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Abstract—A model of portions of the cerebral cortex is being 
developed to explore neuromorphic computing strategies in the 
context of highly parallel platforms.  The interest is driven by 
the value of applications which can make use of highly parallel 
architectures we expect to see surpassing one thousand cores 
per die in the next few years.  A central question we seek to 
answer is what the architecture of hyper-parallel machines 
should be.  We also seek to understand computational methods 
akin to how a brain deals with sensing, perception, memory, 
and cognition. The model is being developed incrementally, 
starting with the primary visual cortex (V1) field.  It is based 
upon structures roughly corresponding to neocortical 
minicolumn and functional column structures.  Gaps in 
neuroscience, such as inter-cell connectivity, are filled using 
estimates of functionality that are plausible given current 
understanding of the micro-anatomy. The success we 
encountered with achieving real-time performance is evidence 
validating the use of Cell-Be architecture in some classes of 
neuromorphic emulation.  In this study we identified a 
particular gap-fill algorithm for lateral connections within V1 
that is suggestive of a learning strategy whereby the lateral 
network subsumes expectation affect, reducing perception  
time and improving perception affect.   

I. INTRODUCTION 
HE objective of the project is to investigate architectural 
issues surrounding neurobiological inspired 

computational methods based on networks of structures 
roughly emulating cortical columns.  It is the first step in a 
larger investigation of multiple classes of applications which 
may be able to take advantage of large scale parallel 
computing.  This multidisciplinary effort focuses on 
determining how neurological systems perform those 
aspects of cognition associated with sensing and perception.  
The work progressed initially on ventral tract (object 
recognition) aspects of the visual cortex, and is now shifting 
to include the dorsal tract, theoretically associated with 
spatial properties. 
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A. Anatomy 
There are about 1.6 million axonal fibers delivering 
information from the eyes into the primary visual cortex (12) 
through the lateral geniculate nucleuses (LGNs).  Each side 
of the brain receives half of these, organized 
retinoscopically and stereoscopically.  The retinoscopic 
organization means that the image carried by the fibers is 
spatially preserved, as if projected through a lens.  The 
stereoscopy characteristic has to do with field of view.  Each 
eye has a left and right field of view.  The left side of the 
brain receives the right field of view from each eye, and the 
right side receives the left field of view.  Thus each 
hemisphere of V1 receives approximately 800K fibers 
delivering two partially overlapping fields of view.  The 
neuro-pathway for these, between the LGNs and the visual 
cortex, is called the optical radiation.   There are two; a left 
and a right.  Each of the hemispheres bundles its 
approximately 800K feed forward axons with approximately 
3.2 million feedback axons, terminating at its LGN.  The 
feed forward axons are mostly of two types: Parvocellular 
(P) axons and Magnocellular (M) axons.  The P axons are 
thought to be associated with shape and color perception; 
the M axons with motion (18).  P axons account for about 
80% of the feed forward; M accounts for about 5%.   
 
V1 itself is part of the neocortex, which in turn is the top 
layer of a primate brain.  The neocortex is thought to be 
where the essential mechanisms of human cognition reside.  
It is central to sensation and perception.  The neocortex is a 
sheet of tissue roughly 3 mm thick and 2500 cm2 in area (2.5 
ft2) (16).  The primary visual cortex is an area roughly 28 cm2, 
accounting for both hemispheres (5). Thus the primary visual 
cortex is a little more than 1% of the neocortex by area.  The 
total number of neurons in the cerebral cortex is estimated to 
be 20 billion (11).   The total number of neurons in V1 is 
estimated as 280 million (11), and thus V1 is about 1.4% of 
the neocortex by neuron count.  The neurons within V1, 
looking perpendicular to the sheet, are arranged into 
structures of neurons forming ~30 μm diameter columns 
extending through the six layers (15).  The columns are called 
“minicolumns.”  Estimates for neurons per minicolumn 
within V1 are in the range of 120 to 200, but using a rule of 
thumb that the incoming axons from the eyes are roughly 
evenly distributed, it works out that there is one minicolumn 
for each afferent (from the eyes) axon, and the neuron count 
per minicolumn is around 150. 
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Each parvocellular axon potentially connects to an area 
whose diameter is approximately 400 microns, which 
happens to be the scale of a functional column (13).  These “P 
Channel” fibers provide high contrast, spatially fine grained 
color information to the brain.  Magnocellular fibers overlap 
a 1,200 micron diameter area, which happens to be on the 
scale of a hypercolumn (13).  These “M Channel” fibers carry 
low contrast information on the visual field, are associated 
with depth and movement perception, and are notably much 
faster to respond than the “P” channel. 
 
Minicolumns exhibit excitatory and inhibitory interactions 
with each other.  Excitatory communications appear to span 
a radius of about 3mm (3) while inhibitory is half that (20).  
The excitatory span has a reach of about 14 functional 
columns across the diameter, and the inhibitory about 7 
functional columns.   Excitatory appear to connect up every 
other functional column, though there is debate about this.  
Inhibitory appear to hit every functional column within its 
reach. 
 

B Levels of Modeling 

Neuroscience has provided multiple complexity levels for 
modeling the cells comprising a brain.  There are two 
general types of cells in the brain (ignoring the circulatory 
system): neurons and glia cells.  The neurons are the cells 
with axons and dendrites which neuroscientists have 
historically assumed are the basic functional components of 
a brain.  Glia cells out number neurons 10 to 1.  They 
provide the scaffolding and life support environment for the 
neurons.  They are recently thought to play more of a role in 
cognition than has been traditionally assumed (9).    Glia cell 
modeling is accounted for at a molecular level, typically 
with pharmaceutical interest.  They were not included in this 
study.   

The question is how to separate and identify the 
computationally useful characteristics of neuro-matter from 
those that are purely life supporting.  Neuroscience has 
developed compartmentalized models (Gerstner and Kistler, 
2002) of neurons which capture the intricacies of neuron 
physical size and shape (morphology), electrochemical 
dynamics (electrophysiology), molecular interactions 
between neurons and with glia cells (neurochemistry), and 
interpretations of information processing thought to be 
performed by neurons.  The more detailed models require 
significant processing power to emulate.  Which 
characteristics of these cells are harnessed by nature to 
produce cognition is an open question.  It is not clear 
whether cells are the functional components of cognition.  
Collections of cells, perhaps cortical columns, may be the 
key functional building blocks. 
 
Neurons exhibit increasing feature complexity as one looks 
closer into them.  Very detailed compartmental models 
exhibit up to tens of thousands of individual synapses 

(connections), each with attributes such as connection 
strength, type (inhibitory, excitatory), dynamical 
characteristics, distance from the soma (nucleus), and 
neurotransmitter type.  Simple models of neurons capture 
only the integrative and non-linearity estimates, ignoring 
electrophysiological pulse responses and spike timing 
dependent plasticity; they may have only a few connections. 
At higher levels of abstraction collections of individual 
neurons are replaced by “cognitive models” performing the 
hypothesized functions of the collectives; functions like 
association, feature perception and memory.   
 
Setting a level of abstraction in a model constrains what the 
model can do.  Accounting for all known cognitive 
behaviors with a simple model is evidence that the cells are 
being modeled validly, at least until new behaviors are 
identified.  Levels of feature use may vary across the cortex.  
For example: detailed dynamical neuron models were not 
necessary to achieve the efficacy we expected of V1 in this 
study.  We acknowledge they may be needed for other 
cortical regions or even for V1 itself should Integrate and 
Fire neurons be an insufficient mechanism. 
 
The “affect” objectives of the V1 model are to account for 
orientation, color, depth perception (disparity), and motion 
percepts.  The model proposed here has addressed 
orientation, and partially addressed color.  Depth and motion 
are future plans.  Not much is known about how neurons are 
systematically organized to produce and represent these 
affects,  but there are hints.   
 
Self imposed is the objective to emulate a full scale V1 in 
real-time.  The ability to process in real-time simplifies the 
use of live video feed and provides a level of practicality 
reasonable for testing a model over extended durations.  
Real-time performance adds a “time complexity” challenge 
to computation, in the “big o” sense2, restricting the use of 
algorithms with high time complexity. 
 

C Simulation Facility 
 
At our disposal is a 336 node Play Station 3 CELL-BE 
cluster organized as 14 subnets each with 24 nodes.  Each 
subnet has a dual 3GHz quad core Xeon processor head 
node.  Network interconnectivity is 10 Gigabit Ethernet 
amongst the head nodes and 1 gigabit Ethernet to the PS3s.  
Each PS3 node has six available Synergistic Processing 
Elements (SPEs) and a dual core 3.2 GHz PPE (Power PC).  
There are 2116 SPEs in total.  Each SPE is capable of 
slightly more than 25.6 GFLOPS for a total CELL-BE 
cluster capability exceeding 54 TFLOPS, not accounting for 
head node and PPE contributions.  GNU C++ development 
tools were used to develop the emulator, and a 
publish/subscribe message passing system was used for 
communication within the emulation.  The “Pub/Sub” 
message paradigm loosely couples peer to peer message 
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passing.  A message sender (publisher) does not send to a 
specific destination.  Instead, each message has information 
in a “header” which describes what it is.  This information 
might take the form of XML, plain text strings, or binary 
encoded numbers; specifics depend on the individual 
message system.  The point is that the sender is unaware of 
the destinations.  Receivers (subscribers) “sign up” to 
receive messages based on header content (what the 
message is) rather than the message source.  In a system like 
a cortical model, inter-process connectivity can then be 
achieved by subscribing to (for example) axonal fiber 
names, and publishing on fiber names. 
  
This 2400 core (Xeons + Power PCs + SPEs) facility’s 
processors are somewhat specialized.  The head nodes are 
conventional general purpose platforms with 32 GB of 
memory (each).  The CELL-BE PPEs, also general purpose, 
each have 228 megabytes of RAM.  The SPEs are 
specialized to be vector processors; they each have about 
128Kbytes of useable RAM.  Very fast DMA channels 
within a CELL-BE move data between main memory (PPE) 
and SPE memory.  The Xeons, and PPEs, run Linux; the 
SPEs are essentially managed by the PPE with only minimal 
resident executive kernel software, but can interact with 
each other and the PPEs using DMA channels, interrupts 
and semaphores. 

II. MODEL CONSTRAINTS 
The model was devised to be close to the anatomical 
structure of V1.  It was also devised to make use of methods 
our preliminary investigations found compatible with 
CELL-BE architecture.  These included: 
 

• Small collections of neurons, strong  localized 
connectivity, sparse distant connectivity; 

• Integrate and fire neurons; 
• Spatially tuned receptive fields; 
• A localized associative component, possibly a 

small scale recurrent neural net; 
• Feature extraction: max/min calculations, 

difference calculations, energy estimates, threshold 
detection; 

• Inhibition, excitation interactions. 
 
Methods considered, but avoided initially were: 
 

• Confabulation algorithm (8), on the basis that it 
required large amounts of memory to support 
symbol lexicons (this decision was revered after it 
became apparent Confabulation was useful within 
the V1 lateral network); 

• Spiking neuron models (7): on the basis that the 
cognitive mechanisms hypothesized for these, 
principally dynamical phenomena, are not yet well 
demonstrated  or characterized; 

• Bayesian networks (3,5): on the basis that we are 
seeking a model more closely aligned to anatomical 
details; 

• Large scale associators, such as Sparse Distributed 
Memory (SDM), on the basis that we did not feel it 
was needed for a V1 model. 

 
The challenge of model development was to create a system 
using just the selected methods that could meet the 
perception objectives of shape (orientation line), color, 
motion, and disparity.   

III. MODEL DESCRIPTION 
Orientation line perception is the major effort of modeling 
thus far.  It is expected to be the most computationally 
challenging of all the V1 percepts.  Aspects of color 
perception have been included, and a color percept is 
produced.  It is modeled as the average color and intensity 
cast onto the field of view of a functional column, and 
includes an ocular dominance feature which selects the 
strongest percept in an overlapping (stereoscopic) fields of 
view.  In those cases the functional column with the 
dominant orientation percept inhibits the other functional 
column.  Motion perception is, like color, part of the 
objective but not yet emulated.  Motion, based on 
magnocellular information, will produce a percept spatially 
mapped to the functional columns detecting it; direction and 
intensity are the intended percepts.  The biomorphic model 
is based on the Reichardt effect17 using synaptic arrival time 
differences to excite a neuron.  In practice, we are looking at 
FIR and IIF filters for emulation.  
 
The model is intended for full scale emulation.  For this 
reason parameters are sometimes selected to accommodate 
the digital environment of the emulation, within the 
constraint that they represent plausible and reasonable 
neurological system values.  One of these accommodations 
is powers of two.  We have selected the following 
organizational parameters: 
 

• Number of “ocular axonal fibers” entering V1 
hemisphere: 802816; 

• Total minicolumns per V1 Hemisphere: 802816; 
• Minicolumns per functional column: 64; 
• For the sake of emulation, we devised a subunit of a 

V1 hemisphere which we call a “subfield.”  A 
subfield is a collection of 128 functional columns, 64 
of which are right FOV and 64 are left FOV.  Each 
(full scale) hemisphere consists of 98 subfields.  Note 
that (98subfields)  X (128 FCs per subfield)  X (64 
minicolumns/FC) works out to 802816 minicolumns 
per hemisphere.  

 
All minicolumns within a functional column are assumed to 
have the same parvocellular field of view (aperture).  Four 
functional columns form a macrocolumn; all minicolumns 
within it are assumed to have the same magnocellular FOV 
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from both two eyes, and are responsive to all colors and 
orientations. 
 
The minicolumn model is based on estimates of cell 
populations in cortical levels II, III, and IV(see Fig. 1).  The 
level IV model component consists of: 

• 56 simple cells dedicated to parvocellular inputs 
• 10 simple cells dedicated to magnocellular inputs 
• 8 complex cells dedicated to (parvocellular) 

orientation perception from simple cells 
• 8 complex cells (not yet modeled) dedicated to 

(magnocellular) perception. 

 
 
Fig. 1 Plausible cell populations within cortical layers of a V1 minicolumn. 
 
The model currently makes use of parvocellular information; 
the magnocellular part of the model is not yet completed.  
Disparity, color and motion are not yet completely modeled, 
and will likely be modeled by having a subset of 
minicolumns within a functional column (cytochrome 
oxidase blob regions19) specialized for their perception.    
 
The parvocellular simple cells each make 16 synapses with 
the afferent fibers.  Half are dedicated to dark sensitivity, 
half to light.  The color image is converted to shades of gray 
before presentation to the simple cells.  Each simple cell 
receptive field has an angle, direction (light to dark, or dark 
to light), size/shape, and location (see illustration in Fig 2).  
Variations in size and location provide a degree of 
invariance.  
 
Each Minicolumn has 56 such parvocellular simple cells, all 
looking for the same angle, but half looking for light to dark 
transition and half dark to light.  The minicolumns are 
arranged into 8 columns of 8 (Figure 3), approximating 
orientation column anatomy(10).  Each column is dedicated to 
a specific angle.  The 8X8 structure results in angles that are 
22 ½ degrees apart.   
 
The simple cells function by summing their synapse values 
and “thresholding” the results.  The thresholds are presently 
constant, but variability will be explored in the future as part 
of a contrast control mechanism. 
 

 

 
 
Fig. 2 An illustration of two simple cell receptive fields projected onto the 
FOV of a functional column.  Gray ellipses represent synapses sensitive to 
dark; yellow, to light.  Blue dots represent terminations of afferent fibers. 
 
 

 
 
Fig. 3 In this view, dots represent minicolumns. Orientation columns are 
each a stack of eight minicolumns.  Each column is sensitive to one 
orientation.  A functional column is a collection of eight orientations 
columns.   
 
Complex cells receive simple cell outputs (Figure 4).   Four 
of the eight complex cells form synapses to simple cells that 
can detect light to dark transitions; the other four to dark to 
light transitions.  Each complex cell makes synapses to 15 
simple cells of the 26 available to it.  The selection of which 
simple cells is based on a preference for simple cell 
receptive fields which center their receptive fields 
approximately along the same line, at the minicolumn’s 
perception angle.  The four regions of perception within the 
minicolumn’s FOV established by this preference, overlap.  
The complex cells sum their inputs, and normalize the 
results to be within the range [-1… +1].  For example, a dark 
to light sensor would issue a -1 for light to dark transition 
perfectly aligned with it. 
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Fig. 4 Light (yellow) passing over a minicolumn’s FOV; lower left corner in 
darkness (shown as colored dots, indicating afferent axon terminations).  
The simple cells are tuned to all spatial phases.  
 
The outputs of the 8 complex cells are presented to the level 
II/III part of the model (illustration in Fig. 5). 
 
The level II, III part of the model is called the associative 
component.  It deals with data coming from three sources:  
 

• Afferent detections from level IV, 
• Lateral (horizontal) connections to nearby 

minicolumns, 
• Expectation data from other cortical regions such as 

V2. 
 
The model uses a 32 element recurrent network “Brain State 
in a Box” (BSB)1 attractor function to decide whether or not 
a minicolumn perceives its angular percept.  Every 
minicolumn has its own BSB state vector, but all share the 
same weight matrix.  The common weight matrix is pre-
trained to have two basins of attraction; these are set at 
opposite corners of the BSB hypercube.  The basin points 
correspond to “I see a light to dark transition” and “I see a 
dark to light transition.”  Neuromorphically, this may 
correspond to actual recurrent neural networks, randomly 
wired but capable of being point attractors.  There is no need 
to involve the BSB in differentiating an angle; the Level IV 
network does that, and supplies eight elements of 
“evidence” to the state vector.  When the rest of the vector is 
neutral, afferent inputs alone can drive the BSB to a basin if 
the angle is fairly well sensed by Level IV.   Likewise, 
Lateral and Extrastriate (expectation) data can singularly 
drive the BSB to a basin. 
 
The minicolumn concludes its feature perception by 
computing the (Cartesian) distance of its state vector to each 
basin of attraction.  The shortest distance is selected and is 
subjected to a threshold criterion.  Distances closer than the 
threshold are converted into a range [0  ... +1] for light to 
dark, and [0  ... -1] for dark to light by differencing with 1.0 
(1.0 – Distance, or -1.0 + Distance, depending on light/dark 
direction).  Subthreshold cases are set to 0.0.   
 

 
 
Fig. 5 The associative layer (II/III) has a BSB attractor whose state vector 
receives inputs from afferent, lateral and extrastriate sources.  One of two 
features is decoded off the state vector and sent as feedback to thalamus and 
feed forward to extrastriate regions.  
 
Each minicolumn within a functional column contributes to 
a functional column hypothesis.  The strongest perception 
within each orientation column is selected for the 
hypothesis.  The hypothesis is sent to all neighboring 
functional columns within a 3 mm reach.  The receiving 
functional column “knows” the distance (hence, a weight) 
and direction (one of the 8 angles) the hypothesis came 
from, and uses the information to excite a “token.”  Tokens 
in this case are the 8 angles of perception, and their 
transition direction (light to dark, dark to light).  All 
incoming lateral hypotheses contribute to this excitation.  A 
“winner take all” strategy selects the most excited token and 
the token is then asserted onto the elements of the state 
vector dedicated to laterals (same value loaded into an eight 
elements, having a multiplicative effect on the BSB state 
vector dynamics).   
 
The whole lateral process is similar to the algorithm reported 
by Hecht-Nelson which has been demonstrated to generate 
sentence text based upon noisy data and incomplete 
sentences8.  Dubbed “Confabulation Theory,” Hecht-Nelson 
proposes that the brain deals with distinct symbols which are 
percepts detected by neural networks.  These symbols occur 
in context with other symbols.  His example is text: the 
words would be the percepts, and sentences the contexts.  
The idea is hierarchical; groups of words (phrases) can be 
percepts, and paragraphs contexts.  Weight matrices 
(“knowledge links’) drive a selection process where a single 
symbol is selected from a lexicon at each contextual 
position.  Unlike the reported Confabulator, this V1 model 
uses a large number of lexicons (>500 instead of 20), and 
each lexicon is small (16 symbols (edge percepts) instead of 
10,000 (word symbols)).  It gives the model the ability to 
“see” illusional contours and improve perception in noisy 
data.  Figure 6 illustrates both situations; a diffraction 
grating is simulated at 135 degrees, with data missing in 
parts of the field of view passing over three function 
columns.  On the left the upper block is the feed forward 
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perception, and the lower is perception after lateral data is 
applied to the minicolumns.  A “lateral expectation” based 
on context tips the minicolumn into perceiving portions of 
the lines where there are actually blanks.  On the right noisy 
data and limitations of the apertures cause misperceptions of 
67.5 degree angles (using feed forward only).  Again, the 
lateral effect corrects the feed forward perceptions (lower).  
It is plausible that this sort of mechanism can give V1 an 
ability to “see” combinations of small aperture edge percepts 
preferred by V2. 
 
A full scale V1, both hemispheres, was emulated using 196 
IBM/Sony PS3 Cell-BE processors configured as 
subclusters of 24 nodes attached to head nodes (dual quad 
core Xeon X5450 3GHz) (Figure 7).  At the basis of message 
communication is IP, but a Publication/subscription service 
layer was used on top of IP  to mitigate the tight binding 
imposed by socket to socket communication.  The Pub/Sub 
message layer significantly reduced the complexity of 
regional lateral communications, where functional column 
hypothesis has to be shared among neighbors within 3 mm.  
All emulation software was written in C++..  
 

 
 
 
Fig. 6 Two examples of the two dimensional “Confabulation-like” lateral 
model producing an illusional percept (left column) and correction (right 
column).  Each small grid box represents a functional column (64 
minicolumns) in this illustration.  The left field of functional columns was 
exposed to a 135 degree grating pattern. The right side was exposed to a 
67.5 degree pattern. 
 
Head-node software consists of stimulation and monitoring 
which roughly emulate ocular afferent pathways.  There is a 
retina model (one or two may be used) which provides a left 
and right visual frame (magno and parvo).  Output (for the 
time being) is RGB color pixels.  A chiasm model combines 
frames from retinas and separates them into left and right 
stereo fields of view.  An LGN model is simply a relay 
which chops up the stereo frames into smaller pieces 
(essentially subfield FOVs) that get delivered to the PS3 
nodes. 
 

Each PS3 node handled 8192 minicolumns and the related 
functional column model.  For development convenience 
each group of 8192 minicolumns is termed a “subfield,” and 
so each PS3 node handled one subfield.  The BSB attractors 
cycle 5 times for each perception trial.  In general, the PPE 
side of the PS3 nodes handled messaging and orchestration 
of the SPE processors, and hypothesis generation.  The SPEs 
handled the emulations of Levels II/III and IV.  Emulation 
speed is real-time.  Each node is able to complete its 
processing in about 5.9 milliseconds.  The most time 
demanding aspect is delivery of image fragments to the PS3 
units.  This takes about 10ms.  The entire cycle time for a 
single frame was measured to be about 18 ms, or 55 Hz.   
 

 
 
Fig. 7 Schematic of the emulation architecture.  “JBI” is the name of the 
Publication/Subscription message layer used by the emulation. 

IV. SENSORY PERCEPTION RESULTS 
To date, only high contrast images are being presented to 

the system.  Natural scene images will be attempted when a 
contrast control mechanism is in place.  The initial test 
patterns were ideal diffraction grating images spaced to 
guarantee separation of “bar lines” on functional columns by 
a distance at least sufficient so no functional column was 
exposed to two separate lines.  No expectation was used 
during these tests to reinforce perception.  The grating 
patterns were moved across the field of view in steps 
comparable to the diameter of a minicolumn.  There were 
significant misperceptions of +- 22.5 degrees when image 
bars were near the spatial limits of the functional column 
fields of view, but lateral “confabulation effects” corrected 
these near the end of the perception cycle (see Fig. 6).    
Sensitivity to contrast was significant, indicating the need 
for contrast control.  However, certain applications, like 
reading text, are normally high contrast activities which the 
current model is reasonably suited to pursue. 

V. COMPUTATIONAL RESULTS 
The emulation had two major computational modules: 

“Layer IV” and “Layer II/III” corresponding to cortical 
layers.  Layer II/III (also called the associative layer) 
included the 32 element BSB attractor, and a small neuronet 
which formed functional column perception consensus.  The 
Level IV module emulated the spatially tuned simple cells 
and the complex cells connecting them to the associative 
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layer.  These all executed on SPEs which, ideally, are able to 
compute at 25.6 GFLOPS.  The associative layer code ran in 
2.833 ms, achieving 10.5 GFLOPS.  The Level IV code ran 
in 2.602 ms, achieving 8.6 GFLOPS.  The processing of one 
video frame subfield takes 5.9 ms; approximately 0.47 ms is 
accounted for in feed-forward message handling.  The entire 
field of 196 subfields required <17 ms.  In this case the extra 
11.1 ms is due to the serialization of dispatching subfield 
size pieces of an image.  This serialization can be reduced in 
principle through parallelizing the network feed into V1 
from the LGN modules.  The 17 ms cycle time for a single 
frame corresponds to a frame rate of 58 Hz.    

 

VI. CONCLUSIONS 

A. Model Efficacy.   

The model perceives lines of orientation well with high 
contrast images such as text and line drawings.  The 
perception is reduced on natural images but not absent. The 
diminution is expected because no contrast control is 
presently incorporated in the model.    

The spatially tuned simple cell model only roughly 
corresponds to actual V1 simple cell spatial tuning.  This 
coarse approximation does indeed provide a useful degree of 
perception success.  It is suggestive that hardware could be 
devised to likewise be spatially tuned, providing a 
perception mechanism potentially less computationally 
complex than Gabor23 functions. 

B. Efficiency.  We measure efficiency of code executing on 
a platform in terms of an ideal application executing at 
100% efficiency.  The metric selected for the Cell-BE 
platform is floating point operations per second (FLOPS).  
Ideally, an SPE can achieve 25.6 GFLOPS.    The two 
segments of SPE code, the associative and layer IV, 
achieved 10.5 FLOPS and 8.6 respectively corresponding to 
efficiencies of  41% and 33.5.  This particular V1 model 
characteristically has relatively small vectors, typically 32 
element or 56 element.  Larger vectors are more efficient to 
manipulate on this platform than smaller ones.   For 
example, large vector space associators, such as Sparse 
Distributed Memories (SDMs), represent a class of 
neuromorphic computing algorithms useful for modeling 
memory structures.  SDMs deal in vector spaces on the order 
of 500 to 1000 elements.   

 Scaling. A subfield is 128 functional columns 
represented by a single process running on a PS3 node.  The 
full sale V1 consists of 196 instances of a subfield, all 
identical, each running on a dedicated PS3 node.  The 
processes are easy to scale because they are embarrassingly 
parallel22.  Except for verification of lateral network 
“Confabulation” all “debugging” was performed using a 
single node model.   Subfields were added in increments of 
10 during sessions instrumented to measure message passing 

latencies, but such incremental scale-ups were not necessary 
for other types of functional verification. 

The system scaled well from individual subfields to full 
scale V1.   Message system latency was the largest source of 
efficiency degradation as the scaling increased.  The 
message latency can be mitigated by parallelizing the 
scattering of an image into subfields, and the corresponding 
distribution of the scatter. 
It is clear that the CELL_BE nodes are idle most of the time.  
It is possible to add significant functionality to the model 
and still comfortably manage real-time performance.  We 
feel it is likely Contrast management, motion perception, 
depth perception and an improved color perception 
capability will be computable within the computational slack 
time. 

C. Developer’s Experience with the platform. 
The CELL-BE architecture fit well, relying on fast DMA 

communications between node components.  Nevertheless, 
efficiency was sufficiently high so as fewer nodes could 
have been used for this particular algorithm and still perform 
in real-time. 

  The PPE and SPE components each exhibited 
characteristics which required special attention beyond that 
normally required on conventional machines to produce 
highly efficient code.  On the PPE special effort was needed 
to manage the Translation Lookaside Buffers (TLB), which 
handle the virtual address translation.  The problem 
manifested as slow performance, due to page faults.  The 
solution was to utilize Linux system calls (mlock, mmap, 
setmntent) to lock a virtual space into physical space.  On 
the SPE, developers experienced a three to four week “ramp 
up” time to become proficient with the DMA, and vector 
features.  Each code segment development required extra 
time for optimization review.  

D. Interprocess Communications. 
Feed forward message passing was demonstrated to be a 

heavy load.  The issue is the one to many relationship 
between the LGN processes and the V1 processes.  This can 
be improved by parallelizing the LGN process over several 
physical nodes, distributing the message output loading 
across the parallel components.   

 
Lateral messaging is a smaller scale (than feed forward) 

“one to many” problem: each of the 196 subfields 
communicates with each of its 8 neighbors.  The point to 
point characteristics of the Pub/Sub message system applied 
on this model performed well.  One round of lateral 
communication was accomplished within the subfield 
process time (5.9 ms).  Each message size was on the order 
of 4Kbytes.  Approximately 1500 messages are exchanged 
between the subfields during this time.  

 
The Pub/Sub features of the messaging system accelerated 

development time because it removed the tedium of having 
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to know message destinations, and it provided flexibility for 
adding and removing message connections.   

 
Finally, we speculate on the address space size that a full 

brain emulation may need using a model at a similar  level 
of abstraction.  The number of messages is mostly 
determined by surface area that can be emulated by a PS3 
node.  The V1 model uses about 1,700 messages per frame, 
but this does not include extrastriate connectivity.  Based on 
anatomical data(21) (surface area of V1 and the extrastriate 
areas it connects to) the extrastriate message connectivity is 
likely to be between twice (based on area) and ten times 
(based on axon count) what is needed for V1 afferent and 
lateral feed combined.  Thus a comfortable overestimate for 
V1 extrastriate connectivity is 17,000 message types.  These 
numbers suggest that a whole brain emulation message 
space can be subdivided into regions with modest address 
space (16 bit) capability. 
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