
REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302 Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

11/10/2011

2. REPORT TYPE

Final

3. DATES COVERED (From - To)
21 June 2010-20 June 2011

4. TITLE AND SUBTITLE

Emergent Intelligent Behavior through Integrated Investigation of Embodied
Natural Language, Reasoning, Learning, Computer Vision, and Robotic
Manipulation.

5a. CONTRACT NUMBER

5b. GRANT NUMBER

N00173-10-1-G023
5c. PROGRAM ELEMENT NUMBER

55-1005-10
6. AUTHOR(S)

Siskind, Jeffrey, M.
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Purdue University
School of Electrical and Computer Engineering
465 Northwestern Avenue
West Lafayette, IN 47907-2035

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Naval Research Laboratory
4555 Overlook Ave. SW
Washington, DC 20375

10. SPONSOR/MONITOR'S ACRONYM(S)

NRL

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for Public Release, distribution is unlmited

13. SUPPLEMENTARY NOTES

^c-itio^AqO
14. ABSTRACT

We developed methods for estimating the camera-relative pose and compositional structure of a Lincoln Log assembly from
a single image together with methods for rendering a description ofthat structure in English and then replicating that
structure with a robot manipulator arm from that English description.

15. SUBJECT TERMS

robotics, computer vision, natural language processing, AI, machine learning

16. SECURITY CLASSIFICATION OF:

a. REPORT

u

b. ABSTRACT C. THIS PAGE

u u

17. LIMITATION OF
ABSTRACT

uu

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code)

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std Z39.18

f!S

5 § 3 £

Q |

Jf
z -a

H 9 2 i
Lü §
> o

o o:

UJ o
a Z

M

O

9
3 *-<

g 5
O o

y

e t
>
c
D
•
3

T3
C

Q.

§

8 er
5
|
2 0

O
1- z z
B
2
z 8 O E (/) z
s 8
g e

z Ul
o z
z o
U A > z
z

ö
y

8 9

S *

1 ü n 3

I

K

o
CM

5
JM

^ V

*.

*

K

§

8 u
>

1 s
- £ o

2
O
C

9
O

|

1 w
a C

O

CD
tn
cu

t

1
2

?
«1

9
c
n

J 9 u.
1°

FEDERAL FINANCIAL REPORT
(Follow form instructions)

1. Federal Agency and Organizational Element

to Which Report is Submitted

Naval Research Laboratory

2. Federal Grant or Other Identifying Number Assigned by Federal Agency

(To report multiple grants, use FFR Attachment)

N00173-10-1-G023

Page of

1

page»
3. Recipient Organization (Name and complete address including Zip code)

Purdue University

Sponsored Program Services

155 S. Grant Street

West Lafayette, IN. 47907-2114

4a. DUNS Number

07-205-1394

4b. EIN

35-6002041

5. Recipient Account Number or Identifying Number

(To report multiple grants, use FFR Attachment)

104686

6. Report Type

H Quarterly
O Semi-Annual

^Annual
XFinal

7. Basis of Accounting

a Cash H Accrual
8. Project/Grant Period

From: (Month. Day, Year)

6/21/2010
To: (Month, Day. Year)

6/20/2011

9. Reporting Period End Date
(Month, Day. Year)

6/20/2011
10. Transactions Cumulative

(Use lines 3-c for single or multiple grant reporting)

Federal Cash (To report multiple grants, also use FFR Attachment):

a. Cash Receipts 39,120.28

b. Cash Disbursements 49,949.63

c. Cash on Hand (line a minus b) (10,829.35)

(Use lines d-o tor single grant reporting)

Federal Expenditures and Unobligated Balance:

d. Total Federal fund3 authorized 50,000.00

e. Federal share of expenditures 49,949.63

f. Federal share of unliquidated obligations

g. Total Federal share (sum of lines e and 0 49,949.63

h. Unobligated balance of Federal funds (line d minus q)
Recipient Share:

i. Total recipient share required

j. Recipient share of expenditures

k. Remaining recipient share lo be provided (line i minus j)

Program Income:

I. Total Federal program income earned

m. Program income expended in accordance with the deduction alternative

n. Program income expended in accordance with the addition alternative

o. Unexpended program income (line I minus line m or line n)

a. Type b. Rate c. Period From Period To d. Base e. Amount Charged f. Federal Share
11. Indirect

Expense
Predetermined 54.0% 6/21/2010 6/20/2011 30,494.15 16,466.92 16,466.92

g. Totals: 30,494.15 16,466.92 16,466.92
12. Remarks: Attach any explanations deemed necessary or information required by Federal sponsoring agency in compliance with governing legislation:

13. Certification: By signing this report, I certify that it is true, complete, and accurate to the best of my knowledge. I am aware that

any false, fictitious, or fraudulent information may subject me to criminal, civil, or administrative penalises. (U.S. Code, Title 18, Section 1001)

a. Typed or Printed Name and Title of Authorized Certifying Official

Helen Moschinger, Senior Account Manager

b. Signature bf Authorized Certifying Official

i

c. Telephone (Area code, number and extension)

765-494-1078

d. Email address

helenm(S>purdue.edu

e. Date Regdrt Submitted (Month. Day. Year)

f 4. Agency use only:

Standard Form 425
OMB Approval Numb«-. 0348-0091
Eviration Oaf: 10/31/2011

Paperwork Burden Statement
According to the Paperwork Reduction Act as amended, no persons are required to respond to a collection of information unless it displays a valid OMB Control Number. The valid OMB control number for this
information collection is 334&-0061 PuDiic reporting burden for tnis collection of information is estimated to average 1.5 hours per response, including time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding the burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to the Office of Management and Budget. Paperwork Reduction Project f 0346-0060). Washington. DC 20503.

Final Report

Emergent Intelligent Behavior through Integrated Investigation of Embodied Natural Language,
Reasoning, Learning, Computer Vision, and Robotic Manipulation

Purdue University
Jeffrey Mark Siskind
N00173-10-1-G023

21 June 2010-20 June 2011
Monday 10 October 2011

1 Efforts under this grant

Our efforts under this grant have focused on the following activities:
• We developed a method for determining the camera-relative pose of an assembly constructed

out of LINCOLN LOGS from a single image from an uncalibrated camera. This method
uses the inherent structure of the LINCOLN LOG assembly domain which has orthogonally
oriented logs on planar surfaces parallel to the ground plane resulting in two predominant
directions of image edges when projected to the image plane.

• We developed a method for determining the structure (component logs and their 3D place-
ment) of a LINCOLN LOG assembly from a single image from an uncalibrated camera. This
method uses a novel visual language model that encodes the inherent structure of the LIN-
COLN LOG assembly domain and uses this language model to improve detection accuracy
over what is possible from raw low-level detector output.

• We extended the above structure-estimation method to support:
- Determination of confidence in ones structure estimate.
- Determination of what is occluded and what is visible.
- Improving the reliability of ones structure estimate by integrating information from

multiple views, to observe occluded parts of the structure.
- Improving the reliability of ones structure estimate by disassembling parts of the struc-

ture to render occluded parts visible.
• We developed a method for generating English descriptions of the structure of a LINCOLN

LOG assembly as recovered from visual input.
• We developed a method for controlling a robot manipulator arm to replicate a LINCOLN

LOG assembly from an English description.
• We developed a method to allow two robot manipulator arms to collaborate when building a

LINCOLN LOG assembly. One robot serves as an inventory manager inventorying the parts
available on its work surface. The second robot serves as the builder, requesting parts from
the inventory manager and placing them in the assembly under construction.

All of the above are fully documented in the papers that we have published or submitted for publi-
cation, along with the web sites we have prepared, as outlined below.

2 Deliverables

Our statement of work states:

Under this grant we will investigate and conduct research on methods for determin-
ing the pose and structure of LINCOLN LOG assemblies from one or more images of
such assemblies taken from one or more viewpoints at one or more stages of partial
disassembly together with optional linguistic specification of constraints on the ob-
served assembly. We will use those methods to drive robotic disassembly of LINCOLN

LOG assemblies whose structure has been so determined. And we will quantitatively
evaluate the performance of these methods. The results of this research effort will be
detailed in a final report to be delivered on or by 31 October 2010.

We will deliver a final report, on or by 31 October 2010, detailing the methods devel-
oped along with a quantitative evaluation of their performance.

Award of the grant was delayed so that the initial period of performance was extended until 20
November 2011. A no-cost extension extended the period of performance through 20 June 2011.
We have accomplished the objectives outlined in the above statement of work and published our
results (or in some cases submitted our results for publication) as outlined below. We attach the
published, accepted, and submitted papers as appendices to this report.

3 Publications

3.1 Published

Siddharth, N., Barbu, A., and Siskind, J.M., A Visual Language Model for Estimating Object Pose
and Structure in a Generative Visual Domain, ICRA, 2011.

3.2 Accepted

Wingate, D., Goodman, N.D., Stuhlmueller, A., and Siskind, J.M., Nonstandard Interpretations of
Probabilistic Programs for Efficient Inference, NIPS, 2011.

3.3 In Review

Siddharth, N., Barbu, A., and Siskind, J.M., Seeing Unseeability to See the Unseeable, submitted
to ICRA 2012.

3.4 Invited Presentations

Siskind, J.M., Mediating Cross-Modal Perception, Motor Control, Language, and Reasoning with
Common and Deep Semantic Representations, AAAI workshop on Language-Action Tools for
Cognitive Artificial Agents: Integrating Vision, Action, and Language, 2011

3.5 Web Sites

The following web sites acknowledge funding under this contract:
https://engineering.purdue.edu/~qobi/mindseye/
(Click on Online appendix for the kickoff meeting to see the acknowledgment. The README files
included in many of the downloadable releases also contain the acknowledgment.)

http://upplysingaoflun.ecn.purdue.edu/~qobi/cccp/
(Click on Research and followed by either Our Robotic Testbed, Structure Estimation from a Single
View, Structure Estimation from Multiple Views, Structure Estimation from Partial Disassembly,
Structure Assembly and Disassembly, or Robot Collaboration to see the acknowledgment.)

https://engineering.purdue.edu/~qobi/icra2011/

https://engineering.purdue.edu/~qobi/icra2 012/

4 Execution of funding

Our cumulative expenses for 21 June 2010-20 June 2011 total $49,949.63.

A Visual Language Model for Estimating Object Pose and Structure
in a Generative Visual Domain

Siddharth Narayanaswamy, Andrei Barbu, and Jeffrey Mark Siskind

Abstract—We present a generative domain of visual objects
by analogy to the generative nature of human language.
Just as small inventories of phonemes and words combine
in a grammatical fashion to yield myriad valid words and
utterances, a small inventory of physical parts combine in a
grammatical fashion to yield myriad valid assemblies. We apply
the notion of a language model from speech recognition to
this visual domain to similarly improve the performance of
the recognition process over what would be possible by only
applying recognizers to the components. Unlike the context-
free models for human language, our visual language models
are context sensitive and formulated as stochastic constraint-
satisfaction problems. And unlike the situation for human
language where all components are observable, our methods
deal with occlusion, successfully recovering object structure
despite unobservable components. We demonstrate our system
with an integrated robotic system for disassembling structures
that performs whole-scene reconstruction consistent with a
language model in the presence of noisy feature detectors.

I. INTRODUCTION

Human language is generative:1 a small inventory of
phonemes combine to yield a large set of words and then
this inventory of words combine to yield a larger set of
utterances. Systems that process language must deal with
the combinatorial nature of generativity. The probability of
correct word recognition becomes fleetingly small with even
a slight probability for error in phoneme recognition and the
probability of determining the correct parse of an utterance
becomes fleeting small with even a slight probability for error
in word recognition. This is remedied with a language model,
a specification of which combinations of phonemes constitute
valid words and which combinations of words constitute
valid utterances. Such a language model often takes the form
of a grammar.

The vast majority of computer-vision research in pose
estimation and object recognition deals with nongenerative
collections of objects. Such nongenerative collections require
distinct models or exemplars for each object (class) that
varies greatly in shape, structure, or appearance. We instead
present an approach for doing pose estimation and structure
recognition in generative visual domains, analogous to the
approach for human language. We illustrate this approach
with the domain of LINCOLN LOG assemblies. LINCOLN

htcp://engineering.purdue.edu/-qobi/icra2011
The authors are with the School of Electrical and Computer

Engineering, Purdue University. West Lafayette, IN, 47907, USA
{snarayan,abarbu,qobi}@purdue.edu

1 We mean the Chomskyan sense of generative, not the sense in contrast
to discriminative. Indeed, while our domain is generative in the Chomskyan
sense, our recognizer uses a discriminative model.

LOGS is a children's assembly toy with a small component
inventory. We limit this inventory to three component types:
1-notch, 2-notch, and 3-notch logs. These combine in myriad
ways to yield a large set of assemblies. We present low-level
feature detectors that collect evidence for the components in
a fashion analogous to low-level feature detectors in speech
recognizers. But as in speech, the probability of correct
recognition of an entire assembly becomes fleetingly small
with even a slight probability for error in log recognition.
We remedy this with a visual language model or a grammar
of LINCOLN LOGS, a specification of which combinations
of logs constitute valid assemblies.

The analogy breaks down in two ways requiring novel
methods. First, most computer models of speech and lan-
guage assume that the grammar is context free. This allows
a top-down tree-structured generative process where the gen-
eration of siblings is independent. In contrast, the symbolic
structure underlying LINCOLN LOG assemblies takes the
form of graphs with cycles and thus the visual language
model is context sensitive and is formulated as a stochastic
constraint-satisfaction problem. Second, in language, all of
the components are observable; at least in principle, one
can obtain perceptual evidence of each phoneme in a word
and each word in an utterance. In contrast, visual domains
exhibit occlusion; it is almost always necessary to determine
object structure without perceptual evidence for all of the
components. Our methods address both of these issues.
Our work builds upon the notion that scenes and objects
are represented as descriptions involving parts and spatial
relations [1]—[10], differing from prior work in the extreme
degree of generativity of the LINCOLN LOG domain. None
of this prior work focuses on domains that can generate as
large a class of distinct structures from as small a class of
components. Moreover, we focus on determining the precise
pose and structure of an assembly, including the 3D pose of
each component, with sufficient accuracy to support robotic
manipulation and, in particular, the ability to robotically
construct a symbolically precise replicate of a structure from
a single image.

LINCOLN LOG structures are composed out of a small
inventory of components, namely 1-notch, 2-notch, and 3-
notch logs. As shown in Fig. 1, such logs are characterized
by a small number of shape parameters: the inter-notch
distance l\, the log diameter h. and the distance I3 from a log
end to the closest notch center. Valid structures contain logs
arranged so that their notches are aligned and their medial
axes are parallel to the work surface. Thus valid structures

Fig. 1. The 3D geometric shape parameters of LINCOLN LOGS.

have logs on alternating layers j at height li(j+0.5) oriented
along one of two orthogonal sets of parallel lines spaced
equally with horizontal distance l\. The lines for even layers
are mutually parallel, the lines for odd layers are mutually
parallel, and the projections of a line from an even layer
and an odd layer onto the work surface are perpendicular.
We refer to this set of lines as the grid (see Fig. 2). This
grid imposes a symbolic structure on the LINCOLN LOG

assembly. Symbolic grid coordinates (i,j,k) map to metric
camera-relative coordinates (x,y,z) by the parameters l\, h,
and h together with the structure pose: the transformation
from the grid coordinate system to the camera coordinate
system. Estimating the structure of a LINCOLN LOG as-
sembly thus reduces to two phases: estimating the structure
pose (section II) and determining the log occupancy at each
symbolic grid position (section III).

II. ESTIMATING THE STRUCTURE POSE

Before beginning these two phases, we first compute a
mask that separates the LINCOLN LOG structure in the image
foreground from the background. We manually collect 20-30
image segments of LINCOLN LOG components and compute
the mean fl and covariance £ of the pixel values in these
segments in a five-dimensional color space UVHSI. We then
derive a mask M from an input image / containing those
pixels p with values whose Mahalanobis distance from fl is
less than or equal to a threshold t:

Mp =
0

I|C(/„)-MIIE<'
otherwise

where C denotes the map from input pixel values to UVHSI.
Nominally, the structure pose contains six degrees of

freedom corresponding to translation and rotation about each
axis. To simplify, we assume that the structure rests on the
horizontal work surface. Thus we fix vertical translation, roll
around the camera axis, and pitch around the horizontal axis
perpendicular to the camera axis to be zero, leaving only
three free parameters: horizontal translation of the structure
along the work surface and yaw around the vertical axis. To
resolve the periodic translation ambiguity in the symbolic
grid coordinate system, we assume that the minimum occu-
pied i, j, and k values are zero. We further assume that we
know the symbolic grid size: the maximum occupied i, j,
and k values.

Images of LINCOLN LOG assemblies contain a predomi-
nance of straight edges that result from log edges. Given this,
we estimate the structure pose in a two-step process. We first
find the pose p that maximizes the coincidence between the
set L(p) of projected grid lines lg and the set £./ of image-
edge line segments /,:

argmin £ ||//,/J
P li€L,,lg€L(p)

where ||//,'g|| denotes the Euclidean distance between the
midpoint of a line segment and its closest point on a line,
weighted by the disparity in orientation between the line
and the line-segment. We then refine this pose estimate by
maximizing the coincidence between projected grid lines and
the set Pi of image edge points pc.

argmin min ||/>i,/«||
P PiePi,ig€L{p)

where ||p,,/Ä|| denotes the Euclidean distance between a
point and the closest point on the line. We use a soft min
function [11]-[13] when computing the latter with gradient-
based methods (reverse-mode automatic differentiation [14]).

To obtain Z./, we apply a Canny edge detector [15] together
with the KHOROS line finder [16] to extract linear edge
segments from the input image, discarding short segments
and those that do not lie wholly within the mask region
defined by M. We then select the edge segments corre-
sponding to the two most prominent edge orientations, by
placing the segments into bins according to their orientation
and selecting the edge segments in the two largest bins. To
obtain /*/, we apply Phase Congruency [17] to the input
image / to compute the orientation image 0(1). Each pixel
in O(I) contains a quantized orientation. We chose Pj to be
those pixels whose quantized orientation is closest to the
mean edge-segment orientations of the above two largest
bins.

This two-step process offers several advantages. The first
step converges quickly but exhibits error in the recovered
prominent edge orientations. The second step estimates pose
more accurately (typically within 5mm translation and 2°
rotation), but only with close initial estimates, such as those
provided by the first step.

Fig. 2 illustrates successful pose estimation of several
LINCOLN LOG structures. Note that we estimate the pose of
a target object from a single image without any knowledge
of the specific 3D shape or structure of that object, without
any prior training images of that object in different poses,
using only generic information from the domain, namely that
the object is a valid LINCOLN LOG assembly.

III. DETERMINING THE LOG OCCUPANCY AT EACH

SYMBOLIC GRID POSITION

The symbolic grid positions q = (i,j,k) refer to points
along log medial axes at notch centers. Each such grid
position may be either unoccupied, denoted by 0, or occupied
with the nth notch, counting from zero, of a log with m
notches, denoted by (m,n). For each grid position we wish to

Rg. 2. Estimating the pose of an arbitrary LINCOLN LOG assembly
and the symbolic grid thus imposed on the assembly.

Fig. 3. The random variables Zq and Zq that correspond to log
ends for grid position q and the random variables '/,". /,''. and Z"
that correspond to log segments.

determine its occupancy, one of seven possibilities: 0, (1,0),
(2,0). (2,1), (3,0), (3,1). and (3,2). We construct a discrete
random variable Zq for each grid position q that ranges over
these seven possibilities.

We determine several forms of image evidence for the
log occupancy of a given grid position. LINCOLN LOGS.

being cylindrical structures, generate two predominant image
features: ellipses that result from the perspective projection
of circular log ends and line segments that result from
the perspective projection of cylindrical walls. We refer
to the former as log ends and the latter as log segments.
Log ends can potentially appear only at distance ±/3 from
grid positions along the direction for the layer of that
grid position. We construct boolean random variables Zq

and Z~ to encode the presence or absence of a log end at
such positions. There are two kinds of log segments: ones
corresponding to l\ and ones corresponding to I3. Given this,
we construct three boolean random variables Zq, Z

v
q, and Z^

for each grid position q that encode the presence or absence
of log segments for the bottoms of logs, i.e., log segments
between a grid position and the adjacent grid position below.
Zq and Z^ encode the presence or absence of a log segment
of length l-i behind and ahead of q respectively, along the
direction for the layer of q while Z^ encodes the presence
or absence of a log segment of length l\ — 2/3 between grid
positions along the same layer. Fig. 3 depicts the log ends
and log segments that correspond to a given grid position as
described above.

We formulate a stochastic constraint-satisfaction problem
(CSP [18]) over these random variables. The constraints en-
code the validity of an assembly. We refer to these constraints
as the grammar of LINCOLN LOGS (section III-C). We take
image evidence to impose priors on the variables Zq, Z~, Zq,

Fig. 4. Elliptical edge filter for detecting log ends

Z"q, and Z^ (sections III-A and III-B) and solve this stochastic
CSP to perform structure estimation (section III-D).

A. Evidence for the presence or absence of logs

Given the pose p, a log end present as the result of Z+
or Zq being true will manifest as an ellipse of known shape,
size, and position in the image. We use x+(p,q), y+{p,q).
a+(p,q), b+(p,q), and 9+(p,q) to denote the parameters
(center, lengths of major and minor axes, and orientation
of major axis) of an ellipse that would manifest from Zq

and similarly for Z~. We find these parameters by a least-
squares fit of 20 equally spaced 3D points on the log end
projected to the image. The 3D points can be determined in
closed form from the grid position q and the parameters l\,
I2. and /3. We then construct an indicator function f(x,y)
with the value 1 for points (x,y) inside the ellipse and the
value 0 for points outside the ellipse and convolve this with
a Laplacian of a Gaussian filter, LoG(r, a), to obtain an
elliptical edge filter E(x,y,a,b, 6) (Fig. 4). Nominally, a high
response to this filter applied to an image correlates with the
presence of an elliptical feature with parameters x, y, a, b,
and 0. To provide robustness in the face of inaccurate pose
estimation, we compute the maximal filter response in a 5-
dimensional region centered on x, y, a, b, and 0 derived by
perturbing each axis a small amount.

Similarly, given the pose p. a log segment present as the
result of Z'q\ ZJ, or Z% being true will manifest as a line
segment between known image points. We denote the points
forZJ as {x\{p,q),fx{p,q)) and (A{p,q),y\(p,q)) and sim-
ilarly for Zq and Z^. These image points can be determined
in closed form by projecting the 3D points derived from the
pose p, the grid position q, and the parameters l\, /2. and h.

In principle, we could use a similar filter method to
determine evidence for log segments. However, log ends
usually yield highly pronounced edges because logs are
never stacked horizontally end to end. Log are often stacked
vertically and the log segments between two such vertically
stacked logs would yield less-pronounced edges. Thus we
use a more sensitive method to determine evidence for log
segments. Given the pose p of the structure, we recompute
the prominent edge orientations 0[and oi using the methods
from section II (this time applied to the output of the

second step of pose estimation, not the first, to give a more
accurate estimate of these orientations). For each prominent
orientation o, we compute the disparity between o and 0(1)
at each pixel, compute the prominence at each pixel by
attenuating the disparity, and scale the energy image, £(/),
by this prominence: W(I,o) = E(I) o cos2(0(1) — o). This
constitutes a graded edge map for edges with orientation o.
We search a rectangular region in W(I,o), after thresholding,
for the longest line segment. The search region corresponds
to a dilation of the rectangle bounded by the endpoints of the
target log segment. The length of the longest line segment
found correlates with the presence of the target log segment.

B. Mapping evidence to priors

We train a mapping function from evidence to priors for
the log-segment and log-end evidence functions respectively
on a set of 30 images annotated with ground truth, i.e.,
true positives and true negatives, along with occlusion. For
each evidence function, we bin their respective raw, real-
valued responses into 20 bins and annotate each bin with
the percentage of responses that are true positives and the
central response value for that bin. The annotated bins
correspond to a discrete sequence of impulses with impulse
magnitude representing the percentage of true positives for
the central response value. We then employ a weighted
linear interpolation function between impulses to provide the
mapping function. The weighting factor e typically takes the
form of a real value e £ (0,1).

C. The grammar of Lincoln Logs

We refer to the adjacent grid position below q as b(q),
the adjacent grid position further from the origin along
the direction of the grid lines for the layer of q as n(q),
and the adjacent grid position closer to the origin along
the direction of the grid lines for the layer of q as p(q).
Ignoring boundary conditions at the perimeter of the grid,
the grammar of LINCOLN LOGS can be formulated as the
following constraints:
a) 2-notch logs occupy two adjacent grid points

f) short log segments indicate occupancy above or below

Z, = (2,0)~Z, '»(</) (2,1)

b) 3-notch logs occupy three adjacent grid points

(3,0)
Z, = (3,0)~Z,

-n(q) (V

Mq) 3,i Zn(n(q))

(3,2)
(3,2)

c) 1- and 2-notch logs must be supported at all notches

Z(/G{(l,O),(2,O),(2,l)}-.ZM(/)^0

d) 3-notch logs must be supported in at least 2 notches

/ (Z/;(,)^0AZM„(v))^0)V \
Zq = (3,0) - [Zm / 0 AZ„(„(n((/))) ± 0) V

\ {^b(n(q))^^^Zb(n(n(q)))^(b))

e) log ends must be at the ends of logs

Z-^Zg£ {(1,0),(2,0),(3,0)}
Z+^ZqZ {(1,0),(2,1),(3,2)}

Z"
zv
^q

(Zq^<bVZh(b(q))^<b)
(Z^0VZft(%))^0)

;) long log segments indicate presence of a multi-notch log
above or below

/ (Z/e{(2,0),(3,0),(3,l)}A
Z„(g)e{(2,l),(3,l),(3,2)}

V

Mq)
Zb(b(q))

-b(b(n(q)))

V

€{(2,0),(3,0),(3,1)}A
6 {(2,1),(3,1),(3,2)}))

To handle the boundary conditions, we stipulate that the grid
positions beyond the perimeter are unoccupied, enforce the
support requirement (constraints c-d) only at layers above
the lowest layer, and enforce log-segment constraints (f-g)
for the layer above the top of the structure.

D. Structure estimation

To perform structure estimation we first establish priors
over the random variables Zq and Zq that correspond to log
ends and the random variables Zq, Zv

q, and Zq that corre-
spond to log segments using image evidence and establish a
uniform prior over the random variables Zq. This induces
a probability distribution over the joint support of these
random variables. We then marginalize the random variables
that correspond to log ends and log segments and condition
this marginal distribution on the language model <f>. Finally,
we compute the assignment to the random variables Zq that
maximizes this conditional marginal probability.

argmax £ Pr (f\Zq,Z;,Zq ,Z
u

qXq,Z
w

q)
Z Z+,Z-.Z",Zl\Z"' \ q /

<t>[z.z+.z-.z".zv.zw]

To speed up the conditional marginalization process, we
prune assignments to the random variables that violate the
grammar <t> using arc consistency [19]. To speed up the
maximization process, we use a branch-and-bound algorithm
[20] that maintains upper and lower bounds on the maximal
conditional marginal probability. Without both of these,
structure estimation would be intractable.

An alternate method to perform structure optimization is
to establish the same priors over the random variables that
correspond to log ends and log segments but parametrize the
priors over the random variables Zq. We then marginalize
over all random variables, computing this marginal probabil-
ity over the parameterized priors for the random variables Zq.
We then search over this parameter space for the distributions
over the random variables Zq that maximize this marginal
probability. We do this using the reduced-gradient optimiza-
tion algorithm [21], [22] where the gradients are calculated
using reverse-mode AD. The linear constraints are used to
constrain the parameters of the probability distribution to be
nonnegative and sum to one. Ideally, we'd prefer to use the
latter method exclusively, but the former method is faster to
compute for the relatively larger assemblies when compared
to the latter.

E. Occlusion

Nominally, with the above method, one derives evidence
for the presence or absence of log ends and log segments
of the various kinds at every possible grid position. In other
words, one uses image evidence to impose a prior on all
of the random variables Z+, Z~, Zq, Zq, and Z^. However,
some of these log ends and log segments may be occluded.
If we know that a log end or log segment is occluded then
we ignore all evidence for it from the image, giving it chance
probability of being occupied. With this, the grammar can
often fill in the correct values of occluded random variables
for both log ends and log segments, and thus determine
the correct value for an occluded Zq. The question then
arises: how does one determine whether a log end or log
segment is occluded? We propose the following method. One
first assumes that all of the log ends and log segments on
the frontal faces of the grid are visible but all other log
ends and log segments are occluded. One then performs
structure estimation under this initial hypothesis. With the
recovered structure estimate, one determines log-end and log-
segment visibility by projective geometry given the known
pose, and iterates this process until convergence. We have
recently implemented this algorithm and expect to report
on its performance in the future. All experiments reported
in section IV were performed with manual annotation of
occlusion information. Note that we only annotate for a given
symbolic log-segment or log-end position whether or not
it is visible, not whether or not that position is occupied
with a log segment or log end. The latter is determined
automatically.

IV. EXPERIMENTAL RESULTS

We took images of 32 distinct LINCOLN LOG structures,
each from 5 distinct poses resulting in a total of 160 images.
We performed foreground-background separation and pose
estimation for all 160 images using the methods from sec-
tion II. Pose was estimated within 5mm translation and 2°
rotation of ground truth for 142 images. We discarded the 18
images with inaccurate pose estimation and performed struc-
ture estimation on the remainder. The results for 5 images,
all of distinct structures, are shown in Fig. 7. Fig. 7(a) was
derived by thresholding the priors on Z+,Z~, Zq, Z£, and Z£
at t = 0.5. Fig. 7(b-d) were derived by solving a stochastic
CSP with various subsets of the constraints and rendering
the values of Z+, Z~. Zu

q. Z£, and Z£ for the solution
provided by the first method in section III-D. Fig. 7(e) was
derived by solving the stochastic CSP with all constraints
and rendering the values of Zq for the solution provided
by the first method in section III-D. Note that our method
determines the correct component type (Zq) of most occluded
logs in the assemblies in the second row of Fig. 7(e). It gives
an incorrect component type for only a single log in that row.

We conducted experiments to determine how much the
grammar improves the accuracy of structure estimation. We
performed variants of the runs in Fig. 7(a-d), varying the
threshold t and the mapping from evidence to priors to
produce the ROC curves depicted in Fig. 5. The mapping

03 0.4 0 5 06
False positive rate

Fig. 5. ROC curves. The lower green and red curves constitute the
ROC for the log-end and log-segment detectors respectively with
varying thresholds / without the grammar. The upper green curve
measures ROC for Zq and Z~ under constraints a-e varying the
mapping from evidence to priors. The upper red curve measures
ROC for Zq, Zq, and Zq under constraints a-d and f-g varying
the mapping from evidence to priors. The blue curve measures
ROC for Zq. Z~. Z" Z*q, and Zq under all constraints varying
the mapping from evidence to priors.

function is varied through the weighting factor e for the linear
interpolator discussed in section III-B.

Pose and structure estimation is sufficiently robust to sup-
port robotic manipulation. Supplementary material included
on the website for this paper contains videos of fully au-
tonomous robotic disassembly of six different LINCOLN LOG

structures whose pose and structure have been determined
from a single image as well as videos of semiautonomous
robotic assembly of replicate LINCOLN LOG structures from
the same estimated pose and structure.

V. CONCLUSION

LINCOLN LOGS are children's toys yet the computational
problem we present is not a toy. Pose and structure estimation
of LINCOLN LOG assemblies is far more difficult than
may appear on the surface. The space of objects to be
recognized is combinatorially large. Much of every structure
is in self occlusion. The low contrast due to shadows and
color, intensity, and texture uniformity make it impossible
to recognize even visible logs with existing techniques. No
standard edge detector (e.g.. Canny [15] or PB [23]) can
reliably find edges separating adjacent logs or circular log
ends and no standard segmentation method (e.g.. Normalized
Cut [24] or Mean Shift [25]) can reliably find log parts even
when fully visible as shown in Fig. 6. Even our filter-based
feature detectors, which use pose information along with
constraints from the language model to tune to the expected
feature at the expected image position, produce correct
binary decisions only about 65% of the time. Occlusion only
makes matters worse. Performing non-stochastic constraint
satisfaction (e.g.. Waltz line labeling [26]) on the binary

Fig. 6. A comparison with a number of standard edge detectors and segmentation methods. Neither (a) MATLAB'S Canny edge detector
nor (b) the PB edge detector reliably find edges separating adjacent logs or log ends. Neither (c) Normalized Cut nor (d) Mean Shift
segment out the log parts.

Fig. 7. (a) Raw detector response, (b) Detector response with just constraints a-d and f-g. (c) Detector response with just constraints
a-e. (d) Detector response with all constraints, (e) Estimated structure. In (a-d), bright red indicates true negative, dark red indicates false
negative, bright green indicates true positive, dark green indicates false positive, and blue indicates occlusion. In (e), green indicates true
positive and red indicates false negative. There are no false positives and true negatives are not indicated. We suggest that the reader view
this figure at a high magnification level in a PDF viewer to appreciate the images.

output of these detectors leads to inconsistent CSPs on all
images in our dataset.

We have demonstrated a visual domain that is generative
in much the same way that human language is generative.
We have presented a visual language model that improves
recognition accuracy in this domain in much the same way
that language models improve speech-recognition accuracy.
Unlike context-free models of human language, our visual
language models are context sensitive and formulated as
stochastic CSPs. Much of our visual experience in the ar-
tifactual world is perceiving generative man-made structures
like buildings, furniture, vehicles, etc. Our LINCOLN LOG
domain is a first step towards building visual language
models for such real-world domains.

Language models for vision are more complex than those
for human language as they must deal with occlusion result-
ing from perspective projection and pose variation. How-
ever, visual domains exhibit a novel possibility: recovering
structure despite occlusion by integrating the perceptual
evidence from multiple images of the same object taken from
different poses. In the LINCOLN LOG domain, one can carry
this even further. When faced with ambiguity arising from
occlusion, a robot can partially disassemble a structure to
view occluded substructure and integrate perceptual evidence
from multiple images taken at different disassembly stages
to yield a complete unambiguous estimate of the structure
of the original assembly prior to disassembly. Moreover, it
is possible to integrate information about pose or structure
from different modalities. One can integrate partial pose
and structure information from one or more images with
partial pose and structure information expressed in human
language to yield a complete unambiguous estimate of pose
and structure. We are, in fact, able to do this and expect to
report on this in the future.

VI. ACKNOWLEDGMENTS

This work was supported, in part, by NSF grant CCF-
0438806, by the Naval Research Laboratory under Contract
Number N00173-10-1-G023, by the Army Research Lab-
oratory accomplished under Cooperative Agreement Num-
ber W91 INF-10-2-0060, and by computational resources
provided by Information Technology at Purdue through its
Rosen Center for Advanced Computing. Any views, opin-
ions, findings, conclusions, or recommendations contained
or expressed in this document or material are those of the
author(s) and do not necessarily reflect or represent the views
or official policies, either expressed or implied, of NSF, the
Naval Research Laboratory, the Office of Naval Research,
the Army Research Laboratory, or the U.S. Government. The
U.S. Government is authorized to reproduce and distribute
reprints for Government purposes, notwithstanding any copy-
right notation herein.

REFERENCES

[11 D. Marr and H. K. Nishihara, "Representation and recognition of the
spatial organization of three-dimensional shapes," Proceedings of the
Royal Society of London. Series B, Biological Sciences, vol. 200, no.
1140. pp. 269-94, 1978.

[2

[3

14

[5

[6

(7

[8

I1'

[10

111

[12

[13

[14

[15

[16

[17

[18

[19

[20

[21
[22

[23

[24

[25

|26

I. Biederman, "Recognition-by-components: A theory of human image
understanding." Psychological review, vol. 94, no. 2, pp. 115—47.
1987.
W. Wang. I. Pollak, T.-S. Wong, C. A. Bouman, M. P. Harper, and
J. M.Siskind, "Hierarchical stochastic image grammars for classifica-
tion and segmentation," IEEE Trans, on linage Processing, vol. 15,
pp. 3033-52, 2006.
S.-C. Zhu and D. Mumford, "A stochastic grammar of images,"
Foundations and Trends in Computer Graphics and Vision, vol. 2,
no. 4, pp. 259-362, 2006.
J. M. Siskind, J. S. Jr., I. Pollak, M. P. Harper, and C. A. Bouman.
"Spatial random tree grammars for modeling hierarchal structure in
images with regions of arbitrary shape," IEEE Trans, on Pattern
Analysis and Machine Intelligence, vol. 29, pp. 1504-19, 2007.
L. L. Zhu. Y. Chen, and A. Yuille, "Unsupervised learning of a
probabilistic grammar for object detection and parsing," in Advances
in Neural Information Processing Systems 19. MIT Press, 2007.
G. Heitz and D. Koller. "Learning spatial context: Using stuff to find
things." in Proceedings of the 10th European Conference on Computer
Vision. Berlin, Heidelberg: Springer-Verlag. 2008. pp. 30—43.
M. Aycinena Lippow. L. P. Kaelbling, and T. Lozano-Perez. "Learning
grammatical models for object recognition," in Logic and Probability
for Scene Interpretation, ser. Dagstuhl Seminar Proceedings, no.
08091, Dagstuhl. Germany, 2008.
V. Savova and J. Tenenbaum, "A grammar-based approach to visual
category learning," in Proceedings of the 30th Annual Meeting of the
Cognitive Science Society. 2008.
V. Savova, F. Jäkel, and J. Tenenbaum. "Grammar-based object repre-
sentations in a scene parsing task," in Proceedings of the 31st Annual
Meeting of the Cognitive Science Society. 2009.
S. Smale, "Algorithms for solving equations." in Proceedings of the
International Congress of Mathematicians, 1986, pp. 172-95.
B. Chen and P. T. Harker, "A non-interior-point continuation method
for linear complementarity problems," SIAM Journal of Matrix Anal-
ysis Applications, vol. 14, no. 4, pp. 1168-90. 1993.
C. Kanzow. "Some noninterior continuation methods for linear com-
plementarity problems," SIAM Journal of Matrix Analysis Applica-
tions, vol. 17, no. 4, pp. 851-68. 1996.
B. Speelpenning, "Compiling fast partial derivatives of functions given
by algorithms," Ph.D. dissertation. Department of Computer Science,
University of Illinois at Urbana-Champaign, Jan. 1980.
J. Canny. "A computational approach to edge detection." IEEE Trans,
on Pattern Analysis and Machine Intelligence, vol. 8. no. 6, pp. 679-
98, 1986.
K. Konstantinides and J. R. Rasure, "The Khoros software develop-
ment environment for image and signal processing." IEEE Trans, on
Image Processing, vol. 3, pp. 243-52, 1994.
P. Kovesi, "Image features from phase congruency," Vtdere: A Journal
of Computer Vision Research, vol. 1. no. 3. 1999.
J.-L. Lauriere, "A language and a program for stating and solving
combinatorial problems," Artificial Intelligence, vol. 10, no. 1. pp.
29-127, 1978.
A. K. Mackworth, "Consistency in networks of relations." Artificial
Intelligence, vol. 8, no. 1, pp. 99-118. 1977.
A. H. Land and A. G. Doig. "An automatic method of solving discrete
programming problems." Econometrica, vol. 28, no. 3, pp. 497-520.
I960.
P. Wolfe, "The reduced gradient method," Jun. 1962. unpublished.
 . "Methods of nonlinear programming." in Nonlinear Program-
ming. J. Abadie. Ed. Interscience, John Wiley, 1967. ch. 6, pp. 97-
131.
M. Maire, P. Arbelaez. C. Fowlkes, and J. Malik, "Using contours to
detect and localize junctions in natural images," in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. Jun.
2008, pp. 1-8.
J. Shi and J. Malik, "Normalized cuts and image segmentation." IEEE
Trans, on Pattern Analysis and Machine Intelligence, vol. 22, no. 8,
pp. 888-905. 2000.
D. Comaniciu and P. Meer. "Mean shift: A robust approach toward
feature space analysis," IEEE Trans, on Pattern Analysis and Machine
Intelligence, vol. 24, no. 5, pp. 603-19, 2002.
D. Waltz, "Understanding line drawings of scenes with shadows," in
The Psychology of Computer Vision, P. Winston, Ed. McGraw-Hill.
1975. pp. 19-91.

Nonstandard Interpretations of Probabilistic
Programs for Efficient Inference

Anonymous Author(s)
Affiliation
Address
email

Abstract

Probabilistic programming languages allow modelers to specify a stochastic pro-
cess using syntax that resembles modern programming languages. Because the
program is in machine-readable format, a variety of techniques from compiler
design and program analysis can be used to examine the structure of the dis-
tribution represented by the probabilistic program. We show how nonstandard
interpretations of probabilistic programs can be used to craft efficient inference
algorithms: information about the structure of a distribution (such as gradients or
bounds) is generated as a monad-like side computation while executing the pro-
gram. These interpretations can be easily coded using special-purpose objects and
operator overloading. We implement two examples of nonstandard interpretations
in two different languages, and use them as building blocks to construct inference
algorithms: automatic differentiation, which enables gradient based methods, and
provenance tracking, which enables efficient construction of global proposals.

1 Introduction

Probabilistic programming simplifies the development of probabilistic models by allowing modelers
to specify a stochastic process using syntax that resembles modern programming languages. These
languages permit arbitrary mixing of deterministic and stochastic elements, resulting in tremendous
modeling flexibility. The resulting programs define probabilistic models that serve as prior dis-
tributions: running the (unconditional) program forward many times results in a distribution over
execution traces, with each trace being a sample from the prior. Examples include BLOG [11],
Bayesian Logic Programs [9] IBAL [14], Church [5], Stochastic Matlab [24], and HANSEI [10].

The primary challenge in developing such languages is scalable inference. Inference can be viewed
as reasoning about the posterior distribution over execution traces conditioned on a particular pro-
gram output, and is difficult because of the flexibility these languages present: in principle, an
inference algorithm must behave reasonably for any program a user wishes to write. Sample-based
MCMC algorithms are the state-of-the-art method, due to their simplicity, universality, and compo-
sitionality. But in probabilistic modeling more generally, efficient inference algorithms are designed
by taking advantage of structure in distributions. How can we find structure in a distribution defined
by a probabilistic program? A key observation is that some languages, such as Church and Stochas-
tic Matlab, are defined in terms of an existing (non-probabilistic) language. Programs written in
these languages may literally be executed in their native environments—suggesting that tools from
program analysis and programming language theory can be leveraged to find and exploit structure
in the program for inference, much as a compiler might find and exploit structure for performance.

Here, we show how nonstandard interpretations of probabilistic programs can help craft efficient
inference algorithms. Information about the structure of a distribution (such as gradients, depen-
dencies or bounds) is generated as a monad-like side computation while executing the program.

This extra information can be used to, for example, construct good MH proposals, or search effi-
ciently for a local maximum. We focus on two such interpretations: automatic differentiation and
provenance tracking, and show how they can be used as building blocks to construct efficient infer-
ence algorithms. We implement nonstandard interpretations in two different languages (Church and
Stochastic Matlab), and experimentally demonstrate that while they typically incur some additional
execution overhead, they dramatically improve inference performance.

if (rand > 0.5)
X(i) = randn;

else
X(i) = gammarnd;

end;
end;

2 Background and Related Work Alg. 1: A Gaussian-Gamma mixture
1: for i=l: 1000

We begin by outlining our setup, following [24]. We de- 2:
fine an unconditioned probabilistic program to be a pa- 3:
rameterless function / with an arbitrary mix of stochas- 4:
tic and deterministic elements (hereafter, we will use the 5:
term function and program interchangeably). The func- 6:
tion / may be written in any language, but our running 7:
example will be Matlab. We allow the function to be ar-
bitrarily complex inside, using any additional functions, recursion, language constructs or external
libraries it wishes. The only constraint is that the function must be self-contained, with no external
side-effects which would impact the execution of the function from one run to another.

The stochastic elements of / must come from a set of known, fixed elementary random primitives,
or ERPs. Complex distributions are constructed compositionally, using ERPs as building blocks. In
Matlab, ERPs may be functions such as rand (sample uniformly from [0,1]) or randn (sample
from a standard normal). Higher-order random primitives, such as nonparametric distributions, may
also be defined, but must be fixed ahead of time. Formally, let T be the set of ERP types. We assume
that each type t e T is a parametric family of distributions pt{x\9t), with parameters 9t.

Now, consider what happens while executing /. As / is executed, it encounters a series of ERPs.
Alg. 1 shows an example of a simple / written in Matlab with three syntactic ERPs: rand, randn,
and gammarnd. During execution, depending on the return value of each call to rand, different
paths will be taken through the program, and different ERPs will be encountered. We call this path
an execution trace. A total of 2000 random choices will be made when executing this /.

Let fk\xi,- .xk_i be the fc'th ERP encountered while executing /, and let xk be the value it returns.
Note that the parameters passed to the /c'th ERP may change depending on previous x^'s (indeed,
its type may also change, as well as the total number of ERPs). We denote by x all of the random
choices which are made by /, so / defines the probability distribution p(i). In our example, x £
R2000. The probability p(.i-) is the product of the probability of each individual ERP choice:

K

again noting explicitly that types and parameters may depend arbitrarily on previous random choices.
To simplify notation, we will omit the conditioning on the values of previous ERPs, but again wish
to emphasize that these dependencies are critical and cannot be ignored. By fk, it should therefore
be understood that we mean fk\Xu... ,XJt_,, and by pik(xk\6t k) we meanptk(xk\Otk,xi, • • • ,xk-i).

Generative functions as described above are, of course, easy to write. A much harder problem, and
our goal in this paper, is to reason about the posterior conditional distribution p{x\y), where we
define y to be a subset of random choices which we condition on and (in an abuse of notation) x
to be the remaining random choices. For example, we may condition / on the X (i) 's, and reason
about the sequence of rand's most likely to generate the X (i) 's. For the rest of this paper, we
will drop y and simply refer to p(x), but it should be understood that the goal is always to perform
inference in conditional distributions.

2.1 Nonstandard Interpretations of Probabilistic Programs

With an outline of probabilistic programming in hand, we now turn to nonstandard interpretations.
The idea of nonstandard interpretations originated in model theory and mathematical logic, where it
was proposed that a set of axioms could be interpreted by different models. For example, differential
geometry can be considered a nonstandard interpretation of classical arithmetic.

In programming, a nonstandard interpretation replaces the domain of the variables in the program
with a new domain, and redefines the semantics of the operators in the program to be consistent
with the new domain. This allows reuse of program syntax while implementing new functionality.
For example, the expression "o * 6" can be interpreted equally well if a and b are either scalars or
matrices, but the "*" operator takes on different meanings. Practically, many useful nonstandard
interpretations can be implemented with operator overloading: variables are redefined to be objects
with operators that implement special functionality, such as tracing, reference counting, or profiling.

For the purposes of inference in probabilistic programs, we will augment each random choice x*
with additional side information s*, and replace each Xk with the tuple (xk, s/c). The native inter-
preter for the probabilistic program can then interpret the source code as a sequence of operations
on these augmented data types. For a recent example of this, we refer the reader to [19].

3 Automatic Differentiation

For probabilistic models with many continuous-valued random variables, the gradient of the like-
lihood Vxp(x) provides local information that can significantly improve the properties of Monte
Carlo inference algorithms. For instance Langevin Monte-Carlo [16] and Hamiltonian MCMC [13]
use this gradient as part of a variable-augmentation technique (described below). We would like to
be able to use gradients in the probabilistic program setting, but p(x) is represented implicitly by the
program. How can we compute its gradient? We use automatic differentiation (AD) [3, 6], a non-
standard interpretation that automatically constructs Vxp(x). The automatic nature of AD is critical
because relieves the programmer from hand-computing derivatives for each model; moreover, some
probabilistic programs dynamically create or delete random variables making simple closed-form
expressions for the gradient very difficult to find.

AD is a technique for computing the gradient of a function / that, unlike finite differencing, com-
putes an exact derivative at a point (up to machine precision). To do this AD relies on the chain rule
to decompose the derivative of / into derivatives of its sub-functions: ultimately, known derivatives
of elementary functions are composed together to yield the derivative of the complex function. This
composition can be computed as a non-standard interpretation of the underlying real operations. In
forward mode [23] AD this interpretation can be seen as extending each real value to the first two
terms of its taylor expansion, overloading each real operator to operate on these real "polynomials".
Because the derivatives of / at c can be extracted from the coefficients of e in /(c + e) [21], this
allows computation of the gradient. Reverse mode [20] AD (which we use in our implementation)
constructs an alternative non-standard interpretation by extending real values into "tapes" that cap-
ture the trace of the real computation which led to the primary value; this can be used to much more
efficiently compute the gradient.

There are implementations of AD for many languages, including Scheme (e.g., [19]), FORTRAN
(e.g., ADIFOR[2]), C (e.g., ADOL-C [7]), c++ (e.g., FADBAD++[1]), MATLAB (e.g., INTLAB [17]),
and MAPLE (e.g., GRADIENT [12]). Seewww.autodiff.org.

3.1 Hamiltonian MCMC

To illustrate the power of AD in
probabilistic programming, we build
on Hamiltonian MCMC (HMC), and Alg. 2: Hamiltonian MCMC
efficient algorithm whose popularity ,. repeat forever
has been somewhat limited by the 2

necessity of computing gradients— 3

a difficult task for complex models. ,
Neal [13] introduces HMC as an in- 5

ference method which "produces dis- ^
tant proposals for the Metropolis al-
gorithm, thereby avoiding the slow
exploration of the state space that re-
suits from the diffusive behavior of
simple random-walk proposals." HMC begins by augmenting the states space with "momentum

Gibbs step:
Draw momentum m ~ Af(Q, a2)
Metropolis step:
Start with current state (x, m)
Simulate Hamiltonian dynamics to give (x', m')
Accept w/p = min(l,e(-"(l'm')+i'(l'",))]

end;

(define (perlin-pt x y keypt power)
(• 255 (sum (map (lambda (p2 pow)

(* pow (2d-interp (keypt (ceil I* p2 x)))
(keypc (floor (. p2 xl I I
(keypt (ceil (« p2 y))I
(keypt (floor (. p2 y))))))

powers-of-2 power))))
(define (perlin xs ys power)

(let- ((keypt (mem (lambda (x y| (/ 1 (• 1 (exp (- (gaussian 0.0 2.0)))))))))
(map (lambda (x) (map (lambda (y) (perlin-pt x y keypt power)) xs)) ys)))

Figure 1: Code for the structured Perlin noise generator. 2d-interp is B-spline interpolation.

variables" m. The distribution over this augmented space is e
H(-x,m\ where the Hamiltonian func-

tion H decomposed into the sum of a potential energy term U(x) = - \np{x) and a kinetic energy
K(m) which is usually taken to be Gaussian. Inference proceeds by alternating between a Gibbs
step and Metropolis step: fixing the current state x, a new momentum m is sampled from the prior
over m; then x and m are updated together by following a trajectory according to Hamiltonian dy-
namics. Discrete integration of Hamiltonian dynamics requires the gradient of H, and must be done
with a symplectic (i.e. volume preserving) integrator (following [13] we use the Leapfrog method).
While this is a complex computation, incorporating gradient information dramatically improves
performance over vanilla random-walk style MH moves (such as Gaussian drift kernels), and its
statistical efficiency also scales much better with dimensionality than simpler methods [13].

It would also be straightforward to use AD to compute higher derivates (though this would introduce
super-linear overhead). For instance, Hessian matrices could be used to construct blocked Metropo-
lis moves [8], to construct proposals based on Newton's method [15], or as part of Riemannian
manifold methods [4].

3.2 Experiments and Results

We implemented HMC by extending Bher [24], a lightweight implementation of the Church lan-
guage which provides simple, but universal, MH inference. We used used an implementation of AD
based on [19], that uses hygienic operator overloading to do both forward and reverse mode AD for
Scheme (the target language of the Bher compiler).

The goal is to compute Vxp(x). By Eq. 1, p(x) is the product of the individual choices made by
each Xi (though each probability can depend on previous choices, through the program evaluation).
To compute p(x), Bher executes the corresponding program, accumulating likelihoods. Each time a
continuous ERP is created or retrieved, we wrap it in a "tape" object which is used to track gradient
information; as the likelihood p(x) is computed, these tapes flow through the program and through
appropriately overloaded operators, resulting in a dependency graph for the real portion of the com-
putation. The gradient is then computed in reverse mode, by "back-propagating" along this graph.
We implement an HMC kernel by using this gradient in the leapfrog integrator. Since program states
may contain a combination of discrete and continuous ERPs, we use an overall cycle kernel which
alternates between standard MH kernel for individual discrete random variables and the HMC ker-
nel for all continuous random choices. To decrease burn-in time, we initialize the sampler by using
annealed gradient ascent (again implemented using AD).

We ran two sets of experiments which illustrate two different benefits of HMC with AD: automated
gradients of complex code, and good statistical efficiency.

Structured Perlin noise generation. Our first experiment uses HMC to generate modified Perlin
noise with soft symmetry structure. Perlin noise is a procedural texture used by computer graphics
artists to add realism to natural textures such as clouds, grass or tree bark. We generate Perlin-
like noise by layering octaves of random but smoothly varying functions. We condition the result
on approximate diagonal symmetry, forcing the resulting image to incorporate additional structure
without otherwise skewing the statistics of the image. Note that the MAP solution for this problem is
uninteresting, as it is a uniform image; it is the variations around the MAP that provide rich texture.
We generated 48x48 images; the model had roughly 1000 variables.

Fig. 2 shows the result via typical samples generated by HMC, where the approximate symmetry is
clearly visible. A code snippet demonstrating the complexity of the calculations is shown in Fig. I;

100 150 200
Samples

300

Figure 2: On the left: samples from the structured Perlin noise generator. On the right: convergence
of expected mean for a draw from a 3D spherical Gaussian conditioned on lying on a line.

this experiment illustrates how the automatic nature of the gradients is most helpful, as it would be
time consuming to compute these gradients by hand—particularly since we are free to condition
using any function of the image.

Complex conditioning. For our second example, we demonstrate the improved statistical efficiency
of the samples generated by HMC versus Bher's standard MCMC algorithm. In this task, the goal
is to sample points from a complex 3-dimensional distribution. We construct this by starting with a
simple Gaussian mixture model prior, but then sample points that are noisily conditioned to be on
a line running through R3. This conditioner creates complex interactions with the prior to yield a
smooth, but strongly coupled, energy landscape.

Fig. 2 shows results comparing our HMC implementation with Bher's standard MCMC inference
engine. The x-axis denotes samples, while the y-axis denotes the convergence of an estimator of
certain marginal statistics of the samples. We see that this estimator converges much faster for
HMC, implying that the samples which are generated are less autocorrelated - affirming that HMC
is indeed making better distal moves. HMC is about 5x slower than MCMC for this experiment, but
the overhead is justified by the significant improvement in the statistical quality of the samples.

4 Provenance Tracking for Fine-Grained Dynamic Dependency Analysis

One reason gradient based inference algorithms are effective is that the chain rule of derivatives
provides a principled way to compositionally backpropagate information from the data up to the
proposal variables. But gradients, and the chain rule, are only defined for continuous variables. Is
there a corresponding structure for discrete choices? We now introduce a new nonstandard inter-
pretation based on provenance tracking (PT). In programming language theory, the provenance of a
variable is the history of variables and computations that combined to form its value. In probabilistic
programming, we propose to use this to track fine-grained dependency information between random
values and intermediate computations as they combine to form a likelihood.

Importantly, the provenance information is collected for a particular value x of the probabilistic pro-
gram, which can be useful for models with sparse, dynamic dependencies among variables. This can
provide more detailed information than, say, a graphical model: in a graphical model, conditional
independencies must hold for every value of variables in the model, but in practice, for a specific
value, the dependencies may be sparser than the graph indicates. An example of this is shown in
Alg. 4, where a simple renderer renders a triangle mesh into an image. Vertices in the mesh can
move arbitrarily, so there is some value for each vertex such that every triangle could be rendered to
any pixel, but for any particular set of vertex values, each triangle affects a small number of pixels.

4.1 Defining and Implementing Provenance Tracking

Like AD, PT can be implemented with operator overloading. Because provenance information is
much coarser than gradient information, the operators in PT objects have a particularly simple form;
most program expressions can be covered by considering a few cases. Let X denote the set {x,}
of all (not necessarily random) variables in a program. Let R(x) C X define the provenance of a
variable x. Given R(x), the provenance of expressions involving x can be computed by breaking

down expressions into a sequence of unary operations, binary operations, and function applications.
Constants have empty provenances.

Let x and y be expressions in the program (consisting of an arbitrary mix of variables, constants,
functions and operators). For a binary operation x 0 y, the provenance R(x 0 y) of the result is
defined to be R(x © y) = R(x) U R(y). Similarly, for a unary operation, the provenance R(Qx) =
R(x). For assignments, x = y => R{x) = R(y). For a function, R(f(x,y,...)) may be computed
by examining the expressions within /; a worst-case approximation is R(f(x,y,...)) = R(x) U
R(y) • • •. A few special cases are also worth noting. Strictly speaking, the previous rules track a
superset of provenance information because some functions and operations are constant for certain
inputs. In the case of multiplication, x * 0 = 0, so R(x * 0) = {}. Accounting for this gives tighter
provenances, implying, for example, that special considerations apply to sparse linear algebra.

In the case of probabilistic programming, recall that random variables (or ERPs) are represented as
stochastic functions /, that accept parameters #;. Whenever a random variable is conditioned, the
output of the corresponding /< is fixed; thus, while the likelihood of a particular output of ft depends
on #,, the specific output of /, does not. For the purposes inference, therefore, R(fi(9i)) = {}.

4.2 Using Provenance Tracking as Part of Inference

Provenance information could be used in many ways. Here, we illustrate one use: to help construct
good block proposals for MH inference. Our basic idea is to construct a good global proposal by
starting with a random global proposal (which is unlikely to be good) and then inhibiting the bad
parts. We now go through the steps of our algorithm, which is summarized in Fig. 3. Let x denote
a state of the probabilistic program (equivalently, we will also use x to refer to the set of random
variables instantiated at this state). For notational simplicity we will assume we wish to construct a
proposal for all variables in x (but extending to the case of proposing to a subset is straightforward).

In step (1), we compute p(x) using FT to track how each X{ influences the overall likelihood p(x).
Let D(xi;x) C x denote the "descendants" of variable x%, meaning all ERPs whos likelihood ,r,
impacted. In step (2), we propose x' ~ q(x'\x), and in step (3) we use PT to compute p(x'), again
tracking dependents D{xi\x') C x'. In step (4) we let D(i) = D{xi\x) U D(xi\x') be the joint
set of ERPs that x, influences in either state x or x'. In step (5-6) we use D(i), p(x) and p(x') to
estimate the amount by which each constituent element x\ in the proposal changed the likelihood.
We assign "credit" to each x\ as if it were the only proposal - that is, we assume that if, for example,
the likelihood went up, it was entirely due to the change in Xj. Of course, the variables' effects
are not truly independent; this is a fully-factored approximation to those effects. We define the

approximate credit as c(i) = , '. , °("), where we define p(iD(o)t0 be tne likelihood of only the

subset of variables that n impacted. Based on the credit assigned to each x';, we construct a new
proposal .rA/ by composing i-'s with high credit. We start by setting xM = x. We then compute a
standard MH ratio for each xt, setting x\' = x\ with probability a(xf'\x, x') = min {1, c(i)}. The
overall proposal probability for this "mixing" step is therefore a(xM\x,x') = f]. a(x^'\x,x'). In
steps (7-8) we compute the overall forward and reverse transition probabilities as explained below.
Finally, in step (9) we accept or reject the overall proposal.

Thus, we allow the likelihood to "vote" in a fine-grained way for which proposals seemed to be good
and which seemed to be bad. Note that the method coarsely interpolates between two end-cases: if
the variables x really are fully factored, the method reduces to making independent proposals which
are accepted or rejected independently. If the dependencies are dense, it reduces to making a random
global proposal. The method therefore critically relies on sparsity to be effective.

There are some subtleties to the implementation. In general, D(xt;x) ^ D(XüX')\ the proposal
may have added dependents or removed dependents. To ensure that all terms in the likelihood are
accounted for, we assign credit to xL based on the change in likelihood for all x G D(i) (but better
proposals could be made by accounting for higher-order interactions among variables). Also note
that the proposal probability q(x'\x) must factorize as F], Q(x't\

x)> because it must be able to score
q(x~^l\xxr) (see below), but xM and x~xl are constructed compositionally from bits of .r and x'.

We analyze the provenance tracking algorithm as a proposal in an MH algorithm, in a manner
analogous to delayed rejection [22]: we show how the kernel moves through a reversible sequence

Alg. 3: The provenance tracking algorithm

1: Compute p(x), tracking D(xi; x)
2: Propose x' ~ q{x'\x)
3: Compute p(x'), tracking D(xi\ x')
4: Let D{i) = D{xi;x)UD(xi;x')

Generate x by accepting each x\ independently:
P(JJ)P(Jo«))

Forward:
41 m X _^ X ••••>-

< >
x" —»- >]

s 5

la
•V k/1

I J

'"A X' *- > 1 XM

^ -^

Reverse:

p{x,)p(xD{
Accept x'j with prob, min <

Compute / = q(x'\x)a(xM\x,x')
Compute r = q(x-^\xKl)a(x'\xM,x-M)

Accept xM with prob, minjl, P^")|.
/}

! c a
1 s

x* —*• x*

XM

Deterministic' Stochastic '

Figure 3: The provenance tracking algorithm

of states, and compute the transition probabilities of this sequence. To do this, we consider an
augmented state space. The kernel goes through four stages, shown in Fig. 3. It begins in .si = (x),
from which it proposes x' from q(x'\x), to form the joint space s2 = {x,x'). Next, it "mixes"
x and x' together via individual accept/reject decisions to create a new state xM, and we define
x~M as the state obtained if all accept/reject decisions were reversed. This transition probability is
a(xM\x, x') (note that given xM, x~M is computed deterministically). This leads to the third state
in the kernel, S3 = {x ,x~M). From here, we deterministically transition to 54 = (xA/). The
forward probability is thus given by p{s2\s\)p(sz\s2)p{s4\sz)
probability isp(s3|s4)p(.S2|s3)p(si|s2) = q(x \x)a(x'\x ,.M

q{x'\x)a{x
x~M).

M x,x'). The reverse

4.3 Experiments and Results

We implemented provenance tracking and in Stochastic Matlab [24| by leveraging Matlab's ob-
ject oriented capabilities, which provides full operator overloading. We tested on four tasks: a
Bayesian "mesh induction" task, a small QMR problem, probabilistic matrix factorization [18] and
an integer-valued variant of PMF. We measured performance by examining likelihood as a function
of wallclock time; an important property of the provenance tracking algorithm is that it can help
mitigate constant factors affecting inference performance.

Alg. 4: Bayesian Mesh Induction

function X = bmi(base_mesh)
mesh = base_mesh + randn;
img = render(mesh);
X = img + randn;

end;

Bayesian mesh induction. The BMI task is simple:
given a prior distributions over meshes and a target im-
age, sample a mesh which, when rendered, looks like the
target image. The prior is a Gaussian centered around a
"mean mesh," which is a perfect sphere; Gaussian noise
is added to each vertex to deform the mesh. The mesh
has 2,500 vertices in R3, for a total of 7,500 parameters.
The model is shown in Alg. 4. The rendering function is
a custom OpenGL renderer implemented as a MEX function. No gradients are available for this Ten-
derer, but it is reasonably easy to augment it with provenance information: we use shaders to record
the vertices of the triangle that were responsible for each pixel. This allows us to make proposals to
mesh vertices, while assigning credit based on pixel likelihoods.

Results for this task are shown in Fig. 4 ("Face"). Note that even though the renderer is quite fast,
MCMC with simple proposals fails dramatically: after proposing a change to a single variable,
it must re-render the image in order to compute the likelihood. In contrast, making large, global
proposals is very effective. Fig. 4 (top) shows a sequence of images representing burn-in of the
model as it starts from the initial condition and samples its way towards regions of high likelihood.
An anonymous video demonstrating the results is available at http://www.lifiothers.org/face.avi.

QMR. The QMR model is a bipartite, binary model relating diseases (hidden) to symptoms (ob-
served) using a log-linear noisy-or model. Base rates on diseases can be quite low, so "explaining
away" can cause poor mixing. Here, MCMC with provenance tracking is effective: it finds high-
likelihood solutions quickly, again outperforming naive MCMC.

Input Time- Target

Face QMR PMF Integer PMF
ntM

— MCMC w/PT
—>MCMC

Hand-coded
e likelihood

0 15 30 45 2 5 10 15 20 25
Time (seconds)

5 10 15 20 25

Figure 4: Top: Frames from the face task. Bottom: results on Face, QMR, PMF and Integer PMF.

Probabilistic Matrix Factorization. For the PMF task, we factored a matrix A e Rioooxiooo with

99% sparsity. PMF places a Gaussian prior over two matrices, U G R1000*!0 and V e Ri000*10,
for a total of 20,000 parameters. The model assumes that Ai} ~ A/'([/iV

rjr, 1). In Fig. 4, we see
that MCMC with provenance tracking is able to find regions of much higher likelihood much more
quickly than naive MCMC. We also compared to an efficient hand-coded MCMC sampler which
is capable of making, scoring and accepting/rejecting about 20,000 proposals per second. Interest-
ingly, MCMC with provenance tracking is more efficient than the hand-coded sampler, presumably
because of the economies of scale that come with making global proposals.

Integer Probabilistic Matrix Factorization. The Integer PMF task is like ordinary PMF, except
that every entry in U and V is constrained to be an integer between 1 and 10. These constraints
imply that no gradients exist. Empirically, this does not seem to matter for the efficiency of the
algorithm relative to standard MCMC: in Fig. 4 we again see dramatic performance improvements
over the baseline Stochastic Matlab sampler and the hand-coded sampler.

5 Conclusions

We have shown how nonstandard interpretations of probabilistic programs can be used to extract
structural information about a distribution, and how this information can be used as part of a vari-
ety of inference algorithms. The information can take the form of gradients, Hessians, fine-grained
dependencies, or bounds. Empirically, we have implemented two such interpretations and demon-
strated how this information can be used to find regions of high likelihood quickly, and how it can
be used to generate samples with improved statistical properties versus random-walk style MCMC.
There are doubtless other types of interpretations which could provide additional information. For
example, interval arithmetic [17] (or its higher-order generalizations, such as affine arithmetic) could
be used to provide bounds, or, in conjunction with recursive bisection, could be used as part of MAP
inference, line searches, or adaptive importance sampling.

Each of these interpretations can be used alone or in concert with each other; one of the advan-
tages of the probabilistic programming framework is the clean separation of models and inference
algorithms, making it easy to explore combinations of inference algorithms for complex models.
For example, perhaps provenance tracking-based proposals for discrete variables can be interlaced
with HMC proposals for continuous variables. Or, Neal [13] points out that for HMC the true like-
lihood does not need to be used while integrating along a trajectory; a simpler likelihood may be
used instead, as long as the true likelihood is used for the final accept/reject calculation. This sug-
gests learning an approximate likelihood that can be cheaply computed; perhaps the interval-based
approximations can be used to construct this on-demand.

More generally, this work begins to illuminate the close connections between probabilistic infer-
ence and programming language theory. It is likely that other techniques from compiler design and
program analysis could be fruitfully applied to inference problems in probabilistic programs.

References
[I] C. Bendtsen and O. Stauning. FADBAD, a flexible C++ package for automatic differentiation. Technical

Report IMM-REP-1996-17, Department of Mathematical Modelling, Technical University of Denmark,
Lyngby, Denmark, Aug. 1996.

[2] C. H. Bischof, A. Carle, G. F. Corliss, A. Griewank, and P. D. Hovland. ADIFOR: Generating derivative
codes from Fortran programs. Scientific Programming, I(l):l 1-29, 1992.

[3] G. Corliss, C. Faure, A. Griewank, L. Hascoet, and U. Naumann. Automatic Differentiation: From
Simulation to Optimization. Springer-Verlag, New York, NY, 2001.

[4] M. Girolami and B. Calderhead. Riemann manifold Langevin and Hamiltonian Monte Carlo methods. /
R. Statist. Soc. B, 73(2): 123214, 2011.

[5] N. Goodman, V. Mansinghka, D. Roy. K. Bonawitz, and J. Tenenbaum. Church: a language for generative
models. In Uncertainty in Artificial Intelligence (UAI), 2008.

[6] A. Griewank. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. Num-
ber 19 in Frontiers in Applied Mathematics. SIAM, 2000.

[7] A. Griewank, D. Juedes, and J. Utke. ADOL-C, a package for the automatic differentiation of algorithms
written in C/C++. ACM Trans. Math. Software. 22(2): 131-67, 1996.

[8] E. Herbst. Gradient and Hessian-based MCMC for DSGE models (job market paper), 2010.

[9] K. Kersting and L. D. Raedt. Bayesian logic programming: Theory and tool. In L. Getoor and B. Taskar,
editors. An Introduction to Statistical Relational Learning. MIT Press, 2007.

[10] O. Kiselyov and C. Shan. Embedded probabilistic programming. In Domain-Specific Languages, pages
360-384, 2009.

[11] B. Milch. B. Marthi, S. Russell, D. Sontag, D. L. Ong. and A. Kolobov. BLOG: Probabilistic models with
unknown objects. In International Joint Conference on Artificial Intelligence (IJCAI), pages 1352-1359,
2005.

[12] M. B. Monagan and W. M. Neuenschwander. GRADIENT: Algorithmic differentiation in Maple. In
International Symposium on Symbolic and Algebraic Computation (ISSAC), pages 68-76, July 1993.

[13] R. M. Neal. MCMC using Hamiltonian dynamics. In Handbook of Markov Chain Monte-Carlo (Steve
Brooks, Andrew Gelman, Galin Jones and Xiao-Li Meng, Eds.), 2010.

[14] A. Pfeffer. IBAL: A probabilistic rational programming language. In International Joint Conference on
Artificial Intelligence (IJCAI). pages 733-740. Morgan Kaufmann Publ.. 2001.

[15] Y Qi and T. P. Minka. Hessian-based Markov chain Monte-Carlo algorithms (unpublished manuscript),
2002.

[16] P. J. Rossky, J. D. Doll, and H. L. Friedman. Brownian dynamics as smart monte carlo simulation. Journal
of Chemical Physics. 69:4628-4633, 1978.

[17] S. Rump. INTLAB - INTerval LABoratory. In Developments in Reliable Computing, pages 77-104.
Kluwer Academic Publishers, Dordrecht, 1999.

[18] R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. In Neural Information Processing
Systems (NIPS). 2008.

[19] J. M. Siskind and B. A. Pearlmutter. First-class nonstandard interpretations by opening closures. In
POPL. 2007.

[20] B. Speelpenning. Compiling Fast Partial Derivatives of Functions Given by Algorithms. PhD thesis.
Department of Computer Science, University of Illinois at Urbana-Champaign, Jan. 1980.

[21] B.Taylor. Methodus Incrementorum Directa et Inversa. London. 1715.

[22] L. Tierney and A. Mira. Some adaptive Monte Carlo methods for Bayesian inference. Statistics in
Medicine. 18:2507-2515. 1999.

[23] R. E. Wengert. A simple automatic derivative evaluation program. Commun. ACM. 7(8):463^, 1964.

[24] D. Wingate, A. Stuhlmueller, and N. D. Goodman. Lightweight implementations of probabilistic pro-
gramming languages via transformational compilation. In International Conference on Artificial Intelli-
gence and Statistics (AISTATS). 2011.

Seeing Unseeability to See the Unseeable

Siddharth Narayanaswamy, Andrei Barbu, and Jeffrey Mark Siskind

Abstract—We present a framework that allows an observer
to determine occluded portions of a structure by finding
the maximum-likelihood estimate of those occluded portions
consistent with visible image evidence and a consistency model.
Doing this requires determining which portions of the structure
are occluded in the first place. Since each process relies on the
other, we determine a solution to both problems in tandem.
We extend our framework to determine confidence of one's
assessment of which portions of an observed structure are
occluded, and the estimate of that occluded structure, by
determining the sensitivity of one's assessment to potential new
observations. We further extend our framework to determine a
robotic action whose execution would allow a new observation
that would maximally increase one's confidence.

I. INTRODUCTION

[T]here are known knowns; there are things we
know we know. We also know there are known
unknowns; that is to say we know there are some
things we do not know. But there are also unknown
unknowns-the ones we don't know we don't know.

Donald Rumsfeld (12 February 2002)

People exhibit the uncanny ability to see the unseeable.
The colloquial exhortation You have eyes in the back of
your head! expresses the assessment that someone is making
correct judgements as if they could see what is behind
them, but obviously cannot. People regularly determine the
properties of occluded portions of objects from observations
of visible portions of those objects using general world
knowledge about the consistency of object properties. Psy-
chologists have demonstrated that the world knowledge that
can influence perception can be high level, abstract, and
symbolic, and not just related to low-level image properties
such as object class, shape, color, motion, and texture. For
example, Freyd et al. [7] showed that physical forces, such
as gravity, and whether such forces are in equilibrium, due to
support and attachment relations, influences visual perception
of object location in adults. Baillargeon [1], [2] showed
that knowledge of substantiality, the fact that solid objects
cannot interpenetrate, influences visual object perception in
young infants. Streri et al. [20] showed that knowledge
about object rigidity influences both visual and haptic per-
ception of those objects in young infants. Moreover, such
influence is cross modal: observable haptic perception in-
fluences visual perception of unobservable properties and
observable visual perception influences haptic perception of

http://engineering.purdue.edu/-qobi/icra2012
The authors are with the School of Electrical and Computer

Engineering, Purdue University, West Lafayette, IN, 47907, USA
{snarayan,abarbu,qobi}@purdue.edu

unobservable properties. Wynn [21] showed that material
properties of objects, such as whether they are countable
or mass substances, along with abstract properties, such as
the number of countable objects and the quantity of mass
substances, and how they are transferred between containers,
influences visual perception in young infants. Similar results
exist for many physical properties such as relative mass,
momentum, etc. These results demonstrate that people can
easily integrate information from multiple sources together
with world knowledge to see the unseeable.

People so regularly invoke the ability to see the unseeable
that we often don't realize that we do so. If you observe a
person entering the front door of a house and later see them
appear from behind the house without seeing them exit a
door, you easily see the unseeable and conclude that there
must be an unseen door to the house. But if one later opens
the garage door or the curtain covering a large living-room
bay window in the front of the house so that you see through
the house and see the back door you no longer need to invoke
the ability to see the unseeable. A more subtle question then
arises: when must you invoke the ability to see the unseeable?
In other words how can you see unseeability, the inability to
see? This question becomes particularly thorny since, as we
will see, it can involve a chicken-and-egg problem: seeing
the unseen can require seeing the unseeability of the unseen
and seeing the unseeability of the unseen can require seeing
the unseen.

The ability to see unseeability and to see the unseeable can
further dramatically influence human behavior. We regularly
and unconsciously move our heads and use our hands to open
containers to render seeable what was previously unseeable.
To realize that we need to do so in the first place, we must
first see the unseeability of what we can't see. Then we
must determine how to best use our collective perceptual,
motor, and reasoning affordances to remedy the perceptual
deficiency.

We present a general computational framework for seeing
unseeability to see the unseeable. We formulate and evaluate
a particular instantiation of this general framework in the
context of a restricted domain, namely LINCOLN LOGS,
a children's assembly toy where one constructs assemblies
from a small inventory of component logs. The two relevant
aspects of this domain that facilitate its use for investigating
our general computational framework are (a) that LINCOLN

LOG assemblies suffer from massive occlusion and (b) that a
simple but rich expression of world knowledge, in the form
of constraints on valid assemblies, can mitigate the effects of
such occlusion. While LINCOLN LOGS are a children's toy.

(a) (b)
Fig. 1. (a) A state-of-the-art segmentation method. Normalized Cut [18],
does not segment out the log parts, (b) A state-of-the-art edge detector, CPB
[14], does not reliably find edges separating adjacent logs or log ends.

this domain is far from a toy when it comes to computer
vision. The task of structure estimation, determining, from
an image, the correct combination of component logs used
to construct an assembly and how they are combined, is
well beyond state-of-the-art methods in computer vision.
We have not found any general-purpose image segmentation
methods that can determine the image boundaries of the
visible component logs (see Fig. la). Moreover, the uniform
matte color and texture of the logs, together with the fact
that logs are placed in close proximity and the fact that
the majority of any structure is in self shadow means every
edge-detection method that we have tried fails to find the
boundaries between adjacent logs (see Fig. lb). This is even
before one considers occlusion, which only makes matters
worse.

Not only is the computer-vision problem for this domain
immensely difficult, the computational problem is rich as
well. We present methods for seeing the unseeable (in
section II) and seeing unseeability (in section III) based
on precise computation of the maximum-likelihood structure
estimate conditioned on world knowledge that marginalizes
over image evidence. We further present (in section IV) a
rational basis for determining confidence in one's structure
estimate despite unseeability based on precise computation
of the amount of evidence needed to override a uniform
prior on the unseeable. And we finally present (in section V)
an active-vision decision-making process for determining
rational behavior in the presence of unseeability based on
precise computation of which of several available perception-
enhancing actions one should take to maximally improve the
confidence in one's structure estimate. We offer experimental
evaluation of each of these methods in section VI, compare
against related work in section VII, and conclude with a
discussion of potential extensions in section VIII.

II. STRUCTURE ESTIMATION

In previous work we [19] presented an approach for
using a visual language model for improving recognition
accuracy on compositional visual structures in a generative
visual domain, over the raw recognition rate of the part
detectors—by analogy to the way speech recognizers use
a human language model to improve recognition accuracy
on utterances in a generative linguistic domain, over the
raw recognition rate of the phoneme detectors. In this ap-
proach, a complex object is constructed out of a collection
of parts taken from a small part inventory. A language
model, in the form of a stochastic constraint-satisfaction

problem (CSP) [11], characterizes the constrained way object
parts can combine to yield a whole object and significantly
improves the recognition rate of the whole structure over the
infinitesimally small recognition rate that would result from
unconstrained application of the unreliable part detectors.
Unlike the speech-recognition domain, where (except for
coarticulation) there is acoustic evidence for all phonemes, in
the visual domain there may be components with no image
evidence due to occlusion. A novel aspect of applying a
language model in the visual domain instead of the linguistic
domain is that the language model can additionally help in
recovering occluded information.

This approach was demonstrated in the domain of LIN-

COLN LOGS, a children's assembly toy with a small part
inventory, namely, 1-notch, 2-notch, and 3-notch logs, whose
CAD models are provided to the system. In this domain,
a grammatical LINCOLN LOG structure contains logs that
are parallel to the work surface and organized on alternating
layers oriented in orthogonal directions. Logs on each layer
are mutually parallel with even spacing, thereby imposing a
symbolic grid on the LINCOLN LOG assembly. The symbolic
grid positions q = (i,j-k) refer to points along log medial
axes at notch centers. One can determine the camera-relative
pose of this symbolic grid without any knowledge of the
assembly structure by fitting the pose to the two predominant
directions of image edges that result from the projection of
the logs to the image plane.

Each grid position may be either unoccupied, denoted
by 0, or occupied with the nlh notch, counting from zero,
of a log with m notches, denoted by (m,n). Estimating the
structure of an assembly reduces to determining the occu-
pancy at each grid position, one of the seven possibilities:
0, (1,0), (2,0), (2,1), (3,0), (3,1), and (3,2). This is done
by constructing a discrete random variable Zq for each grid
position q that ranges over these seven possibilities, mutually
constraining these random variables together with other
random variables that characterize the image evidence for
the component logs using the language model, and finding
a maximum-likelihood consistent estimate to the random
variables Zq.

Several forms of image evidence are considered for the
component logs. LINCOLN LOGS, being cylindrical parts,
generate two predominant image (log) features: ellipses that
result from the perspective projection of circular log ends and
line segments that result from the perspective projection of
cylindrical walls. The former are referred to as log ends and
the latter as log segments. Log ends can potentially appear
only at a fixed distance on either side of a grid position.
Boolean random variables Z+ and Z~ are constructed to
encode the presence or absence of a log end at such positions.
There are two kinds of log segments: those corresponding
to the portion of a log between two notches and those
corresponding to the portions of a log end that extend in front
of or behind the two most extreme notches. Given this, three
Boolean random variables Z'q\ 2%, and Z• are constructed for
each grid position q that encode the presence or absence of
such log segments for the bottoms of logs, i.e. log segments

between a grid position and the adjacent grid position below.
A stochastic CSP encodes the validity of an assembly.

Image evidence imposes priors on the random variables Zt,
Z~, Z" Zv, and Z" and structure estimation is performed
by finding a maximum-likelihood solution to this stochastic
CSP. When formulating the constraints, the adjacent grid
position below q is referred to as b(q) and the adjacent
grid position further from the origin along the direction
of the grid lines for the layer of q is referred to as n(q).
Ignoring boundary conditions at the perimeter of the grid,
the grammar of LINCOLN LOGS can be formulated as the
following constraints:
a) 2-notch logs occupy two adjacent grid points
b) 3-notch logs occupy three adjacent grid points
c) 1- and 2-notch logs must be supported at all notches
d) 3-notch logs must be supported in at least 2 notches
e) log ends must be at the ends of logs
0 short log segments indicate occupancy above or below
g) long log segments indicate presence of a multi-notch log

above or below
Boundary conditions are handled by stipulating that the grid
positions beyond the perimeter are unoccupied, enforcing the
support requirement (constraints c-d) only at layers above
the lowest layer, and enforcing log-segment constraints (f-
g) for the layer above the top of the structure. Structure
estimation is performed by first establishing priors over the
random variables Zt, Z~, Z'q\ Zq\ and Z* that correspond to
log features using image evidence and establishing a uniform
prior over the random variables Zq that correspond to the
latent structure. This induces a probability distribution over
the joint support of these random variables. The random
variables that correspond to log features are marginalized
and the resulting marginal distribution is conditioned on the
language model 4>. Finally, the assignment to the collection,
Z, of random variables Zq, that maximizes this conditional
marginal probability is computed.

argmax £ Pr(Z,Z+,Z-,Z",Zl\Zw)
z Z+,Z-,Z",ZV,Z"

*[z.z+.z-.z".zl\z'v]

While, in principle, this method can determine the condi-
tional probability distribution over consistent structures given
image evidence, doing so is combinatorially intractable. The
conditional marginalization process is made tractable by
pruning assignments to the random variables that violate the
grammar 4> using arc consistency [13]. The maximization
process is made tractable by using a branch-and-bound
algorithm [10] that maintains upper and lower bounds on
the maximal conditional marginal probability. Thus instead
of determining the distribution over structures, this yields
a single most-likely consistent structure given the image
evidence, along with its probability.

III. VISIBILITY ESTIMATION

Image evidence for the presence or absence of each log
feature is obtained independently. Each log feature corre-
sponds to a unique local image property when projected to

the image plane under the known camera-relative pose. A
prior over the random variable associated with a specific log
feature can be determined with a detector that is focused
on the expected location and shape of that feature in the
image given the projection. This assumes that the specific log
feature is visible in the image, and not occluded by portions
of the structure between the camera and that log feature.
When the log feature /, a member of the set {+, —,«,v,w}
of the five feature classes defined above, at a position q, is
not visible, the prior can be taken as uniform, allowing the
constraints in the grammar to fill in unknown information.
We represent the visibility of a feature by the boolean
variable V, f

>i •

Pr(Z^ = true) « image evidence when Vq = true
Pr(z/ = false) = \ otherwise

In order to do so, it is necessary to know which log features
are visible and which are occluded so that image evidence is
only applied to construct a prior on visible log features and a
uniform prior is constructed for occluded log features. Thus,
in Rumsfeld's terminology, one needs to know the known
unknowns in order to determine the unknowns. This creates a
chicken-and-egg problem. To determine whether a particular
log feature is visible, one must know the composition of
the structure between that feature and the camera and, to
determine the structure composition, one must know which
log features are visible. While we earlier [19] demonstrated
successful automatic determination of log occupancy at oc-
cluded log positions, we could only do so given manual
annotation of log-feature visibility. In other words, while
earlier we were able to automatically infer Zq, it required
manual annotation of Vq . Further, determining V(J required
knowledge of Zq.

We extend this prior work [19] to automatically determine
visibility of log features in tandem with log occupancy.
Our novel contribution in this section is mutual automatic
determination of both Zq and Vq . We solve the chicken-and-
egg problem inherent in doing so with an iterative algorithm
reminiscent of expectation maximization (EM) [4]-[6]. We
start with an initial estimate of the visibility of each log
feature. We then apply the structure estimation procedure
developed in previous work [19] to estimate the occupancy
of each symbolic grid position. We then use the estimated
structure to recompute a new estimate of log-feature visibil-
ity, and iterate this process until a fixpoint is reached. There
are two crucial components of this process: determining the
initial log-feature visibility estimate and reestimating log-
feature visibility from an estimate of structure.

We determine the initial log-feature visibility estimate
(i.e. Vq) by assuming that the structure is a rectangular
prism whose top face and two camera-facing front faces
are completely visible. In this initial estimate, log features
on these three faces are visible and log features elsewhere
are not. We use the camera-relative pose of the symbolic
grid (which can be determined without any knowledge of
the structure) together with maximal extent of each of the
three symbolic grid axes (i.e., three small integers which

are currently specified manually) to determine the visible
faces. This is done as follows. We determine the image
positions for four corners of the base of this rectangular
prism: the origin (0,0,0) of the symbolic grid, the two
extreme points (fmax,0,0) and (0,0,kmM) of the two hor-
izontal axes in the symbolic grid, and the symbolic grid
point (/max>0,£max)- We select the bottommost three such
image positions as they correspond to the endpoints of the
lower edges of the two frontal faces. It is possible, however,
that one of these faces is (nearly) parallel to the camera
axis and thus invisible. We determine that this is the case
when the angle subtended by the two lower edges previously
determined is less than 110° and discard the face whose
lower edge has minimal image width.

We update the log-feature visibility estimate from a struc-
ture estimate by rendering the structure in the context of
the known camera-relative pose of the symbolic grid. When
rendering the structure, we approximate each log as the
bounding cylinder of its CAD model. We characterize each
log feature with a fixed number of points, equally spaced
around circular log ends or along linear log segments and
trace a ray from each such point's 3D position to the camera
center, asking whether that ray intersects some bounding
cylinder for a log in the estimated structure. We take a
log feature to be occluded when 60% or more of such
rays intersect logs in the estimated structure. Our method is
largely insensitive to the particular value of this threshold. It
only must be sufficiently low to label log features as invisible
when they actually are invisible. Structure estimation is not
adversely affected by a moderate number of log features that
are incorrectly labeled as invisible when they are actually vis-
ible because it can use the grammar to determine occupancy
of grid positions that correspond to such log features.

We can perform such rendering efficiently by rasterization.
For each log feature, we begin with an empty bitmap. We
iterate over each log feature and each occupied grid position
that lies between that log feature and the camera center and
render a projection of the bounding cylinder of the log at
that grid position on the bitmap. This renders all possible
occluders for each log feature allowing one to determine
visibility by counting the rendered pixels at points in the
bitmap that correspond to the projected rays.

The above process might not reach a fixpoint and instead
may enter a finite loop of pairs of visibility and structure
estimates. In practice, this process either reaches a fixpoint
within three to four iterations or enters a loop of length
two within three to four iterations, making loop detection
straightforward. When a loop is detected, we select the
structure in the loop with the highest probability estimate.

IV. STRUCTURE-ESTIMATION CONFIDENCE

While the structure estimation process [19] can determine
the occupancy of a small number of grid positions when
only a single set of occupancy values is consistent with
the grammar and the image evidence, it is not clairvoyant;
it cannot determine the structure of an assembly when a
large part of that assembly is occluded and many different

possible structures are consistent with the image evidence.
In this case, we again have an issue of unknowns vs. known
unknowns: how can one determine one's confidence in one's
structure estimation. If we could determine the conditional
distribution over consistent structures given image evidence,
P(Z|7), we could take the entropy of this distribution,
H(Z\l), as a measure of confidence. However, as discussed
previously, it is intractable to compute this distribution and
further intractable to compute its entropy. Thus we adopt an
alternate means of measuring confidence in the result of the
structure-estimation process.

Given a visibility estimate, Vg , a structure estimate, Z, and
the priors on the random variables associated with log fea-
tures computed with image evidence, Z<{, one can marginal-
ize over the random variables associated with visible log
features and compute the maximum-likelihood assignment to
the random variables associated with occluded log features,
Z/, that is consistent with a given structure estimate.

V = argmax

=false

Pr(Z,Z+,Z-,Z",Zv,Zw)

=true
*[Z,Z+.Z-,Z",Zl',Z"']

One can then ask the following question: what is the maximal
amount 8 that one can shift the probability mass on the
random variables associated with occluded log features away
from the uniform prior, reassigning that shifted probability
mass to the opposite element of the support of that random
variable from the above maximum-likelihood assignment,
such that structure estimation yields the same estimated
structure. Or in simpler terms.

How much hypothetical evidence of occluded log
features is needed to cause me to change my mind
away from the estimate derived from a uniform
prior on such occluded features?

We compute this 8 using a modified structure estimation step

argmax £ Pr(Z,Z+,Z-,Z",Zl'Zvv) = Z
Z Z+,Z-.Z".Zl'.Z"'

<t>[z,z+,z-,z".zv.z,vi

when, for all qf where V/ = false

Pr(Z, k + 5
Pr{Zj =Zj) = \-S

We call such a 8 the estimation tolerance. Then, for any
estimated structure, one can make a confidence judgment by
comparing the estimation tolerance to an overall tolerance
threshold 5*. One wishes to select a value for 8* that
appropriately trades off false positives and false negatives
in such confidence judgements: we want to minimize the
cases that result in a positive confidence assessment for an
incorrect structure estimate and also minimize the cases that
result in a negative confidence assessment for a correct struc-
ture estimate. Because the methods we present in the next
section can gather additional evidence in light of negative
confidence assessment in structure estimation, the former are
more hazardous than the latter because the former preclude

gathering such additional evidence and lead to an ultimate
incorrect structure estimate while the latter simply incur the
cost of such additional evidence gathering. Because of this
asymmetry, our method is largely insensitive to the particular
value of 8* so long as it is sufficiently high to not yield
excessive false positives. We have determined empirically
that setting 5* =0.2 yields a good tradeoff: only 3/105 false
positives and 7/105 false negatives on our corpus.

One can determine the estimation tolerance by binary
search for the smallest value of 8 e (0,0.5) that results in a
different estimated structure. However, this process is time
consuming. But we don't actually need the value of 5; we
only need to determine whether 8 < 8*. One can do this by
simply asking whether the estimated structure, Z, changes
when the probabilities are shifted by 8"

Pr(z/
Pr(z/

•%) = I

z/)
+ 5*
5'

This involves only a single new structure estimation. One can
make this process even faster by initializing the branch-and-
bound structure-estimation algorithm with the probability of
the original structure estimate given the modified distribu-
tions for the random variables associated with occluded log
features.

V. GATHERING ADDITIONAL EVIDENCE TO IMPROVE

STRUCTURE ESTIMATION

Structure estimation can be made more reliable by in-
tegrating multiple sources of image evidence. We perform
structure estimation in a novel robotic environment, illus-
trated in Fig. 2, that facilities automatically gathering multi-
ple sources of image evidence as needed. The structures are
assembled in the robot workspace. This workspace is imaged
by a camera mounted on a pendulum arm that can rotate 180°
about the workspace, under computer control, to image the
assembly from different viewpoints. This can be used to view
portions of the assembly that would otherwise be occluded.
Moreover, a robotic arm can disassemble a structure on
the workspace. This can be used to reveal the lower layers
of a structure that would otherwise be occluded by higher
layers. These methods can further be combined. Generally
speaking, we seek a method for constraining a single estimate
of an initial structure with multiple log features derived from
different viewpoints and different stages of disassembly.

We can do this as follows. Let Z be a collection of
random variables Zq associated with log occupancy for a
given initial structure. Given multiple views ;'= 1,...,« with
collections Z, of random variables Z£, Z~, Z£, Z^', and Z?
associated with the image evidence for log features from
those views, we can compute

argmax £ Pr(Z,Z|,... ,Z„)
Z Z,...Z„

<J>;Z.Z||A...A[Z.Z„]

Only two issues arise in doing this. First, we do not know
the relative camera angles of the different views. Even
though one can estimate the camera-relative pose of the

Fig. 2. Our novel robotic environment for performing structure estimation.
Note that the head can rotate 180° about the workspace, under computer
control, to image the assembly from different viewpoints, and the robot arm
can disassemble the structure on the workspace.

structure independently for each view, this does not yield
the registration between these views. There are only four
possible symbolic orientations of the structure in each view
so for n views we need only consider 4""' possible combi-
nations of such symbolic orientations. We can search for the
combination that yields the maximum-likelihood structure
estimate. We do this search greedily, incrementally adding
views to the structure-estimation process and registering each
added view by searching for the best among the four possible
registrations. Second, in the case of partial disassembly,
we need to handle the fact that the partially disassembled
structure is a proper subset of the initial structure. We do
this simply by omitting random variables associated with
log features for logs that are known to have been removed
in the disassembly process and not instantiating constraints
that mention such omitted random variables.

We can combine the techniques from section IV with
these techniques to yield an active-vision [3] approach to
producing a confident and correct structure estimate. One can
perform structure estimation on an initial image and assess
one's confidence in that estimate. If one is not confident, one
can plan a new observation, entailing either a new viewpoint,
a partial-disassembly operation, or a combination of the two
and repeat this process until one is sufficiently confident in
the estimated structure. Only one issue arises in doing this.
One must plan the new observation. We do so by asking the
following question:

Which of the available actions maximally increases
confidence ?

Like before, if we could determine the conditional distri-
bution over consistent structures given image evidence, we
could compute the decrease in entropy that each available
action would yield and select the action that maximally
decreases entropy. But again, it is intractable to compute this
distribution and further intractable to compute its entropy.
Thus we adopt an alternate means of measuring increase in
confidence.

Given visibility estimates V/ for view i of the n current
views along with a structure estimate Z constructed from
those views, and priors on the random variables associated
with log features computed with image evidence for each
of these views Z;„, one can marginalize over the random

"''?' / _ variables associated with visible log features, VL = true,
and compute the maximum-likelihood assignment Z-' to the
random variables associated with occluded log features that
is consistent with a given structure estimate:

V argmax Pr(Z,Z,,...,Z„)

<«
= false true

*[Z,Z,]A...A<t>[Z.Z„]

We can further determine those log features that are invisible
in all current views but visible in a new view j that would
result from a hypothetical action under consideration. One
can then ask the following question: what is the maximal
amount 5' that one can shift the probability mass on these
random variables away from the uniform prior, reassigning
that shifted probability mass to the opposite element of the
support of that random variable from the above maximum-
likelihood assignment, such that structure estimation when
adding the new view yields the same estimated structure. Or
in simpler terms,

For a given hypothetical action, how much hypo-
thetical evidence of log features that are occluded
in all current views is needed in an imagined view
resulting from that action where those log features
are visible to cause me to change my mind away
from the estimate derived from a uniform prior on
such features?

For an action that yields a new view, j, we compute 5' as
follows

argmax
z

when:

E
Z|...Z„ Zy

[z,z,]A...A[z,z„]A<t>[z,z7!

Pr(Z,Z.)...,Z„,Z/) = Z

Pr(Z^ = -z£)

for all qf where V- = true A (Vi)V^ = false. Because we
wish to select the action with the smallest 8', we need
its actual value. Thus we perform binary search to find 5'
for each hypothetical action and select the one with the
lowest 5'. This nominally requires sufficiently deep binary
search to compute 5' to arbitrary precision. One can make
this process even faster by performing binary search on all
hypothetical actions simultaneously and terminating when
there is only one hypothetical action lower than the branch
point. This requires that binary search be only sufficiently
deep to discriminate between the available actions.

VI. RESULTS

We gathered a corpus of 5 different images of each of 32
different structures, each from a different viewpoint, for a

0 9 -

0.8 . -
07 • -
09 L -
0.5 L -
04 • J -
03 -

0 2 III -
01

0 llll •

0 12343874810 11 12

limn

Fig. 3. Error histograms for manual visibility annotation (in blue) and
automatic visibility estimation (in red). 100% of the structures estimated
had 12 or fewer errors. Note that the latter performs as well as the former.

total of 160 images. The structures were carefully designed
so that proper subset relations exist among various pairs of
the 32 distinct structures.

We first evaluated automatic visibility estimation. We per-
formed combined visibility and structure estimation on 105
of the 160 images1 and compared the maximum-likelihood
structure estimate to that produced in our earlier work
[19] using manual annotation of visibility. For each image,
we compare the maximum-likelihood structure estimate to
ground truth and compute the number of errors. We do this
as follows. Each 1-, 2-, or 3-notch log in either the ground
truth or estimated structure that is replaced with a different,
possibly empty, collection of logs in the alternate structure
counts as a single error (which may be a deletion, addition,
or substitution). Further, each collection of r adjacent logs
with the same medial axis in the ground truth that is
replaced with a different collection of s logs in the estimated
structure counts as min(r,s) errors. We then compute an
error histogram of the number of images with fewer than t
errors. Fig. 3 shows the error histograms for manual visibility
annotation and automatic visibility estimation. Note that the
latter performs as well as the former. Thus our automatic
visibility-estimation process appears to be reliable.

We then evaluated structure-estimation confidence assess-
ment. We computed the false-positive rate and false-negative
rate of our confidence-assessment procedure over the entire
corpus of 105 images, where a false positive occurs with
a positive confidence assessment for an incorrect structure
estimate and a false negative occurs with negative confidence
assessment for a correct structure estimate. This resulted in
only 3 false positives and 7 false negatives on our corpus.

We then evaluated the active-vision process for performing
actions to improve structure-estimation confidence on 90
images from our corpus.1 So as not to render this evaluation
dependent on the mechanical reliability of our robot which

1 Due to limited computational resources we were unable to perform
combined visibility, structure estimation, and active-vision on all 160
images. The final submission will contain the full set of results.

1

09 . Jl Jl .

oa , -
07 . -
08

Jl -
0.5 -
04 -
03 '
02 111 -
01

0 l -

0 12 3 4 5 a 7 a a v ii 12
* Enon

Fig. 4. Error histograms for the baseline structure estimation (in dark
blue) and each of the active-vision process (partial disassembly in light
blue, multiple views in yellow, and the combination of these in red).

is tangential to the current paper and focus the evaluation on
the computational method, we use the fact that our corpus
contains multiple views of each structure from different
viewpoints to simulate moving the robot head to gather new
views and the fact our corpus contains pairs of structures in a
proper-subset relation to simulate using the robot to perform
partial disassembly. We first evaluated simulated robot-head
motion to gather new views. For each image, we took the
other images of the same structure from different viewpoints
as potential actions and perform our active-vision process.
We next evaluated simulated robotic disassembly. For each
image, we took images of proper-subset structures taken
from the same viewpoint as potential actions and perform
our active-vision process. We finally evaluated simulated
combined robot-head motion and robotic disassembly. For
each image, we took all images of proper-subset structures
taken from any viewpoint as potential actions and perform
our active-vision process. For each of these, we computed
the error histogram at the termination of the active-vision
process. Fig. 4 shows the error histograms for each of the
active-vision processes together with the error histogram
for baseline structure estimation from a single view on
this subset of 90 images. Fig. 5 shows a rendering of
the final estimated structure when performing each of the
four processes from Fig. 4 on the same initial image. Log
color indicates correct (green) or incorrect (red) estimation
of log occupancies. Note that our active-vision processes
consistently reduce estimation error.

VII. RELATED WORK

Our work shares three overall objectives with prior work:

• estimating 3D structure from 2D images,
• determining when there is occlusion, and
• active vision.

However, our work explores each of these issues from a novel
perspective.

Prior work on structure estimation (e.g. [8], [12], [17])
focuses on surface estimation, recovering a 3D surface from

2D images. In contrast, our work focuses on recovering the
constituent structure of an assembly: what parts are used
to make the assembly and how such parts are combined.
Existing state-of-the-art surface reconstruction methods (e.g.
Make3D [16]) are unable to determine surface structure of
the kinds of LINCOLN LOG assemblies considered here. Ever
if such surface estimates were successful, such estimates
alone are insufficient to determine the constituent structure.

Prior work on occlusion determination (e.g. [8], [9]) fo-
cuses on finding occlusion boundaries: the 2D image bound-
aries of occluded regions. In contrast, our work focuses on
determining occluded parts in the constituent structure. We
see no easy way to determine occluded parts from occlusion
boundaries because such boundaries alone are insufficient to
determine even the number of occluded parts, let alone their
types and positions in a 3D structure.

Prior work on active vision (e.g. [15]) focuses on integrat-
ing multiple views into surface estimation and selecting new
viewpoints to facilitate such in the presence of occlusion. In
contrast, our work focuses on determining the confidence of
constituent structure estimates and choosing an action with
maximal anticipated increase in confidence. We consider not
only viewpoint changes but also robotic disassembly to view
object interiors. Also note that the confidence estimates used
in our approach to active vision are mediated by the visual
language model. We might not need to perform active vision
to observe all occluded structure as it might be possible to
infer part of the occluded structure. Prior work selects a new
viewpoint to render occluded structure visible. We instead
select an action to maximally increase confidence. Such an
action might actually not attempt to view an occluded portion
of the structure but rather increase confidence in a visible
portion of the structure in a way that when mediated by
the language model ultimately yields a maximal increase in
the confidence assessment of a portion of the structure that
remains occluded even with the action taken.

VIII. CONCLUSION

We have presented a general framework for (a) seeing
the unseeable, (b) seeing unseeability, (c) a rational basis
for determining confidence in what one sees, and (d) an
active-vision decision-making process for determining ratio-
nal behavior in the presence of unseeability. We instantiated
and evaluated our general framework in the LINCOLN LOG
domain and found it to be effective. This framework has
many potential extensions. One can construct random vari-
ables to represent uncertain evidence in other modalities such
as language and speech and one can augment the stochastic
CSP to mutually constraint these variables together with
the current random variables that represent image evidence
and latent structure so that a latent utterance describes a
latent structure. One can then use the same maximum-
likelihood estimation techniques to produce the maximum-
likelihood utterance consistent with a structure marginalizing
over image evidence. This constitutes producing an utterance
that describes a visual observation. One can use the same
maximum-likelihood estimation techniques to produce the

(a) (b) (c) (d)

Fig. 5. Rendered structure for the following four methods: (a) Baseline structure estimation, (b) Partial disassembly, (c) Multiple views,
(d) Combined partial disassembly and multiple views.

maximum-likelihood sequence of robotic actions consistent
with building a structure marginalizing over utterance evi-
dence or alternatively image evidence. This would constitute
building a structure by understanding a linguistic description
of that structure or by copying a visually observed assem-
bly. One can combine evidence from an uncertain visual
perception of a structure with evidence from an uncertain
linguistic description of that structure to reduce the uncer-
tainty of structure estimation. This would constitute using
vision and language to mutually disambiguate each other.
One could augment one's collection of potential actions to
include speech acts as well as robotic-manipulation actions
and search for the action that best improves confidence.
This would constitute choosing between asking someone
to provide you information and seeking that information
yourself. One could determine what another agent can see
from what that agent says. Likewise one could decide what
to say so that another agent can see what is unseeable to
that agent yet is seeable to you. Overall, this can lead to a
rational basis for cooperative agent behavior and a theory
of the perception-cognition-action loop which incorporates
mutual belief, goals, and desires where agents seek to assist
each other by seeing what their peers cannot, describing
such sight, and inferring what their peers can and cannot
see. We are currently beginning to investigate these potential
extensions to our general approach and hope to present them
in the future.

ACKNOWLEDGMENTS

This work was supported, in part, by NSF grant CCF-
0438806, by the Naval Research Laboratory under Contract
Number N00173-10-1-G023, by the Army Research Lab-
oratory accomplished under Cooperative Agreement Num-
ber W911NF-10-2-0060, and by computational resources
provided by Information Technology at Purdue through its
Rosen Center for Advanced Computing. Any views, opin-
ions, findings, conclusions, or recommendations contained
or expressed in this document or material are those of the
author(s) and do not necessarily reflect or represent the views
or official policies, either expressed or implied, of NSF, the
Naval Research Laboratory, the Office of Naval Research,
the Army Research Laboratory, or the U.S. Government. The
U.S. Government is authorized to reproduce and distribute
reprints for Government purposes, notwithstanding any copy-
right notation herein.

[6

[7

[8

[9

(10

Hi

[12

[13

[14

[15

[16

[17

[l.S

[19

[20

[21

REFERENCES

R. Baillargeon. Representing the existence and the location of hidden
objects: Object permanence in 6- and 8-month-old infants. Cognition,
23:21-41. 1986.
R. Baillargeon. Object permanence in 3j- and 4-i-month-old infants.
Developmental Psychology, 23(5):655-64, 1987. "
R. Bajcsy. Active perception. In Proceedings of IEEE, volume 76,
pages 966-1005. Aug. 1988.
L. E. Baum. An inequality and associated maximization technique in
statistical estimation of probabilistic functions of a Markov process.
Inequalities. 3:1-8. 1972.
L. E. Baum, T. Petrie, G. Soules. and N. Weiss. A maximization
technique occuring in the statistical analysis of probabilistic functions
of Markov chains. The Annals of Mathematical Statistics, 41 (1): 164—
71, 1970.
A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood
from incomplete data via the EM algorithm (with discussion). Journal
of the Royal Statistical Society B, 39:1-38, 1977.
J. J. Freyd. T. M. Pantzer. and J. L. Cheng. Representing statics as
forces in equilibrium. Journal of Experimental Psychology, General,
U7(4):395-t07, Dec. 1988.
A. Gupta. A. Efros, and M. Hebert. Blocks world revisited: Image
understanding using qualitative geometry and mechanics. In European
Conference on Computer Vision, volume 6314, pages 482-496, 2010.
D. Hoiem, A. A. Efros, and M. Hebert. Recovering occlusion
boundaries from an image. International Journal of Computer Vision,
91(3):328-346. 2011.
A. H. Land and A. G. Doig. An automatic method of solving discrete
programming problems. Econometrica, 28(3):497-520, I960.
J.-L. Lauriere. A language and a program for stating and solving
combinatorial problems. Artificial Intelligence, 10(1):29— 127. 1978.
D. C. Lee. M. Hebert, and T. Kanade. Geometric reasoning for
single image structure recovery. In Proceedings of the IEEE Conf.
on Computer Vision and Pattern Recognition, June 2009.
A. K. Mackworth. Consistency in networks of relations. Artificial
Intelligence. 8(1):99-1I8, 1977.
M. Maire, P. Arbelaez, C. Fowlkes, and J. Malik. Using contours to
detect and localize junctions in natural images. In Proceedings of the
IEEE Conf. on Computer Vision and Pattern Recognition, pages 1-8,
June 2008.
J. Maver and R. Bajcsy. Occlusions as a guide for planning the next
view. IEEE Trans, on Pattern Analysis and Machine Intelligence,
15:417—433. May 1993.
A. Saxena, M. Sun, and A. Ng. Make3d: Learning 3d scene structure
from a single still image. IEEE Trans, on Pattern Analysis and
Machine Intelligence, 3l(5):824-840, may 2008.
A. Saxena, M. Sun, and A. Y. Ng. Learning 3-d scene structure from
a single still image. In ICCV workshop on 3D Representation for
Recognition 3dRR07, 2007.
J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE
Trans, on Pattern Analysis and Machine Intelligence, 22(8):888-905,
2000.
N. Siddharth, A. Barbu, and J. M. Siskind. A visual language model
for estimating object pose and structure in a generative visual domain.
In Proceedings of the IEEE International Conf. on Robotics and
Automation. May 2011.
A. Streri and E. S. Spelke. Haptic perception of objects in infancy.
Cognitive Psychology. 20(1): 1-23, 1988.
K. Wynn. Psychological foundations of number: Numerical compe-
tence in human infants. Trends in Cognitive Sciences, 2:296-303.
1998.

