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Abstract

Novel parametric reduced-order models are proposed for fast reanalysis to pre-

dict the dynamic response of complex structures, which suffered thickness vari-

ations caused by design changes or damage in one or more substructures. Para-

metric reduced-order models developed previously have two important challenges

to overcome to improve accuracy and performance: (a) the transformation matrix

is not mathematically stable, (b) the Taylor series parameterization techniques do

not capture thickness variations of the structure modeled with solid-type elements

due to the highly nonlinear dependence on thickness changes. Thus, herein, a

new transformation matrix and novel parameterization techniques are proposed.

Usual reduced-order models have an additional challenge, namely the difficulty in

reducing the interface degrees of freedom. Thus a way of reducing the interface

degrees of freedom is also proposed. The predicted vibration responses of com-

plex structures are shown to agree very well with results obtained using a much
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1. Introduction

Component mode synthesis techniques are well established [1, 2, 3, 4, 5, 6, 7]

in the field of structural dynamic analysis as an alternative to conventional finite

element models (FEMs) with large number of degrees of freedom (DOFs). Com-

ponent mode synthesis (CMS) belongs to a wide class of domain decomposition

techniques. CMS is a substructural based technique, which divides the global

structure into several substructures, and the DOFs of those substructures are re-

duced significantly. Then, each individual substructure in the CMS domain is

reconnected, and the system dynamic responses are predicted very efficiently and

accurately.

CMS has become a very popular numerical tool in aerospace and automotive

engineering because it usually meets high standards of computational efficiency.

Computational efficiency is illustrated by significant cost saving when remeshing

is needed, since this task can be done locally, i.e. on each substructure separately.

However, the remeshing process might also be time consuming computationally

and manually for design purposes such as structural optimization, and for damage

modeling for structural health monitoring. Therefore, reduced-order modeling

techniques for design and damage modeling purposes are needed.

The reduced-order models (ROMs) for design and damage modeling were in-

troduced almost fifteen years ago byBalmés et al. [8, 9] to avoid the relatively

expensive process of reanalysis of complex structures. In addition, several other
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ROMs referred to as parametric reduced-order models (PROMs)have been devel-

oped [10, 11, 12, 13]. In particular, multi-component PROMs (MC-PROMs) have

been developed recently by Hong et al. [13]. For robust substructure (re)analysis,

MC-PROMs are advantageous because they allow several substructures to have

parametric variability in characteristics such as geometric parameters (e.g., thick-

ness), or material properties (e.g., Young’s modulus). MC-PROMs are perfectly

suited for predicting the vibration response of structures modeled with shell-type

finite elements which can have thickness variations. However, if the structure is

modeled with brick-type finite elements, and if the brick-type elements require

local volume changes during reanalysis, then MC-PROMs cannot be effectively

used to predict the dynamic response. This is because MC-PROMs use third-order

Taylor series for parameterization. These Taylor series do not capture accurately

the variation of the mass and stiffness matrices for brick-type finite elements be-

cause the volume of local finite elements can change during the reanalysis. Con-

sequently, some entries of the mass and stiffness matrices for brick-type finite

elements vary highly nonlinearly with respect to geometric variations in the struc-

ture. Herein, a novel parameterization technique is proposed to capture these

element-level nonlinearities.

Another challenge for MC-PROMs is that they can be numerically not stable

due to the transformation matrix they employ. Specifically, the transformation

matrix consists of static constraint modes and fixed interface normal modes com-

puted for a set of nominal parameters, and a few sets of perturbed parameter values

(typically up to 3 sets per parameter) [13]. If all static constraint modes are kept

and many normal modes are included, then the size of the system-level mass and

stiffness matrices can be nearly singular (and can even be larger than that of the
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full-order models). This is because the transformation matrix can contain vectors

which are nearly linearly dependent. These vectors are usually normal modes for

substructures where the parametric variation (e.g., modulus of elasticity) does not

affect the component-level normal modes. Moreover, the transformation matrix

used in MC-PROMs was designed for small parameter variations which ensures

that the space spanned by the basis vectors at a component-level does not depend

nonlinearly on parameter variations. That approach can break down because of

the volume variations which can occur when brick elements are used.

Another challenge of CMS methods and MC-PROMs is that they often re-

quire an excessively large number of interface DOFs because (often) these DOFs

are many and are hard (or impossible) to reduce. To address this issue, Castanier

et al. [6] proposed that the physical interface DOFs be replaced by global interface

modes, which were also called characteristic constraint(CC) modes. However,

this concept is not optimal for substructural-based techniques becauseCC modes

aresystem-level interface modes, notsubstructural -level interface modes. Thus,

a new technique to reduce the interface DOFs locally is proposed herein and re-

ferred to as local-interface reduction.

This paper is organized as follows. In Section 2, the element-level nonlinear-

ity due to the volume variations of finite elements of brick or other type is evalu-

ated, and a novel parameterization technique is proposed to capture this nonlinear-

ity. Next, in Section 3, CMS is briefly reviewed, and next-generation parametric

reduced-order models (NX-PROMs) are proposed. In Section 4, to locally reduce

the interface DOFs, a local-interface reduction technique is presented. Section

5 discusses the procedure to assemble substructural mass and stiffness matrices

(with and without implementing the local-interface reduction technique). In Sec-
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tion 6, numerical examples such as a plate structure, an L-shaped structure, and a

realistic vehicle model (a high mobility multipurpose wheeled vehicle, HMMWV)

modeled with brick-type finite elements are used to demonstrate the proposed

methods. Finally, conclusions are summarized in Section 7.

2. Robust Parameterization Techniques for Element-Level Nonlinearity

For structural design and damage modeling purposes, the parameterization of

the mass and stiffness matrices can be the most important step. This is because the

parameterization techniques enable capturing mass and stiffness variations due to

design changes or damage in the structure. Thus, the reanalysis time can be sig-

nificantly reduced because the finite element mesh does not need to be modified

and remodeled. The parameterization technique has to be adapted for the differ-

ent characteristics of each type of finite element used. For example, the thickness,

Young’s modulus, and material density variations of shell-type elements can be

captured well by third-order Taylor series [8, 9, 12, 13]. However, we found

that the thickness variations for a brick and other types of finite elements such

as hexagonal and tetrahedron elements cannot be captured well by Taylor series

of low order due to an element-level nonlinear characteristics caused by volume

variations. For elements which have volume, local thickness variations induce

volume variations in the elements. In contrast, Taylor series works well for pa-

rameterizing shell-type elements because these do not have actual volume. In this

section, a parameterization technique that captures thickness variations of brick

and other types of finite elements is the focus.

Fig. 1 shows an 8-node brick-type element which uses first-order (linear) shape

functions. Coordinatesx, y, andz are global, and coordinatesξ, η, andζ are local.
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As a conceptual example, consider that the four nodes on the top surface in Fig. 1

move by a distance∆t. The brick-type element has a volume, so when each node

moves, the volume of the brick-type element varies. Thus, the parameterization

technique has to account for these volume variations. To that aim, let us first revisit

the formulation used to derive stiffness matrices for brick-type elements [14, 15].

The equation used to obtain the stiffness matrix can be expressed as

K =

∫

V

BTDBdV

=

∫ ζ=1

ζ=−1

∫ η=1

η=−1

∫ ξ=1

ξ=−1

BTDBdξdηdζ (1)

=

8
∑

i=1

8
∑

j=1

8
∑

k=1

WiWjWkB
T (ξi, ηj , ζk)DB(ξi, ηj, ζk)det(J(ξi, ηj, ζk)),

whereB is a strain matrix (which contains derivatives of the linear shape functions

in global coordinates), andD is an elasticity matrix (which contains Poisson’s ra-

tio ν, and the elastic modulusE). The determinant of the Jacobian in Eq. (1) is

obtained from the coordinate transformation of the strain matrixB. The determi-

nant contains in its denominator a cubic polynomial ofξ, η andζ , which reflects

volume variations. Thus, the parameterization should also contain a cubic poly-

nomial in the denominator. To establish the coefficients of this cubic polynomial,

the volume variations of brick-type elements are considered. As shown in Fig. 1,

one or several nodes on the top surface move to capture thickness variations. The

resulting volume can be expressed as

V = V0

[

1 + d
p− p0
p0

]

= V0

(

1 + d
∆p

p0

)

,

whereV andV0 are the final and the initial volume of the brick-type element,

andp andp0 are the target parameter value (thickness) and the initial parameter
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value. When only one node on the top surface moves, the coefficient d is 1/3.

Similarly, when two nodes move,d = 1/2. Also, when three nodes move,d = 1.

Finally, when four nodes move, the volume variation is proportional to∆p, i.e.

V = V0
∆p

p
. This last type of variation, proportional to∆p, is very well captured

by a regular interpolation. The other three cases, however, are not. To address

this issue, a cubic polynomial which considers the volume variation of brick-type

elements with a target parameter variation∆p is defined as

D(∆p) =

(

1 +
∆p

p0

)(

1 +
1

2

∆p

p0

)(

1 +
1

3

∆p

p0

)

. (2)

The new parameterization equation consists of a fourth-order interpolation in the

numerator and the cubic polynomial in Eq. (2) in the denominator, which yields

the new parameterization as

K(p0 +∆p) ≈
K0 +K1∆p+K2(∆p)2 +K3(∆p)3 +K4(∆p)4

D(∆p)
. (3)

To calculate the matricesK0, K1, K2, K3 andK4 in Eq. (3), five equations are

needed. For that, stiffness matrices for five parameter values are computed. First,

consider the case where∆p = 0. One obtains

K(p0) ≈ K0. (4)

Next, consider∆p = iδp (with i = 1, 2, 3, 4), one obtains

K(p0 + iδp) ≈
K0 +K1(iδp) +K2(iδp)

2 +K3(iδp)
3 +K4(iδp)

4

D(δp)
. (5)

Rearranging Eqs. (4) and (5) into matrix form, for each entrye,q of the matrices
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K1, K2, K3 andK4, one obtains






















1 0 0 0 0

1
D(δp)

δp

D(δp)
(δp)2

D(δp)
(δp)3

D(δp)
(δp)4

D(δp)

1
D(2δp)

(2δp)
D(2δp)

(2δp)2

D(2δp)
(2δp)3

D(2δp)
(2δp)4

D(2δp)

1
D(3δp)

(3δp)
D(3δp)

(3δp)2

D(3δp)
(3δp)3

D(3δp)
(3δp)4

D(3δp)

1
D(4δp)

(4δp)
D(4δp)

(4δp)2

D(4δp)
(4δp)3

D(4δp)
(4δp)4

D(4δp)













































K0,eq

K1,eq

K2,eq

K3,eq

K4,eq























=























K(p0)eq

K(p0 + δp)eq

K(p0 + 2δp)eq

K(p0 + 3δp)eq

K(p0 + 4δp)eq























. (6)

Equation (6) can be easily solved by simply inverting the5× 5 matrix on the left

hand side. This matrix is non-singular and very well behaved for inversion. Also,

note that this inversion has to be done only once (for a givenδp). Let us denote

byA this inverse matrix, i.e.

A =























1 0 0 0 0

1
D(δp)

δp

D(δp)
(δp)2

D(δp)
(δp)3

D(δp)
(δp)4

D(δp)

1
D(2δp)

(2δp)
D(2δp)

(2δp)2

D(2δp)
(2δp)3

D(2δp)
(2δp)4

D(2δp)

1
D(3δp)

(3δp)
D(3δp)

(3δp)2

D(3δp)
(3δp)3

D(3δp)
(3δp)4

D(3δp)

1
D(4δp)

(4δp)
D(4δp)

(4δp)2

D(4δp)
(4δp)3

D(4δp)
(4δp)4

D(4δp)























−1

=























A11 A12 A13 A14 A15

A21 A22 A23 A24 A25

A31 A32 A33 A34 A35

A41 A42 A43 A44 A45

A51 A52 A53 A54 A55























. (7)

Re-arranging Eq. (6) using the entries inA, one obtains

K(p0 +∆p) ≈ (A11 + A21∆p+ A31∆p2 + A41∆p3 + A51∆p4)K(p0)

+ (A12 + A22∆p+ A32∆p2 + A42∆p3 + A52∆p4)K(p0 + δp)

+ (A13 + A23∆p+ A33∆p2 + A43∆p3 + A53∆p4)K(p0 + 2δp)

+ (A14 + A24∆p+ A34∆p2 + A44∆p3 + A54∆p4)K(p0 + 3δp)

+ (A15 + A25∆p+ A35∆p2 + A45∆p3 + A55∆p4)K(p0 + 4δp), or

K(p0 +∆p) ≈ b0K(p0) + b1K(p0 + δp) + b2K(p0 + 2δp) (8)

+ b3K(p0 + 3δp) + b4K(p0 + 4δp).
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Equation (8) shows thatK(p0 + ∆p) is simply a linear combination of five (pre-

computed) matrices. The coefficients in the linear combination depend very non-

linearly on∆p. That is the key factor which ensures the high accuracy of the new

parameterization. Note that the computational cost of the new parameterization is

the same as that for a regular fourth-order interpolation. The accuracy, however,

is higher (as shown on Section 6.1).

3. Reduced-Order Models

The parameterization techniques proposed in Section 2 are for the full-order

finite element model. However, the main objective of this work is to predict vi-

bration responses using ROMs (as opposed to full-order models) to reduce the

calculation time. To detail the construction of ROMs, the fixed-interface Craig-

Bampton component mode synthesis (CB-CMS) [5] is reviewed briefly. Next,

a new transformation matrix is presented and used in conjunction with the new

parameterization technique discussed in Section 2. Finally, NX-PROMs are con-

structed.

3.1. Brief review of Craig-Bampton component mode synthesis

In this section, the fixed-interface CB-CMS [2] method is reviewed. This

modeling approach is broadly used because of its simplicity and computational

stability. To apply the CB-CMS, the complex structure of interest is partitioned

into substructures. The DOFs of each substructure are further partitioned into

active DOFs on the interface (indicated by the superscriptA), and omitted DOFs

in the interior (indicated by the superscriptO). The mass and stiffness matrices
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for a componenti can then be partitioned to obtain

Mi =





mAA
i mAO

i

mOA
i mOO

i



 , and Ki =





kAA
i kAO

i

kOA
i kOO

i



 .

Next, the physical coordinates are changed to a set of coordinates representing

the amplitudes of a selected set of fixed-interface component-level normal modes

ΦN
i (indicated by the superscriptN), and the amplitudes of the full set of static

constraint modesΦC
i = −kOO

i

−1
kOA
i (indicated by the superscriptC). The trans-

formed mass and stiffness matrices for componenti can be expressed as

MCBCMS
i =





m̂C
i m̂CN

i

m̂NC
i m̂N

i



 , and KCBCMS
i =





k̂C
i k̂CN

i

k̂NC
i k̂N

i



 .

In this work, the CB-CMS method is usedonly for the substructures which do

not have any parameter variation or damage.

3.2. Next-generation parametric reduced-order models

In this section, MC-PROMs are improved to be more robust and mathemati-

cally stable. The resulting models are referred to as NX-PROMs.

3.2.1. Transformation matrix for NX-PROMs

The transformation matrix for NX-PROMs is constructed somewhat similar

to MC-PROMs (which was constructed by using the idea behind CB-CMS). It

also has a set of static constraint modesΨC and a set of fixed-interface normal

modesΦN . However, the transformation matrix for NX-PROMs has a different

set of static constraint modes and a different set of fixed-interface normal modes

compared at CB-CMS and MC-PROM. This transformation matrix can be written
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for componenti as

Ti =





I 0

ΨC
aug,i ΦN

aug,i



 ,

whereΨC
aug is referred to as the matrix of augmented constraint modes

ΨC
aug,i =

[

ΨC
0,i ΨC

1,i ΨC
2,i ΨC

3,i ΨC
4,i

]

,

andΦN
aug is referred to as the matrix of augmented fixed-interface normal modes

ΦN
aug,i =

[

ΦN
0,i ΦN

1,i ΦN
2,i ΦN

3,i ΦN
4,i

]

.

MatricesΨC
0,i andΦN

0,i correspond to the nominal parameter values, whereas ma-

tricesΨC
l,i andΦN

l,i (l = 1, 2, 3, 4) correspond to four other parameter values.

In general, the columns ofΦN
aug are not orthogonal. Therefore, for numerical

stability, an orthogonal basis for the space spanned by these modes is computed.

This basis is obtained by a truncated set of left singular vectorsUN of ΦN
aug [13].

Thus, the new transformation matrix can be expressed as

T̃i =





I 0

ΨC
aug,i UN

i



 . (9)

The transformation matrix in Eq. (9) can be used to project the physical domain

onto the NX-PROM domain. The stiffness matrixKNXPROM
i = T̃T

i K
FEM
i T̃i for

componenti (whereKFEM
i represents the stiffness matrix of the full-order model
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of componenti) can be partitioned to obtain

KNXPROM
i =





























KC
00,i KC

01,i KC
02,i KC

03,i KC
04,i KCN

00,i

KC
10,i KC

11,i KC
12,i KC

13,i KC
14,i KCN

11,i

KC
20,i KC

21,i KC
22,i KC

23,i KC
24,i KCN

22,i

KC
30,i KC

31,i KC
32,i KC

33,i KC
34,i KCN

33,i

KC
40,i KC

41,i KC
42,i KC

43,i KC
44,i KCN

44,i

KNC
00,i KNC

11,i KNC
22,i KNC

33,i KNC
44,i KN

i





























.

A similar relation is obtained for the mass matrix of componenti. Here, the

DOFs corresponding to the constraint part (superscriptC) are repeated for the

five parameter values (denoted by subscript 0, 1, 2, 3 and 4). Note that in such an

approach, the size of the mass and stiffness matrices can be quite large. Also, these

matrices may be ill-conditioned because the columns ofΨC
aug,i are not necessarily

linearly independent.

To address this issue, a new method to account for the static constraint modes

is developed. This new method avoids duplicating the interface DOFs (C) and

captures the interface effects more accurately. The approach reduces the number

of sets of static constraint modes (used to obtainMNXPROM
i andKNXPROM

i )

from five sets to just one set. Consider that the actual valuep of the parameter

where the reanalysis is needed exists between thelth and (l + 1)th parameter

values (l = 0, 1, 2, 3 or 4) which were used to constructMNXPROM
i . In that case

(described in Fig. 2), a new static constraint mode can be generated by linearly

interpolating between the static constraint modes for thelth and the(l + 1)th

parameter values to obtain

Ψ̃C
i =

(

pl+1 − p

pl+1 − pl

)

ΨC
l,i +

(

p− pl
pl+1 − pl

)

ΨC
l+1,i = αiΨ

C
l,i + βiΨ

C
l+1,i. (10)
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This new static constraint modẽΨC
i replaces all five static constraint modes used

to construct̃Ti in Eq. (9).

Note that this reduction can be implemented without re-constructingT̃i for

each case of parameter variation. Instead, only simple linear combinations of

partitions of the matricesMNXPROM
i andKNXPROM

i , are needed. Details are

given in Section 3.2.2 below. In the end, the final NX-PROM mass and stiffness

matrices have only a single set of constraint modesΨ̃C
i which always has linearly

independent columns.

3.2.2. parameterization for NX-PROMs

The new interpolation presented in Section 2 is applied to NX-PROMs. To

that aim, five mass and five stiffness are constructed for each componenti (for

l = 0, 1, 2, 3, 4) as follows

MNX
l,i = T̃T

i M(p0 + lδp)T̃i and KNX
l,i = T̃T

i K(p0 + lδp)T̃i.

These matrices are not all used independently to form NX-PROMs. Instead, they

are linearly combined to implement the single set of static constraint modesΨ̃C
i

in Eq. (10). Thus, conceptually,̃Ti is replaced bŷTi, given by

T̂i =





I 0

ΨC
aug,i UN

i



 (αiRl,i + βiRl+1,i) = T̃ (αiRl,i + βiRl+1,i) ,

whereRl,i andRl+1,i are masking matrices of zeros and ones. The matrixRl,i is

a6× 2 block matrix where the blocks(l, 1) and(6, 2) are unit matrices, while all

other blocks are zero. The first five rows correspond toΨC
l,i (l = 0, 1, 2, 3, 4) and

the last row corresponds toUN
i . This new transformation matrix̂Ti is applied to

the mass and stiffness matrices of componenti to construct NX-PROMs. First,

13



five mass and stiffness matrices are constructed for each parameter variationsδp

(for s = 0, 1, 2, 3, 4) as follows

M̂NX
s,i =

(

αiR
T
l,i + βiR

T
l+1,i

)

MNX
s,i (αiRl,i + βiRl+1,i) ,

K̂NX
s,i =

(

αiR
T
l,i + βiR

T
l+1,i

)

KNX
s,i (αiRl,i + βiRl+1,i) .

Next, the new interpolation discussed in Section 2 is applied usingM̂NX
s,i and

K̂NX
s,i . Eq. (8) is used to obtain

M(p0 +∆p)NX
i ≈ b0M̂

NX
0,i + b1M̂

NX
1,i + b2M

NX
2,i + b3M̂

NX
3,i + b4M̂

NX
4,i

K(p0 +∆p)NX
i ≈ b0K̂

NX
0,i + b1K̂

NX
1,i + b2K

NX
2,i + b3K̂

NX
3,i + b4K̂

NX
4,i

wherebs (s = 0, 1, 2, 3, 4) are computed for each∆p by using the matrixA and

the expression in Eq. (8). Note that the five coefficientsbs which depend on the

actual∆p are easily calculated because they are just five scalars that depend only

on∆p andδp irrespective of the size of the finite element mesh.

Finally, the mass and stiffness matrices for theith component of the NX-

PROMs can be partitioned as follows

M(p0 +∆p)NX
i =





MC
∆p,i MCN

∆p,i

MNC
∆p,i MN

∆p,i



 ,

(11)

K(p0 +∆p)NX
i =





KC
∆p,i KCN

∆p,i

KNC
∆p,i KN

∆p,i



 ,

where superscriptC indicates a constraint partition, and superscriptN indicates a

nominal mode partition.

4. Local-Interface Reduction

If the finite element mesh used is very fine, the size of the reduced system-level

matrices is dominated by the constraint DOFs corresponding to theC partition in
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Eq. (11). The constraint DOFs of matrices constructed by CMS-based techniques

are difficult to reduce. This is an important issue because, if the constraint DOFs

cannot be reduced, then the overall structure cannot be efficiently divided into

many substructures. To address this issue, Castanier et al. [6] suggested the use

of characteristic constraint (CC) modes. This technique is based on performing

a secondary eigenanalysis of the constraint partition (C) of the system-level mass

and stiffness matrices constructed by CB-CMS. This technique is applied after the

system-level matrices are constructed. However, the core idea of NX-PROMs is

that all analyses are accomplished at the substructure-level, and not at the system-

level. Thus, an alternate interface reduction technique is proposed next. The new

approach is applied at the substructure-level, and it is referred to as local-interface

reduction (LIR).

The local-interface reduction technique is also based on a secondary eige-

nanalysis of the constraint partition. However, the secondary eigenanalysis is

executed on the constraint partitions (C) of the substructural matrices, not the

system-level matrices. The secondary eigenanalyses on constraint DOFs (C) of

the mass and stiffness matrices of componenti constructed by either CB-CMS or

the NX-PROM approach are given by

KC
∆p,iΦ

CC
∆p,i −MC

∆p,iΦ
CC
∆p,iΛ∆p,i = 0,

whereΛ∆p,i is a diagonal matrix which contains the eigenvalues, andΦCC
∆p,i are the

characteristic constraint (CC) modes of theith substructure. They are truncated

for the frequency range of interest by using the eigenvalues inΛ∆p,i. The rows of

theCC modes indicate the constraint DOFs of the substructure, and the columns

represent the set of truncatedCC modes. TheCC modes for each substructure are

used to reduce the interface DOFsfor each boundary locally. Note that joining all
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CC modes for each interface between different components may lead to vectors

which are not necessarily linearly independent. However, they span the adequate

space. Thus, the left singular values of theCC interface modes may have to be

used for certain interfaces. To demonstrate the LIR procedure, a simple plate

model is used in Section 6.2.

The set of orthogonal basis vectors used for all interfaces that a componenti

has with other components are grouped in a block diagonal matrix which contains

the entire interface componenti has. The number of blocks is equal to the number

of components that are connected to componenti. These matrices are denoted

by U∆p,i. Of course, if componenti connects to only one other component, then

there is only one block inU∆p,i. Next, the mass and stiffness matrices in Eq. (11)

are projected usingU∆p,i as follows

MCC
∆p,i = UT

∆p,iM
C
∆p,iU∆p,i, MCCN

∆p,i = UT
∆p,iM

CN
∆p,i, MNCC

∆p,i = MCN
∆p,iU∆p,i,

(12)
KCC

∆p,i = UT
∆p,iK

C
∆p,iU∆p,i, KCCN

∆p,i = UT
∆p,iK

CN
∆p,i, KNCC

∆p,i = KCN
∆p,iU∆p,i.

Thus, the final mass and stiffness matrices with reduced constraint DOFs are given

for componenti by

MLIR
∆p,i =





MCC
∆p,i MCCN

∆p,i

MNCC
∆p,i MN

∆p,i



 , KLIR
∆p,i =





KCC
∆p,i KCCN

∆p,i

KNCC
∆p,i KN

∆p,i



 ,

where superscriptLIR indicates that the matrices are constructed using local-

interface reduction. An example is provided in Section 6.2.

5. Assembly

To predict the system-level dynamics, the mass and stiffness matrices obtained

in Sections 3 and 4 for each substructure have to be assembled. To do that, ge-
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ometric compatibility conditions must be enforced. In the following, we discuss

separately the case where LIR is not used and the case where it is used.

Let us consider the case where the geometric compatibility conditions are used

for models without LIR. In this case, the constraint partitions (C) of component-

level matrices keep the meaning of the physical interface DOFs of matrices ob-

tained from FEMs. This means that the geometric compatibility conditions be-

tween interface DOFs (constraint DOFs) can be applied directly to construct the

system-level matrices. The complete component-level equations of motion for

componenti based on CB-CMS or the NX-PROM approach can be expressed as

MROM
i q̈ROM

i +KROM
i qROM

i = FROM
i , (13)

where ROM indicates component-level matrices obtained using either CB-CMS

or the NX-PROM approach. The stiffness matrices in Eq. (13) obtained for com-

ponents without parameter variability can be expressed as

KROM
i = KCBCMS

i =





KC
i KCN

i

KNC
i KN

i





CBCMS

. (14)

For component with parameter variability, the stiffness matrices in Eq. (13) can

be expressed as

KROM
i = KNX

i =





KC
∆p,i KCN

∆p,i

KNC
∆p,i KN

∆p,i





NXPROM

. (15)

The formulas for the mass matrices are similar to those for the system matrices in

Eqs. (14) and (15) (and are omitted here for the sake of brevity).
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Next, the matrices in Eq. (13) are grouped for alli to obtain

M̂ = Bdiag
[

MROM

1 · · · MROM

n

]

,

K̂ = Bdiag
[

KROM
1 · · · KROM

n

]

, (16)

F̂ =
[

FROM
1

T
· · · FROM

n

T
]T

,

wheren is the number of components, andBdiag[·] denotes a block-diagonal

matrix.

The geometric compatibility condition for the ROM is expressed as

qC
i = qC

j , (17)

where,qi andqj are the generalized coordinates for the constraint partitions (C for

CB-CMS or NX-PROMs) that correspond to the interface between components

i and j. Of course, there is no compatibility condition to be enforced for two

components which do not have a common interface.

Equation (17) is used to transform the matrices in Eq. (16) similar to the

assembly process in all finite element modeling methods. The final assembled,

reduced-order, system-level matrices are given by

MROM
sys =





MC MCN

MNC MN



 ,KROM
sys =





KC KCN

KNC KN



 ,

FROM
sys =





FC

FN



 ,
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where

KCN =
[

KCN
1 KCN

2 · · · KCN
n

]

, KNC = KCNT
,

KN =

















KN
1 0 · · · 0

0 KN
2 · · · 0

...
...

. . . 0

0 0 · · · KN
n

















,

andKC is a matrix which is obtained by the assembly of each interface. In gen-

eral,KC is a matrix which has a smaller size than theC partitions inK̂. The same

process is applied to obtainFC . Also, similar relations are obtained for the mass

matrixMROM
sys (and are omitted here for the sake of brevity).

Finally, the compatibility conditions for models constructed using LIR can be

expressed almost identically to those for models without LIR. The only difference

is that the generalized coordinates in Eq. (17) represent amplitudes of character-

istic constraint modes or amplitudes of the basis vectors used to capture the space

spanned by the characteristic constraint modes.

6. Numerical Results

6.1. Element-level nonlinearity of brick and other types of finite elements

Figure (3) shows a simple plate structure modeled with a shell-type finite el-

ements, wheret is the thickness of the plate (t = 0.2 mm). To examine the

variation in the entries of the finite element mass and stiffness matrices for this

substructure, the thicknesst is varied by increments of∆t = 0.01mm.

The size of the mass and stiffness matrices of the simple structure shown in

Fig. 3 is15, 582×15, 582. As an example, the32nd diagonal entries of the mass
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and stiffness matrices,M32,32 andK32,32, are shown in Fig. 4 as the thickness

varies (approximated matrices are shown by a dash-dot line, and the actual ma-

trices are shown by a solid-line for various values of∆p). One may observe that

those entries of the mass and stiffness matrices vary almost linearly. To capture

these variations very accurately, a cubic interpolation is used as follows

K(p0 +∆p) ≈ K̃0 + K̃1∆p+ K̃2∆p2 + K̃3∆p3. (18)

The matricesK̃0, K̃1, K̃2, andK̃3 are computed by using the stiffness matrices

evaluated at three parameter values. These values are the reference valuep0, the

first perturbed valuep1 = p0 + δp, the second perturbed valuep2 = p0 + 2δp and

the third perturbed valuep3 = p0 + 3δp. The procedure is standard and similar to

the one used in Section 2, so its details are omitted here for the sake of brevity. A

similar interpolation is used for the mass matrix. Note that, in contrast to Taylor

series, the cubic interpolation does not require the calculation of derivative terms.

Next, to examine the variations in the entries of the mass and stiffness matri-

ces for brick-type elements, the same plate structure is modeled with brick-type

elements. The nominal thickness of the plate is (the same)0.2 mm and is varied

by (the same) increments of∆t = 0.01 mm, as shown in Fig. 5. The thickness is

varied in a region near the center of the plate. The entries of the mass and stiffness

matrices near the DOFs where the thickness is varied are affected. A sample DOF

affected is the645th. The645th diagonal entry of the mass matrix varies linearly

(and is omitted for the sake of brevity). The same entry of the stiffness matrix,

however, does not vary linearly, as shown in Fig. 6 (left), where exact values are

shown by a solid-line. To capture this nonlinear variation, the cubic interpola-

tion function in Eq. (18) is used. The approximate values obtained are shown by

a dash-dot line. These results show that Eq. (18) is not good enough to capture
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the highly nonlinear variation of the stiffness matrix. Therefore, a fourth-order

interpolation is used as follows

K(p0 +∆p) ≈ K̃0 + K̃1∆p + K̃2∆p2 + K̃3∆p3 + K̃4∆p4. (19)

This fourth-order interpolation captures well the nonlinear variation in the entries

of the stiffness matrix as shown in Fig. 6 (right).

Based on the results in Fig. 6, one may assume that the errors obtained based

on Eq. (19) are negligible. However, that is not correct, as demonstrated by the

forced response of the plate calculated using exact and approximated matrices.

Figure (7) shows the forced response at one of the DOFs on the plate for excita-

tion frequencies near the first resonance. The solid-line represents the response

computed by the actual mass and stiffness matrices, and the dash-dot line in-

dicates the response computed by the mass and stiffness matrices parametrized

using Eq. (19) for the case of∆t = 0.37 mm. Clearly, the forced response com-

puted by the parametrized mass and stiffness matrices does not agree with that

computed by the actual matrices. This means that the errors in the entries of the

stiffness matrix from the fourth-order interpolation are not small enough to cap-

ture accurately the dynamic response of the structure with a modified thickness.

Note that, the errors in the dynamic response are induced by inaccuracies in the

stiffness matrix, not in the mass matrix. These results demonstrated that a new pa-

rameterization technique focused on capturing element-level nonlinear variations

in the stiffness is needed for brick-type finite elements.

The parametrized stiffness matrix was calculated using Eq. (8) for∆p =

0.37 mm. As a sample of results, Fig. 8 shows that the645th diagonal entry of

the exact and the approximated stiffness matrices match extremely well. Similar

matches are observed for all entries of the matrices. Next, forced responses were
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calculated using these matrices. The results are shown in Fig. 9. The solid-line

indicates the response computed using the exact matrices, and the dash-dot line

indicates the response computed by using the new parametrized matrices. The re-

sults closely match. Moreover, the natural frequencies for the exact matrices and

the new parametrized matrices, match also, as shown in Table 1.

6.2. Example of local-interface reduction

Consider a structure composed of 5 substructures and 3 boundaries as shown

in Fig. 10. Γj represents thejth boundary. First, using the constraint partitions

(C) of the reduced mass and stiffness matrices, theCC modes are computed.

These areΦCC
∆p,1, Φ

CC
∆p,2, Φ

CC
∆p,3, Φ

CC
∆p,4 andΦCC

∆p,5. ΦCC
∆p,1 has interface DOFs for

boundaryΓ1 andΓ2, whileΦCC
∆p,2 has interface DOFs forΓ2 andΓ3. Substructures

3, 4 and 5 each have one boundaryΓ1, Γ2, andΓ3, respectively. The mathematical

representation for these partitions for eachCC mode can be expressed as

ΦCC
∆p,1 =





(

ΦCC
∆p,1

)Γ1

(

ΦCC
∆p,1

)Γ2



 , ΦCC
∆p,2 =





(

ΦCC
∆p,2

)Γ2

(

ΦCC
∆p,2

)Γ3



 ,

ΦCC
∆p,3 =

(

ΦCC
∆p,3

)Γ1

, ΦCC
∆p,4 =

(

ΦCC
∆p,4

)Γ2

, ΦCC
∆p,5 =

(

ΦCC
∆p,5

)Γ3

.

By using each boundary partition of theCC modes, the augmented set ofCC

modes for each boundary is constructed as

ΦΓ1

∆p,aug =
[

(

ΦCC
∆p,1

)Γ1
(

ΦCC
∆p,3

)Γ1

]

,

ΦΓ2

∆p,aug =
[

(

ΦCC
∆p,1

)Γ2
(

ΦCC
∆p,2

)Γ2
(

ΦCC
∆p,4

)Γ2

]

, (20)

ΦΓ3

∆p,aug =
[

(

ΦCC
∆p,2

)Γ3
(

ΦCC
∆p,5

)Γ3

]

.

Equation (20) describes the augmentedCC bases for boundariesΓ1, Γ2, andΓ3.

However, the augmented basesΦΓ1

∆p,aug, Φ
Γ2

∆p,aug, andΦΓ3

∆p,aug are not guaranteed
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to be linearly independent. Thus, they cannot be directly used to reduce the con-

straint DOFs because of lack of numerical stability. Thus, an orthogonal basis

for the space spanned by the augmentedCC basis is used. Specifically, the left

singular vectors̃UΓ1

∆p, Ũ
Γ2

∆p andŨΓ3

∆p of the three augmentedCC basesΦΓ1

∆p,aug,

ΦΓ2

∆p,aug, andΦΓ3

∆p,aug in Eq. (20) are computed for each substructure, and the left

singular vector corresponding to singular values larger than0.01% of the maxi-

mum singular value are selected for each boundary. The rows of the orthogonal

basesŨΓ1

∆p, Ũ
Γ2

∆p andŨΓ3

∆p are (re)sorted for each substructure to match the inter-

face DOFs for each boundary. The resorted matrices are denoted byUΓ1

∆p, U
Γ2

∆p

andUΓ3

∆p. The (re)sorted matrices are grouped for each componenti to obtain ma-

tricesU∆p,i whichU∆p,i are used to project the interface DOFs onto the secondary

generalized coordinates (CC domain). For example, substructure 1 includes the

Γ1 andΓ2 boundaries. To reduce the interface DOFs of substructure 1, the orthog-

onal basesUΓ1

∆p andUΓ2

∆p are grouped in a matrixU∆p,1 given by

U∆p,1 =





UΓ1

∆p 0Γ1

0Γ2 UΓ2

∆p



 . (21)

The orthogonal basis for substructure 2 is constructed in the same way, to obtain

U∆p,2 =





UΓ2

∆p 0Γ2

0Γ3 UΓ3

∆p



 . (22)

For some of the substructures, the grouping ofUΓ
∆p matrices is not necessary.

For example, the bases used for substructures 3, 4 and 5 are simply given by

U∆p,3 = UΓ1

∆p, U∆p,4 = UΓ2

∆p, and U∆p,5 = UΓ3

∆p (23)

Next, the orthogonal basis for each substructure is constructed using Eqs. (21),

(22) and (23), and the interface DOFs (C) of the NX-PROMs generalized coor-
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dinates are projected into the secondary generalizedCC coordinates as shown in

Eq. (12).

6.3. L-shaped plate modeled with brick-type finite elements

To demonstrate the proposed NX-PROM and LIR methodologies, an L-shaped

structure modeled with brick-type elements (shown in Fig. 11) and containing

thickness variations is investigated numerically. Figure (11) shows the pristine

structure and the structure with thickness variations. The structure consists of

eight substructures. Substructures7 and8 have three cases of thickness variations,

as given in Table 2. The nominal thickness of the structure is1 mm and the

elemental thickness is0.2 mm. The thickness variations applied are very large

compared to the nominal elemental thickness considered. This causes the entries

of the mass and stiffness matrices to vary nonlinearly. CB-CMS is applied for the

1st to the6th substructure, and the NX-PROM approach is applied for the7th and

the8th substructures.

Figure (12) shows the system-level forced responses of the nominal struc-

ture and the three cases of thickness variation. The dotted lines represent the

vibration response of the nominal structure. The crosses and circles represent the

responses of the structure with thickness variations predicted using NX-PROMs

and full-order models, respectively. To reveal the enhanced performance of the

NX-PROMs, the vibration response predicted by MC-PROMs is also shown by

the stars in Fig. 12. For all three cases, the forced response predicted by the full-

order models and the NX-PROMs show excellent matching. However, the forced

responses predicted by MC-PROMs are not accurate compared to the full-order

models. This is due to the fact that MC-PROMs cannot capture the volume varia-

tion of brick-type finite elements, which leads to poor predictions of the vibration

24



response. Note also that the thickness variations affect significantly the structure,

as shown by the significant differences between the response of the nominal struc-

ture and the other responses.

The number of DOFs of the full-order model and the NX-PROMs are 18,300

and 3,502, respectively. The system-level DOFs of the NX-PROMs include 3,000

interface DOFs and 502 generalized internal DOFs. The number of generalized

internal DOFs is small. However, the number of interface DOFs is large, and

should be reduced. Thus, the LIR technique described in Section 4 was applied.

Fig. 11 shows the interfaces which are reduced, whereΓm indicates themth inter-

face. Fig. 13 shows the forced responses for the nominal structure and the three

cases of thickness variations. The dotted lines represent the response of the nom-

inal structure. The crosses and circles indicate the responses of the structure with

thickness variations predicted using NX-PROMs with full interface DOFs and

full-order models, respectively. The squares represent the responses predicted

using NX-PROMs with LIR. These latter models use only533 interface DOFs,

reduced by LIR from 2,498. The response predicted by NX-PROMs with LIR

agree very well with the responses of the full-order model.

6.4. Results for a high mobility multipurpose wheeled vehicle model

In this section, NX-PROMs are used to predict the dynamic response of a

realistic vehicle model. We consider the base frame of a high mobility multipur-

pose wheeled vehicle (HMMWV). The finite element model for the HMMWV is

a conventional model used to examine its dynamic response [10, 11, 12, 13, 16].

Figure 14 shows the system-level and substructure-level finite element models of

the HMMWV frame. The cross-bar structure is composed of substructuresCL

andCR, which are modeled with solid-type finite elements, as shown in Fig. 15.
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The marked region in Fig. 15 indicates the nodes which move dueto thickness

variation. Table 3 indicates two cases of thickness variation forCL andCR. The

thickness variations applied are much larger than those used in the L-shaped exam-

ple. We chose these large variations to demonstrate that the proposed methods are

very accurate even when the thickness variations are very large. Such large vari-

ations are encountered in practice especially when components are re-designed.

The structural and the elemental thicknesses of theCL andCR substructures are

5 mm and2.5 mm, respectively. NX-PROMs were created for theCL andCR

substructures, and CB-CMS was applied to the remaining substructures. Next,

forces and moments were applied to the engine cradle, and the resulting forced

response were computed. Figure 16 shows the response of the HMMWV frame

for cases 1 and 2. The measured point is shown in Fig. 14. The dotted line shows

the forced response of the nominal HMMWV structure. The circles and crosses

indicate the responses of the re-designed HMMWV frame predicted by full-order

models and NX-PROMs, respectively. The stars show the responses predicted by

MC-PROMs. Results obtained using the full-order models and the NX-PROMs

show excellent agreement for both cases 1 and 2, but the results predicted by MC-

PROMs do not agree well with the response obtained using the full-order models.

Also, note that the re-design has important effects on the structure, as demon-

strated by the significant difference between the responses of the nominal and the

re-designed structures.

The full-order model of the HMMWV has 123,201 DOFs. The NX-PROMs

have 2,683 DOFs, of which 1,473 are constraint DOFs and 1,210 are fixed-interface

generalized DOFs. To reduce the number of constraint DOFs, LIR was applied.

Figure 14 shows the interfaces of the substructures in the HMMWV frame. Ta-
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ble 4 shows what are the interface DOFs for each substructure.Figure 17 shows

the response of the HMMWV model predicted by NX-PROMs for cases 1 and 2

using different levels of reduction of the overall interface DOFs. Magnified plots

near the resonant frequencies are included also. Note that the accuracy of the re-

sponse predicted by LIR depends on the number of remaining interface DOFs. In

these two cases, an acceptable accuracy is obtained when the remaining interface

DOFs are not fewer than approximately 1,000.

7. Conclusions and Discussion

The key contributions of this paper are as follows. The proposed next-generation

parametric reduced-order models (NX-PROMs) were developed by using a new

parameterization technique to capture the element-level nonlinearity due to vol-

ume variations of finite elements of brick or other types. In addition, to establish a

mathematically stable formulation for NX-PROMs, a new transformation matrix

was developed using a novel interpolation of static constraint modes. Finally, a

local-interface reduction (LIR) technique was proposed for further enhancing the

computational efficiency of the NX-PROMs.

Novel, next-generation parametric reduced order models (NX-PROMs) for

predicting the vibration response of complex structures have been presented. These

models address two main drawbacks of MC-PROMs. The first is that the param-

eterization techniques used in MC-PROMs cannot capture the thickness variation

of brick and other types of finite elements due to element-level nonlinearity of

the stiffness matrix. The second drawback is that the transformation matrix for

MC-PROMs is not numerically stable. Thus, a new parameterization technique

was developed to capture the nonlinearity of the stiffness matrix, and a new trans-
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formation matrix was proposed to make the NX-PROMs more stable numerically

and more accurate compared to MC-PROMs.

To reduce the interface DOFs, a new method called local-interface reduction

(LIR) was developed. NX-PROMs were developed for realistic substructural anal-

ysis. In such cases, the interface DOFs should be reduced before the system-level

matrices are constructed. The LIR technique uses characteristic constraint modes

computedfor each substructure by using the constraint partition of the reduced

mass and stiffness matrices constructed by CB-CMS or the NX-PROM approach.

By using these characteristic constraint modes, orthogonal bases were defined to

reduce the interface DOFs of each substructure. That is a key advantage of this

reduction technique, and it is very useful for substructural analysis.

Similar to MC-PROMs, the novel NX-PROMs also provide smaller system

matrices and shorter analysis and reanalysis time to predict the vibration response

of complex structures. This means that NX-PROMs are especially useful for the

repetitive analyses needed in optimization problems where geometric changes are

applied in the design cycle for structures modeled with brick and other types of

finite elements.
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Table 1: 10 lowest natural frequencies for exact and parametrized matrices with volume variations

Mode Exact Approximated

1 4278.24 4278.24

2 9024.39 9011.52

3 9068.45 9053.21

4 14323.12 14323.11

5 24952.70 24952.34

6 25024.01 25023.94

7 27463.11 27460.10

8 27656.15 27654.70

9 36098.49 36098.51

10 41275.58 41262.95
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Table 2: Thickness variations in substructures 7 and 8 of the L-shaped plate

Substructure Thickness, case 1 Thickness, case 2 Thickness,case 3

7 1.00mm → 1.22 mm 1.00mm → 1.42 mm 1.00mm → 1.81 mm

8 1.00mm → 1.22 mm 1.00mm → 1.42 mm 1.00mm → 1.81 mm
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Table 3: Thickness variations in substructuresCL andCR of the HMMWV frame

Substructure Thickness, case 1 Thickness, case 2

CL 5 mm→ 20mm 5mm → 32 mm

CR 5 mm→ 20mm 5mm → 32 mm
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Table 4: Interfaces between substructures in the HMMWV model

P
P
P
P
P
P
P

P
P
P
P
P
PP

Interface

Substructure
1 2 3 4 5 6 7 8 9 10

Γ1 O O

Γ2 O O

Γ3 O O

Γ4 O O

Γ5 O O

Γ6 O O

Γ7 O O

Γ8 O O

Γ9 O O

Γ10 O O

Γ11 O O

Γ12 O O

Γ13 O O

Γ14 O O
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Figure 1: Sample 8-node brick element with global and local coordinates
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Figure 3: Simple plate structure modeled with shell-type elements
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Figure 4: The32nd diagonal entries of the exact and the parametrized mass and stiffness matrices

obtained by using a classic cubic interpolation for shell-type elements
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Figure 5: Simple plate structure modeled with brick-type elements

43



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4
x 10

4

Thickness (mm)

K
6

4
5

,6
4

5

 

 

Exact

Classic Interpolation

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4
x 10

4

Thickness (mm)

K
6
4
5
,6

4
5

 

 

Exact

Fourth Order Interpolation

Figure 6: The645th diagonal entry of the exact and the parametrized stiffness matrices obtained

by using a classic cubic interpolation (left) and an classic fourth order interpolation (right) for

brick-type elements
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Figure 7: Forced responses calculated for∆p = 0.37mm using the exact and parametrized mass

and stiffness matrices obtained based on a fourth-order interpolation for brick-type elements
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Figure 8: The645th diagonal entry of the exact and the parametrized stiffness matrices obtained

by using the new interpolation for brick-type elements
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Figure 9: Forced response calculated for∆p = 0.37 mm using the exact and the parametrized

mass and stiffness matrices obtained based on the new interpolation for brick-type elements
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Figure 12: Forced response predictions of the L-shaped platefor the nominal structure and for

cases 1, 2 and 3 computed using full-order models, MC-PROMs and the novel NX-PROMs
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Figure 13: Forced response predictions of the L-shaped platefor the nominal structure and for

cases 1, 2 and 3 computed using full-order models, NX-PROM, and NX-PROM with LIR
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Figure 16: Forced response predictions for the HMMWV frame for the nominal structure and for

cases 1 (top) and 2 (bottom)
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Figure 17: Forced response predictions for the HMMWV frame obtained using NX-PROMs with

LIR for different levels of reduction; the total number of DOFs obtained for each model using LIR
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