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ABSTRACT

We present a framework for the joint processing of multimodal data
such as audio-video data streams. We first consider the problem
of estimating the joint distribution of statistically dependent multi-
modal random variables. We discuss the issues involved and provide
a copula based solution. Application of this approach to solve a mul-
tisensor fusion problem for the detection of a random event is also
discussed.

Index Terms— Copula theory, Multisensor fusion, Hypothesis
testing, Kullback-Leibler distance, Statistical dependence

1. INTRODUCTION

Statistical signal processing tasks such as detection, estimation and
tracking always require complete specification of the joint probabil-
ity distribution of the observed samples. However, in many cases,
the derivation of the joint probability density function (PDF) be-
comes mathematically intractable. In problems such as multimodal
signal processing, random variables associated with each modality
may follow probability distributions that are different from one an-
other. This is due to several physical differences such as in their
dimensionality, support and sampling rate. Moreover, in most ap-
plications, the signals share a common source and thus may exhibit
statistical dependency. Consider, for example, an acoustic sensor
and a video camera monitoring a region for trespassers. Presence of
a target may result in an increase in both the acoustic energy and the
pixel intensities of the images acquired by the video camera. Both
sensors provide information about the same event (and hence are
statistically dependent) but in different ’domains’. In this case, it is
highly likely that the acoustic features and the pixel intensities will
not follow the same probability distribution. We are thus faced with
two challenges when modeling the joint distribution of random vari-
ables corresponding to multimodal data,

• How do we characterize the inter-modal dependence struc-
ture?

• How do we model the joint distribution between statistically
dependent multimodal measurements when the underlying
marginals follow disparate distributions?

We discuss parametric modeling of multimodal data in Section
2. We show here how copula functions provide an approach to model
the joint multimodal statistics. We formulate a binary hypotheses
testing problem in Section 3 and present a multisensor detection ex-
ample in Section 4.
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W911NF-06-1-0250. We thank Lav Varshney for technical discussions.

2. MODELING

The acoustic-video sensor example given above motivates the fol-
lowing general definition for heterogeneous random vectors that
would arise with multimodal signals.

Definition 1 A random vector Z = {Zn}N
n=1 governing the joint

statistics of an N-variate data set can be termed as heterogeneous if
the marginals Zn are non-identically distributed.

In the following, we assume that the marginal PDFs, fZn(zn),
are known and the goal is to construct the joint PDF fZ(z) of the
multimodal random vector Z. Further, the variables Zn exhibit sta-
tistical dependence so that fZ(z) �= ∏N

n=1 fZn(zn).
Characterizing multivariate statistical dependence is one of the

most widely researched topics and has always been a difficult prob-
lem [1]. The most commonly used bivariate measure, the Pearson’s
correlation ρ captures the linear relationship between variables and
is a weak measure of dependence when dealing with non-Gaussian
random variables. Two random variables X and Y are said to be un-
correlated if the covariance, ΣX,Y = E(XY ) − E(X)E(Y ) is zero
(ρ = 0). Statistical independence has a stricter requirement in that
X and Y can be called independent only if their joint density can be
factored as the product of the marginals. In general, a zero correla-
tion does not guarantee independence (except when the variables are
jointly Gaussian).

The problem is further compounded when dealing with a mul-
timodal random vector such as Z with complex inter-modal inter-
actions between the component variables Zn that follow disparate
probability distributions. Thus, the derivation of multimodal joint
PDF becomes difficult and one is often forced to assume multivari-
ate Gaussian or inter-modal independence to construct a tractable
statistical model. A multivariate Gaussian model would necessitate
the marginals to be Gaussian and thus would fail to utilize the knowl-
edge of the given marginal PDFs. Assuming statistical independence
neglects inter-modal dependence thus leading to suboptimal solu-
tions.

Alternatively, we propose in this work, a copula based model to
represent the inter-modal dependence structure. Copulas are func-
tions that couple multivariate joint distributions to their component
marginal distribution functions [2], [3]. The main advantage of the
copula based approach is that it allows us to define inter-modal de-
pendence irrespective of the underlying marginal distributions. One
can thus construct joint distributions with arbitrary marginals and
the desired dependence structure. This property is well suited espe-
cially for the joint processing of multimodal variables with different
marginal distributions.

Sklar (1959) was the first to define copula functions.
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Sklar’s Theorem and its Implications
Theorem 1 (Sklar’s Theorem)
Let FZ(z1, z2, · · · zN ) be the joint cumulative distribution func-
tion (CDF) with continuous marginals FZ1(z1), FZ2(z2), · · · ,
FZN (zN ). Then there exists a copula function C(·) such that for all
z1, z2, · · · , zn in [−∞,∞],

FZ(z1, z2, · · · zN ) = C(FZ1(z1), FZ2(z2), · · · , FZN (zN )) (1)

For continuous marginals, C(·) is unique; otherwise C(·) is
uniquely determined on RanFZ1 ×RanFZ2 · · · ×RanFZN where
RanX denotes the range of X. Conversely, if C(·) is a copula
and FZ1(z1), FZ2(z2), · · · , FZN (zN ) are marginal CDFs then
the function FZ(·) in (1) is a valid joint CDF with the marginals
FZ1(z1), FZ2(z2), · · · , FZN (zN ).

Note that the copula function C(u1, u2, · · · , uN ) is itself a CDF
with uniform marginals as un = FZn(zn) ∼ U(0, 1) (by probabil-
ity integral transform).

The copula based joint PDF of N continuous heterogeneous ran-
dom variables can now be obtained by taking an N th order derivative
of (1),

fZ(z) =

(
N∏

n=1

fZn(zn)

)
c(FZ1(z1), · · · , FZN (zN ))

= fcZ(z) (2)

where Z = [Z1, Z2, · · · , ZN ] and we use the superscript ′c′ to de-
note that fcZ(z) is the copula representation of fZ(z). Note that we
need to know the true copula density function ’c(·)’ to have an exact
representation as in (2). We emphasize here that any joint PDF with
continuous marginals can be written in terms of a copula function as
in (2) (due to Sklar’s theorem). However, identifying the true copula
is not a straightforward task. A common approach then is to select a
copula function a priori and fit the given marginals and the desired
dependence structure to derive the joint distribution.

Several copula functions have been defined especially in the
econometrics and finance literature (e.g. [4]); the popular ones
among them being multivariate Gaussian copula, Student’s t copula
and copula functions from the Archimedean family. Given a copula
density function k(·) and the marginal distributions, the joint PDF
estimate then has the form similar to (2),

f̂Z(z) =

(
N∏

n=1

fZn(zn)

)
.k(FZ1(z1), · · · , FZN (zN ))

= fkZ(z) (3)

The dependence structure between the marginals is completely
captured by the copula function and is separate from the choice of
the marginals. Next, we describe the joint PDF construction using
copulas.

2.1. Joint PDF Construction using Copulas

As an example, consider two random variables Z1 and Z2 associated
with two sources of different modalities. Given a copula function
K(.), we wish to construct a copula based bivariate density function
of the form as in (3). Table 1 lists some of the well known bivariate
copulas. Each of these functions is parameterized by ’θ’ that controls
the ’amount of dependence’ between the two variables. Thus, it is

Table 1. Copula functions

Copula C(u1, u2) Kendall’s τ

Gaussian ΦN [Φ−1(u1), Φ
−1(u2); θ]

2
π

arcsin (θ)

Clayton [u−θ
1 + u−θ

2 − 1]−
1
θ θ

θ+2

Frank − 1
θ

log
(
1 + (e−θu1−1)(e−θu2−1)

e−θ−1

)
1 − 4

θ

[
1 − 1

θ

∫ θ

0
t

et−1
dt

]
Gumbel exp

[
−{

(− log u1)
θ + (− log u2)

θ
}1/θ

]
1 − 1

θ

Product u1.u2 0

required to estimate θ from the acquired bivariate observations. We
describe how this is done using nonparametric dependence measures
as this method is computationally efficient.

The copula dependence parameter θ can be expressed as a func-
tion of Kendall’s τ , a nonparametric measure of association between
two random variables [2]. Specifically, Kendall’s τ measures the
concordance between two random variables. Let (z1(i), z2(i)) and
(z1(j), z2(j)) be two observations from a bivariate measurement
vector (Z1,Z2) of continuous random variables. The observations
are said to be concordant if (z1(i) − z1(j)) (z2(i) − z2(j)) > 0
and discordant if (z1(i) − z1(j)) (z2(i) − z2(j)) < 0.

The population version of Kendall’s τ can be expressed in terms
of K(.) as

τZ1,Z2 = 4

∫ ∫
K(u1, u2; θ)dK(u1, u2; θ) − 1 (4)

where un = FZn(zn). Thus, for a given τ , the integral equation
above can be used to solve for θ. Table 1 shows the relationship
between τ and θ for some of the well-known copula functions.

When τ is unknown, θ can be obtained from the sample estimate
τ̂ . Given L i.i.d measurements (z1(l), z2(l))l (l = 1, 2, · · · , L),
the observations are rank ordered and τ̂ can be computed as

τ̂Z1,Z2 =
c − d

c + d
(5)

where c and d are the number of concordant and discordant pairs
respectively.

2.2. Joint PDF Construction assuming inter-modal indepen-
dence

Joint PDF estimate assuming inter-modal statistical independence is
given as the product of the marginals, i.e..

f̂Z(z) =

N∏
n=1

fZn(zn) = fmZ (z) (6)

where we use superscript ’m’ to denote that the joint PDF estimate
depends on the marginal independence assumption.

Thus, both joint PDF estimates (3) and (6), capture the given
maginal densities. The copula based joint PDF estimate further cap-
tures Kendall’s τ , the rank correlation between the variables.

We next formulate a binary hypotheses testing problem.

3. HYPOTHESES TESTING

A decision theory problem consists of deciding which of the hy-
potheses H0, · · · ,Hk is true based on the acquired observation
vector of (say) L samples. An optimal test (in both the Neyman-
Pearson (NP) and Bayesian sense) for a two hypotheses problem
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(H0 vs. H1) computes the log-likelihood ratio (Λ) and decides in
favor of H1 when the ratio is larger than a pre-defined threshold (η),

Λ(z) = log
fZ(z|H1)

fZ(z|H0)

H1
≷
H0

η (7)

fZ(z|Hi) is the joint PDF of the random observation vector z =
[z1, · · · , zN ]T ∈ R

N under the hypothesis Hi, (i = 0, 1) and in-
cludes all the statistics required to derive (7). In the NP set up, the
threshold ’η’ is selected to constrain the false alarm error probability,
PF to a value α < 1 and at the same time minimize the probability
of miss, PM . The two error probabilities are given as

PF = P (Λ > η|H0), PM = P (Λ < η|H1) (8)

Consider a binary hypotheses testing problem where

H1 : fZ(z1, z2, · · · , zN |H1)

H0 : fZ(z1, z2, · · · , zN |H0) =
N∏

n=1

fZn(zn|H0) (9)

Thus, it is known that the random variables Z1, · · · , ZN are statisti-
cally independent under the hypothesis H0. However, the joint dis-
tribution fZ(z1, z2, · · · , zN |H1) under hypothesis H1 is unknown.
We use copula theory to estimate fZ(z1, z2, · · · , zN |H1) and derive
the log-likelihood ratio test.

3.1. Heterogeneous log-likelihood ratio test

We use (3) to estimate fZ(z1, z2, · · · , zN |H1) in terms of marginals
and derive the copula based heterogeneous log-likelihood ratio test
(HLRT) statistic as below,

Λk(z) = log
f̂Z(z|H1)

fZ(z|H0)
= log

fkZ(z|H1)

fZ(z|H0)
(10)

= log

(
N∏

n=1

fZn(zn|H1)

fZn(zn|H0)

)
+

log
[
k(F 1

Z1(z1), · · · , F 1
ZN

(zN ))
]

(11)

where the superscript ’i’ in F i
Zn

(zn) denotes the CDF of Zn under
hypothesis i.

It can be seen from (11) that the copula function allows one to
exactly factor out the role of cross modal dependence from the strate-
gies employed by the individual modalities. This allows to quantify
performance gains (if any) achieved due to inter-modal dependence.

3.2. Marginal log-likelihood ratio test

It is interesting to note the form of the test statistic in (11). The first
term,

Λm(z) = log

(
N∏

n=1

fZn(zn|H1)

fZn(zn|H0)

)
(12)

is the test obtained when dependence between the variables Z1, Z2,
· · · , ZN is neglected. We call this test the marginal likelihood ra-
tio test (MLRT). In problems where the derivation of the joint den-
sity becomes mathematically intractable, tests are usually employed
assuming independence between variables conditioned on each hy-
pothesis.

We next compare performances of HLRT and MLRT detectors.

3.3. Performance Analysis using Error Exponents

The asymptotic performance of a likelihood ratio test can be quan-
tified using the KL distance, D (fZ(z|H1)||fZ(z|H0)), between
the PDFs underlying the two hypotheses. For ’L’ i.i.d. N -
variate measurements Zl = [Z1, Z2 · · ·ZN ]l, (l = 1, 2, · · · , L),
through Stein’s Lemma [5], we have for a fixed value of PM = β,
(0 < β < 1),

lim
L→∞

1

L
log PF = −D (fZ(z|H1)||fZ(z|H0)) (13)

The greater the value of D (fZ(z|H1)||fZ(z|H0)), faster is the con-
vergence of PF to zero as L → ∞. The KL distance is thus indica-
tive of the performance of a log-likelihood ratio test. Further, it is
additive for independent observations,

D (fmZ (z|H1)||fZ(z|H0)) =
N∑

n=1

D (fZn(zn|H1)||fZn(zn|H0))

(14)
where D (fZn(zn|H1)||fZn(zn|H0)) is the KL distance for a single
modality Zn.

Assuming the knowledge of the true underlying copula c(·), we
have the following theorem to compare the asymptotic performances
of HLRT and MLRT for the binary hypotheses testing problem for-
mulated in (9).

Theorem 2 The KL distance between the two competing hypotheses
(H0 vs. H1) increases by a factor equal to multiinformation (under
H1) when dependence between the variables is taken into account.

D (fZ(z|H1)||fZ(z|H0)) − D (fmZ (z|H1)||fZ(z|H0))

= I(Z1; Z2; · · · ; ZN )︸ ︷︷ ︸
≥ 0

(15)

Multiinformation [6] is defined as

I(Z1; Z2; · · · ; ZN ) =

∫
z

fZ(z) log

(
fZ(z)∏N

i=1 fZi(zi)

)
dz

(16)

This is intuitively satisfying as the multiinformation I(·) (which
reduces to the well-known mutual information when N = 2) de-
scribes the complete nature of dependence between the variables.
Our result, that the error exponent increases due to inter-modal de-
pendence, agrees with Koval et. al. [7], where the authors use the
logarithmic inequality

(
log(x) ≥ 1 − 1

x

)
to prove the result. Our

approach is based on the copula representation of joint PDF and goes
further to quantify the performance loss (= I(·)) when multimodal
signals are statistically independent or when the dependence is de-
liberately neglected for simplicity.

In the next section, we present a multisensor detection exam-
ple and compare detector receiver operating characteristics (ROCs)
when 100 i.i.d sensor measurements are available in each decision
window.

4. A MULTISENSOR DETECTION EXAMPLE

Consider a parallel network of sensors as shown in Fig. 1 where each
of the deployed sensors may have different sensing capabilities. The
sensors monitor a common region of interest and the goal is to design

1895



Fig. 1. A multisensor detection system with common region of inter-

est (ROI). Different shapes for the sensors denote different sensing

modalities.

an algorithm that can combine the acquired multimodal information
for detecting the occurrence of a random event. We generate a syn-
thetic multimodal data set and show simulation results for N = 2.
In the future, we will apply this approach to some real datasets and
evaluate its performance.

Copula models allow one to generate multivariate random vec-
tors whose properties satisfy definition 1 [2]. We use the Student’s t
copula with degree of freedom (d.o.f ) four and Kendall’s τ equal to
0.1 to generate bivariate multimodal data under the hypothesis H1.
The marginals follow gamma and Gaussian distributions under each
hypothesis (Hi; i = 0, 1),

fZ1(z1|Hi) =
e
− z1

βi

βαi
i Γ(αi)

.zαi−1
1 , z1 > 0 and αi, βi > 0 (17)

fZ2(z2|Hi) =
1√
2πσ2

i

.e
− z2

2
2σ2

i , −∞ ≤ z2 ≤ ∞, and σ2
i > 0

(18)

where β1 > β0 and σ2
1 > σ2

0 . We set α1 = α0. While a bivari-
ate Gaussian distribution with non-identical means and/or variances
would satisfy Definition 1 and could have been used to generate the
synthetic data set, we adopt the above model to emphasize that the
proposed copula based methodology for multimodal signal process-
ing does not restrict the marginals to the same parametric family of
distributions.

Let Λ1 and Λ2 denote log-likelihood ratio tests corresponding
to Z1 and Z2 respectively. We plot, in Fig. 2, the ROCs for Λ1,
Λ2, Λm (= Λ1 + Λ2) and Λk using 50,000 Monte Carlo trials. As-
suming that the true joint PDF (used to generate data) is unknown
we construct Λk using arbitrary copula functions (from table 1). As
evident from Fig. 2, Λm performs better than each of the single
sensor test statistic as expected. However, fusion using HLRT out-
performs MLRT as the copula functions (even though misspecified)
capture the rank correlation between the multimodal measurements
and hence deviate from the erroneous inter-modal independence as-
sumption.

5. CONCLUDING REMARKS

We have presented a copula based framework for multimodal signal
processing. We show how copula functions allow us to model the
joint PDF of multimodal measurements. We also present a multisen-

Fig. 2. Monte Carlo based ROCs for MLRT and HLRT constructed

using different copula functions. We set β0 = σ2
0 = 1 and β1 =

σ2
1 = 1.1.

sor detection example where the use of copula functions is advan-
tageous than assuming inter-modal independence. We note that this
may not be true in general. Derivation of a universal improvability
condition, selection of the best copula and the incorporation of de-
pendence measures other than the rank correlations will be addressed
in the future.
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