (AB).  It is these four
parameters, SP, SG, NX, and AB, that we want the neural network to retrieve from the light scattering
calculations.  The size parameter is defined here as 2Sr/O where r is the radius of the spherical particle
and O is the wavelength of the incident light in the medium. For example, a size parameter of 10
corresponds to a particle diameter of slightly less than two microns for incident green light.  The
complex index of refraction is written as m = n + iN, where n is the relative index of refraction and N is
the absorption coefficient.
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Figure 1.  Log normal distribution functions used in Mie calculations.  Graph on the left shows
peak values in size parameter of 5, 10 and 15 each with the same deviation, sigma of 0.20.  The

graph on the right shows three different values of sigma, 0.10, 0.20 and 0.30, each with a peak size
parameter of 10.

In order to construct networks that could be evaluated for different learning strategies and error
determination methods, it was important to keep the number of input data points as small as possible so
that the network training could be carried out on a desktop computer. Experience has shown that at
least 3 or 4 processing elements for each input data point is required for a network to have sufficient
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power to solve a problem of the type of interest here. The four independent Mueller matrix elements
calculated from Mie theory, S11, S12, S33, and S34 each have a period of 2S and are even functions of the
scattering angle. The number of input data points can be reduced if the functional form of each of these
elements is described by a simple Fourier series of cosine terms such as those as shown below for S34.
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As much useful information about the functional form of each matrix element can be supplied to the
network using 12 to 16 Fourier coefficients as 90 or more data points from the original graph.  Training
and testing sets for the networks were constructed from Mie calculations by varying the peak size
parameter from 1.0 to 20 in steps of 1.0, the deviation from 0.10 to 0.30 in steps of 0.05, the relative
index of refraction from 1.02 to 1.12 in steps of 0.02, and the absorption coefficient from 0.10 to 0.20
in steps of 0.02.  Calculations for all 3600 possible combinations of the four parameters were not
necessary.  Instead, about six hundred Mie calculations were made using randomly selected
combinations of the four parameters, SP, SG, NX and AB. A set of 16 Fourier coefficients for each of
the scattering matrix elements was generated at the end of each Mie calculation although only those for
S12 and S34 were used in the current work. Three vectors (column matrices) were constructed for each
calculation, 1) a vector of the 16 coefficients of S34, 2) a vector of the first 8 coefficients of S12 then the
first eight coefficients of S34 for a total of 16, and 3) a vector of the first 8 elements of S34.   A training
or testing set consisted of a matrix made up of many of these vectors. The resulting large matrices were
used either to train the networks to the desired value of the sum-squared error or to test a network with
vectors not used in the training. Back propagation with momentum, a slow method requiring a long
calculation time but very little computer memory was used for training larger networks. Levenburg-
Marquardt optimization, a gradient descent method, was used to train the smaller networks.  This
method is extremely fast but it requires a lot of memory (RAM).  It could only be used for small
networks on the desktop computer.

Computations such as selection of initial weight matrices, summing weighted inputs (matrix inner
product), calculations of the transfer functions, applying learning rules, and assessing the network's
learning rate and performance were carried out using algorithms in the MATLAB library and its
associated Neural Network Toolbox, products of the Math Works, inc.

WORK COMPLETED

We completed the design and initial training of a set interconnecting artificial neural networks that
predict the peak size parameter in the range between 1.0 and 20, the deviation in size distribution for
values between 0.10 and 0.30 (see Figure 1), relative index of refraction for values between 1.02 and
1.12, and absorption coefficient for values between 0.10 and 0.20, of a light scattering medium given its
S12 and S34 matrix elements.  The range for values for each of the four parameters was limited to order
to train the networks with a desktop computer.
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Figure 2.  Diagram of network design.  Input set I is sent to the large network to determine peak
size parameter.  Then, based on range of the output size parameter, set II is sent to one of the small
networks in each of the two blocks ‘deviation’ and ‘index of refraction’ and set III is sent to one of

the small networks in the block ‘absorption’ networks.

RESULTS

It was not possible using only a desktop computer to train a single network that could recognize all four
of the desired parameters in one input data set. The large number of neurons necessary to provide a
network with sufficient power for this task required made the training beyond the scope of our
computer.  Instead of one large network, we used several smaller ones, each trained to recognize only
one  of the four parameters.  For example, netSP, a network of 80 neurons in the first hidden layer and
20 neurons in the second hidden layer was successful in predicting size parameters between 1.0 to 20.0.
This network was trained to recognize SP using an input matrix of 240 of the 16-element vectors of
Fourier coefficients of S34. The strong effects of variations in size parameter tended to mask the more
subtle changes in the Fourier coefficients of the matrix elements due to index of refraction, sigma, and
absorption. Generally, networks for predicting these parameters were successful only for small ranges of
size parameter. The networks for predicting SG, NX, and AB were subdivided into three separate
networks, each trained for small ranges of size parameter.  For example the networks called, netSG(1),
netNX(1), and netAB(1) were trained using only data sets with size parameters between 1 and 5. The
networks labeled netSG(2), netNX(2), and netAB(2) were trained for size parameters from 6 to 12 and
those labeled netSG(3), netNX(3), and netAB(3) were trained for size parameters from 13 to 20. These
nine networks each had 48 neurons in the first hidden layer and 12 neurons in the seconds hidden layer
were small enough to train using Levenburg-Marquardt optimization. The networks netSG and netNX
were trained to recognize SG and NX using an input matrix of 120 of the 16-element vectors of Fourier
coefficients of both S34 and S12.  The networks netAB(1), (2) and (3) were trained using an input matrix
60 of the 8-element vectors of coefficients of S34. Some of these networks reached the error goal in
fewer than 30 iterations using this training method.
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Figure 3. Training and testing of large network for peak size parameter (SP).  The top graph shows
the training for 100,000 cycles of back propagation with momentum for 240 training sets.  The

network failed to meet the error goal of 0.01.  The graph below shows this network’s prediction of
the peak size parameter from data it had not seen in the training.

Figure 3 shows the results of a typical training session for the network, netSP. In this example, the
network failed to met its error goal, arbitrarily set at 0.01, in the first 100,000 cycles. Although the
network reached a sum-squared error of only 0.08 in this session, it nevertheless produced very good
agreement in predicting the peak size parameter for a data set of twenty input vectors that it had not
seen in the training. With additional training, the network reached its error goal, and difference between
the target and network prediction was not detectable on a graph with the scale of Figure 3.

Figure 2 illustrates the procedure for obtaining the values of SP, NX, SG and AB from light scattering
data using the group of networks netSP, netSG, netNX and netAB. An input vector of 16 Fourier
coefficients of S34 (set I) is presented to the network, netSP which returns a value for the peak size
parameter, SP, between 1 and 20.  The value of the size parameter determines which small network
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receives the second input set (set II), a vector of the Fourier coefficients of S12 and S34 and set III a
vector of the first 8 coefficients of S34.  Set II is sent to both netNX and netSG, but the two groups of
networks have been trained to recognize different features in the set. Set III is sent to netAB. For
example, if netSP returns a value of 7, set II is sent to both netSG(2) and netNX(2), and set III is sent
to netAB(2). The networks netSG(2), netNX(2), and netAB(2) return the values of standard deviation,
index of refraction, and absorption, respectively.

IMPACT/APPLICATION

Currently, artificial neural networks are being applied to large classes of problems.  Conventional
computer techniques require detailed, explicit specification of the rules governing each application, must
be virtually perfect in order to work, and require programming changes for every new or changed
situation.  This has, in the past, made computers of limited help in many challenging problems.  Artificial
neural networks do not require detailed, explicit specification of the rules governing each application,
but rather they learn by example. They do not require perfection in order to give a good solution, and
require no programming changes for every new or changed situation. One of the more successful
training methods, Levenberg-Marquart optimization, resulted in very short training times, but the
memory requirements for this method were often excessive for a desktop computer.  This approach is
promising, however, for training networks having a small number of neurons, or for training with more
powerful mainframe computers or parallel processing machines.  It is important to note that a
mainframe computer or parallel processing machines may be necessary for training a network, using the
trained network, even a very large one, is well within the power of a typical desktop computer.

TRANSITIONS

The following projects make use of computer software and/or  experimental methods developed in this
research for measuring and modeling the light scattering by irregularly shaped particles:

1 - The coupled-dipole approximation in which the anisotropy of hemoglobin is described by ellipsoidal
polarizability tensors at each dipole site is being used in a study of sickle cell hemoglobin at Wake
Forest University.  NIH funds the study.

2 - A version of the coupled-dipole approximation is being used in a project funded by DOE at Berkeley
Lab for modeling soot particles in diesel exhaust.  The goal of that project is to develop an instrument,
possibly using a neural network, for measuring sizes of the soot particles.

3 - In another DOE funded project at Berkeley Lab, experimental methods developed by this project are
being used to help design an instrument for on-line measurement of the alignment of the fibers in paper
production.
RELATED PROJECTS

This work was a component of past ONR-sponsored projects and is related to a current project by Hunt
and Quinby-Hunt at Berkeley Lab for the measurement of light scattering in both seawater and the sea-
air boundary layer, and calculations of light scattering from non-spherical aerosol particles using parallel
processing.
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