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Abstract—We are pursuing an investigation of neuromorphic 
computational models and architectures in order to leverage 
present understanding of how the estimated 1011 neurons and 
1015 neuron connections in the mammalian brain are able to do 
some of the things a human does, and as quickly as it does it, 
using slow base components, while consuming very little power 
on affordable synthetic non-biological computing hardware. 
Understanding and harvesting neurologically based methods is 
a promising approach with great potential that may help us 
achieve massively parallel computation far beyond the scope of 
traditional computing. 

I. INTRODUCTION 

HIS effort has explored the issues associated with the 
efficient mapping of neuromorphic computing strategies 
onto advanced computational architectures.  The 

computing performed by neurological systems produces 
cognitive phenomena that have been high value, yet elusive, 
goals of computational researchers.  Neuromorphic 
computing, as evident in primate brains, uses massive 
collections of modest speed synapses and neurons operating 
asynchronously in parallel. 

It is becoming feasible to emulate full scale brains on a 
neuron level, at least insofar as computational complexity 
matters.  The human brain has an estimated 1011 neurons, 
each with an average estimated 104 connections to other 
neurons.   Single neuron models need to account for 
synapses (connections) and somas (cell bodies).   A simple 
synapse model uses two numerical operations (OPs): an 
index (address addition) and a value addition (this would be 
the complexity floor).  A simple soma model (threshold 
compare and assignment) is equivalent to two OPs.  Thus, 
human brain emulation (if all neurons and synapses happen 
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to fire at once; an unlikely event) would require ~3X1015 
OPs.  A single Cell Broadband Engine® (Cell-BE) chip can 
peak at 2X1011 FLOPS.  15K such devices, by this measure, 
would be able to emulate a full sized human brain at about 
1/1000 real-time speed.  Certainly, synapse and neuron level 
models can be more complex than this estimate, but it is also 
true that emulation may not always need to be carried out at 
a low level.  Moreover, it is often the case that one neuron 
connects with another multiple times, a situation that can be 
simplified in emulation by allowing for a “wider” weight 
range. 

We explored multiple columnar cortical models reported 
in the literature, and produced new models by combining 
ideas with insights developed by the team.  These models 
range in scale of abstraction from cell assemblies of 
individual minicolumns to models that represent abstractions 
of hundreds of thousands of synapses and neurons.  In each 
case, effort was made to understand neuron-based 
computational underpinnings, the cognitive efficacy of the 
model, the fit of the digital emulation of the model to 
computer architectural features, and the scaling of the model 
into a full-scale system.  Selected models were also 
simulated. 

II. EXPERIMENTAL DETAILS 

A. Neuromorphic Primary Visual Cortex (V1) Model 
An estimate of computational complexity of full scale V1 

emulation was made to look at the feasibility of full scale 
modeling of cortical fields.  The estimate was based on 
representing minicolumns as “integrate and fire neuron” 
models.  This kind of neuron scale emulation is thought to 
be more computationally demanding than more abstract, less 
neuron based models, and thus serve as a conservative 
estimate.  However, it is far simpler than a spiking 
dynamical model and, as it stands, does not account for 
many dynamical characteristics of neurons.   

The “integrate and fire” neuron model involves the 
summation over the synapses of a neuron, and is then 
subjected to a threshold function.  The synapse summation is 
a weighed summation, equivalent to a dot product between a 
weight vector and a neuron value vector.  There are about 
180 neurons in a V1 minicolumn, and perhaps 30 of them 
are tightly recurrent within a minicolumn.  These would be 
connected to fewer neurons than the others and we placed 
that estimate at 100.  The other 150 neurons are assumed to 
be connected to about 1000 neurons.   
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Dot product complexity: 
 

2N (N multiply, or Add operations) 
     Total = 2N (1000) + 2M (100), N = 150, M = 30 
                = 306,000 FLOPs. 
 
To accommodate communication between minicolumns, we 
make the assumption that these neurons would cycle 
typically 5 times per saccade (a saccade is a rapid eye 
movement): 
     
             5X306,000 = 1,530,000 FLOPs. 
 
There are about 5 saccades/second:  

 
7,650,000 FLOPS/Minicolumn/second 

 
There are about 1.6 million minicolumns/V1: 
 
            1,600,000 X 7,650,000 = 12.16 TFLOPS, 
 
V1 is about 1% of the entire neocortex, but the neuron 
density in V1, based on minicolumn characteristics, is about 
twice the density beyond V1.  A rough estimate of whole 
neocortex complexity is:  
 
            50X12.16 TFLOPS (608 TFLOPS) 
 

B. High Performance Computing 
The previous rapid rate of clock speed increase for CPUs 

has disappeared.  Chip developers have turned to multicore 
technology to make use of the continuing exponential trend 
towards increased transistor density.  Multicore technology 
shifts problems from hardware to software and multiplies 
available parallelism.  To make productive use of 100 
thousand to 1 million processors, one must provide software, 
which can efficiently harness the parallelism inherent in the 
hardware.  Software development is labor intense.  The cost 
grows significantly as parallelism increases.  Software 
developers have few methods available to them to deal with 
parallel system design, except for messaging systems and 
multithread programming.  No significantly better methods 
have emerged into common practice which displace or build 
upon these.  These techniques are suitable for small scale 
parallelism but grow unwieldy for systems of even a few 
thousand processors.  Existing High Performance Computer 
(HPC) platforms, like Blue Gene/L, can be configured with 
more than 130K processor cores.  The challenge of 
harnessing parallelism on that scale for all but an 
“embarrassingly parallel” application (an application where 
very little communication is needed between processes) 
challenges the limits of programmability. Yet neural 
processing effectively harnesses parallelism on at least this 
scale. 

Cognition presents as an excellent target of study because 
primate brains are examples of the kind of computing 
architecture we seek.  It also holds promise to meet the 

“programmability challenge” of large scale parallelism with 
self supervised learning, and is therefore itself potentially a 
key technology for approaching other difficult to scale 
applications like Parallel Discrete Event Simulation (PDES).  
PDES applications are models of physical processes in terms 
of state changes at discrete points in time. These 
applications are characteristically intense in terms of CPU 
but challenge computer architectures with the need to 
communicate events to all affected elements within the 
simulation. 

This effort has produced some infrastructure suitable for 
continuing cortical modeling research.  It consists of 
software, in addition to the models discussed,  developed for 
and applied to modeling a visual input stream (a retina 
model, an optic chiasm model, and a thalamic-LGN model), 
a high throughput Publish/Subscribe messaging system, and 
high performance machine clusters (288 SONY 
PlayStation3® Cell-BE platforms with 12 Dual Quad 3.2 
GHz Xeon head nodes). 

Each PS3 Cell-BE node has a Power PC core (PPE) and 
six satellite broad band engines (SPE).  SPEs have small 
memories: 256K bytes, but can process floating point data 
rapidly (25.5 GFLOPs).  Two high speed DMA channels 
(in, out) connect each SPE to a PPE.  The PPE runs LINUX 
and has IP communication with the XEON head nodes and 
other PS3 nodes. 

C. Brain State-in-a-Box 
The Brain State-in-a-Box (BSB) algorithm was selected as 

the attractor function to incorporate into the network study 
because of its association with the Ersatz Brain project [1].  
Ersatz Brain is an effort to model aspects of mind with 
nested networks of fixed point attractors.  BSB uses state 
vectors with “N” real numbers in the range of (-1.0...+1.0).  
Its name is a metaphor for describing the algorithm as an N 
dimensional shape.  Its fixed basin points of attraction lie in 
its corners.  An N dimensional BSB function can separate M 
basin points, where M is ~15% of N. The model has many 
applications including machine reading, author ID, and 
scene interpretation. Applying the model efficiently involves 
exploring architecture design space, implementations, and 
evaluations of neuromorphic computing models.  
Preliminary assessment of the attractors suggested these 
attractors were useful for recognizing features using feed 
forward (afferent) data as well as feedback (expectation) 
data. 
Details of implementing a 128-dimensional BSB model on 
the Cell processor can be found in [2, 3].  Referring to 
Figure 1, in the large-scale BSB model implementation, 
128-dimentional BSB models are run on each of the six 
Synergistic Processing Elements (SPEs) on the Cell 
processor. The data communication functions are 
implemented on the PowerPC Processing Element (PPE), 
and the word and sentence level confabulation models are 
implemented on cluster head nodes associated with groups 
of 24 Cell-BE nodes.   The BSB model was also 
implemented in an FPGA hardware version that achieved 
~150 speedup over software [3, 4]. 
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Table 1 shows a comparison of the computing 
performance, communication performance, power 
consumption, and modeling capabilities between a single 
PS3 (1 Cell-BE with 6 SPEs), and the whole cluster (288 
PS3s). Theoretically, we can implement two V1 layers of the 
human visual cortex on this cluster. 

D. Confabulation Model 
An investigation of confabulation surfaced reports by 

Robert Hecht-Nielson of a cognitive mechanism which 
explains all of cognition [5].  The center piece of his reports 
both published and in presentations, was a demonstration of 
software which completed sentences with no context, and 
another which completed a sentence in the context of two 
other sentences.   The hypothesis is that the reported 
algorithm models the fundamental cognitive mechanism, 
and that the mechanism must be somehow layered on a large 
scale (many interconnected confabulators) to produce a level 
of coherence.  The algorithm is computationally similar to 

Bayesian Belief, but it does not use a Belief tree network.  It 
was decided to explore Confabulation first in its reported 
context (textual data) and to consider it later on as a 
candidate for extra striate (above V1) modeling, fulfilling an 
expectation role. 

The reported sentence completion algorithm trained by 
reading text; lots of text.  It then “recalled” by using a 
context (for example, the start of a sentence) to retrieve a 
sequence of words and phrases which its training 
statistically connected to the context.  The training consisted 
of reading one sentence at a time and breaking it into 
sequences of words and phrases - all possible combinations 
of these.  Sentence by sentence the training keeps track of all 
words and phrases encountered, and all sequences formed, 
through statistical links. 

E. Publish/Subscribe Communication 
A Publish/Subscribe (Pub/Sub) messaging model provides 

a very flexible method of system configuration without 
having to attend to details of physical node availability and 
node inclusion or exclusion.  The system middleware used 
for this, a version of JBI developed at AFRL/RI, performed 
well within efficiency needs. 

We examined the ability of the Pub/Sub communication 
model to distribute visual data pieces over a large set of 
processes.  With visualization and the Pub/Sub server 
running on a dual quad platform with one retinal model, the 
chiasm process and one LGN process, a single subfield 
process was able to execute at about 2 frames per second.  
Real-time is probably 5 frames per second, corresponding to 
5 saccades. 

III. RESULTS AND DISCUSSION 
The use of IBM Cell-BE technology (Sony PlayStation® 

3 platform) to accelerate BSB performance was investigated.  
Runtime measurements show that we have been able to 
achieve about 70% of the theoretical peak performance of 
the processor when implementing a 128 element vector 
using a matrix shuffle strategy to improve Cell-BE SPE 
instruction utilization [6]. 

The 128 element BSB recall algorithm was implemented 
on a single SPE element of the Cell-BE architecture.  The 
complexity is 33,280 FLOPs/ recursive cycle.  Ten cycles 
are needed for convergence yielding 332,800 FLOPs/ recall.  
Peak efficiency corresponds to all floating operations being 
performed as quad word operations, with all other (non-
floating point) instructions executing in the parallel 
instruction pipe.  In this case, peak is 332,800/4 = 83,200 
Quad Floating ticks.  Each recall needs a weight vector load, 
a state vector load and a state vector unload (66,560 bytes) 
equivalent to 4160 quad word transfers (one quad word per 
tick). Compute to DMA peak ratio is therefore 83200/4160 
= 20.  Double buffering was used to overlap data transfer of 
weight matrices and state vectors with processing.  Six 
BSBs can be run in parallel on a PS3 version of the 
platform.  Efficient implementation on an SPE requires 
careful attention to aligning data for maximum effectiveness 

 
Fig. 1.  Task distribution of one PS3 node. 

TABLE I 
PERFORMANCE, POWER, COMMUNICATION AND MODELING 

CAPABILITIES: 1 PS3 VS. 288 

 1 PS3 288 PS3 

Peak computational performance 
achievable by BSB application 

102 
GFLOPS 

29.4 
TFLOPS 

  
Number of 128-dimensional BSB 
models supported (10ms reaction time) 3,000 864,000 

   
Number of mini-columns from the 
visual cortex of the human brain 
modeled 

12,000 3,456,000* 

   
Total power consumption 140 W 40 KW 
   
Achieved total network bandwidth for 
the communication test using MPI ~1Gb/s ~12Gb/s 

*The V1 layer of the visual cortex consists of about 1,600,000 
minicolumns.  
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of intrinsic functions.  Loop unrolling is essential as well to 
maintain the dual pipeline SIMD efficiency.   

The 32 element BSB recall algorithm performs about 
2240 floating operations for each recursive cycle; 2,176 for 
the actual algorithm and 64 for state vector conversions 
from and to integer fixed point.  About 5 cycles are needed 
for convergence, yielding 11200 operations per 128 bytes of 
DMA data movement (no weight vector movement, and the 
state vector is actually 2 byte fixed point).  Peak FLOP rate 
is (2176/4 + 64) 608 Quad Floating ticks/cycle.  The peak 
DMA rate is (128/16) 8 DMA ticks.  The peak compute to 
DMA ratio is therefore 608/8 = 76. 

About 17 GFLOPs/Second (GFLOPS) were measured for 
the 128 element case.  This corresponds to about 51,000 10 
cycle recalls per second about 1/10th the rate achieved using 
the FPGA.  However, six of these can be run in parallel on a 
single PS3 node chip, bringing the throughput to about half 
of the FPGA case.  The Cell chip is more than an order of 
magnitude less expensive than the FPGA chip, and the Cell 
chip is programmed in C, compared to VHDL needed for 
the FPGA.  By these measures the Cell technology has 
significant cost advantages over the FPGA technology.   

A trial was run using all 288 PS3 notes in the Cell-BE 
cluster.  The mark of 29.376 trillion FLOPS was reached. 

About 11 GFLOPS were measured for the 32 element 
case.  This corresponds to about 982,142 5 cycle recalls per 
second, about 1.5X faster than the tested FPGA doing the 
same work.  However, since six of these can be performed 
in parallel in a PS3 node, the PS3 chip is potentially 9X 
faster than the FPGA. 

Note that the 60 fold clock speed ratio (FPGA 100 MHz 
vs. Cell-BE SPE 6GHz) is a major factor in speed 
differences. 

We researched, implemented, and evaluated the 
performance of the confabulation model, focusing 
specifically on two example application problems that we 
call here sentence completion and intelligent on-line 
character recognition (OCR).   In both of these applications 
the basic problem is to complete a partial natural language 
sentence in a plausible, sensible way, given that only a 
fragment of the input sentence is available, and given that 
the system has been trained by exposure to a large training 
corpus of textual electronic media (e.g. books and news 
feeds).   Good solutions to the sentence completion problem 
could very well translate to other input modalities (i.e. audio 
and imagery), and map to solutions in several higher level 
application scenarios. 

We also spent some time looking at ways to speed up and 
scale up confabulation training and recall.  The algorithms 
are ideal candidates for parallel processing and their 
performance can be significantly improved with the help of 
application specific, massively parallel computing platforms.  
However, as the complexity and parallelism of the hardware 
increases, the design effort and implementation costs also 
increase.  Architectures with different cost-performance 
tradeoffs were analyzed and compared in [7], which 
describes hardware designs that achieved ~1,000x speedup 
of the confabulation training algorithm, and ~3,000x 

speedup of the recall algorithm. Our analysis showed that 
although increasing the number of field programmable gate 
array (FPGA) processing elements (PEs) or the size of 
memories per processing element can increase performance, 
the hardware cost and performance improvements do not 
always exhibit linear relationships.  Hardware configuration 
options must be carefully evaluated in order to achieve good 
cost performance tradeoffs. 

Three strategies were explored for optimization of the 
sentence completion algorithm: software optimization, 
software analysis and hardware architecture augmentation. 
Our analysis shows there is potential to improve the three 
structure techniques using hashing strategies.  The hashing 
strategies may improve data locality as well. A hash version 
of training was demonstrated in about 4 seconds, compared 
to the 45 seconds the tree structures used.  The cogent 
confabulation algorithm is an ideal candidate for parallel 
processing. It also shows that although increasing the 
number of processors or the size of memories can increase 
the performance of training and recall, the relations between 
resource cost and performance associated with these 
variations are not always linear.  The details of hardware 
configuration must be carefully considered to achieve good 
cost performance tradeoffs. We suggest that this work can 
be extended to more complex implementations of 
confabulation systems. 

IV. CONCLUSION 
Neuromorphic computational architecture development is 

a new and accelerating field with significant promise.  
Individual qualifications to contribute in this domain include 
familiarity in multiple disciplines such as: computer 
architecture/technology, parallel software development, 
dynamical systems, neuroscience, neurology, 
neuropsychology, and agent based expert systems. 

The results suggest topographically organized cortex, like 
“early” vision, audition and tactile sensing, can be emulated 
using minicolumn models similar to the hybrid model we 
created, and that the emulation is computationally tractable 
on, for example, a small number (hundreds) of Cell 
Broadband Engine® (Cell-BE) class chips.  “Higher” 
cortical regions, because of plasticity needs, may require 
more computationally intense models, which deal with 
spiking dynamics and liquid state machine effects. 

V. FUTURE WORK 
We are in the process of procuring additional PS3 systems 

to increase the total number of PS3’s to 2,016. The 
configuration will consist of 84 subclusters of 24 PS3’s per 
subcluster. Each of the 84 head nodes will also have 2 
GPGPU’s; one NVIDIA Tesla C1060 and one NVIDIA 
Tesla C2050 for a total of 168 GPGPU’s. Head node 
candidates are still being evaluated, but by combining 
computational power of all other processing components the 
cluster will have theoretical throughput of ~500 TFLOPS or 
~.5 PFLOPS. The low price/performance ratio of the PS3 
will allow for the creation of this system for less than $2M. 
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We estimate that this system will allow for the emulation of 
~80% of the neocortex. 
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