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Abstract 
 
Two experiments used a dual task method to investigate whether compensatory and heuristic 
decision rules are based on distinct computational systems.  Subjects learned to classify 
pictures of soldiers as friend or foe through trial-and-error learning then completed a test 
session designed to allow inference of subjects’ decision strategies.  In both experiments, 
subjects completed a condition in which they performed a simultaneous secondary task 
designed to consume executive working memory capacity [35], either at the time of test 
(Experiment 1) or during the training session (Experiment 2).  In both cases, subjects 
exhibited slower responses when performing the secondary task than in a control condition, 
indicating that the secondary task competed for cognitive resources.  The presence of the 
secondary task, however, produced significantly slower responses for those subjects classified 
as using a simple heuristic as opposed to a more complex compensatory strategy, which is 
consistent with research linking heuristics to a deliberate classification system and 
compensatory strategies to an automatic system.  The secondary task manipulation, however, 
did not affect the proportions of subjects using the heuristic and compensatory decision rules.  
The results of two experiments suggest that heuristic and compensatory decision rules are 
mediated by different classification systems.  The presence of competing cognitive demands, 
however, does not seem to affect whether a subject uses an heuristic or compensatory 
strategy. 

Résumé 
 

Deux expériences ont utilisé une méthode à double tâche pour étudier si des règles de décision 
compensatoires et heuristiques sont fondées sur des systèmes de calcul distincts. Les sujets 
ont appris à classer des photos de soldats en tant qu’amis ou ennemis par apprentissage par 
essai et par erreur et ont alors subi une séance de tests conçus pour permettre l’inférence des 
décisions sur les stratégies des sujets. Dans les deux expériences, les sujets étaient dans une  
situation dans laquelle ils exécutaient simultanément une tâche secondaire conçue pour 
utiliser la capacité de mémoire de travail exécutive [35], soit au moment du test (Expérience 
no 1) soit pendant la séance de formation (Expérience no 2). Dans les deux cas, les sujets ont 
réagi plus lentement lorsqu’ils exécutaient une tâche secondaire que dans une situation 
contrôlée, ce qui indique que la tâche secondaire était en compétition pour des ressources 
cognitives. La présence de la tâche secondaire toutefois, a entraîné des réponses 
considérablement plus lentes pour les sujets classés comme utilisant une stratégie heuristique 
simple en opposition à une stratégie compensatoire plus complexe, ce qui est conforme avec 
la recherche liant la stratégie heuristique à un système de classification délibéré et les 
stratégies compensatoires à un système automatique. La manipulation de la tâche secondaire, 
toutefois, n’a pas affecté les proportions de sujets utilisant des règles de décision heuristiques 
et compensatoires. Les résultats des deux expériences suggèrent que les règles de prise de 
décision heuristiques et compensatoires sont soumises à différents systèmes de classification. 
La présence d’exigences cognitives concurrentes, toutefois, ne semble pas affecter l’utilisation 
ou non par un sujet d’une stratégie heuristique ou compensatoire. 
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Executive summary 
 

Combat Identification Decision Making: Effect of a Secondary 
Task 

David J. Bryant]; DRDC Toronto TR 2010-159; Defence R&D Canada – 
Toronto.  

Introduction: Previous experiments have demonstrated that people can employ both heuristic 
and more complex compensatory strategies to classify targets as friend or foe [3][4][27].  One 
possible explanation why both types of strategy are used is that subjects may rely on different 
underlying classification systems which are conducive to different decision processes (e.g., 
[30][31][32]).  One classification system is proposed to be deliberate and suited to learning 
rule-based distinctions, whereas the other is an implicit system that is automatic and suited to 
learning probabilistic cue associations.  Thus, subjects who use an heuristic may rely on a 
deliberate, rule-based system, whereas others who use a compensatory rule may rely on an 
automatic, integrative system. 

Results: Two experiments used a dual task method to investigate whether compensatory and 
heuristic decision rules are based on distinct computational systems.  Subjects learned to 
classify pictures of soldiers as friend or foe through trial-and-error learning then completed a 
test session designed to allow inference of subjects’ decision strategies.  In both experiments, 
subjects completed a condition in which they performed a simultaneous secondary task 
designed to consume executive working memory capacity [35], either at the time of test 
(Experiment 1) or during the training session (Experiment 2).  In both cases, subjects 
exhibited slower responses when performing the secondary task than in a control condition, 
indicating that the secondary task competed for cognitive resources.  The presence of the 
secondary task, however, produced significantly slower responses for those subjects classified 
as using a simple heuristic as opposed to a more complex compensatory strategy, which is 
consistent with research linking heuristics to a deliberate classification system and 
compensatory strategies to an automatic system.  The secondary task manipulation, however, 
did not affect the proportions of subjects using the heuristic and compensatory decision rules.   

Significance: The results of two experiments suggest that heuristic and compensatory 
decision rules are mediated by different classification systems.  Thus, subjects who use an 
heuristic may rely on a deliberate, rule-based system, whereas others who use a compensatory 
strategy may rely on an automatic, integrative system.  The presence of competing cognitive 
demands, however, does not seem to affect whether a subject uses an heuristic or 
compensatory strategy. 

Future Plans: Previous experiments have shown that differences in the specific associations 
of cues to friend or foe classification can produce markedly different patterns of decision 
strategy use by subjects.  When the set of targets to be classified contain a highly predictive 
cue that is also highly salient, most subjects use an heuristic, whereas when the target set does 
not have a highly salient but predictive cue, most subjects prefer a compensatory strategy.  
Future experiments will examine whether this finding reflects some learning process that 
employs a rule-based or associative system depending on the availability of salient cues. 
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Sommaire 
 

Prise de décision en identification au combat : Effet d’une 
tâche secondaire 

[David J. Bryant]; RDDC Toronto TR 2010-159; R et D pour la défense 
Canada – Toronto 

Introduction : Des expériences antérieures ont démontré que les personnes peuvent utiliser 
tant des stratégies heuristiques que des stratégies compensatoires plus complexes pour classer 
des cibles comme amies ou ennemies [3][4][27]. Une explication possible de l’utilisation des 
deux types de stratégie est que les sujets peuvent  se fier  à différents systèmes de 
classification sous-jacents qui sont  favorables à différents processus de décision .(p. ex., 
[30][31][32]).  Un système de classification est proposé pour être délibéré et adapté  aux 
distinctions fondées sur des règles d’apprentissage, alors que l’autre est un système implicite 
qui est automatique et adapté aux associations de repères probabilistes de l’apprentissage. 
Donc, les sujets qui utilisent une stratégie heuristique  peuvent se fier à un système délibéré, 
fondé sur des règles, alors que les autres qui utilisent une règle compensatoire peuvent se fier 
à un système automatique intégratif. 

Resultats : Deux expériences ont utilisé une méthode à double tâche pour étudier si des règles 
de décision compensatoires et heuristiques sont fondées sur des systèmes de calcul distincts. 
Les sujets ont appris à classer des photos de soldats en tant qu’amis ou ennemis par 
apprentissage par essai et par erreur et ont alors subi une séance de tests conçus pour 
permettre l’inférence des décisions sur les stratégies des sujets. Dans les deux expériences, les 
sujets étaient dans une  situation dans laquelle ils exécutaient simultanément une tâche 
secondaire conçue pour utiliser la capacité de mémoire de travail exécutive [35], soit au 
moment du test (Expérience no 1) soit pendant la séance de formation (Expérience no 2). Dans 
les deux cas, les sujets ont réagi plus lentement lorsqu’ils exécutaient une tâche secondaire 
que dans une situation contrôlée, ce qui indique que la tâche secondaire était en compétition 
pour des ressources cognitives. La présence de la tâche secondaire , toutefois, a entraîné des 
réponses considérablement plus lentes pour les sujets classés comme utilisant une stratégie 
heuristique simple en opposition à une stratégie compensatoire plus complexe , ce qui est 
conforme avec la recherche liant la stratégie heuristique à un système de classification 
délibéré et les stratégies compensatoires à un système automatique. La manipulation de la 
tâche secondaire, toutefois, n’a pas affecté les proportions de sujets utilisant des règles de 
prise de décision heuristiques et compensatoires.  

Portée : Les résultats des deux expériences suggèrent que les règles de prise de décision 
heuristiques et compensatoires sont soumises à différents systèmes de classification. Donc, les 
sujets qui utilisent une stratégie heuristique peuvent se fier à un système délibéré fondé sur 
des règles, alors que les autres qui utilisent une stratégie compensatoire peuvent se fier à un 
système automatique intégratif. La présence d’exigences cognitives concurrentes, toutefois, ne 
semble pas affecter l’utilisation ou non par un sujet d’une stratégie heuristique ou 
compensatoire. 
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Recherches futures : Les expériences antérieures ont démontré que des différences dans les 
associations spécifiques de repères pour la classification ami ou ennemi peuvent entraîner des 
modèles de décision différents de façon marquée de la stratégie de prise de décision utilisée 
par les sujets. Lorsque le jeu de cibles à classer contient un repère hautement prédictif qui est 
aussi évident, la plupart des sujets utilisent une stratégie heuristique,alors que lorsque le jeu de 
cibles ne constitue pas un repère évident mais prédictif ,la plupart des sujets préfèrent une 
stratégie compensatoire. Les expériences futures examineront si cette découverte reflète un 
processus d’apprentissage quelconque qui utilise un système fondé sur des règles ou un 
système associatif selon la disponibilité de repères évidents. 
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Introduction 
 

Background 
Combat Identification (CID) is a basic military task in which one attempts to rapidly and 
accurately identify friendly, enemy and neutral forces.  Formally, CID can be viewed as a cue-
based categorization task in which a soldier categorizes one or more entities in the 
environment using whatever human perceptual and mechanical sensor cues are available.  
This can be a difficult task when no cue provides certain classification.  Uncertainty results 
from flawed human perception and ambiguous sensor data, as well as inherent uncertainty as 
to which characteristics are important, or diagnostic, to the identity of targets can impair 
assessment [1][2].  This is especially true in asymmetric environments in which the enemy 
uses diverse equipment and attempts to blend into civilian populations, as well as in coalition 
operations in which allies may use different, unfamiliar equipment.  Operating afield in 
unfamiliar nations often leaves soldiers with limited knowledge of the kinds of information 
needed to distinguish neutral from potentially hostile factions.  In light of the importance of 
CID and the potential difficulty of the task, a precise understanding of the cognitive processes 
involved is needed to determine appropriate policies and procedures and to develop decision 
support systems. 

Analytic Versus Heuristic Decision Processes 
Previous research [3] [4] has examined the relative value of heuristics and analytic decision 
rules for CID [5].  Whereas an heuristic is a simple decision procedure that offers the potential 
to quickly and easily solve a specific problem, an analytic procedure promises an optimal 
solution at the cost of extensive computation and time.  Both approaches have merits and both 
have received empirical support. 

Analytic Processes 
The analytic approach is based on the premise that human decision making can be modeled by 
normative theories of probability and logic.  Normative theories explain human judgment in 
terms of explicitly computable processes to take in information, code it symbolically, 
manipulate these symbolic representations, and generate some output.   

Analytic decision procedures based on these theories require some kind of formal comparison 
among decision alternatives using procedural rules that quantify those alternatives.  Numerous 
specific procedures for comparing alternatives are known, most of which can be 
computationally modeled.  Many, for example, are based on Bayesian statistics and evaluate 
options in terms of base rates for different hypotheses and probabilities of the accuracy of 
different observations [6].  Other analytic strategies include subjective expected utility 
analysis and feature-by-feature comparison (see [7]). 

To make a judgment, an analytic procedure generally specifies a number of dimensions along 
which to compare alternatives.  Typically, these computations are based on compensatory 
algorithms in which all dimensions are weighted [8].  A popular general form is the linear 
compensatory model (i.e. additive rule), which involves the computation of an overall score 
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for each decision alternative based on the sum of relevant dimension values for each 
alternative, weighted by each dimension’s importance [9].  Because the score of each 
alternative is based on all known dimensions, effects of large and small dimension values can 
compensate one another in determining the overall desirability of the alternative [10]. 

Analytic decision procedures are popular because they are designed to yield the optimal 
choice.  The downside of such procedures, however, is that they must identify and compare all 
potential decision alternatives along all relevant dimensions.  This means that analytic 
decision making entails extensive computations, even for fairly simple problems [11].  A 
comprehensive search for data to allow all comparisons is generally extremely time 
consuming, if not impossible, given limitations of human knowledge and cognitive capacity.  
Moreover, it may not be possible to construct a complete representation of the problem space, 
including a decision maker’s goals, the values of potential outcomes, and the probabilities of 
certain actions producing certain outcomes [12].   

Heuristic Processes 
Heuristic models of decision making are based on the recognition that decision making 
mechanisms must work within the limits of time, knowledge, and computational power 
imposed by the situation and the decision maker him/herself [12][13][14].  Heuristics are 
informal, intuitive strategies that specify simple steps, which are often based on probabilistic 
data, and are designed to work under a few general assumptions [15] [16]. 

Fast and frugal heuristics are particularly simple heuristics for making judgments with limited 
information that have been shown to be accurate and efficient solutions to certain judgment 
tasks [17][18][19].  The Take the Best (TTB) heuristic, for example, performs two-alternative 
choice tasks by determining the single cue dimension that both discriminates options and has 
the highest validity (i.e., the cue offers the greatest conditional probability of indicating the 
correct choice given the cue’s presence) [20][21].  In simulation studies with a variety of data 
sets drawn from psychology, economics, and other fields, TTB performs a choice task as 
accurately as more computationally intensive linear regression models [20][21].  In addition 
to achieving comparable accuracy, the TTB consistently exhibits a clear advantage over linear 
procedures in terms of frugality, consulting, on average, fewer cues and performing fewer 
computations than linear procedures.  A non-compensatory heuristic such as TTB generally 
performs well when the task environment is itself structured such that the validity of cues falls 
off dramatically in a non-compensatory fashion [22]. 

Fast and frugal heuristics such as TTB can also provide plausible models of human decision 
making in tasks in which subjects are required to use probabilistically predictive cues to select 
an alternative (e.g., [23][24][25][26]).  In these studies, however, only a subset (albeit a 
majority in some cases) of subjects can be classified as using TTB.  Even under favourable 
conditions, subjects have frequently been observed to deviate from the principles of fast and 
frugal heuristics (e.g., [24][26]).  Often, a significant proportion of subjects seem to use more 
complex, compensatory procedures in these experiments.  Thus, it remains an open question 
as to the extent to which fast and frugal heuristics represent a general framework in which to 
understand human judgment. 
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Analytic and Heuristic Processes for Combat Identification 
Given concerns that CID is vulnerable to problems of information overload and uncertainty 
[1], the fast-and-frugal heuristic approach provides a potentially useful framework in which to 
study time- and information-stressed decision making.  Fast-and-frugal heuristics may be a 
natural means to manage a heavy information load in appropriate task environments.   

To explore the potential of fast-and-frugal heuristics to model human threat assessment, 
Bryant [3] developed a simulated air threat assessment task (similar to CID) in which to 
compare predictions of different decision models.  In three experiments, subjects learned to 
classify simulated aircraft using four probabilistic cues, then classified test sets designed to 
contrast predictions of several compensatory and non-compensatory heuristics.  Various 
“contacts” (simulated aircraft) were presented on a simulated radar screen for subjects to 
classify as either friend or foe based on the values of four cues.  Each cue value had a specific 
probability of being associated with friend and foe contacts, with these probabilities 
determining the cue’s validity in classifying contacts. 

To contrast different decision making models for CID, Bryant [3] [27] devised specific 
decision procedures for the threat classification task.  Annex A provides a thorough 
description of these processes.  Briefly, Take-the-Best-for-Classification heuristic (TTB-C) is 
a variant of TTB that identifies a target on the basis of the single most valid cue available.  
The Additive Rule (ADD) calculates the sum of unweighted cue values and selects the 
alternative with the highest score.  The Weighted Additive Rule (WADD) is a variant in 
which cue values are weighted by the corresponding cue validities for each alternative prior to 
summation.  A Bayesian classifier makes probabilistic inferences by applying Bayes' theorem 
through a network that represents the probabilistic relationships between threat class (friend or 
foe) and predictive cues.  Given a set of cues, the network can be used to compute the 
probabilities of the target being a friend or a foe. 

Bryant’s [3] results indicated that about half of the subjects who exhibited a classifiable, non-
random strategy appeared to use the non-compensatory fast-and-frugal heuristic TTB-C, but 
the other half used less frugal compensatory decision rules (i.e. either an additive or Bayesian 
rule).  Interestingly, the relative proportions of subjects exhibiting responses consistent with 
the fast-and-frugal heuristic versus other decision rules was largely unaffected by 
manipulations of time pressure and perceived cue uncertainty.  Only when a severe time 
pressure manipulation was employed did Bryant [4] observe a shift in group preference for an 
heuristic decision rule.  When subjects were allowed only four seconds to respond, the 
majority of subjects employed either TTB-C or a guessing strategy, presumably because these 
strategies do not require time-consuming inspection of multiple cues.  In contrast, when a 
control condition afforded sufficient time to examine all cues, subjects generally preferred 
strategies that made use of all available cues.   

Bryant [4] examined other factors that might predict when decision makers will employ 
heuristics versus a Bayesian decision strategy.  The way information is presented in a decision 
making task often has a significant impact on the way people perform that task.  For example, 
a pictorial format may facilitate use of compensatory additive or Bayesian decision 
procedures because the visual system has mechanisms to rapidly sum cues or compute 
probabilities.   

In one experiment, Bryant [4] contrasted subjects’ performance when they learned to classify 
contacts using textual cues versus pictorial cues.  Glöckner and Betsch [28] have suggested 
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that heuristics, such as TTB-C, are associated with deliberate processing and should be 
strongly affected by conditions that increase task demands or reduce available cognitive 
resources.  They further proposed that simultaneous availability of all cues is necessary to 
employ an automatic cue-integration procedure, which implies that subjects should be more 
likely to employ a Bayesian strategy when viewing pictures than when cues are provided 
textually.  Text must be read sequentially, which would favour the use of a deliberate strategy, 
such as TTB-C.  In Bryant’s [4] experiment, however, substantial proportions of subjects in 
this experiment employed the TTB-C, ADD, and Bayesian rules, but there was no significant 
difference between the text and pictorial conditions in the proportions of subjects employing 
the Bayesian and TTB-C rules.   

In a second experiment, Bryant (2009) sought to determine whether rapid presentation of 
pictorial stimuli affects the propensity of subjects to use a Bayesian decision strategy.  If the 
Bayesian strategy depends on the recruitment of perceptual mechanisms, it may be more 
evident in situations in which the deliberate use of an heuristic is made difficult.  Results of 
this experiment indicated that exposure time to pictorial stimuli did not affect the proportions 
of subjects employing heuristic versus compensatory decision rules.   

Despite observing no effect of stimulus format or presentation time, one factor did have a 
profound impact on subjects’ selections of decision strategy – the item set they studied.  
Bryant’s [4] experiment employed two sets of items created from the same basic cues but 
varying the predictiveness of each cue across the different sets.  In one set, the uniform was 
the most predictive cue and it also seemed to be the most perceptually salient.  In the second 
set, the helmet was most predictive but this cue was not considered to be as salient as the 
uniform.  It may be that when a perceptually salient cue, or a cue with a pre-existing 
association to the classification task, is also the most diagnostic, subjects are able to quickly 
notice its relation to classification and use a simple rule such as TTB-C.  In contrast, when a 
non-salient cue is most predictive, subjects do not have one cue that immediately stands out as 
a key predictor and so they tend to look at all cues, which suggests a compensatory and 
analytic decision rule. 

Automatic versus Deliberate Classification 
A seeming problem for compensatory models of cue-based judgment is that they require fairly 
intense computation.  The Bayesian model, for example, requires an individual to not only 
learn individual cue-criterion associations but also compute conditional probabilities, which is 
not something people consciously do in tasks such as CID.  The limits of conscious 
information processing and working memory capacity seem incompatible with compensatory 
models.  In contrast, heuristics are specifically designed to work with limited information and 
minimal information processing. 

One possible way to reconcile the cognitive demands of compensatory models with their 
apparent use by some subjects in cue-based classification tasks is to assume that people are 
capable of performing compensatory computations automatically.  Automaticity is often 
defined by three main criteria: insensitivity to intentional control, insensitivity to cognitive 
capacity limits, and absence of awareness [29].  With respect to this definition, an automatic 
process is one that a person performs without conscious control or awareness and which does 
not compete for limited cognitive resources.  In contrast, a deliberate process is one in which 
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processing is under conscious control, that the person has significant insight into (i.e. the 
person can describe how the process works), and is generally effortful and limited [28]. 

People may be able to employ two different processing systems to classify targets in CID.  
Ashby and colleagues [20] [31] [32] have argued that people possess two distinct systems for 
categorization.  Specifically, they propose that people have access to both an explicit system 
that is deliberate and suited to learning rule-based class distinctions and an implicit system 
that is automatic and suited to learning how to integrate probabilistic cues to form categories.  
Evidence for this deliberate-automatic distinction comes from studies that have demonstrated 
that learning of rule-based classification schemes is strongly affected by cognitive load [33], 
task demands [34], and interfering tasks that compete for limited cognitive resources [30][35], 
whereas learning classification schemes based on integration of cues is largely unaffected by 
these factors.   

The use of heuristics and compensatory decision rules can also be understood within the two-
system framework.  Heuristics, which are often framed in terms of simple rules (e.g., “take-
the-best”), may associated with deliberate processing because they draw on controlled 
processes to apply simple rule-based judgments [36].  In contrast, compensatory rules, such as 
the Bayesian or WADD rules, may draw upon automatic processes.  Glöckner and Betsch [28] 
have suggested that automatic processes driven by intuitive system enable persons to quickly 
integrate multiple reasons in decisions in a compensatory fashion.  In three experiments, 
Glöckner and Betsch [28] found that subjects could employ the WADD strategy to perform a 
cue-based decision task as long as information search was not restricted.  Moreover, subjects’ 
response times were very fast, suggesting that performance was based on automatic 
processing. 

It may be possible to better understand why some people employ heuristic decision rules in 
CID task whereas others employ a Bayesian procedure.  According to the dual-system view, 
heuristics would be associated with deliberate rule-based processing.  That is, to employ a 
heuristic such as TTB-C, one must consciously select a particular cue as the most valid and 
classify targets according to a simple rule.  In contrast, the Bayesian procedure would be 
associated with automatic cue-integration.  Subjects would not have to deliberately attempt to 
compute conditional probabilities but, rather, rely on automatic processes to integrate all 
available cues according to an algorithm that is consistent with Bayes’ Theorem.  Thus, 
different subjects could reveal different strategies depending on which classification system 
served as the basis for performance.  This is consistent with Gigerenzer’s concept of the 
“Adaptive Toolbox” in which people can choose an appropriate heuristic to suit a given 
problem [17].  What remains unclear is why some subjects would choose a deliberate 
heuristic and others an automatic compensatory strategy under the same experimental 
conditions. 

The threat assessment task used by Bryant [3] is technically an information integration task 
because optimal performance depends on integration of all four cues.  Thus, it might be 
expected that subjects would employ an automatic classification system, yielding judgments 
consistent with a Bayesian decision rule.  Given the specific cue validities associated with 
cues, however, the maximum level of performance achievable with a heuristic such as TTB-C 
was almost the same as that of the Bayesian strategy.  Thus, the task could be treated as a 
rule-based classification task with little discernable loss in accuracy.  This allows subjects the 
option of approaching the task as either a rule-based or information-integration problem.  The 
fact that the task is readily solvable by either procedure may explain why in most previous 
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experiments there were subsets of subjects who preferred a heuristic-based solution and others 
who preferred a compensatory solution. 

Dual Task Method 
The nature of the processing system underlying human performance can be examined by the 
use of the dual task methodology.  The logic of this methodology is based on the assumption 
that adding a secondary task to be performed simultaneously with a primary experimental task 
will increase the overall cognitive demands placed on a subject.  The secondary task will 
compete for cognitive resources meaning the subject is able to devote less attention and 
computational resources to the primary task.  This impairs performance of the primary task to 
the extent performance depends on those cognitive resources.  In contrast to deliberate 
processes, automatic processes consume little if any attentional resources.  Thus, a secondary 
task can be expected to selectively impair performance on tasks mediated by a conscious, 
deliberate processing system that requires active cognitive resources.  The same secondary 
task, however, should have much less impact on performance of a task mediated by an 
automatic processing system. 

This methodology has already been employed by Waldron and Ashby [30] to test predictions 
of their COVIS (COmpetition between Visual and Implicit Systems) model that proposes the 
existence of an explicit hypothesis testing system that is reliant on working memory and 
executive attention and an implicit procedural-learning system that operates independently of 
working memory (WM).  They predicted that the explicit classification system, which relies 
on WM, would be negatively affected by competing demands for cognitive resources imposed 
by a concurrent task.  In contrast, the implicit system should be able to operate with little if 
any impact because it does not require the cognitive resources being consumed by a 
concurrent task. 

Using this logic, Waldron and Ashby [30] developed a numerical version of the Stroop task 
(see [37]) to serve as a secondary task.  Subjects in their experiment were simultaneously 
presented with a target for categorization and a Stroop task stimulus.  The Stroop stimulus 
would disappear after 200 msec while the target remained on screen until the subject indicated 
a categorization judgment.  After that judgment, subjects then responded to the Stroop 
stimulus.  The Stroop task required subjects to hold a representation of the stimulus in WM 
during the categorization process, thus competing for cognitive resources.  To examine the 
impact of the secondary task on the two hypothesized categorization systems, Waldron and 
Ashby [30] employed one set of targets that could be classified along a single dimension or 
feature, which was predicted to elicit deliberate, rule-based categorization, and a second set 
requiring integration of three dimensions, which was predicted to elicit automatic procedural 
categorization.  Consistent with their hypotheses, subjects’ performance on the first uni-
dimensional target set was significantly worse when concurrently performing the Stroop task 
relative to a control condition.  In contrast, subjects’ performance on the second, multi-
dimensional target set was not affected by the concurrent task relative to a control condition.  
Taken together, these findings supported Waldron and Ashby’s [30] claim that people can 
employ both a rule-based categorization system that requires WM and a procedural system 
that operates automatically and does not consume WM resources. 

The experiments reported here use a dual task method to investigate whether compensatory 
and heuristic decision rules are based on distinct computational systems.  Specifically, the 
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selection of a heuristic versus compensatory decision strategy may depend on the nature of 
cognitive demands present when initially learning to classify targets.   
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Experiment 1 
 
Bryant [4] observed an unexpected but very large effect of the specific target set of items on 
subjects’ use of decision strategies.  With Set 1, where the target’s uniform was the most 
predictive cue and also seemed to be the most salient, a significant majority of subjects used 
the TTB-C heuristic.  With Set 2, where the target’s helmet was most predictive but not as 
salient as the uniform, a significant majority of subjects used the Bayesian or ADD rules.  It 
may be that when a salient cue, or a cue with a pre-existing association to the classification 
task, is the most predictive subjects are able to quickly notice its relation to classification and 
use TTB-C.  In contrast, when a non-salient cue is most predictive, subjects do not have one 
cue that immediately stands out as a key predictor and so they look at all cues to identify 
targets.  This suggests a compensatory and analytic decision rule, either because subjects 
explicitly weigh all cues or because they acquire richer instances of contacts in memory, 
which supports a recognition-based decision rule that conforms to Bayesian predictions. 

Although unexpected, the set effect provides a way to examine the processes underlying 
heuristic and analytic decision rules. Using Bryant’s [4] target sets, it is possible to predict a 
priori what decision rule most subjects will adopt.  With Set 1, most are expected to use TTB-
C, whereas with Set 2, most will use the Bayesian or ADD rules.  It is now possible to see 
whether a secondary task manipulation can alter those preferences. 

In this experiment all subjects learned to classify friends versus foes as in previous studies 
then performed a test phase in one of two conditions.  In the control condition, the test 
procedure was the same as that used by Bryant [4].  In the secondary task condition, subjects 
performed a simultaneous secondary task designed to consume executive WM capacity [35].  
For each trial, secondary task stimuli, which are two different numerical digits from 1 to 9 
printed in different font sizes, were presented concurrently to the left and right of a fixation 
point for 500 msec, followed by a rectangular coloured mask for another 500 msec.  The test 
item followed and, after the subject made a friend or foe judgment, the word “value” or the 
word “size” appeared on the screen and the subject indicated on which side the number with 
the larger value or larger size was presented. 

In contrast to deliberate processes, automatic processes are largely unaffected by increased 
attentional demands [28].  Thus, while having subjects complete a secondary dual-task while 
learning to classify contacts, we can expect that the secondary task will selectively impair 
deliberate processes due to competition for cognitive resources.  Based on previous findings 
that associate heuristics with deliberate processing and additive or Bayesian rules with 
automatic processing, a competing demand on limited cognitive resources should make it 
more difficult to employ a heuristic but would not greatly affect the compensatory Bayesian 
or Additive decision rules. Thus, we would expect to see a larger population of subjects using 
the Bayesian rule than a heuristic-based rule in a dual-task condition.  

It was predicted that, in the Control condition, subjects would show the Set 1/Set 2 difference 
observed by Bryant [4], in which most subjects used TTB-C with Set 1 but the Bayesian or 
Additive rule with Set 2.  In the secondary task condition, however, it was expected that 
subjects would exhibit a strong preference for the Bayesian and Additive rules for both Set 1 
and Set 2 because the secondary task would selectively interfere with the use of the deliberate 
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heuristic strategy of TTB-C.  The secondary task was not expected to affect the use of the 
automatic Bayesian and Additive decision rules.  

Method 

Subjects 

Subjects were 48 male and female volunteers who were employees of Defence Research and 
Development Canada - Toronto (DRDC Toronto), students conducting research at DRDC 
Toronto, individuals recruited from local universities, or reserve force soldiers.  All subjects 
were aged 18 and older, had normal or corrected-to-normal vision, and were unfamiliar with 
the specific hypotheses and stimulus configurations of the experiments.  All received stress 
pay remuneration for participating.   

This study, approved by the DRDC Toronto Human Research Ethics Committee (HREC), was 
conducted in conformity with the Tri-Council Policy Statement: Ethical Conduct for Research 
Involving Humans. 

Materials 
The experiment was conducted with Personal Computers (PCs) using the E-Prime experiment 
authoring software.  The software presented instructions and stimuli, collected subject 
responses, and recorded data.   

   

Figure 1: Examples of stimuli 

In the experiment, subjects learned to classify potentially hostile soldiers (contacts) as friend 
or foe.  The contacts were presented in pictorial format, as illustrated in Figure 1.  Each 
contact’s identity was determined by the combination of four characteristics (cues) – the 
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pattern and colour of the contact’s uniform (CADPAT1 or olive green), the presence of a face 
covering (black mask or no mask), the type of rifle held (C7 or AK-47), and the colour of the 
helmet (Canadian or dark green).  Each contact’s cue values were generated according to a 
probability matrix (i.e., each cue value will have a specified probability of being associated 
with each class of contact, hostile and non-hostile).   

Subjects performed two conditions, a control and a secondary task condition.  Consequently, 
two sets of 300 contacts (150 friend and 150 foe) were used for the training sessions and two 
sets of 100 contacts (50 friend and 50 foe) were created for the test sessions.  The training sets 
were identical to those used by Bryant [4].  The sets were counter-balanced across conditions. 

Design 

Three variables were manipulated in this experiment.  The first, varied within subjects, was 
the Cue Validity of each cue used to describe contacts in the training stimuli sets.  To vary 
Cue Validity, each possible value of a cue (values 1 and 2) was probabilistically associated to 
friend and foe classifications such that each cue differed in diagnosticity.  Thus, for one cue 
each possible value was paired with the friend or foe classification 90% of the time, for 
another cue 80% of the time and so on.  Table 1 indicates the proportions of friend and foe 
contacts possessing each cue value for the four cues in the two training sets.   

Table 1. Relative Frequencies of Cue Values for Friend and Foe Contacts 

 SET 1 

Cue 1 
(Uniform) 

Cue 2 
(Helmet) 

Cue 3 
(Rifle) 

Cue 4 
(Face Cover) 

Value 1  
(CADPAT) 

Value 2 
(Olive) 

Value 1 
(Can.)  

Value 2  
(Dark gr.) 

Value 1 
(C7) 

Value 2  
(AK-47) 

Value 1 
(None) 

Value 2 
(Covered) 

Friend 90% 10% 60% 40% 30% 70% 20% 80% 

Foe 10% 90% 40% 60% 70% 30% 80% 20% 

 SET 2 

Cue 1 
(Helmet) 

Cue 2 
(Uniform) 

Cue 3 
(Face Cover) 

Cue 4 
(Rifle) 

Value 1 
(Can.)  

Value 1 
(Can.)  

Value 1  
(CADPAT) 

Value 2 
(Olive) 

Value 1 
(None) 

Value 2 
(Covered) 

Value 1 
(C7) 

Value 2  
(AK-47) 

Friend 90% 10% 60% 40% 30% 70% 20% 80% 

Foe 10% 90% 40% 60% 70% 30% 80% 20% 

 

 
                                                      
1 CAnadian Disruptive PATtern (CADPAT). 
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A contact was created by, first, designating it a friend or foe, then assigning values to each of 
the four cues according to the probabilities in Table 1.  For example, in Set 1 a friend would 
be assigned a value for uniform (cue 1) of either “CADPAT” (90% chance) or “Olive” (10% 
chance), a value for helmet (cue 2) of either “Canadian” (60% chance) or “Dark Green” (40% 
chance) and so on.  A foe in Set 1 would be assigned values for the same four cues but the 
probabilities for each value were reversed.  Contacts in Set 2 were created in the same manner 
by Bryant (2009) but probability values associated with each cue were different (see Table 1). 

The second variable manipulated was the Contact Type in the test stimuli.  Each test set was 
made up of patterns that offered contrasting predictions of the four contending classification 
strategies discussed previously; namely TTB-C, the Bayesian strategy, and the ADD and 
WADD rules.  Eight cue patterns were identified for which at least one strategy offered a 
differing response than predicted by the other strategies.  From these contacts, we created six 
Contact Types (A, B, C, D, E, and F) that distinguished the predicted accuracy of the possible 
strategies.  The different item types are indicated in Table 2 with the predicted response of 
each decision strategy.  Note that each cue pattern listed in Table 2 falls into a different 
Contact Type depending on whether that pattern is associated to a friend or foe.  Type A and 
B items elicit opposing predictions from TTB-C and the Bayesian strategy.  Where TTB-C 
would predict that these patterns indicate a friend, the Bayesian strategy would predict they 
indicate a foe, and vice versa.  Type C and D patterns elicit the same predictions from TTB-C 
and the Bayesian strategy but force the ADD rule to guess because equal numbers of cues 
suggest friend and foe classifications.  Types E and F contacts distinguish the WADD and 
ADD rules.   

Table 2: Predicted Responses to Contact Types by Hypothesized Strategies 

 Predicted Response of Strategy Contact Types 

Cue Pattern TTB-C Bayesian WADD ADD Foe Friend 

1,2,1,1 Foe Friend Friend Friend B A 

2,1,2,2 Friend Foe Foe Foe A B 

1,1,1,1 Foe Foe Guess Guess D C 

2,2,2,2 Friend Friend Guess Guess C D 

1,2,2,1 Friend Friend Friend Guess F E 

1,2,1,2 Friend Friend Friend Guess F E 

2,1,2,1 Foe Foe Foe Guess E F 

2,1,1,2 Foe Foe Foe Guess E F 

Note: Cue pattern indicates the value (as 1 or 2) for each cue in order of cues under Set 1 in Table 1 

In the test set, each of the critical patterns was paired an equal number of times with friend 
and foe contacts.  We predicted the levels of accuracy predicted by the hypothesized decision 
procedures for each Contact Type, shown in Table 3.   
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Table 3: Predicted Accuracy Levels by Contact Type 

 Contact Type 

Heuristic A B C D E F 

TTB-C 100% 0% 100% 0% 100% 0% 

Bayesian 0% 100% 100% 0% 100% 0% 

Weighted Pros 
Rule 

0% 100% Guess Guess 100% 0% 

Unweighted Pros 
Rule 

0% 100% Guess Guess Guess Guess 

 

The third variable, varied within subjects, was Task Condition.  The Control condition 
replicated the procedure used in previous studies (Bryant, 2007, 2009) in which subjects 
completed only the classification task.  In the Secondary Task condition, subjects performed 
the same classification task but also had to perform a secondary task during the test phase. 

Procedure 

The experiment was divided into two sessions for the Control and Secondary Task conditions, 
each with a training and test phase.  In the training phase of both conditions, subjects viewed 
300 contacts (pictures of soldiers), of which 150 were friends and 150 foes.  Given the 
structure of cue information, some patterns were more likely to occur than others through a 
random generation of contacts and the training set contained a number of each pattern 
proportional to its expected frequency.  The contacts were presented sequentially and a 
contact did not appear until the subject had made a response to the previous contact.  For each 
contact, the subject made a classification judgment, indicating that the contact is either hostile 
or not hostile by pressing a labeled key on the computer keyboard.  No other options were 
presented and subjects had to make a decision for each stimulus.  After making his/her 
response, the subject was given accuracy feedback on their classification judgment in the form 
of a message indicating whether they were correct or incorrect and provision of the correct 
classification.  Subjects received no initial information concerning the predictiveness of cues 
and all learning was accomplished through trial-and-error. 

Following the training phase, subjects were allowed a short break and then performed the test 
phase.  The test phase followed the same procedure as the training phase with a few important 
differences.  First, subjects received no feedback on the accuracy of their judgments.  Second, 
subjects were presented with only 100 contacts (10 each of type A, B, C, D, E, and F, and 40 
randomly selected from all other patterns).  Subjects were required to respond to all contacts.  
If, however, a subject had not responded within 16 sec, a null response was recorded and the 
next contact presented.   

In the Secondary Task condition, subjects performed a secondary executive WM task 
simultaneous with the classification task (Zeithamova & Maddox, 2006).  For each trial, 
secondary task stimuli, which were two different numerical digits from 1 to 9 printed in 
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different font sizes, were presented concurrently to the left and right of a fixation point for 
500 msec, followed by a rectangular coloured mask for another 500 msec.  The test item 
followed and the subject made a friend or foe judgment by pressing the appropriate labeled 
key on the keyboard.  Once the subject had responded, the word “value” or the word “size” 
appeared on the screen and the subject indicated on which side of the screen the number with 
the larger value or larger size had been presented, again by pressing the appropriate labeled 
key on the keyboard.  The procedure was repeated for all 100 test items. 

Results 

Training Session 
The contacts presented during the training session were divided into six blocks of 50 contacts 
each based on the order of presentation (i.e., the first 50 contacts, the next 50, etc.).  Accuracy 
scores (the percentage of contacts correctly classified as friend or foe) were calculated for 
each block for each subject to create mean accuracy scores, which are shown broken down by 
Task Condition in Figure 2.  Overall, subjects’ mean accuracy in the final block was 
somewhat lower than that seen in previous experiments [3] and significantly less than the 
optimal levels of performance predicted by any of the decision models under consideration 
(0.91). 

  

        
Figure 2: Classification Accuracy by Block in the Training Session 

A mixed-design Analysis of Variance (ANOVA) revealed a significant effect of Training 
Block [F(5,230) = 20.75, MSe = .006, p < .01] but no significant main effect of Task 
Condition [F(1,46) = 1.67 MSe = .05, n.s.], which was expected because the training sessions 
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were the same in both cases.  There was likewise no significant interaction effect between the 
two factors [F(5,230) = 0.16, MSe = .008, n.s.].   

The training item set used was examined as a categorical factor to determine whether one set 
might be easier to learn to classify.  There was a significant main effect of training set 
[F(1,46) = 16.45 MSe = .05, p < .05], and this factor also interacted with Training Block 
[F(5,230) = 20.75, MSe = .006, p < .05].  Subjects exhibited greater accuracy overall when 
learning to classify Set 1, although no such advantage was observed by Bryant [4] for the 
same sets of items with the same training procedure.  The interaction effect seems to be the 
result of subjects’ accuracy levels being roughly equal for Sets 1 and 2 in the first training 
block but slightly higher for Set 1 than Set 2 in all subsequent blocks.  This result also 
contrasts with that of Bryant [4] who observed somewhat higher levels of accuracy for Set 1 
in the early training blocks (1-4) but roughly equivalent accuracy in the final two blocks.   

A second mixed-design ANOVA was performed on subjects’ mean response times to contacts 
across blocks.  This analysis revealed a significant effect of Training Block [F(5,230) = 33.32, 
MSe < .001, p < .01] as subjects tended to respond faster over the course of the training 
session.  No other factor or interaction significantly affected response times in the training 
session.  

Test Session 

Classification Strategy 
Each test set was made up entirely of patterns that offered contrasting predictions of the 
contending classification strategies (see Table 2).  Type A and B items, for example, elicit 
opposing predictions from TTB-C and the Bayesian strategy.  Type C and D patterns elicit the 
same predictions from TTB-C and the Bayesian strategy but force the ADD and WADD rules 
to guess because equal numbers of cues, with equal combined weights, suggest friend and foe 
classifications.  The purpose of the different item types was to allow the maximum contrast of 
predictions made by the decision rules under consideration. 

To infer which decision rule subjects’ employed to classify test items, we adopted Bröder and 
Schiffer’s [24][38] Maximum Likelihood Method (MLM) which compares each subject’s 
response for each item of each pattern (A, B, C, D, etc.) to the predicted responses of each 
decision rule (TTB-C, Bayesian, etc.).  Their method calculates, based on the proportion of 
subjects’ responses that conform to a given decision rule, the precise likelihood that a decision 
strategy produced a subject’s pattern of responses.  The MLM chooses the best fitting model 
from TTB-C, Bayesian, ADD, WADD, and guessing based on the likelihood that a subject’s 
responses were generated by each strategy.  The MLM is explained in more detail in Annex 
B, which indicates the equations by which MLM computes, for each strategy, the conditional 
probability of the subject’s responses being produced by that strategy. 

Table 4 presents the number of subjects classified as using a given decision strategy.  As can 
be seen, the proportions of subjects using each of the decision strategies were very similar in 
the Control and Secondary task conditions and a Pearson Chi-Square test revealed no 
significant difference between the two conditions [χ2 =8.40, df = 4, n.s.].  These results are 
similar to those obtained by Bryant [4].  
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Table 4: Number of Subjects Classified as Using Hypothesized Decision Strategies 

 Decision Procedure 

 
Condition 

 
TTB-C 

 
Bayesian 

 
ADD 

 
WADD 

 
Unclassifiable 

By Task Condition 

Control 25 14 7 1 1 

Secondary task 21 11 5 1 10 

By Item Set 

Set 1 35 4 3 1 5 

Set 2 11 21 9 1 6 

N = 48 for each presentation format & target set 

The two target sets comprised different associations of cues with friend/foe classification.  
That is, although the same four cues were used in both sets, these cues were associated with 
different classifications and/or had different cue validities in the two sets.  To assess the effect 
of the cue configuration of a target set, we collapsed strategy use across Task Condition and 
separated it according to the target set.  The numbers of subjects classified as using a given 
strategy for each target set are shown in Table 4.  As can be seen, subjects tended to use TTB-
C when dealing with Set 1 and the Bayesian and Additive rules when dealing with Set 2 [χ2 = 
27.17, df = 4, p<.05].  This result replicated the set effect seen in Bryant [4].   

The critical comparison for this experiment is between the two sets in the Secondary Task 
condition.  Table 5 shows the numbers of subjects using each of the various decision 
procedures broken down by condition and item set.  If the presence of a secondary task 
selectively interferes with the use of an heuristic, we would expect few subjects to employ 
TTB-C for either Set 1 or Set 2 in the Secondary task condition.  This would be indicated by a 
change in the number of subjects using TTB-C for Set 1.  Whereas in the Control condition 
most subjects used TTB-C for Set 1, we expected the secondary task to reverse the numbers 
of subjects using TTB-C compared to the Bayesian and additive rules for Set 1. 

Table 5: Number of Subjects Classified as Using Hypothesized Decision Strategies 

 Decision Procedure 

 
Condition 

 
TTB-C 

 
Bayesian 

 
ADD 

 
WADD 

 
Unclassifiable 

Control – Set 1 19 2 2 1 0 

– Set 2 6 12 5 0 1 

Sec. task – Set 1 16 2 1 0 5 

– Set 2 5 9 4 1 5 

N = 48 for each presentation format & target set 

This comparison is highlighted in Table 5.  Clearly, in the Secondary task condition, the 
majority of subjects favoured TTB-C over the other decision procedures for Set 1, just as in 
the Control condition.  Thus, although the secondary task affected subjects’ responses – 
slowing responses significantly when they used TTB-C – it did not affect which strategy they 
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used.  Despite the added cognitive load, subjects still tended to prefer the TTB-C heuristic for 
Set 1. 

Response Time 

Response times were measured after the contact disappeared from the screen from the time at 
which the decision prompt appeared to the time at which the subject pressed either the friend 
or foe key on the computer keyboard.  Mean response times are shown in Table 6.  Generally, 
subjects required less than a second to make their responses in both Control and Secondary 
Task conditions. 

Table 6. Mean Response Times (ms) and Standard Deviations of the Mean to Test Items 

 Item Type 

All A B C D E F 

Control 

Set 1 Mean 603 628 599 573 593 620 605 

 SD 184 144 263 169 166 180 179 

Set 2 Mean 600 615 639 629 585 613 515 

 SD 183 178 255 233 120 172 140 

Total Mean 601       

 SD 187       

Secondary task 

Set 1 Mean 841 882 885 815 772 815 878 

 SD 277 287 290 277 222 299 286 

Set 2 Mean 876 900 912 851 765 954 875 

 SD 250 326 306 188 206 225 247 

Total Mean 859       

 SD 267       

 
Subjects’ reaction times were not distributed normally so a transformation of all mean 
response times by their natural log was performed prior to analysis.  The natural logs of mean 
response times preserves the ratio scale of means but compresses the variability associated 
with them.  A mixed-design ANOVA revealed a significant effect of Task Condition [F(1,46) 
= 92.78, MSe = 0.20, p < .01] and subjects were significantly faster to respond in the Control 
than Secondary task condition.  The ANOVA revealed no other significant main or interaction 
effects of other variables.  This result supports the conclusion that the secondary task did 
successfully compete for cognitive resources with the classification task. 

To further explore the impact of the secondary Task on classification, mean response times 
were computed within the Control and Secondary task conditions according to the decision 
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strategy assigned to subjects.2  Thus, all the subjects inferred to have used TTB-C were 
grouped together, all inferred to have employed the Bayesian rule grouped, and so on, then 
their mean response times compared to assess how they differed within and between 
conditions.  Figure 3 shows these mean response times for the ADD, Bayesian, and TTB-C 
strategies (means for the WADD rule are not shown because only two subjects were assigned 
this strategy).  As can be seen in this figure, subjects’ responses were slower in the Secondary 
task than Control condition regardless of which strategy was employed.  It is also apparent, 
however, that the secondary task manipulation had a greater interfering effect when subjects 
employed the TTB-C heuristic as opposed to one of the compensatory decision rules (ADD, 
Bayesian).   

Figure 3. Mean Response Times (msec) to Test Items by Assigned Decision Strategy. 

Separate mixed ANOVAs were performed for the Control and Secondary Task groups.  In the 
analysis of the Control condition, Item Type served as the within-subject variable and the 
decision strategy adopted by subjects in the Control condition as a categorical variable.  For 
the analysis of the Secondary task condition, strategy adopted in the Secondary task condition 
was the categorical factor.  The Control ANOVA revealed no main effect of decision strategy 
[F(1,43) = 1.59, MSe = 0.40, n.s.] or of Item Type [F(1,215) = 0.90, MSe = 0.06, n.s.] and 
these factors did not significantly interact [F(20,215) = 0.62, MSe = 0.06, n.s.].  In contrast, 
the Secondary task ANOVA revealed a significant effect of decision strategy [F(1,43) = 4.01, 
MSe = 0.26, p < .01], although neither Item Type [F(5,215) = 0.79, MSe = 0.07, n.s.] nor the 
interaction of factors [F(20,215) = 1.57, MSe = 0.07, n.s.] produced significant effects. 

                                                      
2 This analysis excluded subjects who’s decision strategy could not be classified. 
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To determine the specific effects of the Secondary task manipulation on subjects using each of 
the different decision strategies, we performed a series of independent t-tests.  For the purpose 
of comparing mean response times between decision strategies, the ADD and Bayesian 
strategy groups were combined into a single compensatory strategy group.  This was deemed 
necessary to produce a combined group that possessed a number of data points roughly on par 
with the number in the TTB-C group.  Combining the ADD and Bayesian groups was deemed 
appropriate because their mean response times were similar in both the Control and 
Secondary task conditions.  Mean response time for subjects using TTB-C in the Control 
condition did not differ from that of subjects using a compensatory strategy in the Control 
condition [t(44) = 0.51, n.s.].  In contrast, mean response time for the Secondary Task TTB-C 
group was significantly greater than that of the Control TTB-C group [t(44) = 6.91, p < .05].  
A similar significant difference was found between the Secondary Task compensatory and 
Control compensatory groups [t(36) = 2.39, p < .05].  Finally, mean response time was 
significant greater for the Secondary task TTB-C group than the Secondary task compensatory 
group [t(36) = 3.30, p < .05], indicating that the Secondary task manipulation had a greater 
impact when subjects employed TTB-C than when they employed a compensatory strategy 
such as ADD or the Bayesian rule. 

Discussion 
The main hypothesis of this experiment was that performing a simultaneous secondary task 
while performing the friend-foe classification task would alter subjects’ selection of a decision 
strategy.  More specifically, we predicted that the secondary task would selectively interfere 
with the use of the heuristic TTB-C because heuristics are associated with deliberate, rule-
based processing.  In fact, we found no evidence that the secondary task manipulation had any 
effect on which decision rules subjects employed in the test phase.  The secondary task was 
apparently successful in competing for cognitive resources with the main classification task.  
Subjects were slower on the classification task in the secondary task condition than the control 
condition.  Thus, the absence of an effect on the proportions of subjects using heuristic versus 
compensatory decision strategies does not seem to be due to an inadequate competing task.   

Looking at response times as a function of the decision rule used by subjects, we see that 
subjects responded slower in the secondary task condition regardless of the decision rule used.  
There was, however, a significant interaction effect between decision rule and task condition.  
Performing contrasts between the control and secondary task conditions for each decision 
rule, we found that the differences for the ADD and Bayesian rules were not significant.  For 
those subjects using TTB-C, however, responses were significantly slower in the secondary 
task condition than the control.  These results are consistent with Glöckner and Betsch [28] 
and suggest that TTB-C is a deliberate, effortful strategy, whereas the Bayesian and Additive 
rules take advantage, to some degree, of automatic processing. 
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Experiment 2 
 
Adding a secondary task to the test phase did not affect subjects’ preferences for heuristic or 
compensatory decision strategies in Experiment 1.  Thus, the demands at the time of test do 
not seem to be a key factor in determining which strategy a subject will use.  It may be, 
however, that competing cognitive demands have even more impact on the initial choice of a 
decision strategy while the subject is learning to classify targets.  In this experiment, we added 
the secondary task to the training session.  Subjects are likely to select a decision strategy 
during training, so a secondary task may have a greater impact on strategy selection during the 
training session than test session.   

Method 

Subjects 

Subjects were 48 male and female volunteers who were employees of DRDC Toronto, 
students conducting research at DRDC Toronto, individuals recruited from local universities, 
or reserve force soldiers.  All subjects were aged 18 and older, had normal or corrected-to-
normal vision, and were unfamiliar with the specific hypotheses and stimulus configurations 
of the experiments.  All received stress pay remuneration for participating.   

This study, approved by the DRDC Toronto HREC, was conducted in conformity with the 
Tri-Council Policy Statement: Ethical Conduct for Research Involving Humans. 

Materials 
The experiment was conducted with PCs using the E-Prime experiment authoring software.  
The software presented instructions and stimuli, collected subject responses, and recorded 
data.  The experimental task and stimuli were the same as those used in Experiment 1. 

Design 

Three variables were manipulated in this experiment.  The first two, Cue Validity and Contact 
Type, were the same as in Experiment 1.  The same training and test sets were employed in 
the current experiment, yielding the same predicted levels of accuracy for the various decision 
strategies (see Table 3).  The third variable, varied within subjects, was Task Condition.  In 
this experiment, this variable refers to the presence of a secondary task during the training 
rather than test phase.  The Control condition replicated the procedure used in Experiment 1 
and subjects completed only the classification task during training and test phases.  In the 
Secondary Task condition, subjects performed the same classification task during training but 
also had to perform a secondary task designed to compete for executive WM resources.  For 
both conditions, subjects performed the test phase without a competing task. 
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Procedure 

The experiment followed the same procedure as Experiment 1 except that subjects performed 
the secondary task during training in the Secondary Task condition, and not in the test phase. 

In the training phase of the Control condition, contacts were presented sequentially and a 
contact did not appear until the subject had made a response to the previous contact.  For each 
contact, the subject made a classification judgment, indicating that the contact was either 
hostile or not hostile by pressing a labeled key on the computer keyboard.  No other options 
were presented and subjects had to make a decision for each stimulus.  After making his/her 
response, the subject was given accuracy feedback on their classification judgment. 

In the training phase of the Secondary Task condition, participants performed a simultaneous 
secondary task in addition to the combat identification task for 300 contacts.  On each trial, 
two different numerical digits from 1 to 9 were printed in different font sizes for 1000 msec 
on the screen. The contact then appeared on the screen for 500 msec followed by a coloured 
mask for another 500 msec. Participants were then prompted to categorize the contact as 
friend or foe by pressing a labeled key on the keyboard. After this, feedback was given on 
classification judgment in the form of a message indicating whether the response provided 
was correct or incorrect. Then either the word “value” or the word “size” appeared on the 
screen and the participant was required to indicate on which side the number with the larger 
value or larger size was presented by pressing an appropriately labeled key on the keyboard. 

Following the training phase, subjects were allowed a short break and then performed the test 
phase.  The test phase for both conditions followed the same procedure as the test procedure 
of the Control condition in Experiment 1.   

Results 

Training Session 

Accuracy 

The contacts presented during the training session were divided into six blocks of 50 contacts 
each based on the order of presentation.  Mean accuracy scores are shown broken down by 
Task Condition in Figure 4.  Overall, subjects’ mean accuracy in the final block was higher 
than that seen in the previous experiment but still significantly lower than the optimal levels 
of performance predicted by any of the decision models under consideration (0.91). 
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Figure 4: Classification Accuracy by Block in the Training Session 

A mixed-design Analysis of Variance (ANOVA) revealed a significant effect of Training 
Block [F(5,230) = 40.74, MSe = .006, p < .01] but no significant main effect of Task 
Condition [F(1,46) = 0.55 MSe = .07, n.s.].  The latter result indicates that subjects were able 
to achieve the same overall level accuracy in the Secondary Task and Control conditions, 
despite the greater demand placed on subjects in the Secondary Task condition.  A significant 
interaction effect was observed between Task Condition and Block [F(5,230) = 4.88, MSe = 
.008, p < .01].  Subjects exhibited lower accuracy during the first three blocks in the 
Secondary Task condition than the control condition but roughly the same, or slightly higher, 
accuracy during the final three blocks.  Thus, the secondary task seems to have made the 
categorization learning somewhat more difficult initially, although subjects eventually learned 
to classify friends and foes equally well in both conditions. 

The training item set used was examined as a categorical factor to determine whether one set 
might be easier to learn to classify.  In contrast to the result observed in Experiment 1, there 
was no significant main effect of Training Set [F(1,46) = 0.46 MSe = .05, n.s.].  Training Set 
did, however, interact with Training Block [F(5,230) = 2.84, MSe = .006, p < .05].  
Additionally, the three-way interaction of Training Set, Task Condition, and Block was also 
statistically significant [F(5,230) = 3.33, MSe = .008, p < .01].  In the Control condition, 
accuracy levels were generally equal across blocks for Sets 1 and 2 but somewhat greater 
accuracy was observed for Set 2 in Block 3 and for Set 1 in Block 6.  In the Secondary Task 
condition, accuracy levels were essentially the same for Sets 1 and 2 in Blocks 1 to 3 but 
somewhat higher for Set 1 in Blocks 4 to 6.  These differences do not appear to reflect any 
readily interpretable pattern. 
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Subjects’ accuracy was examined as a function of the decision strategy adopted by the 
subject, as inferred through the classification strategy in the test session (see below).  Separate 
mixed ANOVAs were conducted for the Control and Secondary Task conditions with Block 
as a within-subject factor and Decision Strategy as a categorical factor (subjects whose 
decision strategy could not be classified were excluded from these analyses).  Decision 
strategy was found to not affect accuracy in either the Control [F(4,43) = 1.83 MSe = .06, n.s.] 
or Secondary task [F(1,46) = 1.25 MSe = .05, n.s.] conditions. 

Response Time 
A mixed-design ANOVA was performed on subjects’ mean RTs across blocks.  This analysis 
revealed significant effect of Training Block [F(5,235) = 36.89, MSe < .001, p < .01], as 
subjects tended to respond faster over the course of the training session, and Task Condition 
[F(1,47) = 20.10, MSe < .001, p < .01], as subjects responded faster overall in the Control 
(mean RT = 1200.17 msec) than Secondary Task condition (mean RT = 1593.02 msec).  The 
latter finding confirms that the secondary task competed for cognitive resources with the main 
target classification task.  A significant interaction between Task Condition and Block was 
also observed [F(5,235) = 4.64, MSe < .001, p < .01].  Although mean RTs were greater in the 
Secondary Task than Control condition, the difference grew smaller across trial blocks, 
indicating that the secondary task interfered with the main classification task less as the 
training session progressed. 

Figure 5 shows mean RT to training items as a function of the decision strategy adopted by 
subjects in the test session.  Mean RTs are not shown for subjects whose strategy could not be 
classified or those inferred to be using WADD (due to the small number of subjects using this 
strategy).  To determine the specific effects of the Secondary Task manipulation on subjects 
using each of the different decision strategies, we performed a series of independent t-tests.  
As in Experiment 1, the ADD and Bayesian strategy groups were combined into a single 
compensatory strategy group.  First, mean RTs for subjects using TTB-C in the Control 
condition did not differ from that of subjects using a compensatory strategy in the Control 
condition [t(41) = 1.15, n.s.].  Second, mean response time for the Secondary Task TTB-C 
group was significantly greater than that of the Control TTB-C group [t(38) = 3.03, p < .05].  
Mean RTs did not differ between the Control compensatory and Secondary Task 
compensatory groups [t(40) = 0.06, n.s.].  Finally, mean RT was significant greater for the 
Secondary Task TTB-C group than the Secondary Task compensatory group [t(37) = 2.07, p 
< .05].  These findings indicate that the Secondary Task manipulation had a greater impact 
when subjects employed TTB-C than when they employed a compensatory strategy such as 
ADD or the Bayesian rule. 



DRDC Toronto TR 2010-159 23 

Decision Strategy

ADD Bayes TTB-C

R
T 

(m
se

c)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Control 
Sec. Task 

 
Figure 5. Mean Response Times (msec) to Training Items by Assigned Decision Strategy. 

Test Session 

Classification Strategy 
Bröder and Schiffer’s (2003a, 2003b) MLM was used to infer the decision strategy used by 
each subject on the basis of that subject’s responses to all test items.  Table 7 presents the 
number of subjects classified as using a given decision strategy.  As can be seen, the 
proportions of subjects using each of the decision strategies were very similar in the Control 
and Secondary Task conditions and a Pearson Chi-Square test revealed no significant 
difference between the two conditions [χ2 =2.42, df = 4, n.s.].   

To assess the effect of the cue configuration of a target set, we collapsed strategy use across 
Task Condition and separated it according to the target set.  The numbers of subjects 
classified as using a given strategy for each target set are shown in Table 7.  As in Experiment 
1, subjects tended to use TTB-C when dealing with Set 1 and the Bayesian and Additive rules 
when dealing with Set 2.  

The critical comparison for this experiment is between the two sets in the Secondary task 
condition.  Table 8 shows the numbers of subjects using each of the various decision 
procedures broken down by condition and item set.  If the presence of a secondary task 
selectively interferes with the use of an heuristic, we would expect few subjects to employ 
TTB-C for either Set 1 or Set 2 in the Secondary task condition.   
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Table 7: Number of Subjects Classified as Using Hypothesized Decision Strategies 

 Decision Procedure 

 
Condition 

 
TTB-C 

 
Bayesian 

 
ADD 

 
WADD 

 
Unclassifiable 

By Task Condition 

Control 21 12 8 2 5 

Secondary task 19 14 5 1 9 

By Item Set 

Set 1 32 5 4 2 5 

Set 2 8 21 9 1 9 

N = 48 for each presentation format & target set 

Clearly, in the Secondary task condition, there is a significant difference in decision strategy 
usage between Set 1 and Set 2 [χ2 = 15.67, df = 4, p<.05], just as in the Control condition [χ2 
= 15.30, df = 4, p<.05].  The pattern of decision strategies used in Set 1 did not differ between 
the Control and Secondary Task conditions [χ2 = 2.40, df = 4, n.s.].  Thus, although the 
secondary task affected subjects’ responses during training– slowing responses significantly 
when they used TTB-C – it did not affect which strategy they used in the test session.  Despite 
the added cognitive load, subjects still tended to prefer the TTB-C heuristic for Set 1. 

Table 8: Number of Subjects Classified as Using Hypothesized Decision Strategies 

 Decision Procedure 

 
Condition 

 
TTB-C 

 
Bayesian 

 
ADD 

 
WADD 

 
Unclassifiable 

Control – Set 1 16 2 2 2 2 

– Set 2 5 10 6 0 3 

Secondary task – 
Set 1 16 3 2 0 3 

– Set 2 3 11 3 1 6 

N = 48 for each presentation format & target set 

Response Time 

Response times were measured after the test item disappeared from the screen from the time 
at which the decision prompt appeared to the time at which the subject pressed either the 
friend or foe key on the computer keyboard.  Mean response times are shown in Table 9.  
Generally, subjects took about a second or less to make their responses in both Control and 
Secondary Task conditions. 

Subjects’ reaction times were not distributed normally so a transformation of all mean 
response times by their natural log was performed prior to analysis.  Mean RT did not differ 
between the Control and Secondary Task conditions [F(1,46) < 0.01, MSe = 0.96, n.s.], which 
is not surprising as this factor was manipulated only during training.  Although subjects in 
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both conditions showed a tendency to respond faster to Set 2 than Set 1, this difference did not 
achieve statistical significance [F(1,46) = 3.42, MSe = 1.77, n.s.]. 

Table 9. Mean Response Times (ms) and Standard Deviations of the Mean to Test Items 

 Item Type 

All A B C D E F 

Control 

Set 1 Mean 1000 1012 1073 992 930 976 1018 

 SD 537 462 522 503 508 450 477 

Set 2 Mean 845 845 908 764 839 802 910 

 SD 451 400 446 376 351 315 418 

Total Mean 922       

 SD 441       

Secondary task 

Set 1 Mean 1083 1124 1071 1011 994 1241 1056 

 SD 537 503 566 545 481 588 553 

Set 2 Mean 827 816 796 759 877 920 792 

 SD 451 428 507 318 466 550 432 

Total Mean 955       

 SD 512       

 

In contrast to the results of Experiment 1, subjects did show a significant effect of Item Type 
on RTs in the test session [F(5,230) = 2.60, MSe = 0.05, p < .05].  Generally, subjects 
responded somewhat faster for items of type C and D than all other item types.  In addition, 
there was a significant interaction effect between Task Condition and Item Type [F(5,230) = 
3.23, MSe = 0.06, p < .05].  Although subjects generally responded faster to items of type C 
and D in both task conditions, subjects exhibited some differences in RTs to other items 
between the Control and Secondary Task conditions.  In particular, subjects were somewhat 
faster to items of type E than types A, B, and F in the Control condition but somewhat faster 
to items of type B than all others in the Secondary Task condition. 

To further explore the impact of the secondary task on classification, mean response times 
were computed within the Control and Secondary task conditions according to the decision 
strategy assigned to subjects.3  Figure 6 shows these mean response times for the ADD, 
Bayesian, and TTB-C strategies (means for the WADD rule are not shown because only three 
subjects were assigned this strategy).   

                                                      
3 This analysis excluded subjects whose decision strategy could not be classified. 
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Figure 6. Mean Response Times (msec) to Test Items by Assigned Decision Strategy. 

Because the secondary task manipulation was imposed during the training session only, there 
is no reason to expect that this factor affected RTs during the test phase.   

As can be seen in Figure 6, subjects’ responses were roughly the same in both the Control and 
Secondary Task conditions.  Although subjects using ADD in the Secondary Task condition 
appear to have responded very quickly, it is important to remember that only four subjects 
were classified with this strategy in that condition.  A series of independent t-tests was 
performed to compare mean RTs as a function of decision strategy.  Mean RTs for the ADD 
and Bayesian strategy groups were combined into a single compensatory strategy group, as 
was done for RTs in the Training session.  The t-tests revealed no significant differences 
between any of the groups; thus, subjects responded essentially as fast whether using a 
compensatory or heuristic decision rule in both the Control and Secondary Task conditions.   

Discussion 

As in Experiment 1, the secondary task did affect subjects’ performance on the classification 
task.  Subjects responded to training items more slowly when performing a simultaneous task 
that competed for cognitive resources, although this effect diminished somewhat over 
repeated training blocks.  Adding a secondary task, however, did not affect subjects’ selection 
of a decision strategy; roughly equal proportions of subjects used heuristic and compensatory 
strategies in both the Secondary Task and Control conditions.  We had predicted that adding 
the secondary task during training would be more likely to affect selection of a decision 
strategy as it would affect subjects while they learned how to perform the classification task.  
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Nevertheless, subjects’ selection of a decision strategy was most strongly determined by the 
item set with which they were interacting rather than external demands on cognitive 
resources. 

In Experiment 1, a significant interaction effect between decision rule and task condition had 
been observed for decision times during the test phase.  The same effect was observed in the 
current experiment for decision times during the training phase.  Thus, again imposing the 
secondary task selectively interfered with performing the heuristic TTB-C strategy, 
suggesting that the heuristic relies on a deliberate processing system. 
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Conclusion 
 
Previous experiments have demonstrated that people can employ both a fast-and-frugal 
heuristic and more complex additive and Bayesian strategies to classify targets as friend or foe 
[3][4][27]. Since both provide accurate solutions to the experimental task, it is unclear why 
some subjects would employ the heuristic but others the Bayesian or Additive strategies.  One 
possible explanation is that subjects may rely on different underlying classification systems 
(e.g., [30]) which are conducive to different decision processes.  Some researchers have 
suggested that people have access to two distinct cognitive systems for categorization 
[30][31][32].  One of these is proposed to be deliberate and suited to learning rule-based class 
distinctions, whereas the other is an implicit system that is automatic and suited to learning 
how to integrate probabilistic cues to form categories.  Thus, subjects who use a fast-and-
frugal heuristic may rely on a deliberate, rule-based system, whereas others who use the 
Bayesian or Additive rules may rely on an automatic, integrative system. 

Recent evidence associates heuristics with the deliberate classification system [28].  In 
contrast, compensatory processes, such as the Bayesian and Additive rules, may take 
advantage of automatic classification.  If heuristic and compensatory decision procedures are 
based on different cognitive systems, people may be able to advantageously switch their 
decision strategy to make use of whichever is better suited to the present decision making 
context.  Using Ashby’s [30][31][32] distinction between rule-based and information 
integration categories, for example, we might expect people to be more likely to use heuristics 
when they encounter the former and a compensatory strategy when they encounter the latter. 

To examine the possible distinction between deliberate heuristics and automatic compensatory 
processes in CID judgments, we employed the dual-task method in which the impact of a 
secondary task on CID performance was assessed.  The CID task used in these experiments is 
technically an information integration task because optimal performance depends on 
integration of all four cues.  Thus, it might be expected that subjects would employ an 
automatic classification system, yielding judgments consistent with a Bayesian decision rule.  
Given the specific cue validities associated with cues, however, the maximum level of 
performance achievable with a heuristic such as TTB-C was almost the same as that of the 
Bayesian strategy.  Thus, the task could be treated as a rule-based classification task with little 
discernable loss in accuracy.  This allows subjects the option of approaching the task as either 
a rule-based or information-integration problem. 

Based on previous findings that associate heuristics with deliberate processing and Additive 
or Bayesian rules with automatic processing, a competing demand on limited cognitive 
resources should make it more difficult to employ a heuristic, but would not greatly affect 
automatic associative learning potentially related to the Bayesian decision rule.  The present 
experiment examined the effects of a secondary task while classifying contacts.  We 
anticipated that the secondary task would make it more difficult to employ a heuristic, but 
would not greatly affect automatic associative learning potentially related to the Bayesian 
decision rules.  Thus, we expected to see a larger proportion of participants using the 
Bayesian rule than a heuristic-based rule in a dual-task condition.  

In two experiments, it was found that the proportions of participants using each of the 
decision strategies were very similar in the control and secondary task conditions.  That is, 
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there was no significant difference in the numbers of participants using the TTB-C versus the 
Bayesian or additive rules, between the control and secondary task conditions.  This was true 
both when the secondary task was applied during the test phase and when it was applied 
during the training phase.  Thus, subjects did not seem to be able to adjust their use of 
decision strategy in response to competition for cognitive resources that made a deliberate 
heuristic strategy less attractive.   

Why did the secondary task not affect subjects’ selection of a decision strategy?  It may have 
been that the secondary task used here was not demanding enough to appreciably interfere 
with an heuristic strategy.  Although it differentially interfered with TTB-C, this interference 
resulted in a slowing down of responses by only about 300 msec.  Subjects may have not 
noticed the interfering effect of the secondary task or, if they noticed, may not have felt it was 
worthwhile altering their decision strategy. 

Another reason we failed to observe an effect of secondary task on decision strategy selection 
may be that a more powerful factor determines the decision procedure a person uses.  
Although our hypothesis was not supported by the results in this study, it provides us with 
compelling evidence regarding the importance of cue salience in classification.  The 
experiment replicated an unexpected finding of Bryant [4] that the target set studied by 
subjects exerted a large effect on the decision strategy employed by subjects.  In this 
experiment, when they classified set 1, the majority of participants employed TTB-C.  In 
contrast, with set 2, the majority of participants used the Bayesian or ADD strategies.  To 
understand why this occurred, it is necessary to consider both the predictiveness of each cue 
but also the salience [4].  In set 1, the uniform was the most predictive cue but it also appears 
to have been the most perceptually salient cue as well.  It also might have had a meaningful 
relationship to classification of a target as friend or foe, as subjects were familiar with the 
CADPAT uniforms used by (friendly) CF personnel.  Participants felt it was easier to learn 
and accept that the CADPAT uniform as a reliable cue that the stimulus was associated with a 
friend classification.  In set 2, the helmet was the most predictive cue but not regarded as 
highly salient.  Subjects may not have considered the helmet as significant a feature as the 
uniform. 

Previous research on category learning by Kruscke [39], and Nofsky et. al. [40] has suggested 
that cue validity is the prime determinant of a cue’s use in category learning [4].  The results 
of the current experiment, however, suggest that the salience of a cue also plays a significant 
role.  In set 1, the most predictive cue (uniform) was also the most perceptually salient cue, 
whereas in set 2, the most predictive cue was not very salient.  It was suggested by Bryant [4], 
that when a perceptually salient cue is also the most diagnostic, participants are quickly able 
to notice its relation to classification and use a simple rule such as TTB-C.  However, if a less 
salient cue is the most diagnostic, participants are likely to look at all cues, which implies the 
use of a compensatory or analytic decision rule [4].  In other words, TTB-C is the preferred 
decision rule if a salient, high validity cue exists.  In contrast, if participants do not have a 
specific cue that stands out to them and when a non-salient cue is most predictive, they are 
likely to look at all cues to identify targets which suggests a compensatory and analytic 
decision rule.  

It was suggested in a study by Martin and Caramazza [41] that categorization learning begins 
first when people identify cues that can distinguish category members from non-members.  
Each of the cues are sequentially searched and evaluated for their usefulness.  In their view, 
the salience of cues seems to affect the order in which those cues were sampled.  Perceptually 
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salient cues are noticed early in the learning process and are subsequently incorporated in the 
representation of the category [4].  In other words, salient and predictive cues are more likely 
to be used than predictive non-salient cues and non-predictive ones.  Bryant [4] suggests that 
people may terminate the search process in learning if they find a highly predictive cue early, 
which would imply the use of the TTB-C method for classification.  However, if the initial 
cue observed was not highly predictive, the sequential search would continue until one was 
found.  Thus, having a highly salient cue that is also predictive provides participants with the 
opportunity to discover the heuristic early in learning.  Those participants who inspect 
multiple cues before discovering the most predictive one are more likely to develop a 
compensatory based decision strategy such as the Bayesian or Additive rules for 
classification.  
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Annex A: Decision Procedures for Combat 
Identification Judgments 
 
Given concerns that threat assessment is vulnerable to problems of information overload and 
uncertainty [A1], the fast and frugal heuristic approach provides a potentially useful 
framework in which to study time- and information-stressed decision making.  Fast and frugal 
heuristics may be a natural means to manage a heavy information load, provided they are used 
in appropriate task environments.  This appears to be true specifically for threat assessment, 
where surveys of experienced operators have indicated that operators do not consider or 
weigh all available data equally and that they employ decision making procedures that differ 
from those previously assumed [A2]. 

To explore the potential of fast and frugal heuristics to model human threat assessment, 
Bryant [4] developed a simulated air threat assessment task in which to compare predictions 
of different decision models.  In three experiments, subjects learned to classify simulated 
aircraft using four probabilistic cues then classified test sets designed to contrast predictions 
of several compensatory and non-compensatory heuristics.  Various “contacts” (simulated 
aircraft) were presented on a simulated radar screen for subjects to classify as either friend or 
foe based on the values of four cues.  Each cue value had a specific probability of being 
associated with friend and foe contacts, with these probabilities determining the cue’s validity 
in classifying contacts. 

To apply the fast and frugal heuristic approach to threat assessment, Bryant [A3] [A4] devised 
decision procedures specifically for the threat classification task.  The following sections 
describe these in detail. 

Compensatory Rules 
Just as TTB-C is an adaptation of the TTB heuristic to the single-choice classification 
problem, other two-alternative choice decision strategies can be adapted.  Among the decision 
strategies that have been examined are Franklin’s Rule and Dawes’ Rule.  Franklin’s rule is a 
procedure by which a decision maker calculates the sum of cue values weighted by the 
corresponding cue validities for each alternative and selects the alternative with the highest 
score [A5].  Dawes’ rule is similar and calculates the sum of unweighted cue values and 
selects the alternative with the highest score.  Because both Franklin’s and Dawes’ Rules add 
bits of evidence for an alternative, they can be termed Additive Rules (for the sake of clarity, 
these rules will be referred to as the Weighted Additive and Unweighted Additive rules).  
Both are compensatory, meaning that they employ all available cues although they do not 
compute probabilities to reach a decision. 
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Figure A1: Weighted Version of the Additive Rule for Classification 

Versions of the Additive Rules were formulated for the threat classification task.  Unlike their 
progenitors, they do not compare cue values for two alternatives but rather examine each cue 
value and assign evidence toward either friend or foe classification, depending on the 
associations of cue values to threat class.  A running sum is maintained and, after all available 
cues have been inspected, used to place the contact in the friend or foe category.  Figure A1 
contains an illustration of Weighted Additive (WADD) Rule, which weights cues by their 
validity, adapted for threat classification.  A classification version of the Unweighted Additive 
Rule (ADD) is performed just as illustrated in Figure A1 but without the weighting step 
following the selection of a cue.  These rules use more information than TTB-C but are more 
generally useful because their accuracy is not limited to cases where a single cue is highly 
predictive. 
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Bayesian Procedures 
Another way to make a judgment on the basis of probabilistic cues is by means of a “naïve” 
Bayesian classifier.  A naïve Bayes classifier is a system for making probabilistic inference 
based on applying Bayes' theorem with a strong (i.e. naïve) assumption of independence 
among cues.  That is, it assumes that the presence of any particular cue is unrelated to the 
presence of any other cue.  In this procedure, a class of object is represented by a base rate 
(overall probability of an instance of that class occurring) and set of conditional probabilities 
that specify relationships of attributes to that class.  Despite their simplifying assumption, 
naïve Bayes classifiers often work very well in complex real-world situations.  Depending on 
the precise nature of the probability model, naïve Bayes classifiers can be trained very 
efficiently in a supervised learning setting.  Thus, it is an appropriate model for learning the 
friend/foe classification used in Bryant [A4].   

 

Figure A2. A Bayesian Network representation of the task used by Bryant [4] 

A Bayesian classifier can be instantiated by a number of different algorithms that calculate 
conditional probabilities.  It can also be instantiated in a Bayesian network (or a belief 
network), which is a probabilistic graphical model that represents a set of variables and their 
probabilistic independencies.  Thus, a Bayesian network can represent the probabilistic 
relationships between threat class (friend or foe) and predictive cues.  Given a set of cues, the 
network can be used to compute the probabilities of the target being a friend or a foe. 

A Bayesian network for the friend/foe task is shown in Figure A2.  The top node represents 
the classification of a target as a friend ( F ).  The case of a foe would be represented by the 
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negation of friend ( F ).  Four nodes representing characteristics of the target, or cues (C1-4), 
are connected to it according to their probabilistic association to the class of the target.  Thus, 
each line linking a cue to the classification node is labeled by the conditional probability of 
the cue occurring given the classification of friend.  Considering all cues as a set, the 
classification node represents the conditional probability of that class being true given the 
presence of the four linked cues.  This is given by the formula (1): 

[ ])|()|()|()|()|()|()|()|(
)|()|()|()|()|(

43214321

4321
4321
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•••

=∩∩∩  

(1) 

Where: 

)|(1)|( FCPFCP jj −= , j = 1 to 4. 

The Bayesian strategy was assumed to compute the conditional probabilities of friend and foe 
classifications given the particular pattern of cue values for a contact and select the alternative 
with the higher probability of being the correct classification.  This is formally equivalent to 
the “profile memorization method,” which memorizes which option has the greater 
conditional probability of being correct for each cue configuration [A6]. Martignon and 
Hoffrage [A7] have described this method as the optimal Bayesian method for fitting known 
data. 

The Take-the-Best-for-Classification Heuristic 
A variant of TTB, called Take-the-Best-for-Classification heuristic (TTB-C), was devised to 
perform the threat classification task.4  Illustrated in Figure A3, TTB-C is based on the 
premise that the single most valid cue can be used to make accurate threat classification 
judgments in a task environment in which that cue is highly predictive.  Unlike TTB, which 
chooses between two objects along a single dimension, TTB-C places a single object into one 
of two categories.  Thus, TTB-C is simpler in some respects than TTB but it takes from TTB 
the basic search concept of locating the single best cue to make its decision.   

Given an as-yet-unclassified contact, TTB-C begins by searching for the single most valid cue 
to serve as the basis for classification.  In the experiment described in this report, all cues 
associated with contacts will be available, so the most valid cue should always be inspected.  
When the most valid available cue is located, the heuristic assesses which threat class has the 
greater probability of being true given the value of that cue and makes that threat class the 
output of the heuristic.  The heuristic will be applied here to an experimental task in which 
subjects make a simplified two-category choice (friend or foe) but the heuristic could apply to 
threat classification with a larger set of threat classes.  With the contact classified, the 
heuristic terminates.  Should no valid cue be found, the heuristic can only guess. 

TTB-C, as illustrated here, assumes that there exist one or more cues that have some non-
random association to the threat class of contacts and that all, or some subset, of these cues 
can be inspected by the decision maker.  Moreover, the decision maker must have acquired, 
                                                      
4 TTB-C is also derivable from the Lexicographic heuristic for two-alternative choice, which is a 
generalization of Take-the-Best. 
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through experience or training, knowledge of the relative validities of these cues.  These, of 
course, are not minor assumptions but there is sufficient evidence that people can learn cue 
validities, even if their learning is imperfect [A8] [A9]. 

 

Figure A3. The Take-the-Best-for-Classification (TTB-C) Heuristic 
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Annex B: Maximum Likelihood Method 
 
The Maximum Likelihood Method (MLM) method was developed by Bröder and Schiffer 
[B1][B2] as a means to assess which of a potential set of decision strategies was most likely 
employed by a subject in a multiple cue-based decision task.  In short, the method they 
developed determines the conditional probability that a subject’s sequence of responses for 
multiple decisions would occur given the use of a specified decision strategy.  By determining 
this probability for a set of strategies, one is able to identify the most likely strategy to have 
produced the subject’s observed responses. 

The MLM is applied to a decision task in which items belonged to one of two possible types 
(friend or foe) and were described by values along four binary cues.  The validity of each cue 
as a predictor of item type is a variable.  For the purpose of illustrating the MLM, consider the 
cues presented in Table B1 along with the validity of each as a predictor of friend or foe.  

Table B1. Relative Frequencies of Cue Values for Friend and Foe Contacts 

 SET 1 

Cue 1 
(Cockpit) 

Cue 2 
(Nose) 

Cue 3 
(Wing) 

Cue 4 
(Tail) 

Value 3  
(extended) 

Value 1 
(Bubble) 

Value 3 
(Round)  

Value 1  
(Cone) 

Value 3 
(Swept) 

Value 1 
(Delta) 

Value 3 
(Flexed) 

Value 1 
(Raised) 

Friend 90% 10% 60% 40% 30% 70% 20% 80% 

Foe 10% 90% 40% 60% 70% 30% 80% 20% 

 SET 2 

Cue 1 
(Nose) 

Cue 2 
(Tail) 

Cue 3 
(Cockpit) 

Cue 4 
(Wing) 

Value 3 
(Round)  

Value 1  
(Cone) 

Value 3 
(Flexed) 

Value 1 
(Raised) 

Value 3  
(extended) 

Value 1 
(Bubble) 

Value 3 
(Swept) 

Value 1 
(Delta) 

Friend 90% 10% 60% 40% 30% 70% 20% 80% 

Foe 10% 90% 40% 60% 70% 30% 80% 20% 

 

 
Given four binary cues, there are 16 possible cue configurations that can be associated with 
friend or foe.  All decision strategies under consideration make the same predictions for some 
of these configurations.  That is, there are cue configurations for which each strategy will 
predict friend or foe.  There are, however, a subset of items that elicit different predictions 
from at least two strategies.  Bröder and Schiffer’s MLM makes use of these items.  In 
particular, there are three critical item types j (j = 1, 2, or 3) for the purpose of assessing 
decision strategy, which are listed in Table B2.  Type 1 items elicit a prediction from the 
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TTB-C strategy that is different from all others (types 1a and 1b simply reflect different cue 
configurations in which TTB-C makes a prediction opposite from the other strategies).  Type 
2 items elicit the same predictions from TTB-C and a Bayesian strategy but cannot be solved 
by either the Weighted or Unweighted Additive Rules, which can only guess.  Type 3 items 
elicit the same predictions from TTB-C, the Bayesian strategy, and the Weighted Additive 
Rule but elicit guessing from the Unweighted Additive Rule. 

 

Table B2: Examples of Different Types of Items Used to Assess Decision Strategies 

 Item Type 

 1 2 3 

Attribute/ 
Strategy 

1a 1b 2a 2b 3a 3b 

Cockpit Extended Bubble Extended Bubble Extended Bubble 

Nose Cone Round Round Cone Cone Round 

Wing Swept Delta Swept Delta Swept Delta 

Tail Flexed Raised Flexed Raised Raised Flexed 

Prediction of Strategies 

TTB-C Friend Foe Friend Foe Friend Foe 

Bayesian Foe Friend Friend Foe Friend Foe 

Unweighted 
Additive 

Foe Friend Guess Guess Guess Guess 

Weighted Prose Foe Friend Guess Guess Friend Foe 

 

 

The method determines the decision procedure that has the greatest likelihood of producing 
the data based on the predictions of the candidate set of procedures under consideration.  In 
the experiments described in this report, those procedures are TTB-C, Bayesian, WADD, 
ADD, and Guessing.  The method makes the assumption that subjects generate responses to 
test items according to one of these procedures is.  It also assumes that subjects have a certain 
probability, ε, of making an error and generating a response not predicted by the procedure 
being used. 
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The likelihood of a subject’s observed data vector (i.e. sequence of responses to test items) is 
calculated by the following formula: 
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Where, 

nj = number of items of each type j presented in an experiment, 

njk = number of choices in item type j that were predicted by strategy k, 

nεjk = number of choices in item type j not predicted by strategy k, such that nε
jk+ njk = 1, 

εk = error probability of choosing the option not conforming to strategy k. 

Thus, equation A1 gives the likelihood ),,|,( jkjkjk nknnL εε  that the observed data vector n 

is equal to ),( ε
jkjk nn , given strategy k, and unknown error probability εk.  The unknown error 

term can be estimated by fitting the corresponding joint multinomial model to the frequency 
data (Hu & Batchelder, 1994), or by applying the formula given in Equation A2: 
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The following adjustments are applied to these formulae.  When k = WADD, the index j in 
Equation A2 only runs from 1 to 2 because a person using WADD must guess for item type 2 
and εk = 0.5 in Equation A1 for the case k = WADD and j = 2.  When k = ADD, the index j in 
Equation A2 only runs from 1 to 1 because a person using ADD must guess for item types 2 
and 3 and εk = 0.5 in Equation A1 for the cases k = ADD and j = 2 and k = ADD and j = 3.  
For k = Guessing, no parameter estimation is necessary and all error probabilities are set to 0.5 
in Equation A1. 

To classify a subject’s decision strategy, a likelihood ratio (Equation A1) is computed for 
every strategy and the vector classified as being produced by the particular strategy if the 
likelihood ration in favour of this strategy is larger than 1.  Otherwise, the vector remains 
unclassified. 
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The power of MLM to discriminate between strategies depends on the numbers of 
discriminating items that do not yield guessing responses from one or more decision strategy.  
Thus, discriminating the WADD and ADD strategies may be more difficult than 
discriminating the TTB-C and Bayesian strategies.  Because the Guessing model has no free 
parameter, the other models will fit better than the random model in almost all cases. 
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