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Final Report 

Emergent Intelligent Behavior through Integrated Investigation of Embodied Natural Language, 
Reasoning, Learning, Computer Vision, and Robotic Manipulation 

Purdue University 
Jeffrey Mark Siskind 
N00173-10-1-G023 

21 June 2010-20 June 2011 
Monday 10 October 2011 

1   Efforts under this grant 

Our efforts under this grant have focused on the following activities: 
• We developed a method for determining the camera-relative pose of an assembly constructed 

out of LINCOLN LOGS from a single image from an uncalibrated camera. This method 
uses the inherent structure of the LINCOLN LOG assembly domain which has orthogonally 
oriented logs on planar surfaces parallel to the ground plane resulting in two predominant 
directions of image edges when projected to the image plane. 

• We developed a method for determining the structure (component logs and their 3D place- 
ment) of a LINCOLN LOG assembly from a single image from an uncalibrated camera. This 
method uses a novel visual language model that encodes the inherent structure of the LIN- 
COLN LOG assembly domain and uses this language model to improve detection accuracy 
over what is possible from raw low-level detector output. 

• We extended the above structure-estimation method to support: 
- Determination of confidence in ones structure estimate. 
- Determination of what is occluded and what is visible. 
- Improving the reliability of ones structure estimate by integrating information from 

multiple views, to observe occluded parts of the structure. 
- Improving the reliability of ones structure estimate by disassembling parts of the struc- 

ture to render occluded parts visible. 
• We developed a method for generating English descriptions of the structure of a LINCOLN 

LOG assembly as recovered from visual input. 
• We developed a method for controlling a robot manipulator arm to replicate a LINCOLN 

LOG assembly from an English description. 
• We developed a method to allow two robot manipulator arms to collaborate when building a 

LINCOLN LOG assembly. One robot serves as an inventory manager inventorying the parts 
available on its work surface. The second robot serves as the builder, requesting parts from 
the inventory manager and placing them in the assembly under construction. 

All of the above are fully documented in the papers that we have published or submitted for publi- 
cation, along with the web sites we have prepared, as outlined below. 



2 Deliverables 

Our statement of work states: 

Under this grant we will investigate and conduct research on methods for determin- 
ing the pose and structure of LINCOLN LOG assemblies from one or more images of 
such assemblies taken from one or more viewpoints at one or more stages of partial 
disassembly together with optional linguistic specification of constraints on the ob- 
served assembly. We will use those methods to drive robotic disassembly of LINCOLN 

LOG assemblies whose structure has been so determined. And we will quantitatively 
evaluate the performance of these methods. The results of this research effort will be 
detailed in a final report to be delivered on or by 31 October 2010. 

We will deliver a final report, on or by 31 October 2010, detailing the methods devel- 
oped along with a quantitative evaluation of their performance. 

Award of the grant was delayed so that the initial period of performance was extended until 20 
November 2011. A no-cost extension extended the period of performance through 20 June 2011. 
We have accomplished the objectives outlined in the above statement of work and published our 
results (or in some cases submitted our results for publication) as outlined below. We attach the 
published, accepted, and submitted papers as appendices to this report. 

3 Publications 

3.1 Published 

Siddharth, N., Barbu, A., and Siskind, J.M., A Visual Language Model for Estimating Object Pose 
and Structure in a Generative Visual Domain, ICRA, 2011. 

3.2 Accepted 

Wingate, D., Goodman, N.D., Stuhlmueller, A., and Siskind, J.M., Nonstandard Interpretations of 
Probabilistic Programs for Efficient Inference, NIPS, 2011. 

3.3 In Review 

Siddharth, N., Barbu, A., and Siskind, J.M., Seeing Unseeability to See the Unseeable, submitted 
to ICRA 2012. 

3.4 Invited Presentations 

Siskind, J.M., Mediating Cross-Modal Perception, Motor Control, Language, and Reasoning with 
Common and Deep Semantic Representations, AAAI workshop on Language-Action Tools for 
Cognitive Artificial Agents: Integrating Vision, Action, and Language, 2011 



3.5   Web Sites 

The following web sites acknowledge funding under this contract: 
https://engineering.purdue.edu/~qobi/mindseye/ 
(Click on Online appendix for the kickoff meeting to see the acknowledgment. The README files 
included in many of the downloadable releases also contain the acknowledgment.) 

http://upplysingaoflun.ecn.purdue.edu/~qobi/cccp/ 
(Click on Research and followed by either Our Robotic Testbed, Structure Estimation from a Single 
View, Structure Estimation from Multiple Views, Structure Estimation from Partial Disassembly, 
Structure Assembly and Disassembly, or Robot Collaboration to see the acknowledgment.) 

https://engineering.purdue.edu/~qobi/icra2011/ 

https://engineering.purdue.edu/~qobi/icra2 012/ 

4   Execution of funding 

Our cumulative expenses for 21 June 2010-20 June 2011 total $49,949.63. 



A Visual Language Model for Estimating Object Pose and Structure 
in a Generative Visual Domain 

Siddharth Narayanaswamy, Andrei Barbu, and Jeffrey Mark Siskind 

Abstract—We present a generative domain of visual objects 
by analogy to the generative nature of human language. 
Just as small inventories of phonemes and words combine 
in a grammatical fashion to yield myriad valid words and 
utterances, a small inventory of physical parts combine in a 
grammatical fashion to yield myriad valid assemblies. We apply 
the notion of a language model from speech recognition to 
this visual domain to similarly improve the performance of 
the recognition process over what would be possible by only 
applying recognizers to the components. Unlike the context- 
free models for human language, our visual language models 
are context sensitive and formulated as stochastic constraint- 
satisfaction problems. And unlike the situation for human 
language where all components are observable, our methods 
deal with occlusion, successfully recovering object structure 
despite unobservable components. We demonstrate our system 
with an integrated robotic system for disassembling structures 
that performs whole-scene reconstruction consistent with a 
language model in the presence of noisy feature detectors. 

I. INTRODUCTION 

Human language is generative:1 a small inventory of 
phonemes combine to yield a large set of words and then 
this inventory of words combine to yield a larger set of 
utterances. Systems that process language must deal with 
the combinatorial nature of generativity. The probability of 
correct word recognition becomes fleetingly small with even 
a slight probability for error in phoneme recognition and the 
probability of determining the correct parse of an utterance 
becomes fleeting small with even a slight probability for error 
in word recognition. This is remedied with a language model, 
a specification of which combinations of phonemes constitute 
valid words and which combinations of words constitute 
valid utterances. Such a language model often takes the form 
of a grammar. 

The vast majority of computer-vision research in pose 
estimation and object recognition deals with nongenerative 
collections of objects. Such nongenerative collections require 
distinct models or exemplars for each object (class) that 
varies greatly in shape, structure, or appearance. We instead 
present an approach for doing pose estimation and structure 
recognition in generative visual domains, analogous to the 
approach for human language. We illustrate this approach 
with the domain of LINCOLN LOG assemblies. LINCOLN 

htcp://engineering.purdue.edu/-qobi/icra2011 
The   authors   are   with   the   School   of   Electrical   and   Computer 

Engineering,   Purdue    University.   West   Lafayette,   IN,   47907,   USA 
{snarayan,abarbu,qobi}@purdue.edu 

1 We mean the Chomskyan sense of generative, not the sense in contrast 
to discriminative. Indeed, while our domain is generative in the Chomskyan 
sense, our recognizer uses a discriminative model. 

LOGS is a children's assembly toy with a small component 
inventory. We limit this inventory to three component types: 
1-notch, 2-notch, and 3-notch logs. These combine in myriad 
ways to yield a large set of assemblies. We present low-level 
feature detectors that collect evidence for the components in 
a fashion analogous to low-level feature detectors in speech 
recognizers. But as in speech, the probability of correct 
recognition of an entire assembly becomes fleetingly small 
with even a slight probability for error in log recognition. 
We remedy this with a visual language model or a grammar 
of LINCOLN LOGS, a specification of which combinations 
of logs constitute valid assemblies. 

The analogy breaks down in two ways requiring novel 
methods. First, most computer models of speech and lan- 
guage assume that the grammar is context free. This allows 
a top-down tree-structured generative process where the gen- 
eration of siblings is independent. In contrast, the symbolic 
structure underlying LINCOLN LOG assemblies takes the 
form of graphs with cycles and thus the visual language 
model is context sensitive and is formulated as a stochastic 
constraint-satisfaction problem. Second, in language, all of 
the components are observable; at least in principle, one 
can obtain perceptual evidence of each phoneme in a word 
and each word in an utterance. In contrast, visual domains 
exhibit occlusion; it is almost always necessary to determine 
object structure without perceptual evidence for all of the 
components. Our methods address both of these issues. 
Our work builds upon the notion that scenes and objects 
are represented as descriptions involving parts and spatial 
relations [ 1 ]—[ 10], differing from prior work in the extreme 
degree of generativity of the LINCOLN LOG domain. None 
of this prior work focuses on domains that can generate as 
large a class of distinct structures from as small a class of 
components. Moreover, we focus on determining the precise 
pose and structure of an assembly, including the 3D pose of 
each component, with sufficient accuracy to support robotic 
manipulation and, in particular, the ability to robotically 
construct a symbolically precise replicate of a structure from 
a single image. 

LINCOLN LOG structures are composed out of a small 
inventory of components, namely 1-notch, 2-notch, and 3- 
notch logs. As shown in Fig. 1, such logs are characterized 
by a small number of shape parameters: the inter-notch 
distance l\, the log diameter h. and the distance I3 from a log 
end to the closest notch center. Valid structures contain logs 
arranged so that their notches are aligned and their medial 
axes are parallel to the work surface. Thus valid structures 



Fig. 1.   The 3D geometric shape parameters of LINCOLN LOGS. 

have logs on alternating layers j at height li(j+0.5) oriented 
along one of two orthogonal sets of parallel lines spaced 
equally with horizontal distance l\. The lines for even layers 
are mutually parallel, the lines for odd layers are mutually 
parallel, and the projections of a line from an even layer 
and an odd layer onto the work surface are perpendicular. 
We refer to this set of lines as the grid (see Fig. 2). This 
grid imposes a symbolic structure on the LINCOLN LOG 

assembly. Symbolic grid coordinates (i,j,k) map to metric 
camera-relative coordinates (x,y,z) by the parameters l\, h, 
and h together with the structure pose: the transformation 
from the grid coordinate system to the camera coordinate 
system. Estimating the structure of a LINCOLN LOG as- 
sembly thus reduces to two phases: estimating the structure 
pose (section II) and determining the log occupancy at each 
symbolic grid position (section III). 

II. ESTIMATING THE STRUCTURE POSE 

Before beginning these two phases, we first compute a 
mask that separates the LINCOLN LOG structure in the image 
foreground from the background. We manually collect 20-30 
image segments of LINCOLN LOG components and compute 
the mean fl and covariance £ of the pixel values in these 
segments in a five-dimensional color space UVHSI. We then 
derive a mask M from an input image / containing those 
pixels p with values whose Mahalanobis distance from fl is 
less than or equal to a threshold t: 

Mp = 
0 

I|C(/„)-MIIE<' 
otherwise 

where C denotes the map from input pixel values to UVHSI. 
Nominally, the structure pose contains six degrees of 

freedom corresponding to translation and rotation about each 
axis. To simplify, we assume that the structure rests on the 
horizontal work surface. Thus we fix vertical translation, roll 
around the camera axis, and pitch around the horizontal axis 
perpendicular to the camera axis to be zero, leaving only 
three free parameters: horizontal translation of the structure 
along the work surface and yaw around the vertical axis. To 
resolve the periodic translation ambiguity in the symbolic 
grid coordinate system, we assume that the minimum occu- 
pied i, j, and k values are zero. We further assume that we 
know the symbolic grid size: the maximum occupied i, j, 
and k values. 

Images of LINCOLN LOG assemblies contain a predomi- 
nance of straight edges that result from log edges. Given this, 
we estimate the structure pose in a two-step process. We first 
find the pose p that maximizes the coincidence between the 
set L(p) of projected grid lines lg and the set £./ of image- 
edge line segments /,: 

argmin      £      ||//,/J 
P       li€L,,lg€L(p) 

where ||//,'g|| denotes the Euclidean distance between the 
midpoint of a line segment and its closest point on a line, 
weighted by the disparity in orientation between the line 
and the line-segment. We then refine this pose estimate by 
maximizing the coincidence between projected grid lines and 
the set Pi of image edge points pc. 

argmin      min      ||/>i,/«|| 
P     PiePi,ig€L{p) 

where ||p,,/Ä|| denotes the Euclidean distance between a 
point and the closest point on the line. We use a soft min 
function [11]-[13] when computing the latter with gradient- 
based methods (reverse-mode automatic differentiation [14]). 

To obtain Z./, we apply a Canny edge detector [15] together 
with the KHOROS line finder [16] to extract linear edge 
segments from the input image, discarding short segments 
and those that do not lie wholly within the mask region 
defined by M. We then select the edge segments corre- 
sponding to the two most prominent edge orientations, by 
placing the segments into bins according to their orientation 
and selecting the edge segments in the two largest bins. To 
obtain /*/, we apply Phase Congruency [17] to the input 
image / to compute the orientation image 0(1). Each pixel 
in O(I) contains a quantized orientation. We chose Pj to be 
those pixels whose quantized orientation is closest to the 
mean edge-segment orientations of the above two largest 
bins. 

This two-step process offers several advantages. The first 
step converges quickly but exhibits error in the recovered 
prominent edge orientations. The second step estimates pose 
more accurately (typically within 5mm translation and 2° 
rotation), but only with close initial estimates, such as those 
provided by the first step. 

Fig. 2 illustrates successful pose estimation of several 
LINCOLN LOG structures. Note that we estimate the pose of 
a target object from a single image without any knowledge 
of the specific 3D shape or structure of that object, without 
any prior training images of that object in different poses, 
using only generic information from the domain, namely that 
the object is a valid LINCOLN LOG assembly. 

III. DETERMINING THE LOG OCCUPANCY AT EACH 

SYMBOLIC GRID POSITION 

The symbolic grid positions q = (i,j,k) refer to points 
along log medial axes at notch centers. Each such grid 
position may be either unoccupied, denoted by 0, or occupied 
with the nth notch, counting from zero, of a log with m 
notches, denoted by (m,n). For each grid position we wish to 



Rg. 2.  Estimating the pose of an arbitrary LINCOLN LOG assembly 
and the symbolic grid thus imposed on the assembly. 

Fig. 3. The random variables Zq and Zq that correspond to log 
ends for grid position q and the random variables '/,". /,''. and Z" 
that correspond to log segments. 

determine its occupancy, one of seven possibilities: 0, (1,0), 
(2,0). (2,1), (3,0), (3,1). and (3,2). We construct a discrete 
random variable Zq for each grid position q that ranges over 
these seven possibilities. 

We determine several forms of image evidence for the 
log occupancy of a given grid position. LINCOLN LOGS. 

being cylindrical structures, generate two predominant image 
features: ellipses that result from the perspective projection 
of circular log ends and line segments that result from 
the perspective projection of cylindrical walls. We refer 
to the former as log ends and the latter as log segments. 
Log ends can potentially appear only at distance ±/3 from 
grid positions along the direction for the layer of that 
grid position. We construct boolean random variables Zq 

and Z~ to encode the presence or absence of a log end at 
such positions. There are two kinds of log segments: ones 
corresponding to l\ and ones corresponding to I3. Given this, 
we construct three boolean random variables Zq, Z

v
q, and Z^ 

for each grid position q that encode the presence or absence 
of log segments for the bottoms of logs, i.e., log segments 
between a grid position and the adjacent grid position below. 
Zq and Z^ encode the presence or absence of a log segment 
of length l-i behind and ahead of q respectively, along the 
direction for the layer of q while Z^ encodes the presence 
or absence of a log segment of length l\ — 2/3 between grid 
positions along the same layer. Fig. 3 depicts the log ends 
and log segments that correspond to a given grid position as 
described above. 

We formulate a stochastic constraint-satisfaction problem 
(CSP [18]) over these random variables. The constraints en- 
code the validity of an assembly. We refer to these constraints 
as the grammar of LINCOLN LOGS (section III-C). We take 
image evidence to impose priors on the variables Zq, Z~, Zq, 

Fig. 4.   Elliptical edge filter for detecting log ends 

Z"q, and Z^ (sections III-A and III-B) and solve this stochastic 
CSP to perform structure estimation (section III-D). 

A. Evidence for the presence or absence of logs 

Given the pose p, a log end present as the result of Z+ 
or Zq being true will manifest as an ellipse of known shape, 
size, and position in the image. We use x+(p,q), y+{p,q). 
a+(p,q), b+(p,q), and 9+(p,q) to denote the parameters 
(center, lengths of major and minor axes, and orientation 
of major axis) of an ellipse that would manifest from Zq 

and similarly for Z~. We find these parameters by a least- 
squares fit of 20 equally spaced 3D points on the log end 
projected to the image. The 3D points can be determined in 
closed form from the grid position q and the parameters l\, 
I2. and /3. We then construct an indicator function f(x,y) 
with the value 1 for points (x,y) inside the ellipse and the 
value 0 for points outside the ellipse and convolve this with 
a Laplacian of a Gaussian filter, LoG(r, a), to obtain an 
elliptical edge filter E(x,y,a,b, 6) (Fig. 4). Nominally, a high 
response to this filter applied to an image correlates with the 
presence of an elliptical feature with parameters x, y, a, b, 
and 0. To provide robustness in the face of inaccurate pose 
estimation, we compute the maximal filter response in a 5- 
dimensional region centered on x, y, a, b, and 0 derived by 
perturbing each axis a small amount. 

Similarly, given the pose p. a log segment present as the 
result of Z'q\ ZJ, or Z% being true will manifest as a line 
segment between known image points. We denote the points 
forZJ as {x\{p,q),fx{p,q)) and (A{p,q),y\(p,q)) and sim- 
ilarly for Zq and Z^. These image points can be determined 
in closed form by projecting the 3D points derived from the 
pose p, the grid position q, and the parameters l\, /2. and h. 

In principle, we could use a similar filter method to 
determine evidence for log segments. However, log ends 
usually yield highly pronounced edges because logs are 
never stacked horizontally end to end. Log are often stacked 
vertically and the log segments between two such vertically 
stacked logs would yield less-pronounced edges. Thus we 
use a more sensitive method to determine evidence for log 
segments. Given the pose p of the structure, we recompute 
the prominent edge orientations 0[ and oi using the methods 
from section II (this time applied to the output of the 



second step of pose estimation, not the first, to give a more 
accurate estimate of these orientations). For each prominent 
orientation o, we compute the disparity between o and 0(1) 
at each pixel, compute the prominence at each pixel by 
attenuating the disparity, and scale the energy image, £(/), 
by this prominence: W(I,o) = E(I) o cos2(0(1) — o). This 
constitutes a graded edge map for edges with orientation o. 
We search a rectangular region in W(I,o), after thresholding, 
for the longest line segment. The search region corresponds 
to a dilation of the rectangle bounded by the endpoints of the 
target log segment. The length of the longest line segment 
found correlates with the presence of the target log segment. 

B. Mapping evidence to priors 

We train a mapping function from evidence to priors for 
the log-segment and log-end evidence functions respectively 
on a set of 30 images annotated with ground truth, i.e., 
true positives and true negatives, along with occlusion. For 
each evidence function, we bin their respective raw, real- 
valued responses into 20 bins and annotate each bin with 
the percentage of responses that are true positives and the 
central response value for that bin. The annotated bins 
correspond to a discrete sequence of impulses with impulse 
magnitude representing the percentage of true positives for 
the central response value. We then employ a weighted 
linear interpolation function between impulses to provide the 
mapping function. The weighting factor e typically takes the 
form of a real value e £ (0,1). 

C. The grammar of Lincoln Logs 

We refer to the adjacent grid position below q as b(q), 
the adjacent grid position further from the origin along 
the direction of the grid lines for the layer of q as n(q), 
and the adjacent grid position closer to the origin along 
the direction of the grid lines for the layer of q as p(q). 
Ignoring boundary conditions at the perimeter of the grid, 
the grammar of LINCOLN LOGS can be formulated as the 
following constraints: 
a) 2-notch logs occupy two adjacent grid points 

f) short log segments indicate occupancy above or below 

Z, = (2,0)~Z, '»(</) (2,1) 

b) 3-notch logs occupy three adjacent grid points 

(3,0) 
Z, = (3,0)~Z, 

-n(q) (V 

Mq) 3,i Zn(n(q)) 

(3,2) 
(3,2) 

c) 1- and 2-notch logs must be supported at all notches 

Z(/G{(l,O),(2,O),(2,l)}-.ZM(/)^0 

d) 3-notch logs must be supported in at least 2 notches 

/  (Z/;(,)^0AZM„(v))^0)V       \ 
Zq = (3,0) -       [Zm / 0 AZ„(„(n((/))) ± 0) V 

\   {^b(n(q))^^^Zb(n(n(q)))^(b)   ) 

e) log ends must be at the ends of logs 

Z-^Zg£ {(1,0),(2,0),(3,0)} 
Z+^ZqZ {(1,0),(2,1),(3,2)} 

Z" 
zv 
^q 

(Zq^<bVZh(b(q))^<b) 
(Z^0VZft(%))^0) 

;) long log segments indicate presence of a multi-notch log 
above or below 

/  ( Z/e{(2,0),(3,0),(3,l)}A 
Z„(g)e{(2,l),(3,l),(3,2)} 

V 

Mq) 
Zb(b(q)) 

-b(b(n(q))) 

V 

€{(2,0),(3,0),(3,1)}A 
6 {(2,1),(3,1),(3,2)} )  ) 

To handle the boundary conditions, we stipulate that the grid 
positions beyond the perimeter are unoccupied, enforce the 
support requirement (constraints c-d) only at layers above 
the lowest layer, and enforce log-segment constraints (f-g) 
for the layer above the top of the structure. 

D. Structure estimation 

To perform structure estimation we first establish priors 
over the random variables Zq and Zq that correspond to log 
ends and the random variables Zq, Zv

q, and Zq that corre- 
spond to log segments using image evidence and establish a 
uniform prior over the random variables Zq. This induces 
a probability distribution over the joint support of these 
random variables. We then marginalize the random variables 
that correspond to log ends and log segments and condition 
this marginal distribution on the language model <f>. Finally, 
we compute the assignment to the random variables Zq that 
maximizes this conditional marginal probability. 

argmax £ Pr ( f\Zq,Z;,Zq ,Z
u

qXq,Z
w

q ) 
Z Z+,Z-.Z",Zl\Z"' \ q / 

<t>[z.z+.z-.z".zv.zw] 

To speed up the conditional marginalization process, we 
prune assignments to the random variables that violate the 
grammar <t> using arc consistency [19]. To speed up the 
maximization process, we use a branch-and-bound algorithm 
[20] that maintains upper and lower bounds on the maximal 
conditional marginal probability. Without both of these, 
structure estimation would be intractable. 

An alternate method to perform structure optimization is 
to establish the same priors over the random variables that 
correspond to log ends and log segments but parametrize the 
priors over the random variables Zq. We then marginalize 
over all random variables, computing this marginal probabil- 
ity over the parameterized priors for the random variables Zq. 
We then search over this parameter space for the distributions 
over the random variables Zq that maximize this marginal 
probability. We do this using the reduced-gradient optimiza- 
tion algorithm [21], [22] where the gradients are calculated 
using reverse-mode AD. The linear constraints are used to 
constrain the parameters of the probability distribution to be 
nonnegative and sum to one. Ideally, we'd prefer to use the 
latter method exclusively, but the former method is faster to 
compute for the relatively larger assemblies when compared 
to the latter. 



E. Occlusion 

Nominally, with the above method, one derives evidence 
for the presence or absence of log ends and log segments 
of the various kinds at every possible grid position. In other 
words, one uses image evidence to impose a prior on all 
of the random variables Z+, Z~, Zq, Zq, and Z^. However, 
some of these log ends and log segments may be occluded. 
If we know that a log end or log segment is occluded then 
we ignore all evidence for it from the image, giving it chance 
probability of being occupied. With this, the grammar can 
often fill in the correct values of occluded random variables 
for both log ends and log segments, and thus determine 
the correct value for an occluded Zq. The question then 
arises: how does one determine whether a log end or log 
segment is occluded? We propose the following method. One 
first assumes that all of the log ends and log segments on 
the frontal faces of the grid are visible but all other log 
ends and log segments are occluded. One then performs 
structure estimation under this initial hypothesis. With the 
recovered structure estimate, one determines log-end and log- 
segment visibility by projective geometry given the known 
pose, and iterates this process until convergence. We have 
recently implemented this algorithm and expect to report 
on its performance in the future. All experiments reported 
in section IV were performed with manual annotation of 
occlusion information. Note that we only annotate for a given 
symbolic log-segment or log-end position whether or not 
it is visible, not whether or not that position is occupied 
with a log segment or log end. The latter is determined 
automatically. 

IV. EXPERIMENTAL RESULTS 

We took images of 32 distinct LINCOLN LOG structures, 
each from 5 distinct poses resulting in a total of 160 images. 
We performed foreground-background separation and pose 
estimation for all 160 images using the methods from sec- 
tion II. Pose was estimated within 5mm translation and 2° 
rotation of ground truth for 142 images. We discarded the 18 
images with inaccurate pose estimation and performed struc- 
ture estimation on the remainder. The results for 5 images, 
all of distinct structures, are shown in Fig. 7. Fig. 7(a) was 
derived by thresholding the priors on Z+,Z~, Zq, Z£, and Z£ 
at t = 0.5. Fig. 7(b-d) were derived by solving a stochastic 
CSP with various subsets of the constraints and rendering 
the values of Z+, Z~. Zu

q. Z£, and Z£ for the solution 
provided by the first method in section III-D. Fig. 7(e) was 
derived by solving the stochastic CSP with all constraints 
and rendering the values of Zq for the solution provided 
by the first method in section III-D. Note that our method 
determines the correct component type (Zq) of most occluded 
logs in the assemblies in the second row of Fig. 7(e). It gives 
an incorrect component type for only a single log in that row. 

We conducted experiments to determine how much the 
grammar improves the accuracy of structure estimation. We 
performed variants of the runs in Fig. 7(a-d), varying the 
threshold t and the mapping from evidence to priors to 
produce the ROC curves depicted in Fig. 5. The mapping 

03 0.4 0 5 06 
False positive rate 

Fig. 5. ROC curves. The lower green and red curves constitute the 
ROC for the log-end and log-segment detectors respectively with 
varying thresholds / without the grammar. The upper green curve 
measures ROC for Zq and Z~ under constraints a-e varying the 
mapping from evidence to priors. The upper red curve measures 
ROC for Zq, Zq, and Zq under constraints a-d and f-g varying 
the mapping from evidence to priors. The blue curve measures 
ROC for Zq. Z~. Z" Z*q, and Zq under all constraints varying 
the mapping from evidence to priors. 

function is varied through the weighting factor e for the linear 
interpolator discussed in section III-B. 

Pose and structure estimation is sufficiently robust to sup- 
port robotic manipulation. Supplementary material included 
on the website for this paper contains videos of fully au- 
tonomous robotic disassembly of six different LINCOLN LOG 

structures whose pose and structure have been determined 
from a single image as well as videos of semiautonomous 
robotic assembly of replicate LINCOLN LOG structures from 
the same estimated pose and structure. 

V. CONCLUSION 

LINCOLN LOGS are children's toys yet the computational 
problem we present is not a toy. Pose and structure estimation 
of LINCOLN LOG assemblies is far more difficult than 
may appear on the surface. The space of objects to be 
recognized is combinatorially large. Much of every structure 
is in self occlusion. The low contrast due to shadows and 
color, intensity, and texture uniformity make it impossible 
to recognize even visible logs with existing techniques. No 
standard edge detector (e.g.. Canny [15] or PB [23]) can 
reliably find edges separating adjacent logs or circular log 
ends and no standard segmentation method (e.g.. Normalized 
Cut [24] or Mean Shift [25]) can reliably find log parts even 
when fully visible as shown in Fig. 6. Even our filter-based 
feature detectors, which use pose information along with 
constraints from the language model to tune to the expected 
feature at the expected image position, produce correct 
binary decisions only about 65% of the time. Occlusion only 
makes matters worse. Performing non-stochastic constraint 
satisfaction (e.g.. Waltz line labeling [26]) on the binary 



Fig. 6. A comparison with a number of standard edge detectors and segmentation methods. Neither (a) MATLAB'S Canny edge detector 
nor (b) the PB edge detector reliably find edges separating adjacent logs or log ends. Neither (c) Normalized Cut nor (d) Mean Shift 
segment out the log parts. 

Fig. 7. (a) Raw detector response, (b) Detector response with just constraints a-d and f-g. (c) Detector response with just constraints 
a-e. (d) Detector response with all constraints, (e) Estimated structure. In (a-d), bright red indicates true negative, dark red indicates false 
negative, bright green indicates true positive, dark green indicates false positive, and blue indicates occlusion. In (e), green indicates true 
positive and red indicates false negative. There are no false positives and true negatives are not indicated. We suggest that the reader view 
this figure at a high magnification level in a PDF viewer to appreciate the images. 



output of these detectors leads to inconsistent CSPs on all 
images in our dataset. 

We have demonstrated a visual domain that is generative 
in much the same way that human language is generative. 
We have presented a visual language model that improves 
recognition accuracy in this domain in much the same way 
that language models improve speech-recognition accuracy. 
Unlike context-free models of human language, our visual 
language models are context sensitive and formulated as 
stochastic CSPs. Much of our visual experience in the ar- 
tifactual world is perceiving generative man-made structures 
like buildings, furniture, vehicles, etc. Our LINCOLN LOG 
domain is a first step towards building visual language 
models for such real-world domains. 

Language models for vision are more complex than those 
for human language as they must deal with occlusion result- 
ing from perspective projection and pose variation. How- 
ever, visual domains exhibit a novel possibility: recovering 
structure despite occlusion by integrating the perceptual 
evidence from multiple images of the same object taken from 
different poses. In the LINCOLN LOG domain, one can carry 
this even further. When faced with ambiguity arising from 
occlusion, a robot can partially disassemble a structure to 
view occluded substructure and integrate perceptual evidence 
from multiple images taken at different disassembly stages 
to yield a complete unambiguous estimate of the structure 
of the original assembly prior to disassembly. Moreover, it 
is possible to integrate information about pose or structure 
from different modalities. One can integrate partial pose 
and structure information from one or more images with 
partial pose and structure information expressed in human 
language to yield a complete unambiguous estimate of pose 
and structure. We are, in fact, able to do this and expect to 
report on this in the future. 
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Abstract 

Probabilistic programming languages allow modelers to specify a stochastic pro- 
cess using syntax that resembles modern programming languages. Because the 
program is in machine-readable format, a variety of techniques from compiler 
design and program analysis can be used to examine the structure of the dis- 
tribution represented by the probabilistic program. We show how nonstandard 
interpretations of probabilistic programs can be used to craft efficient inference 
algorithms: information about the structure of a distribution (such as gradients or 
bounds) is generated as a monad-like side computation while executing the pro- 
gram. These interpretations can be easily coded using special-purpose objects and 
operator overloading. We implement two examples of nonstandard interpretations 
in two different languages, and use them as building blocks to construct inference 
algorithms: automatic differentiation, which enables gradient based methods, and 
provenance tracking, which enables efficient construction of global proposals. 

1    Introduction 

Probabilistic programming simplifies the development of probabilistic models by allowing modelers 
to specify a stochastic process using syntax that resembles modern programming languages. These 
languages permit arbitrary mixing of deterministic and stochastic elements, resulting in tremendous 
modeling flexibility. The resulting programs define probabilistic models that serve as prior dis- 
tributions: running the (unconditional) program forward many times results in a distribution over 
execution traces, with each trace being a sample from the prior. Examples include BLOG [11], 
Bayesian Logic Programs [9] IBAL [14], Church [5], Stochastic Matlab [24], and HANSEI [10]. 

The primary challenge in developing such languages is scalable inference. Inference can be viewed 
as reasoning about the posterior distribution over execution traces conditioned on a particular pro- 
gram output, and is difficult because of the flexibility these languages present: in principle, an 
inference algorithm must behave reasonably for any program a user wishes to write. Sample-based 
MCMC algorithms are the state-of-the-art method, due to their simplicity, universality, and compo- 
sitionality. But in probabilistic modeling more generally, efficient inference algorithms are designed 
by taking advantage of structure in distributions. How can we find structure in a distribution defined 
by a probabilistic program? A key observation is that some languages, such as Church and Stochas- 
tic Matlab, are defined in terms of an existing (non-probabilistic) language. Programs written in 
these languages may literally be executed in their native environments—suggesting that tools from 
program analysis and programming language theory can be leveraged to find and exploit structure 
in the program for inference, much as a compiler might find and exploit structure for performance. 

Here, we show how nonstandard interpretations of probabilistic programs can help craft efficient 
inference algorithms. Information about the structure of a distribution (such as gradients, depen- 
dencies or bounds) is generated as a monad-like side computation while executing the program. 



This extra information can be used to, for example, construct good MH proposals, or search effi- 
ciently for a local maximum. We focus on two such interpretations: automatic differentiation and 
provenance tracking, and show how they can be used as building blocks to construct efficient infer- 
ence algorithms. We implement nonstandard interpretations in two different languages (Church and 
Stochastic Matlab), and experimentally demonstrate that while they typically incur some additional 
execution overhead, they dramatically improve inference performance. 

if (rand > 0.5 ) 
X(i) = randn; 

else 
X(i) = gammarnd; 

end; 
end; 

2    Background and Related Work Alg. 1: A Gaussian-Gamma mixture 
1: for i=l: 1000 

We begin by outlining our setup, following [24]. We de- 2: 
fine an unconditioned probabilistic program to be a pa- 3: 
rameterless function / with an arbitrary mix of stochas- 4: 
tic and deterministic elements (hereafter, we will use the 5: 
term function and program interchangeably). The func- 6: 
tion / may be written in any language, but our running 7: 
example will be Matlab. We allow the function to be ar- 
bitrarily complex inside, using any additional functions, recursion, language constructs or external 
libraries it wishes. The only constraint is that the function must be self-contained, with no external 
side-effects which would impact the execution of the function from one run to another. 

The stochastic elements of / must come from a set of known, fixed elementary random primitives, 
or ERPs. Complex distributions are constructed compositionally, using ERPs as building blocks. In 
Matlab, ERPs may be functions such as rand (sample uniformly from [0,1]) or randn (sample 
from a standard normal). Higher-order random primitives, such as nonparametric distributions, may 
also be defined, but must be fixed ahead of time. Formally, let T be the set of ERP types. We assume 
that each type t e T is a parametric family of distributions pt{x\9t), with parameters 9t. 

Now, consider what happens while executing /. As / is executed, it encounters a series of ERPs. 
Alg. 1 shows an example of a simple / written in Matlab with three syntactic ERPs: rand, randn, 
and gammarnd. During execution, depending on the return value of each call to rand, different 
paths will be taken through the program, and different ERPs will be encountered. We call this path 
an execution trace. A total of 2000 random choices will be made when executing this /. 

Let fk\xi,- .xk_i be the fc'th ERP encountered while executing /, and let xk be the value it returns. 
Note that the parameters passed to the /c'th ERP may change depending on previous x^'s (indeed, 
its type may also change, as well as the total number of ERPs). We denote by x all of the random 
choices which are made by /, so / defines the probability distribution p(i). In our example, x £ 
R2000. The probability p(.i-) is the product of the probability of each individual ERP choice: 

K 

again noting explicitly that types and parameters may depend arbitrarily on previous random choices. 
To simplify notation, we will omit the conditioning on the values of previous ERPs, but again wish 
to emphasize that these dependencies are critical and cannot be ignored. By fk, it should therefore 
be understood that we mean fk\Xu... ,XJt_,, and by pik(xk\6t k) we meanptk(xk\Otk,xi, • • • ,xk-i). 

Generative functions as described above are, of course, easy to write. A much harder problem, and 
our goal in this paper, is to reason about the posterior conditional distribution p{x\y), where we 
define y to be a subset of random choices which we condition on and (in an abuse of notation) x 
to be the remaining random choices. For example, we may condition / on the X (i) 's, and reason 
about the sequence of rand's most likely to generate the X (i) 's. For the rest of this paper, we 
will drop y and simply refer to p(x), but it should be understood that the goal is always to perform 
inference in conditional distributions. 

2.1    Nonstandard Interpretations of Probabilistic Programs 

With an outline of probabilistic programming in hand, we now turn to nonstandard interpretations. 
The idea of nonstandard interpretations originated in model theory and mathematical logic, where it 
was proposed that a set of axioms could be interpreted by different models. For example, differential 
geometry can be considered a nonstandard interpretation of classical arithmetic. 



In programming, a nonstandard interpretation replaces the domain of the variables in the program 
with a new domain, and redefines the semantics of the operators in the program to be consistent 
with the new domain. This allows reuse of program syntax while implementing new functionality. 
For example, the expression "o * 6" can be interpreted equally well if a and b are either scalars or 
matrices, but the "*" operator takes on different meanings. Practically, many useful nonstandard 
interpretations can be implemented with operator overloading: variables are redefined to be objects 
with operators that implement special functionality, such as tracing, reference counting, or profiling. 

For the purposes of inference in probabilistic programs, we will augment each random choice x* 
with additional side information s*, and replace each Xk with the tuple (xk, s/c). The native inter- 
preter for the probabilistic program can then interpret the source code as a sequence of operations 
on these augmented data types. For a recent example of this, we refer the reader to [ 19]. 

3   Automatic Differentiation 

For probabilistic models with many continuous-valued random variables, the gradient of the like- 
lihood Vxp(x) provides local information that can significantly improve the properties of Monte 
Carlo inference algorithms. For instance Langevin Monte-Carlo [16] and Hamiltonian MCMC [13] 
use this gradient as part of a variable-augmentation technique (described below). We would like to 
be able to use gradients in the probabilistic program setting, but p(x) is represented implicitly by the 
program. How can we compute its gradient? We use automatic differentiation (AD) [3, 6], a non- 
standard interpretation that automatically constructs Vxp(x). The automatic nature of AD is critical 
because relieves the programmer from hand-computing derivatives for each model; moreover, some 
probabilistic programs dynamically create or delete random variables making simple closed-form 
expressions for the gradient very difficult to find. 

AD is a technique for computing the gradient of a function / that, unlike finite differencing, com- 
putes an exact derivative at a point (up to machine precision). To do this AD relies on the chain rule 
to decompose the derivative of / into derivatives of its sub-functions: ultimately, known derivatives 
of elementary functions are composed together to yield the derivative of the complex function. This 
composition can be computed as a non-standard interpretation of the underlying real operations. In 
forward mode [23] AD this interpretation can be seen as extending each real value to the first two 
terms of its taylor expansion, overloading each real operator to operate on these real "polynomials". 
Because the derivatives of / at c can be extracted from the coefficients of e in /(c + e) [21], this 
allows computation of the gradient. Reverse mode [20] AD (which we use in our implementation) 
constructs an alternative non-standard interpretation by extending real values into "tapes" that cap- 
ture the trace of the real computation which led to the primary value; this can be used to much more 
efficiently compute the gradient. 

There are implementations of AD for many languages, including Scheme (e.g., [19]), FORTRAN 
(e.g., ADIFOR[2]), C (e.g., ADOL-C [7]), c++ (e.g., FADBAD++[1]), MATLAB (e.g., INTLAB [17]), 
and MAPLE (e.g., GRADIENT [12]). Seewww.autodiff.org. 

3.1    Hamiltonian MCMC 

To  illustrate the power of AD in 
probabilistic programming, we build 
on Hamiltonian MCMC (HMC), and    Alg. 2: Hamiltonian MCMC 
efficient algorithm whose popularity      ,. repeat forever 
has been somewhat limited by the 2 

necessity of computing gradients— 3 

a difficult task for complex models. , 
Neal [13] introduces HMC as an in- 5 

ference method which "produces dis- ^ 
tant proposals for the Metropolis al- 
gorithm, thereby avoiding the slow 
exploration of the state space that re-      
suits from the diffusive behavior of 
simple random-walk proposals." HMC begins by augmenting the states space with "momentum 

Gibbs step: 
Draw momentum m ~ Af(Q, a2) 
Metropolis step: 
Start with current state (x, m) 
Simulate Hamiltonian dynamics to give (x', m') 
Accept w/p = min(l,e(-"(l'm')+i'(l'",))] 

end; 



(define (perlin-pt x y keypt power) 
(• 255 (sum (map (lambda (p2 pow) 

(* pow (2d-interp (keypt (ceil I* p2 x)) ) 
(keypc (floor (. p2 xl I I 
(keypt (ceil (« p2 y))I 
(keypt (floor (. p2 y)))))) 

powers-of-2 power)))) 
(define (perlin xs ys power) 

(let- ((keypt (mem (lambda (x y| (/ 1 (• 1 (exp (- (gaussian 0.0 2.0))))))))) 
(map (lambda (x) (map (lambda (y) (perlin-pt x y keypt power)) xs)) ys))) 

Figure 1: Code for the structured Perlin noise generator. 2d-interp is B-spline interpolation. 

variables" m. The distribution over this augmented space is e
H(-x,m\ where the Hamiltonian func- 

tion H decomposed into the sum of a potential energy term U(x) = - \np{x) and a kinetic energy 
K(m) which is usually taken to be Gaussian. Inference proceeds by alternating between a Gibbs 
step and Metropolis step: fixing the current state x, a new momentum m is sampled from the prior 
over m; then x and m are updated together by following a trajectory according to Hamiltonian dy- 
namics. Discrete integration of Hamiltonian dynamics requires the gradient of H, and must be done 
with a symplectic (i.e. volume preserving) integrator (following [13] we use the Leapfrog method). 
While this is a complex computation, incorporating gradient information dramatically improves 
performance over vanilla random-walk style MH moves (such as Gaussian drift kernels), and its 
statistical efficiency also scales much better with dimensionality than simpler methods [13]. 

It would also be straightforward to use AD to compute higher derivates (though this would introduce 
super-linear overhead). For instance, Hessian matrices could be used to construct blocked Metropo- 
lis moves [8], to construct proposals based on Newton's method [15], or as part of Riemannian 
manifold methods [4]. 

3.2    Experiments and Results 

We implemented HMC by extending Bher [24], a lightweight implementation of the Church lan- 
guage which provides simple, but universal, MH inference. We used used an implementation of AD 
based on [ 19], that uses hygienic operator overloading to do both forward and reverse mode AD for 
Scheme (the target language of the Bher compiler). 

The goal is to compute Vxp(x). By Eq. 1, p(x) is the product of the individual choices made by 
each Xi (though each probability can depend on previous choices, through the program evaluation). 
To compute p(x), Bher executes the corresponding program, accumulating likelihoods. Each time a 
continuous ERP is created or retrieved, we wrap it in a "tape" object which is used to track gradient 
information; as the likelihood p(x) is computed, these tapes flow through the program and through 
appropriately overloaded operators, resulting in a dependency graph for the real portion of the com- 
putation. The gradient is then computed in reverse mode, by "back-propagating" along this graph. 
We implement an HMC kernel by using this gradient in the leapfrog integrator. Since program states 
may contain a combination of discrete and continuous ERPs, we use an overall cycle kernel which 
alternates between standard MH kernel for individual discrete random variables and the HMC ker- 
nel for all continuous random choices. To decrease burn-in time, we initialize the sampler by using 
annealed gradient ascent (again implemented using AD). 

We ran two sets of experiments which illustrate two different benefits of HMC with AD: automated 
gradients of complex code, and good statistical efficiency. 

Structured Perlin noise generation. Our first experiment uses HMC to generate modified Perlin 
noise with soft symmetry structure. Perlin noise is a procedural texture used by computer graphics 
artists to add realism to natural textures such as clouds, grass or tree bark. We generate Perlin- 
like noise by layering octaves of random but smoothly varying functions. We condition the result 
on approximate diagonal symmetry, forcing the resulting image to incorporate additional structure 
without otherwise skewing the statistics of the image. Note that the MAP solution for this problem is 
uninteresting, as it is a uniform image; it is the variations around the MAP that provide rich texture. 
We generated 48x48 images; the model had roughly 1000 variables. 

Fig. 2 shows the result via typical samples generated by HMC, where the approximate symmetry is 
clearly visible. A code snippet demonstrating the complexity of the calculations is shown in Fig. I; 
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Figure 2: On the left: samples from the structured Perlin noise generator. On the right: convergence 
of expected mean for a draw from a 3D spherical Gaussian conditioned on lying on a line. 

this experiment illustrates how the automatic nature of the gradients is most helpful, as it would be 
time consuming to compute these gradients by hand—particularly since we are free to condition 
using any function of the image. 

Complex conditioning. For our second example, we demonstrate the improved statistical efficiency 
of the samples generated by HMC versus Bher's standard MCMC algorithm. In this task, the goal 
is to sample points from a complex 3-dimensional distribution. We construct this by starting with a 
simple Gaussian mixture model prior, but then sample points that are noisily conditioned to be on 
a line running through R3. This conditioner creates complex interactions with the prior to yield a 
smooth, but strongly coupled, energy landscape. 

Fig. 2 shows results comparing our HMC implementation with Bher's standard MCMC inference 
engine. The x-axis denotes samples, while the y-axis denotes the convergence of an estimator of 
certain marginal statistics of the samples. We see that this estimator converges much faster for 
HMC, implying that the samples which are generated are less autocorrelated - affirming that HMC 
is indeed making better distal moves. HMC is about 5x slower than MCMC for this experiment, but 
the overhead is justified by the significant improvement in the statistical quality of the samples. 

4    Provenance Tracking for Fine-Grained Dynamic Dependency Analysis 

One reason gradient based inference algorithms are effective is that the chain rule of derivatives 
provides a principled way to compositionally backpropagate information from the data up to the 
proposal variables. But gradients, and the chain rule, are only defined for continuous variables. Is 
there a corresponding structure for discrete choices? We now introduce a new nonstandard inter- 
pretation based on provenance tracking (PT). In programming language theory, the provenance of a 
variable is the history of variables and computations that combined to form its value. In probabilistic 
programming, we propose to use this to track fine-grained dependency information between random 
values and intermediate computations as they combine to form a likelihood. 

Importantly, the provenance information is collected for a particular value x of the probabilistic pro- 
gram, which can be useful for models with sparse, dynamic dependencies among variables. This can 
provide more detailed information than, say, a graphical model: in a graphical model, conditional 
independencies must hold for every value of variables in the model, but in practice, for a specific 
value, the dependencies may be sparser than the graph indicates. An example of this is shown in 
Alg. 4, where a simple renderer renders a triangle mesh into an image. Vertices in the mesh can 
move arbitrarily, so there is some value for each vertex such that every triangle could be rendered to 
any pixel, but for any particular set of vertex values, each triangle affects a small number of pixels. 

4.1    Defining and Implementing Provenance Tracking 

Like AD, PT can be implemented with operator overloading. Because provenance information is 
much coarser than gradient information, the operators in PT objects have a particularly simple form; 
most program expressions can be covered by considering a few cases. Let X denote the set {x,} 
of all (not necessarily random) variables in a program. Let R(x) C X define the provenance of a 
variable x. Given R(x), the provenance of expressions involving x can be computed by breaking 



down expressions into a sequence of unary operations, binary operations, and function applications. 
Constants have empty provenances. 

Let x and y be expressions in the program (consisting of an arbitrary mix of variables, constants, 
functions and operators). For a binary operation x 0 y, the provenance R(x 0 y) of the result is 
defined to be R(x © y) = R(x) U R(y). Similarly, for a unary operation, the provenance R(Qx) = 
R(x). For assignments, x = y => R{x) = R(y). For a function, R(f(x,y,...)) may be computed 
by examining the expressions within /; a worst-case approximation is R(f(x,y,...)) = R(x) U 
R(y) • • •. A few special cases are also worth noting. Strictly speaking, the previous rules track a 
superset of provenance information because some functions and operations are constant for certain 
inputs. In the case of multiplication, x * 0 = 0, so R(x * 0) = {}. Accounting for this gives tighter 
provenances, implying, for example, that special considerations apply to sparse linear algebra. 

In the case of probabilistic programming, recall that random variables (or ERPs) are represented as 
stochastic functions /, that accept parameters #;. Whenever a random variable is conditioned, the 
output of the corresponding /< is fixed; thus, while the likelihood of a particular output of ft depends 
on #,, the specific output of /, does not. For the purposes inference, therefore, R(fi(9i)) = {}. 

4.2    Using Provenance Tracking as Part of Inference 

Provenance information could be used in many ways. Here, we illustrate one use: to help construct 
good block proposals for MH inference. Our basic idea is to construct a good global proposal by 
starting with a random global proposal (which is unlikely to be good) and then inhibiting the bad 
parts. We now go through the steps of our algorithm, which is summarized in Fig. 3. Let x denote 
a state of the probabilistic program (equivalently, we will also use x to refer to the set of random 
variables instantiated at this state). For notational simplicity we will assume we wish to construct a 
proposal for all variables in x (but extending to the case of proposing to a subset is straightforward). 

In step (1), we compute p(x) using FT to track how each X{ influences the overall likelihood p(x). 
Let D(xi;x) C x denote the "descendants" of variable x%, meaning all ERPs whos likelihood ,r, 
impacted. In step (2), we propose x' ~ q(x'\x), and in step (3) we use PT to compute p(x'), again 
tracking dependents D{xi\x') C x'. In step (4) we let D(i) = D{xi\x) U D(xi\x') be the joint 
set of ERPs that x, influences in either state x or x'. In step (5-6) we use D(i), p(x) and p(x') to 
estimate the amount by which each constituent element x\ in the proposal changed the likelihood. 
We assign "credit" to each x\ as if it were the only proposal - that is, we assume that if, for example, 
the likelihood went up, it was entirely due to the change in Xj. Of course, the variables' effects 
are not truly independent; this is a fully-factored approximation to those effects.  We define the 

approximate credit as c(i) = , '. , °("), where we define p(iD(o)t0 be tne likelihood of only the 

subset of variables that n impacted. Based on the credit assigned to each x';, we construct a new 
proposal .rA/ by composing i-'s with high credit. We start by setting xM = x. We then compute a 
standard MH ratio for each xt, setting x\' = x\ with probability a(xf'\x, x') = min {1, c(i)}. The 
overall proposal probability for this "mixing" step is therefore a(xM\x,x') = f]. a(x^'\x,x'). In 
steps (7-8) we compute the overall forward and reverse transition probabilities as explained below. 
Finally, in step (9) we accept or reject the overall proposal. 

Thus, we allow the likelihood to "vote" in a fine-grained way for which proposals seemed to be good 
and which seemed to be bad. Note that the method coarsely interpolates between two end-cases: if 
the variables x really are fully factored, the method reduces to making independent proposals which 
are accepted or rejected independently. If the dependencies are dense, it reduces to making a random 
global proposal. The method therefore critically relies on sparsity to be effective. 

There are some subtleties to the implementation. In general, D(xt;x) ^ D(XüX')\ the proposal 
may have added dependents or removed dependents. To ensure that all terms in the likelihood are 
accounted for, we assign credit to xL based on the change in likelihood for all x G D(i) (but better 
proposals could be made by accounting for higher-order interactions among variables). Also note 
that the proposal probability q(x'\x) must factorize as F], Q(x't\

x)> because it must be able to score 
q(x~^l\xxr) (see below), but xM and x~xl are constructed compositionally from bits of .r and x'. 

We analyze the provenance tracking algorithm as a proposal in an MH algorithm, in a manner 
analogous to delayed rejection [22]: we show how the kernel moves through a reversible sequence 



Alg. 3: The provenance tracking algorithm 

1: Compute p(x), tracking D(xi; x) 
2: Propose x' ~ q{x'\x) 
3: Compute p(x'), tracking D(xi\ x') 
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Figure 3: The provenance tracking algorithm 

of states, and compute the transition probabilities of this sequence. To do this, we consider an 
augmented state space. The kernel goes through four stages, shown in Fig. 3. It begins in .si = (x), 
from which it proposes x' from q(x'\x), to form the joint space s2 = {x,x'). Next, it "mixes" 
x and x' together via individual accept/reject decisions to create a new state xM, and we define 
x~M as the state obtained if all accept/reject decisions were reversed. This transition probability is 
a(xM\x, x') (note that given xM, x~M is computed deterministically). This leads to the third state 
in the kernel, S3 = {x ,x~M). From here, we deterministically transition to 54 = (xA/). The 
forward probability is thus given by p{s2\s\)p(sz\s2)p{s4\sz) 
probability isp(s3|s4)p(.S2|s3)p(si|s2) = q(x      \x   )a(x'\x ,.M 

q{x'\x)a{x 
x~M). 

M x,x'). The reverse 

4.3    Experiments and Results 

We implemented provenance tracking and in Stochastic Matlab [24| by leveraging Matlab's ob- 
ject oriented capabilities, which provides full operator overloading. We tested on four tasks: a 
Bayesian "mesh induction" task, a small QMR problem, probabilistic matrix factorization [18] and 
an integer-valued variant of PMF. We measured performance by examining likelihood as a function 
of wallclock time; an important property of the provenance tracking algorithm is that it can help 
mitigate constant factors affecting inference performance. 

Alg. 4: Bayesian Mesh Induction 

function X = bmi( base_mesh ) 
mesh = base_mesh + randn; 
img = render( mesh ); 
X = img + randn; 

end; 

Bayesian mesh induction. The BMI task is simple: 
given a prior distributions over meshes and a target im- 
age, sample a mesh which, when rendered, looks like the 
target image. The prior is a Gaussian centered around a 
"mean mesh," which is a perfect sphere; Gaussian noise 
is added to each vertex to deform the mesh. The mesh 
has 2,500 vertices in R3, for a total of 7,500 parameters. 
The model is shown in Alg. 4. The rendering function is 
a custom OpenGL renderer implemented as a MEX function. No gradients are available for this Ten- 
derer, but it is reasonably easy to augment it with provenance information: we use shaders to record 
the vertices of the triangle that were responsible for each pixel. This allows us to make proposals to 
mesh vertices, while assigning credit based on pixel likelihoods. 

Results for this task are shown in Fig. 4 ("Face"). Note that even though the renderer is quite fast, 
MCMC with simple proposals fails dramatically: after proposing a change to a single variable, 
it must re-render the image in order to compute the likelihood. In contrast, making large, global 
proposals is very effective. Fig. 4 (top) shows a sequence of images representing burn-in of the 
model as it starts from the initial condition and samples its way towards regions of high likelihood. 
An anonymous video demonstrating the results is available at http://www.lifiothers.org/face.avi. 

QMR. The QMR model is a bipartite, binary model relating diseases (hidden) to symptoms (ob- 
served) using a log-linear noisy-or model. Base rates on diseases can be quite low, so "explaining 
away" can cause poor mixing. Here, MCMC with provenance tracking is effective: it finds high- 
likelihood solutions quickly, again outperforming naive MCMC. 
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Figure 4: Top: Frames from the face task. Bottom: results on Face, QMR, PMF and Integer PMF. 

Probabilistic Matrix Factorization. For the PMF task, we factored a matrix A e Rioooxiooo with 

99% sparsity. PMF places a Gaussian prior over two matrices, U G R1000*!0 and V e Ri000*10, 
for a total of 20,000 parameters. The model assumes that Ai} ~ A/'([/iV

rjr, 1). In Fig. 4, we see 
that MCMC with provenance tracking is able to find regions of much higher likelihood much more 
quickly than naive MCMC. We also compared to an efficient hand-coded MCMC sampler which 
is capable of making, scoring and accepting/rejecting about 20,000 proposals per second. Interest- 
ingly, MCMC with provenance tracking is more efficient than the hand-coded sampler, presumably 
because of the economies of scale that come with making global proposals. 

Integer Probabilistic Matrix Factorization. The Integer PMF task is like ordinary PMF, except 
that every entry in U and V is constrained to be an integer between 1 and 10. These constraints 
imply that no gradients exist. Empirically, this does not seem to matter for the efficiency of the 
algorithm relative to standard MCMC: in Fig. 4 we again see dramatic performance improvements 
over the baseline Stochastic Matlab sampler and the hand-coded sampler. 

5    Conclusions 

We have shown how nonstandard interpretations of probabilistic programs can be used to extract 
structural information about a distribution, and how this information can be used as part of a vari- 
ety of inference algorithms. The information can take the form of gradients, Hessians, fine-grained 
dependencies, or bounds. Empirically, we have implemented two such interpretations and demon- 
strated how this information can be used to find regions of high likelihood quickly, and how it can 
be used to generate samples with improved statistical properties versus random-walk style MCMC. 
There are doubtless other types of interpretations which could provide additional information. For 
example, interval arithmetic [17] (or its higher-order generalizations, such as affine arithmetic) could 
be used to provide bounds, or, in conjunction with recursive bisection, could be used as part of MAP 
inference, line searches, or adaptive importance sampling. 

Each of these interpretations can be used alone or in concert with each other; one of the advan- 
tages of the probabilistic programming framework is the clean separation of models and inference 
algorithms, making it easy to explore combinations of inference algorithms for complex models. 
For example, perhaps provenance tracking-based proposals for discrete variables can be interlaced 
with HMC proposals for continuous variables. Or, Neal [13] points out that for HMC the true like- 
lihood does not need to be used while integrating along a trajectory; a simpler likelihood may be 
used instead, as long as the true likelihood is used for the final accept/reject calculation. This sug- 
gests learning an approximate likelihood that can be cheaply computed; perhaps the interval-based 
approximations can be used to construct this on-demand. 

More generally, this work begins to illuminate the close connections between probabilistic infer- 
ence and programming language theory. It is likely that other techniques from compiler design and 
program analysis could be fruitfully applied to inference problems in probabilistic programs. 
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Seeing Unseeability to See the Unseeable 

Siddharth Narayanaswamy, Andrei Barbu, and Jeffrey Mark Siskind 

Abstract—We present a framework that allows an observer 
to determine occluded portions of a structure by finding 
the maximum-likelihood estimate of those occluded portions 
consistent with visible image evidence and a consistency model. 
Doing this requires determining which portions of the structure 
are occluded in the first place. Since each process relies on the 
other, we determine a solution to both problems in tandem. 
We extend our framework to determine confidence of one's 
assessment of which portions of an observed structure are 
occluded, and the estimate of that occluded structure, by 
determining the sensitivity of one's assessment to potential new 
observations. We further extend our framework to determine a 
robotic action whose execution would allow a new observation 
that would maximally increase one's confidence. 

I. INTRODUCTION 

[T]here are known knowns; there are things we 
know we know. We also know there are known 
unknowns; that is to say we know there are some 
things we do not know. But there are also unknown 
unknowns-the ones we don't know we don't know. 

Donald Rumsfeld (12 February 2002) 

People exhibit the uncanny ability to see the unseeable. 
The colloquial exhortation  You have eyes in the back of 
your head! expresses the assessment that someone is making 
correct judgements as if they could see what is behind 
them, but obviously cannot. People regularly determine the 
properties of occluded portions of objects from observations 
of visible portions of those objects using general world 
knowledge about the consistency of object properties. Psy- 
chologists have demonstrated that the world knowledge that 
can influence perception can be high level, abstract, and 
symbolic, and not just related to low-level image properties 
such as object class, shape, color, motion, and texture. For 
example, Freyd et al. [7] showed that physical forces, such 
as gravity, and whether such forces are in equilibrium, due to 
support and attachment relations, influences visual perception 
of object location in adults. Baillargeon [1], [2] showed 
that knowledge of substantiality, the fact that solid objects 
cannot interpenetrate, influences visual object perception in 
young infants. Streri et al.  [20] showed that knowledge 
about object rigidity influences both visual and haptic per- 
ception of those objects in young infants. Moreover, such 
influence is cross modal: observable haptic perception in- 
fluences visual perception of unobservable properties and 
observable visual perception influences haptic perception of 
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unobservable properties. Wynn [21] showed that material 
properties of objects, such as whether they are countable 
or mass substances, along with abstract properties, such as 
the number of countable objects and the quantity of mass 
substances, and how they are transferred between containers, 
influences visual perception in young infants. Similar results 
exist for many physical properties such as relative mass, 
momentum, etc. These results demonstrate that people can 
easily integrate information from multiple sources together 
with world knowledge to see the unseeable. 

People so regularly invoke the ability to see the unseeable 
that we often don't realize that we do so. If you observe a 
person entering the front door of a house and later see them 
appear from behind the house without seeing them exit a 
door, you easily see the unseeable and conclude that there 
must be an unseen door to the house. But if one later opens 
the garage door or the curtain covering a large living-room 
bay window in the front of the house so that you see through 
the house and see the back door you no longer need to invoke 
the ability to see the unseeable. A more subtle question then 
arises: when must you invoke the ability to see the unseeable? 
In other words how can you see unseeability, the inability to 
see? This question becomes particularly thorny since, as we 
will see, it can involve a chicken-and-egg problem: seeing 
the unseen can require seeing the unseeability of the unseen 
and seeing the unseeability of the unseen can require seeing 
the unseen. 

The ability to see unseeability and to see the unseeable can 
further dramatically influence human behavior. We regularly 
and unconsciously move our heads and use our hands to open 
containers to render seeable what was previously unseeable. 
To realize that we need to do so in the first place, we must 
first see the unseeability of what we can't see. Then we 
must determine how to best use our collective perceptual, 
motor, and reasoning affordances to remedy the perceptual 
deficiency. 

We present a general computational framework for seeing 
unseeability to see the unseeable. We formulate and evaluate 
a particular instantiation of this general framework in the 
context of a restricted domain, namely LINCOLN LOGS, 
a children's assembly toy where one constructs assemblies 
from a small inventory of component logs. The two relevant 
aspects of this domain that facilitate its use for investigating 
our general computational framework are (a) that LINCOLN 

LOG assemblies suffer from massive occlusion and (b) that a 
simple but rich expression of world knowledge, in the form 
of constraints on valid assemblies, can mitigate the effects of 
such occlusion. While LINCOLN LOGS are a children's toy. 



(a) (b) 
Fig. 1. (a) A state-of-the-art segmentation method. Normalized Cut [18], 
does not segment out the log parts, (b) A state-of-the-art edge detector, CPB 
[14], does not reliably find edges separating adjacent logs or log ends. 

this domain is far from a toy when it comes to computer 
vision. The task of structure estimation, determining, from 
an image, the correct combination of component logs used 
to construct an assembly and how they are combined, is 
well beyond state-of-the-art methods in computer vision. 
We have not found any general-purpose image segmentation 
methods that can determine the image boundaries of the 
visible component logs (see Fig. la). Moreover, the uniform 
matte color and texture of the logs, together with the fact 
that logs are placed in close proximity and the fact that 
the majority of any structure is in self shadow means every 
edge-detection method that we have tried fails to find the 
boundaries between adjacent logs (see Fig. lb). This is even 
before one considers occlusion, which only makes matters 
worse. 

Not only is the computer-vision problem for this domain 
immensely difficult, the computational problem is rich as 
well. We present methods for seeing the unseeable (in 
section II) and seeing unseeability (in section III) based 
on precise computation of the maximum-likelihood structure 
estimate conditioned on world knowledge that marginalizes 
over image evidence. We further present (in section IV) a 
rational basis for determining confidence in one's structure 
estimate despite unseeability based on precise computation 
of the amount of evidence needed to override a uniform 
prior on the unseeable. And we finally present (in section V) 
an active-vision decision-making process for determining 
rational behavior in the presence of unseeability based on 
precise computation of which of several available perception- 
enhancing actions one should take to maximally improve the 
confidence in one's structure estimate. We offer experimental 
evaluation of each of these methods in section VI, compare 
against related work in section VII, and conclude with a 
discussion of potential extensions in section VIII. 

II. STRUCTURE ESTIMATION 

In previous work we [19] presented an approach for 
using a visual language model for improving recognition 
accuracy on compositional visual structures in a generative 
visual domain, over the raw recognition rate of the part 
detectors—by analogy to the way speech recognizers use 
a human language model to improve recognition accuracy 
on utterances in a generative linguistic domain, over the 
raw recognition rate of the phoneme detectors. In this ap- 
proach, a complex object is constructed out of a collection 
of parts taken from a small part inventory. A language 
model, in the form of a stochastic constraint-satisfaction 

problem (CSP) [11], characterizes the constrained way object 
parts can combine to yield a whole object and significantly 
improves the recognition rate of the whole structure over the 
infinitesimally small recognition rate that would result from 
unconstrained application of the unreliable part detectors. 
Unlike the speech-recognition domain, where (except for 
coarticulation) there is acoustic evidence for all phonemes, in 
the visual domain there may be components with no image 
evidence due to occlusion. A novel aspect of applying a 
language model in the visual domain instead of the linguistic 
domain is that the language model can additionally help in 
recovering occluded information. 

This approach was demonstrated in the domain of LIN- 

COLN LOGS, a children's assembly toy with a small part 
inventory, namely, 1-notch, 2-notch, and 3-notch logs, whose 
CAD models are provided to the system. In this domain, 
a grammatical LINCOLN LOG structure contains logs that 
are parallel to the work surface and organized on alternating 
layers oriented in orthogonal directions. Logs on each layer 
are mutually parallel with even spacing, thereby imposing a 
symbolic grid on the LINCOLN LOG assembly. The symbolic 
grid positions q = (i,j-k) refer to points along log medial 
axes at notch centers. One can determine the camera-relative 
pose of this symbolic grid without any knowledge of the 
assembly structure by fitting the pose to the two predominant 
directions of image edges that result from the projection of 
the logs to the image plane. 

Each grid position may be either unoccupied, denoted 
by 0, or occupied with the nlh notch, counting from zero, 
of a log with m notches, denoted by (m,n). Estimating the 
structure of an assembly reduces to determining the occu- 
pancy at each grid position, one of the seven possibilities: 
0, (1,0), (2,0), (2,1), (3,0), (3,1), and (3,2). This is done 
by constructing a discrete random variable Zq for each grid 
position q that ranges over these seven possibilities, mutually 
constraining these random variables together with other 
random variables that characterize the image evidence for 
the component logs using the language model, and finding 
a maximum-likelihood consistent estimate to the random 
variables Zq. 

Several forms of image evidence are considered for the 
component logs. LINCOLN LOGS, being cylindrical parts, 
generate two predominant image (log) features: ellipses that 
result from the perspective projection of circular log ends and 
line segments that result from the perspective projection of 
cylindrical walls. The former are referred to as log ends and 
the latter as log segments. Log ends can potentially appear 
only at a fixed distance on either side of a grid position. 
Boolean random variables Z+ and Z~ are constructed to 
encode the presence or absence of a log end at such positions. 
There are two kinds of log segments: those corresponding 
to the portion of a log between two notches and those 
corresponding to the portions of a log end that extend in front 
of or behind the two most extreme notches. Given this, three 
Boolean random variables Z'q\ 2%, and Z• are constructed for 
each grid position q that encode the presence or absence of 
such log segments for the bottoms of logs, i.e. log segments 



between a grid position and the adjacent grid position below. 
A stochastic CSP encodes the validity of an assembly. 

Image evidence imposes priors on the random variables Zt, 
Z~, Z" Zv, and Z" and structure estimation is performed 
by finding a maximum-likelihood solution to this stochastic 
CSP. When formulating the constraints, the adjacent grid 
position below q is referred to as b(q) and the adjacent 
grid position further from the origin along the direction 
of the grid lines for the layer of q is referred to as n(q). 
Ignoring boundary conditions at the perimeter of the grid, 
the grammar of LINCOLN LOGS can be formulated as the 
following constraints: 
a) 2-notch logs occupy two adjacent grid points 
b) 3-notch logs occupy three adjacent grid points 
c) 1- and 2-notch logs must be supported at all notches 
d) 3-notch logs must be supported in at least 2 notches 
e) log ends must be at the ends of logs 
0 short log segments indicate occupancy above or below 
g) long log segments indicate presence of a multi-notch log 

above or below 
Boundary conditions are handled by stipulating that the grid 
positions beyond the perimeter are unoccupied, enforcing the 
support requirement (constraints c-d) only at layers above 
the lowest layer, and enforcing log-segment constraints (f- 
g) for the layer above the top of the structure. Structure 
estimation is performed by first establishing priors over the 
random variables Zt, Z~, Z'q\ Zq\ and Z* that correspond to 
log features using image evidence and establishing a uniform 
prior over the random variables Zq that correspond to the 
latent structure. This induces a probability distribution over 
the joint support of these random variables. The random 
variables that correspond to log features are marginalized 
and the resulting marginal distribution is conditioned on the 
language model 4>. Finally, the assignment to the collection, 
Z, of random variables Zq, that maximizes this conditional 
marginal probability is computed. 

argmax       £ Pr(Z,Z+,Z-,Z",Zl\Zw) 
z    Z+,Z-,Z",ZV,Z" 

*[z.z+.z-.z".zl\z'v] 

While, in principle, this method can determine the condi- 
tional probability distribution over consistent structures given 
image evidence, doing so is combinatorially intractable. The 
conditional marginalization process is made tractable by 
pruning assignments to the random variables that violate the 
grammar 4> using arc consistency [13]. The maximization 
process is made tractable by using a branch-and-bound 
algorithm [10] that maintains upper and lower bounds on 
the maximal conditional marginal probability. Thus instead 
of determining the distribution over structures, this yields 
a single most-likely consistent structure given the image 
evidence, along with its probability. 

III. VISIBILITY ESTIMATION 

Image evidence for the presence or absence of each log 
feature is obtained independently. Each log feature corre- 
sponds to a unique local image property when projected to 

the image plane under the known camera-relative pose. A 
prior over the random variable associated with a specific log 
feature can be determined with a detector that is focused 
on the expected location and shape of that feature in the 
image given the projection. This assumes that the specific log 
feature is visible in the image, and not occluded by portions 
of the structure between the camera and that log feature. 
When the log feature /, a member of the set {+, —,«,v,w} 
of the five feature classes defined above, at a position q, is 
not visible, the prior can be taken as uniform, allowing the 
constraints in the grammar to fill in unknown information. 
We represent the visibility of a feature by the boolean 
variable V, f 

>i • 

Pr(Z^ = true) « image evidence    when Vq = true 
Pr(z/ = false) = \ otherwise 

In order to do so, it is necessary to know which log features 
are visible and which are occluded so that image evidence is 
only applied to construct a prior on visible log features and a 
uniform prior is constructed for occluded log features. Thus, 
in Rumsfeld's terminology, one needs to know the known 
unknowns in order to determine the unknowns. This creates a 
chicken-and-egg problem. To determine whether a particular 
log feature is visible, one must know the composition of 
the structure between that feature and the camera and, to 
determine the structure composition, one must know which 
log features are visible. While we earlier [19] demonstrated 
successful automatic determination of log occupancy at oc- 
cluded log positions, we could only do so given manual 
annotation of log-feature visibility. In other words, while 
earlier we were able to automatically infer Zq, it required 
manual annotation of Vq . Further, determining V(J required 
knowledge of Zq. 

We extend this prior work [19] to automatically determine 
visibility of log features in tandem with log occupancy. 
Our novel contribution in this section is mutual automatic 
determination of both Zq and Vq . We solve the chicken-and- 
egg problem inherent in doing so with an iterative algorithm 
reminiscent of expectation maximization (EM) [4]-[6]. We 
start with an initial estimate of the visibility of each log 
feature. We then apply the structure estimation procedure 
developed in previous work [19] to estimate the occupancy 
of each symbolic grid position. We then use the estimated 
structure to recompute a new estimate of log-feature visibil- 
ity, and iterate this process until a fixpoint is reached. There 
are two crucial components of this process: determining the 
initial log-feature visibility estimate and reestimating log- 
feature visibility from an estimate of structure. 

We determine the initial log-feature visibility estimate 
(i.e. Vq) by assuming that the structure is a rectangular 
prism whose top face and two camera-facing front faces 
are completely visible. In this initial estimate, log features 
on these three faces are visible and log features elsewhere 
are not. We use the camera-relative pose of the symbolic 
grid (which can be determined without any knowledge of 
the structure) together with maximal extent of each of the 
three symbolic grid axes (i.e., three small integers which 



are currently specified manually) to determine the visible 
faces. This is done as follows. We determine the image 
positions for four corners of the base of this rectangular 
prism: the origin (0,0,0) of the symbolic grid, the two 
extreme points (fmax,0,0) and (0,0,kmM) of the two hor- 
izontal axes in the symbolic grid, and the symbolic grid 
point (/max>0,£max)- We select the bottommost three such 
image positions as they correspond to the endpoints of the 
lower edges of the two frontal faces. It is possible, however, 
that one of these faces is (nearly) parallel to the camera 
axis and thus invisible. We determine that this is the case 
when the angle subtended by the two lower edges previously 
determined is less than 110° and discard the face whose 
lower edge has minimal image width. 

We update the log-feature visibility estimate from a struc- 
ture estimate by rendering the structure in the context of 
the known camera-relative pose of the symbolic grid. When 
rendering the structure, we approximate each log as the 
bounding cylinder of its CAD model. We characterize each 
log feature with a fixed number of points, equally spaced 
around circular log ends or along linear log segments and 
trace a ray from each such point's 3D position to the camera 
center, asking whether that ray intersects some bounding 
cylinder for a log in the estimated structure. We take a 
log feature to be occluded when 60% or more of such 
rays intersect logs in the estimated structure. Our method is 
largely insensitive to the particular value of this threshold. It 
only must be sufficiently low to label log features as invisible 
when they actually are invisible. Structure estimation is not 
adversely affected by a moderate number of log features that 
are incorrectly labeled as invisible when they are actually vis- 
ible because it can use the grammar to determine occupancy 
of grid positions that correspond to such log features. 

We can perform such rendering efficiently by rasterization. 
For each log feature, we begin with an empty bitmap. We 
iterate over each log feature and each occupied grid position 
that lies between that log feature and the camera center and 
render a projection of the bounding cylinder of the log at 
that grid position on the bitmap. This renders all possible 
occluders for each log feature allowing one to determine 
visibility by counting the rendered pixels at points in the 
bitmap that correspond to the projected rays. 

The above process might not reach a fixpoint and instead 
may enter a finite loop of pairs of visibility and structure 
estimates. In practice, this process either reaches a fixpoint 
within three to four iterations or enters a loop of length 
two within three to four iterations, making loop detection 
straightforward. When a loop is detected, we select the 
structure in the loop with the highest probability estimate. 

IV. STRUCTURE-ESTIMATION CONFIDENCE 

While the structure estimation process [19] can determine 
the occupancy of a small number of grid positions when 
only a single set of occupancy values is consistent with 
the grammar and the image evidence, it is not clairvoyant; 
it cannot determine the structure of an assembly when a 
large part of that assembly is occluded and many different 

possible structures are consistent with the image evidence. 
In this case, we again have an issue of unknowns vs. known 
unknowns: how can one determine one's confidence in one's 
structure estimation. If we could determine the conditional 
distribution over consistent structures given image evidence, 
P(Z|7), we could take the entropy of this distribution, 
H(Z\l), as a measure of confidence. However, as discussed 
previously, it is intractable to compute this distribution and 
further intractable to compute its entropy. Thus we adopt an 
alternate means of measuring confidence in the result of the 
structure-estimation process. 

Given a visibility estimate, Vg , a structure estimate, Z, and 
the priors on the random variables associated with log fea- 
tures computed with image evidence, Z<{, one can marginal- 
ize over the random variables associated with visible log 
features and compute the maximum-likelihood assignment to 
the random variables associated with occluded log features, 
Z/, that is consistent with a given structure estimate. 

V = argmax 

=false 

Pr(Z,Z+,Z-,Z",Zv,Zw) 

=true 
*[Z,Z+.Z-,Z",Zl',Z"'] 

One can then ask the following question: what is the maximal 
amount 8 that one can shift the probability mass on the 
random variables associated with occluded log features away 
from the uniform prior, reassigning that shifted probability 
mass to the opposite element of the support of that random 
variable from the above maximum-likelihood assignment, 
such that structure estimation yields the same estimated 
structure. Or in simpler terms. 

How much hypothetical evidence of occluded log 
features is needed to cause me to change my mind 
away from the estimate derived from a uniform 
prior on such occluded features? 

We compute this 8 using a modified structure estimation step 

argmax £ Pr(Z,Z+,Z-,Z",Zl'Zvv) = Z 
Z Z+,Z-.Z".Zl'.Z"' 

<t>[z,z+,z-,z".zv.z,vi 

when, for all qf where V/ = false 

Pr(Z, k + 5 
Pr{Zj =Zj) = \-S 

We call such a 8 the estimation tolerance. Then, for any 
estimated structure, one can make a confidence judgment by 
comparing the estimation tolerance to an overall tolerance 
threshold 5*. One wishes to select a value for 8* that 
appropriately trades off false positives and false negatives 
in such confidence judgements: we want to minimize the 
cases that result in a positive confidence assessment for an 
incorrect structure estimate and also minimize the cases that 
result in a negative confidence assessment for a correct struc- 
ture estimate. Because the methods we present in the next 
section can gather additional evidence in light of negative 
confidence assessment in structure estimation, the former are 
more hazardous than the latter because the former preclude 



gathering such additional evidence and lead to an ultimate 
incorrect structure estimate while the latter simply incur the 
cost of such additional evidence gathering. Because of this 
asymmetry, our method is largely insensitive to the particular 
value of 8* so long as it is sufficiently high to not yield 
excessive false positives. We have determined empirically 
that setting 5* =0.2 yields a good tradeoff: only 3/105 false 
positives and 7/105 false negatives on our corpus. 

One can determine the estimation tolerance by binary 
search for the smallest value of 8 e (0,0.5) that results in a 
different estimated structure. However, this process is time 
consuming. But we don't actually need the value of 5; we 
only need to determine whether 8 < 8*. One can do this by 
simply asking whether the estimated structure, Z, changes 
when the probabilities are shifted by 8" 

Pr(z/ 
Pr(z/ 

•%) = I 

z/) 
+ 5* 
5' 

This involves only a single new structure estimation. One can 
make this process even faster by initializing the branch-and- 
bound structure-estimation algorithm with the probability of 
the original structure estimate given the modified distribu- 
tions for the random variables associated with occluded log 
features. 

V. GATHERING ADDITIONAL EVIDENCE TO IMPROVE 

STRUCTURE ESTIMATION 

Structure estimation can be made more reliable by in- 
tegrating multiple sources of image evidence. We perform 
structure estimation in a novel robotic environment, illus- 
trated in Fig. 2, that facilities automatically gathering multi- 
ple sources of image evidence as needed. The structures are 
assembled in the robot workspace. This workspace is imaged 
by a camera mounted on a pendulum arm that can rotate 180° 
about the workspace, under computer control, to image the 
assembly from different viewpoints. This can be used to view 
portions of the assembly that would otherwise be occluded. 
Moreover, a robotic arm can disassemble a structure on 
the workspace. This can be used to reveal the lower layers 
of a structure that would otherwise be occluded by higher 
layers. These methods can further be combined. Generally 
speaking, we seek a method for constraining a single estimate 
of an initial structure with multiple log features derived from 
different viewpoints and different stages of disassembly. 

We can do this as follows. Let Z be a collection of 
random variables Zq associated with log occupancy for a 
given initial structure. Given multiple views ;'= 1,...,« with 
collections Z, of random variables Z£, Z~, Z£, Z^', and Z? 
associated with the image evidence for log features from 
those views, we can compute 

argmax      £       Pr(Z,Z|,... ,Z„) 
Z        Z,...Z„ 

<J>;Z.Z||A...A[Z.Z„] 

Only two issues arise in doing this. First, we do not know 
the relative camera angles of the different views. Even 
though one can estimate the camera-relative pose of the 

Fig. 2. Our novel robotic environment for performing structure estimation. 
Note that the head can rotate 180° about the workspace, under computer 
control, to image the assembly from different viewpoints, and the robot arm 
can disassemble the structure on the workspace. 

structure independently for each view, this does not yield 
the registration between these views. There are only four 
possible symbolic orientations of the structure in each view 
so for n views we need only consider 4""' possible combi- 
nations of such symbolic orientations. We can search for the 
combination that yields the maximum-likelihood structure 
estimate. We do this search greedily, incrementally adding 
views to the structure-estimation process and registering each 
added view by searching for the best among the four possible 
registrations. Second, in the case of partial disassembly, 
we need to handle the fact that the partially disassembled 
structure is a proper subset of the initial structure. We do 
this simply by omitting random variables associated with 
log features for logs that are known to have been removed 
in the disassembly process and not instantiating constraints 
that mention such omitted random variables. 

We can combine the techniques from section IV with 
these techniques to yield an active-vision [3] approach to 
producing a confident and correct structure estimate. One can 
perform structure estimation on an initial image and assess 
one's confidence in that estimate. If one is not confident, one 
can plan a new observation, entailing either a new viewpoint, 
a partial-disassembly operation, or a combination of the two 
and repeat this process until one is sufficiently confident in 
the estimated structure. Only one issue arises in doing this. 
One must plan the new observation. We do so by asking the 
following question: 

Which of the available actions maximally increases 
confidence ? 

Like before, if we could determine the conditional distri- 
bution over consistent structures given image evidence, we 
could compute the decrease in entropy that each available 
action would yield and select the action that maximally 
decreases entropy. But again, it is intractable to compute this 
distribution and further intractable to compute its entropy. 
Thus we adopt an alternate means of measuring increase in 
confidence. 



Given visibility estimates V/ for view i of the n current 
views along with a structure estimate Z constructed from 
those views, and priors on the random variables associated 
with log features computed with image evidence for each 
of these views Z;„, one can marginalize over the random 

"''?' / _ variables associated with visible log features, VL = true, 
and compute the maximum-likelihood assignment Z-' to the 
random variables associated with occluded log features that 
is consistent with a given structure estimate: 

V argmax Pr(Z,Z,,...,Z„) 

<« 
= false true 

*[Z,Z,]A...A<t>[Z.Z„] 

We can further determine those log features that are invisible 
in all current views but visible in a new view j that would 
result from a hypothetical action under consideration. One 
can then ask the following question: what is the maximal 
amount 5' that one can shift the probability mass on these 
random variables away from the uniform prior, reassigning 
that shifted probability mass to the opposite element of the 
support of that random variable from the above maximum- 
likelihood assignment, such that structure estimation when 
adding the new view yields the same estimated structure. Or 
in simpler terms, 

For a given hypothetical action, how much hypo- 
thetical evidence of log features that are occluded 
in all current views is needed in an imagined view 
resulting from that action where those log features 
are visible to cause me to change my mind away 
from the estimate derived from a uniform prior on 
such features? 

For an action that yields a new view, j, we compute 5' as 
follows 

argmax 
z 

when: 

E 
Z|...Z„ Zy 

*[z,z,]A...A*[z,z„]A<t>[z,z7! 

Pr(Z,Z.)...,Z„,Z/) = Z 

Pr(Z^ = -z£) 

for all qf where V- = true A (Vi)V^ = false. Because we 
wish to select the action with the smallest 8', we need 
its actual value. Thus we perform binary search to find 5' 
for each hypothetical action and select the one with the 
lowest 5'. This nominally requires sufficiently deep binary 
search to compute 5' to arbitrary precision. One can make 
this process even faster by performing binary search on all 
hypothetical actions simultaneously and terminating when 
there is only one hypothetical action lower than the branch 
point. This requires that binary search be only sufficiently 
deep to discriminate between the available actions. 

VI. RESULTS 

We gathered a corpus of 5 different images of each of 32 
different structures, each from a different viewpoint, for a 
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Fig. 3. Error histograms for manual visibility annotation (in blue) and 
automatic visibility estimation (in red). 100% of the structures estimated 
had 12 or fewer errors. Note that the latter performs as well as the former. 

total of 160 images. The structures were carefully designed 
so that proper subset relations exist among various pairs of 
the 32 distinct structures. 

We first evaluated automatic visibility estimation. We per- 
formed combined visibility and structure estimation on 105 
of the 160 images1 and compared the maximum-likelihood 
structure estimate to that produced in our earlier work 
[19] using manual annotation of visibility. For each image, 
we compare the maximum-likelihood structure estimate to 
ground truth and compute the number of errors. We do this 
as follows. Each 1-, 2-, or 3-notch log in either the ground 
truth or estimated structure that is replaced with a different, 
possibly empty, collection of logs in the alternate structure 
counts as a single error (which may be a deletion, addition, 
or substitution). Further, each collection of r adjacent logs 
with the same medial axis in the ground truth that is 
replaced with a different collection of s logs in the estimated 
structure counts as min(r,s) errors. We then compute an 
error histogram of the number of images with fewer than t 
errors. Fig. 3 shows the error histograms for manual visibility 
annotation and automatic visibility estimation. Note that the 
latter performs as well as the former. Thus our automatic 
visibility-estimation process appears to be reliable. 

We then evaluated structure-estimation confidence assess- 
ment. We computed the false-positive rate and false-negative 
rate of our confidence-assessment procedure over the entire 
corpus of 105 images, where a false positive occurs with 
a positive confidence assessment for an incorrect structure 
estimate and a false negative occurs with negative confidence 
assessment for a correct structure estimate. This resulted in 
only 3 false positives and 7 false negatives on our corpus. 

We then evaluated the active-vision process for performing 
actions to improve structure-estimation confidence on 90 
images from our corpus.1 So as not to render this evaluation 
dependent on the mechanical reliability of our robot which 

1 Due to limited computational resources we were unable to perform 
combined visibility, structure estimation, and active-vision on all 160 
images. The final submission will contain the full set of results. 
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Fig. 4. Error histograms for the baseline structure estimation (in dark 
blue) and each of the active-vision process (partial disassembly in light 
blue, multiple views in yellow, and the combination of these in red). 

is tangential to the current paper and focus the evaluation on 
the computational method, we use the fact that our corpus 
contains multiple views of each structure from different 
viewpoints to simulate moving the robot head to gather new 
views and the fact our corpus contains pairs of structures in a 
proper-subset relation to simulate using the robot to perform 
partial disassembly. We first evaluated simulated robot-head 
motion to gather new views. For each image, we took the 
other images of the same structure from different viewpoints 
as potential actions and perform our active-vision process. 
We next evaluated simulated robotic disassembly. For each 
image, we took images of proper-subset structures taken 
from the same viewpoint as potential actions and perform 
our active-vision process. We finally evaluated simulated 
combined robot-head motion and robotic disassembly. For 
each image, we took all images of proper-subset structures 
taken from any viewpoint as potential actions and perform 
our active-vision process. For each of these, we computed 
the error histogram at the termination of the active-vision 
process. Fig. 4 shows the error histograms for each of the 
active-vision processes together with the error histogram 
for baseline structure estimation from a single view on 
this subset of 90 images. Fig. 5 shows a rendering of 
the final estimated structure when performing each of the 
four processes from Fig. 4 on the same initial image. Log 
color indicates correct (green) or incorrect (red) estimation 
of log occupancies. Note that our active-vision processes 
consistently reduce estimation error. 

VII. RELATED WORK 

Our work shares three overall objectives with prior work: 

• estimating 3D structure from 2D images, 
• determining when there is occlusion, and 
• active vision. 

However, our work explores each of these issues from a novel 
perspective. 

Prior work on structure estimation (e.g. [8], [12], [17]) 
focuses on surface estimation, recovering a 3D surface from 

2D images. In contrast, our work focuses on recovering the 
constituent structure of an assembly: what parts are used 
to make the assembly and how such parts are combined. 
Existing state-of-the-art surface reconstruction methods (e.g. 
Make3D [16]) are unable to determine surface structure of 
the kinds of LINCOLN LOG assemblies considered here. Ever 
if such surface estimates were successful, such estimates 
alone are insufficient to determine the constituent structure. 

Prior work on occlusion determination (e.g. [8], [9]) fo- 
cuses on finding occlusion boundaries: the 2D image bound- 
aries of occluded regions. In contrast, our work focuses on 
determining occluded parts in the constituent structure. We 
see no easy way to determine occluded parts from occlusion 
boundaries because such boundaries alone are insufficient to 
determine even the number of occluded parts, let alone their 
types and positions in a 3D structure. 

Prior work on active vision (e.g. [15]) focuses on integrat- 
ing multiple views into surface estimation and selecting new 
viewpoints to facilitate such in the presence of occlusion. In 
contrast, our work focuses on determining the confidence of 
constituent structure estimates and choosing an action with 
maximal anticipated increase in confidence. We consider not 
only viewpoint changes but also robotic disassembly to view 
object interiors. Also note that the confidence estimates used 
in our approach to active vision are mediated by the visual 
language model. We might not need to perform active vision 
to observe all occluded structure as it might be possible to 
infer part of the occluded structure. Prior work selects a new 
viewpoint to render occluded structure visible. We instead 
select an action to maximally increase confidence. Such an 
action might actually not attempt to view an occluded portion 
of the structure but rather increase confidence in a visible 
portion of the structure in a way that when mediated by 
the language model ultimately yields a maximal increase in 
the confidence assessment of a portion of the structure that 
remains occluded even with the action taken. 

VIII. CONCLUSION 

We have presented a general framework for (a) seeing 
the unseeable, (b) seeing unseeability, (c) a rational basis 
for determining confidence in what one sees, and (d) an 
active-vision decision-making process for determining ratio- 
nal behavior in the presence of unseeability. We instantiated 
and evaluated our general framework in the LINCOLN LOG 
domain and found it to be effective. This framework has 
many potential extensions. One can construct random vari- 
ables to represent uncertain evidence in other modalities such 
as language and speech and one can augment the stochastic 
CSP to mutually constraint these variables together with 
the current random variables that represent image evidence 
and latent structure so that a latent utterance describes a 
latent structure. One can then use the same maximum- 
likelihood estimation techniques to produce the maximum- 
likelihood utterance consistent with a structure marginalizing 
over image evidence. This constitutes producing an utterance 
that describes a visual observation. One can use the same 
maximum-likelihood estimation techniques to produce the 



(a) (b) (c) (d) 

Fig. 5.   Rendered structure for the following four methods: (a) Baseline structure estimation, (b) Partial disassembly, (c) Multiple views, 
(d) Combined partial disassembly and multiple views. 

maximum-likelihood sequence of robotic actions consistent 
with building a structure marginalizing over utterance evi- 
dence or alternatively image evidence. This would constitute 
building a structure by understanding a linguistic description 
of that structure or by copying a visually observed assem- 
bly. One can combine evidence from an uncertain visual 
perception of a structure with evidence from an uncertain 
linguistic description of that structure to reduce the uncer- 
tainty of structure estimation. This would constitute using 
vision and language to mutually disambiguate each other. 
One could augment one's collection of potential actions to 
include speech acts as well as robotic-manipulation actions 
and search for the action that best improves confidence. 
This would constitute choosing between asking someone 
to provide you information and seeking that information 
yourself. One could determine what another agent can see 
from what that agent says. Likewise one could decide what 
to say so that another agent can see what is unseeable to 
that agent yet is seeable to you. Overall, this can lead to a 
rational basis for cooperative agent behavior and a theory 
of the perception-cognition-action loop which incorporates 
mutual belief, goals, and desires where agents seek to assist 
each other by seeing what their peers cannot, describing 
such sight, and inferring what their peers can and cannot 
see. We are currently beginning to investigate these potential 
extensions to our general approach and hope to present them 
in the future. 
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