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Abstract
Expressions for the chemical potential of an Einstein solid, and of ideal Fermi
and Bose gases in an external one-dimensional oscillatory trap, are calculated
by two different methods and are all found to share the same functional form.
These derivations are easier than traditional textbook calculations for an ideal
gas in an infinite three-dimensional square well. Furthermore, the results
indicate some important features of chemical potential that could promote
student learning in an introductory course in statistical mechanics at the
undergraduate level.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The thermodynamic identity [1] describes differential changes in the internal energy U of a
system as

dU = T dS + (−P dV + μ dN + · · ·), (1)

where T, S, P, V, μ and N are the temperature, entropy, pressure, volume, chemical potential
and number of particles (assumed to be of a single species as opposed to a mixture),
respectively. This expression assumes that the system is close to equilibrium, as otherwise it
will not have a single well-defined temperature, pressure and so on. If the process is reversible,
one can identify TdS as the heat added to the system and the sum of the terms in parentheses in
equation (1) as the work done on it1. If a process is irreversible, one cannot always divide the
energy change into a heat term and a work term; an example is kinetic friction in which the
mechanical and thermal transfers are commingled at mesoscopic length scales [2].

1 Specifically −P dV is the expansion/compression work and μdN is the diffusive or chemical work. The ellipsis
in equation (1) indicates that many other kinds of work can also occur, such as magnetizing a paramagnet or charging
up a capacitor.
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1132 C E Mungan

Of the various terms in equation (1), probably μ is the least familiar to undergraduate
students being introduced to thermodynamics for the first time [3, 4]. Part of the reason may
be that there are few examples of analytic calculations of μ for a system of particles other
than for a classical ideal gas in a three-dimensional box with rigid walls (typically computed
by first deducing the Sackur–Tetrode equation by approximating the translational partition
function as a Gaussian integral, not a trivial derivation for novices).

Given that μ is usually first introduced in thermodynamics to describe diffusion [5], i.e.
variations in the number of particles, a student might reasonably ask why μ varies with T for
fixed N? In reply, one can discuss the analogous issue of why P varies with T for fixed V for a
gas. Part of the difficulty may be one of language: textbooks state that pressure controls any
changes in volume (and likewise chemical potential controls any changes in the number of
particles) which can lead to the incorrect conclusion that if the number of particles does not
change, then the chemical potential can be ignored.

In order to improve student understanding, in this paper two oscillator models (a solid and
a fermionic or bosonic quantum gas) are analysed for which μ is readily calculable. Different
methods are used to determine μ for these two models and the results are then compared to
demonstrate the underlying unity of the ideas.

2. Chemical potential of an Einstein solid

Einstein’s model of a solid [1] consists of a set of N independent one-dimensional oscillators
(corresponding to N/3 atoms in three dimensions) among which a total of q = U/hν integer
units of energy are distributed. (Here h is Planck’s constant and ν is the fundamental frequency
of oscillation, assumed to be the same for all N oscillators.) That is, if one writes the energy of
the ith oscillator (for i = 1, . . . , N ) as εi = nihν (after subtracting off the thermodynamically
uninteresting zero-point energy), where ni is the quantum number of that oscillator, then

q ≡
N∑

i=1

ni. (2)

In the usual ‘sticks and dots’ representations of the possible microstates of this system, the
units of energy are pictured as dots partitioned by N − 1 sticks into N groups representing the
oscillators. The multiplicity � is then equal to the number of ways of choosing to distribute
the q dots among the q + N − 1 total objects, which is given by a binomial coefficient

� = (q + N − 1)!

q!(N − 1)!
. (3)

The Boltzmann entropy is S = k ln �, where k is Boltzmann’s constant. Assuming that
both q and N are large, the factors of unity in equation (3) can be dropped and Stirling’s
approximation, ln(n!) ≈ n ln n − n for sufficiently large integer n, can be invoked to obtain

S ≈ k ln

[(
q + N

q

)q (
q + N

N

)N
]

. (4)

Next, by rearranging equation (1), the standard statistical mechanics definitions of temperature
and chemical potential are deduced,

1

T
=

(
∂S

∂U

)
N,V

(5a)

and

μ = −T

(
∂S

∂N

)
U,V

, (5b)
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Figure 1. Plots of the dimensionless chemical potential as a function of the dimensionless
temperature. The upper curve is for the ideal Fermi gas, while the lower curve is for either
the Einstein solid or the ideal Bose gas.

where the subscripts indicate variables that are held fixed during the partial differentiation.
Volume is not an independent variable in the Einstein model, so the V subscripts can
be dropped in equations (5a) and (5b). Substituting U = qhν and equation (4) into
equation (5a) leads to

q

N
= 1

ehν/kT − 1
, (6)

which, according to equation (2), equals the average quantum number 〈n〉 per oscillator as a
function of temperature. As T → 0, this expression correctly predicts that 〈n〉 → 0 because
every oscillator is near its ground state2. At the opposite limit, as T gets large (compared to the
characteristic Einstein temperature TE ≡ hν/k), equation (6) predicts that U ≡ qhν ≈ NkT ,
consistent with the equipartition theorem (remembering that each one-dimensional oscillator
has one kinetic and one potential degree of freedom at high temperatures). Finally, substituting
equation (4) into (5b), performing the derivative and then substituting equation (6) into the
result to eliminate q in favour of T lead to a compact expression for the temperature dependence
of the chemical potential for an Einstein solid,

μ = kT ln(1 − e−TE/T ). (7)

Defining the dimensionless chemical potential μ′ ≡ μ/hν and temperature T ′ ≡ T/TE , then
equation (7) becomes

μ′ = T ′ ln(1 − e−1/T ′
) (8)

as plotted in figure 1.

3. Chemical potential of a quantum gas in an external parabolic trap

Consider a set of N noninteracting particles confined in one dimension by an applied harmonic
potential so that they translationally oscillate at fundamental frequency ν. Their energy levels

2 Technically T cannot be set to zero because Stirling’s approximation for q! was used in the derivation. In practice,
that restriction can be ignored because if N is of the order of say Avogadro’s number, then there is a large range of
values of q for which q/N � 1 while simultaneously maintaining q 	 1.
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are nondegenerate (ignoring spin degeneracy) and uniformly spaced by hν, so that the density
of states g is constant,

g = 1

hν
, (9)

where, as in section 2, the particle energies ε are measured relative to the ground state,
εground state ≡ 0. The total number of oscillators must be equal to

N =
∫ ∞

0
g(ε)f (ε) dε = 1

hν

∫ ∞

0
f (ε) dε, (10)

where f is the occupancy or distribution function. In writing this as an integral rather than as
a sum over states, it is assumed that the spacing between levels (compared to typical thermal
energies) is small enough that they form a quasi-continuum, i.e. hν � kT .

First apply this formula to a set of fermions. The Fermi–Dirac distribution function is

f (ε) = 1

e(ε−μ)/kT + 1
, (11)

where μ is the chemical potential. Substituting this function into equation (10) and changing
variables to x ≡ (ε − μ)/kT give

N = kT

hν

∫ ∞

−μ/kT

dx

ex + 1
= kT

hν
[x − ln(1 + ex)]∞−μ/kT . (12)

As x → ∞ note that ln(1 + ex) → ln(ex) = x, and hence the integral evaluated at the upper
limit is equal to zero. Therefore equation (12) becomes

N = μ

hν
+

kT

hν
ln(1 + e−μ/kT ). (13)

Now evaluate this at T = 0, for which μ ≡ εF , the Fermi energy. The Fermi energy is equal to
the energy of the highest occupied level at absolute zero and is therefore necessarily positive
for our choice of the zero of energy, so that equation (13) becomes

N = εF

hν
⇒ εF = N hν (14)

as expected because the levels are nondegenerate. Substituting this result into equation (13)
leads to

εF = μ + kT ln(1 + e−μ/kT ), (15)

which rearranges into

μ = kT ln(eTF /T − 1), (16)

where the Fermi temperature is TF ≡ εF /k. Note that equation (16) correctly reduces to
μ = εF in the limit3 as T→0. On the other hand, μ = 0 when T = TF / ln 2, in contrast to an
ideal Fermi gas in a three-dimensional box with rigid walls for which μ = 0 when T ≈ TF

(cf figure 7.16 in Schroeder [1], obtained by a nontrivial numerical calculation).
The dimensionless chemical potential and temperature can be defined as μ′ ≡ μ/εF =

μ/Nhν and T ′ ≡ T/TF = kT /Nhν, respectively, so that equation (16) becomes

μ′ = T ′ ln(e1/T ′ − 1) (17)

as is plotted in figure 1. Defining μ′
E to be the right-hand side of equation (8) and μ′

F to be
the right-hand side of equation (17), it can be shown that μ′

F = μ′
E + 1. In other words, a

3 Technically T again cannot actually equal zero because the integral approximation in equation (10) requires that
T 	 hν/k. Nevertheless if N is large enough, this requirement can be maintained even when T � TF = Nhν/k.
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dimensionless graph of chemical potential for an ideal gas of fermions in one overall harmonic
oscillator potential has the same shape as that for a collection of individual Einstein oscillators
each in their own potentials. The upward shift in the vertical intercept for the fermion case
is required by the Pauli exclusion principle. If one is only interested in changes in the value
of the chemical potential with temperature, as in many chemistry problems, then this vertical
shift is irrelevant.

Next, consider a set of N bosons in the same external one-dimensional simple harmonic
potential so that they again oscillate at fundamental frequency ν. The Bose–Einstein
distribution function is

f (ε) = 1

e(ε−μ)/kT − 1
, (18)

where μ < εground state ≡ 0 is a necessary requirement. That is, the chemical potential
must be negative at all nonzero temperatures, unlike for fermions, as otherwise f would
diverge to infinity at some (positive) energy. However, it must be true that μ→0 as T→0
because otherwise the occupancy of all levels would be zero at absolute zero; in contrast,
μ ≈ εground state permits all N bosons to occupy the ground state at sufficiently low temperatures.
(Note, however, that Bose–Einstein condensation cannot occur in a one-dimensional gas [6].)
Substituting equation (18) into equation (10) and again changing variables to x ≡ (ε−μ)/kT

gives

N = kT

hν

∫ ∞

−μ/kT

dx

ex − 1
= kT

hν
[−x + ln(ex − 1)]∞−μ/kT (19)

and the integral evaluated at the upper limit is again zero4. Equation (19) therefore becomes

N = − μ

hν
− kT

hν
ln(e−μ/kT − 1), (20)

which rearranges to

μ = kT ln(1 − e−Nhν/kT ). (21)

Introducing μ′ ≡ μ/Nhν and T ′ ≡ kT /Nhν as for the fermion case, equation (21) becomes

μ′ = T ′ ln(1 − e−1/T ′
), (22)

which is identical to equation (8). In fact, the similarity extends beyond the normalized version
of this expression to the fully dimensional forms. Equations (7) and (21) are the same if the
Einstein frequency νE is related to the frequency of oscillation of the harmonically trapped
bosons νB according to νE = NνB . Now consider typical experimental values. The Einstein
temperature of copper [7] is 240 K so that hνE = 21 meV. On the other hand, the average
energy of a particle in an oscillatory trap of effective spring constant κ is 〈ε〉 = 1

2κL2 where
L is the mean amplitude of the motion and thus represents the one-dimensional volume of
the system of noninteracting particles. In particular, for the harmonic axis of a magnetic trap
designed by Hess [8] for N = 1012 hydrogen atoms (having a mass of m = 1.67 × 10−27 kg),
〈ε〉 = 2 × 10−27 J and L = 5 cm so that

NhνB = N

L
h̄

√
2〈ε〉
m

= 20 meV (23)

which is comparable to 21 meV. Thus the chemical potential of an Einstein solid is equivalent
to that of an ideal gas of bosons in an external harmonic potential both in theory and in
practice5.
4 Note that, since the chemical potential is negative, the range of integration does not encompass x = 0 where the
integral diverges.
5 Notice from equation (23) that Nν is proportional to the number density N/L of particles in the trap, so that μ in
equations (16) and (21) properly scales intensively with the temperature and density. In accordance with equipartition,
〈ε〉 = kT at temperatures high enough that the integral approximation in equation (10) holds.
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4. Conclusions

For either an Einstein solid or a quantum gas in a one-dimensional oscillatory trap, the
dimensionless chemical potential μ′ has the same functional dependence on temperature,
decreasing monotonically with an asymptotic −T ′ ln T ′ dependence for large values of the
dimensionless temperature T′. The calculations of μ presented in this paper are more
straightforward than those for a quantum (or even a classical) gas in a three-dimensional
rigid box and thus could be instructively presented in an introductory statistical mechanics
course as a prelude. Notably, the vertical intercepts and general shapes of the graphs of μ(T)
are the same for gases in either a one-dimensional harmonic potential or a three-dimensional
infinite square well and have been neatly explained by Cook and Dickerson [3]. Furthermore,
the fact that the Einstein solid and ideal Bose gas give the same result when computed
by different methods (by differentiating the entropy in section 2 and by normalizing the
distribution function in section 3) harmonizes different concepts about chemical potential and
different models of oscillators. Finally, presentation of the one-dimensional Bose gas in a
simple harmonic potential can serve as a springboard for treatment of the three-dimensional
case that corresponds to actual Bose–Einstein condensation experiments for dilute atomic
gases [9, 10].
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