
1

UNCLASSIFIED: Distribution Statement A. Approved for Public Release

Object Based
Systems Engineering
(OBSE)

Pradeep Mendonza
Team Lead (Acting)
Policy, Process & Tools Development
Systems Engineering Group
US Army - TARDEC
(586) 282-4835
pradeep.mendonza.civ@mail.mil 27 October 2011

John A. Fitch
Senior Systems Engineer
Science Applications International Corporation
(586) 943-6323
john.a.fitch.ctr@mail.mil

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
27 OCT 2011

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Object Based Systems Engineering (OBSE)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Pradeep Mendonza

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
US Army RDECOM-TARDEC 6501 E 11 Mile Rd Warren, MI
48397-5000, USA

8. PERFORMING ORGANIZATION REPORT NUMBER
22369

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
US Army RDECOM-TARDEC 6501 E 11 Mile Rd Warren, MI
48397-5000, USA

10. SPONSOR/MONITOR’S ACRONYM(S)
TACOM/TARDEC/RDECOM

11. SPONSOR/MONITOR’S REPORT NUMBER(S)
22369

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

SAR

18.
NUMBER
OF PAGES

26

19a. NAME OF RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2 2 UNCLASSIFIED

OBJECTIVES

OBJECTIVES:

1. Communicate the background (past & current state) & motivation for

Object Based Systems Engineering (OBSE)

2. Communicate the evolution of Systems Engineering practice

3. Communicate the concepts of OBSE

4. Communicate the roadblocks to realizing OBSE

5. Communicate the principles of Object Based Systems Engineering (OBSE)

6. Illustrate each OBSE principle

7. Communicate the benefits of OBSE

3 3 UNCLASSIFIED

Background

 Systems Engineering is knowledge-based process. Its success
depends on timely, efficient and effective knowledge capture and
sharing among a diverse set of system stakeholders, contributors
and implementers

 Historically Systems Engineering (SE) practitioners have focused on
producing document-based artifacts to relay SE knowledge to
stakeholders and developers

 More recently a large part of the community has moved towards
using view-based artifacts; e.g. DODAF to visually communicate SE
knowledge

Background

4 4 UNCLASSIFIED

Limitations of
document-based artifacts

 Holding emerging system knowledge hostage until the next
document review cycle

 Triggering the replication of much potentially-common data
between documents

 Capturing information in large, free-form text paragraphs that fail
to separate and singularize important system data elements.

 Focusing engineers on writing tasks, not thinking tasks (e.g.
writing requirements instead of defining them).

 Conflating document structure with system decomposition
hierarchies.

 Forcing users to create, maintain and synchronize redundant
copies of data elements.

 Creating unnecessary manual effort to maintain unique
requirement identifiers and traceability matrices.

Limitations of document-based artifacts

5 5 UNCLASSIFIED

 Views don’t offer full coverage of all classes of SE knowledge.

They don’t capture the full decision and derivation trace that enables proactive
impact/change analysis and reuse of knowledge across system life cycle phases.

 Views focus engineers on drawing diagrams or populating tables.

While this is much better than a document-authoring paradigm, the views may still
become an end in themselves rather than the natural byproduct of continuous and
effective Systems Thinking.

 Views are often populated (e.g. drawn, compiled) after-the-fact from
other sources.

While they contain objects and relationships, this data is often a copy of the
original/master that is stored elsewhere. This increases the effort/cost/time required to
maintain a consistent and traceable Systems Engineering knowledge-base.

Limitations of
view-based artifacts

Limitations of view-based artifacts

6 6 UNCLASSIFIED

Motivation for OBSE

 Documents and views are simply containers that hold objects.
SE knowledge is comprised of sets (classes) of objects that are
related to each other. By directly managing these objects,
containers can be reproduced as desired.

 MBSE proponents and initiatives clearly have Object Based
System Engineering as their end goal, but the state of the
practice lags the vision.

The goal of this paper is to help accelerate the realization of
Object Based System Engineering in the everyday practices
of the defense community.

Motivation for OBSE

7 7 UNCLASSIFIED

Evolution of Systems
Engineering Practice

This paper proposes a shift in the focus of SE from documents and views to objects by proposing
a set of principles to integrate the information created by multiple, diverse SE methods.

1970

Paper
Documents

1980

OBSE

MBSE

E-Documents

1990 2000 2010 2020

TECHNOI.DGY DRNEN. WARRGHTER FOCUSED.

8 8 UNCLASSIFIED

Object Based SE
Concepts

 Object Based Systems Engineering is based on the simple concept
that SE knowledge is comprised of sets (classes) of objects that are
related to each other.

 The essential elements of Systems Engineering can be represented
by objects that are comprised of and defined by attributes and
associated through relationships. These objects can be grouped
into logical classes using an affinity process.

 It is certainly possible to create a comprehensive information
architecture that captures Systems Engineering knowledge, but
"possible" does not imply "easy".

Object Based SE Concepts

9 9 UNCLASSIFIED

Information Architecture Benefits

 Reproduce artifacts (documents, paragraphs, diagrams and tables) by
automated rule-based assembly of sets of objects.

 Populate paragraphs by the concatenation of object attributes and
relationships.

 Populate diagrams from objects (nodes) and their relationships (lines).

 Populate table rows (objects) and columns (attributes, linked objects).

 Shift the focus from artifact (document, view) reviews to object quality.

 Analyze diagrams and tables using rule-based exception reports.

 Eliminate the variability between the actual system model (requirements,
design, architecture) and the views used to communicate the model.

Information Architecture Benefits

10 10 UNCLASSIFIED

Roadblocks to OBSE realization

Tight budgets - fear of "boiling the ocean"

Information silos and kingdoms

Tool limitations

Paradigm blinders - imbalanced emphasis on specific methods

Process inertia/NIH syndrome

11 11 UNCLASSIFIED

OBSE Principles

Object based systems engineering principles

1. Map all SE knowledge to object classes and subclasses

2. Refine this information architecture against multiple SE methods to make it
as lean as possible (maximize cohesion, minimize coupling).

3. Create all objects in context

4. Define each object as a set of lean attributes and relationships

5. Strive for zero redundancy

6. Maintain continuous traceability as knowledge is derived.

7. Capture the precious and transient logic behind this knowledge derivation.

8. Leverage the relationships between objects to proactively manage change.

9. Maintain continuity of objects across system/product life cycles and phases.

10. Harvest and reuse knowledge patterns for each class of object

12 12 UNCLASSIFIED

1. Map all SE knowledge to object classes and subclasses

Create an initial information architecture model by answering the
following questions:

 What are the primary types of SE knowledge required to
support the SE process?

 Which classes and subclasses support the anticipated set of SE
process use cases (types of systems/products to be developed;
life cycle phase, project size, system context)?

 How do these classes of information relate to one another?
What classes of relationships connect various types of SE data?

 What are the most vital and volatile classes of
objects/relationships to preserve and maintain?

OBSE Principle 1

13 13 UNCLASSIFIED

OBSE Information Architecture

Tests

SOW

WBS

Decisions

Requirements
• Sources
• VoC
• System

Architecture

Plan_Links Decision-Plan_Links

Decision-Requirement_Links
Decision-Architecture_Links

Allocation_Links

Test_Links

Decision_Links
Roadmap_Links (future)

Issues

Issue_Links

Issues may be linked to
objects in any class

Requirements_Links

Vee-model

14 14 UNCLASSIFIED

Questions traceability
can answer

SOW
What is our scope
& charter?

How will we
accomplish our
charter? Is our plan
adequate?

How will work flow
down to others?

How will we
analyze or
implement this
decision?

What decisions did
this req’t drive?
Budget allocation?
Change impact?

Why does this
component exist?
What role does it
play?

Allocated
requirements?
Budget flow-down?

Where did this
requirement
originate?
Change impact?

Requirements met?
Priority gaps to fix?

Requirements per
test?
Verification
coverage?

WBS
What’s our plan?
Who’s responsible?
Is plan adequate?

DECISIONS
Top N decisions?
Status? Rationale?
Consequences?

ARCHITECTURE
Components in our
solution?
Interfaces?

REQUIREMENTS
Success = ?
Clear? Complete?
Source?

TESTS
Test events/cases?
Test enablers?
Results/findings?

N-Squared Diagram Legend

Node A

Node B B-to-A
interaction

A-to-B
interaction

Read the interactions clockwise

15 15 UNCLASSIFIED

2. Refine this information architecture against multiple SE
methods to make it as lean as possible

Information architecture is driven by the set of SE methods engines that have
been selected to power the SE process. Refine the information architecture to
make it scalable across a broader range of methods and ask the following:

 What methods could be used to create each class of object? What methods
create the primary relationships among object classes?

 How would different methods engines change the information model (e.g. add
new classes, attributes or relationships?

 Can an information model be created that captures the superset of all the
classes/attributes/relationships required by the full range of methods engines
under consideration?

 How can this model be made more lean; simplified to reduce the number of
object classes and/or relationships?

OBSE Principle 2

16 16 UNCLASSIFIED

3. Create all objects in context (within a hierarchy
appropriate to its class)

 SE knowledge represents a network of associated objects.

 Within each primary class of objects, a hierarchical structure
(taxonomy) provides an efficient structure.

 These class hierarchies typically include subclasses arranged in a
recursive pattern.

 Class hierarchies are valuable knowledge patterns.
– Jump-start new projects by seeding the SE knowledge-base with a

proven set of relevant objects.
– They highlight missing (but valuable) data as holes in the recursive

structure. For example:
– Every functional requirement should have at least 1

performance requirement that specifies "How well?" the
function must be performed.

OBSE Principle 3

17 17 UNCLASSIFIED

Requirements Hierarchy

Function

Function

Performance

Constraint

Function

Performance

Constraint Function

Function

Performance

Constraint

Function

Capabilities

Use Cases

Life Cycle
Requirements

Constraints

Interface
Requirements

States and
Modes

System
Requirements

Recursive
structure What? How?

How well?

Limits on
how

Every function should have at least 1 child performance requirement

Each performance requirement has one function or use case as its parent

Constraints limit design freedom on how a function will be delivered

Use cases may be modeled as a thread or flow of functions

States activate and deactivate functions

Requirements Hierarchy

18 18 UNCLASSIFIED

4. Define each object as a set of lean attributes and
relationships (avoid free-form text)

The document model encourages free-form text paragraphs.
• Leads to jumbled object, attribute and relationship data.
• Individualized and situation-driven writing paradigm
• Leaves precise translation as an exercise for the individual reader.
• Ad hoc, non-repeatable process contributes to system model ambiguity

Growing system complexity demands precise capture of Systems
Engineering knowledge as objects.

Fundamental enemies of project success = uncertainty and ambiguity.
• Combine to produce overwhelming complexity -> program failures.

OBSE Principle 4

19 19 UNCLASSIFIED

 Uncertainty
• A product of the real-world unknowns and unknowable’s.
• Increasing with the pace of technology change/turnover
• Reduced through investments in knowledge-creating tasks (e.g.

simulation and prototypes) but not driven to zero.
• May be managed, but can't be eliminated

• There are no facts about the future!

 Ambiguity
• A self-inflicted wound;
• Results from fuzzy and ad hoc methods that create high variance in

the definition, context, derivation and interpretation of SE knowledge.
• The goal of OBSE is to drive ambiguity toward zero.

• Keep the system model's perceived complexity within the
cognitive limits of a team.

Ambiguity vs. Uncertainty

20 20 UNCLASSIFIED

Ambiguity vs. Uncertainty

Ambiguity Vs Uncertainty

Cognitive limits of team --------------

System Model Ambiguity

System Model Complexity
(#of requirements, parts, interfaces)

Uncertainty

1970 1980 1990 2000 2010 2020

TECHNOI.DGY DRNEN. WARRGHTER FOCUSED.

21 21 UNCLASSIFIED

5. Strive for zero redundancy (store a single instance of an object;
visualize in many ways)

 Avoid self-inflicted complexity.

• Don’t copy objects to populate documents or views
• Maintain a single master instance of each object
• Maintain the leanest possible information model to represent the problem
and system

 Focus version control on object masters

• Life cycles states of each object = object versions
• Capture states as changes to the attributes and relationships associated
with each object.

OBSE Principle 5

22 22 UNCLASSIFIED

Requirement States

IDENTIFIED

DEFINED

VALIDATED

IMPLEMENTED

ALLOCATED

DECOMPOSED

VERIFICATION PLANNED

VERIFIED

Requirement States
By an Initial name/title and placed within
a requirements hierarchy

By capturing a "shall" statement description and (in the case of a performance
requirement) specify its Threshold, Objective and Units attributes

By traceability links from one or more upstream
decisions, models or source requirements

Into the design by linking it to the criteria
used to drive one or more decisions/trades

To a subsystem or component

Into children so that each may be allocated
to a single system architectural element.

By defining its Verification
Method attribute and by linking it
to a specific verification event

By the execution of the test case, captured as
traceability links from specific test results and
conclusions/findings and summarized within a
Verification Status or Compliance attribute

23 23 UNCLASSIFIED

6. Maintain continuous traceability as knowledge is derived.

 Maintain derivation traceability continuously (simple, cheap)
• Never have enough time to backfill it (expensive, impractical).

 Loss of this traceability:

• Multiplies cost of proactive impact/change analysis (what-ifs) or makes it
impossible without original SMEs with perfect recall.

7. Capture the precious and transient logic behind this

knowledge derivation.

 Derivation traceability is very precious, but transient knowledge.
• More than a link; includes the derivation rationale, i.e. How? or Why?

 Capture minority viewpoints and discussion threads for each object of interest.
• Lessons learned to drive process improvement.

OBSE Principles 6 & 7

24 24 UNCLASSIFIED

8. Leverage the relationships between objects to proactively
manage change

 Walk the links between objects and assess the ripple effect
 Human-in-the-loop thought process, supplemented by simulation models.

9. Maintain continuity of objects across system/product life

cycles and phases
 Documents and views pass little useful information between system life cycle phases.

• Continuity of thought = continuity of team members.
 OBSE database enables maximum reuse through continuity of objects/states.

10. Harvest and reuse knowledge patterns for each class of

object
 Harvest knowledge within class hierarchies and rule-based data structures.
 Enable knowledge reuse across many domains (project types, systems, technologies)
 Increases the ROI from investments in Systems Engineering discipline.

OBSE Principles 8, 9 & 10

25 25 UNCLASSIFIED

Benefits of Object Based System Engineering (OBSE)

Applied OBSE requires skill, creativity and balanced judgment

Potential benefits:

 Simplify SE tasks. Leanest information model -> leanest value-

focused task model.
 Reduce overlapping efforts and information silos.
 Foster the insight that leads to innovation.
 The leanest possible information model -> innovative insights.

Efficient, focused brainstorming. Increased collaboration.
 Improve solution quality. Rule-based exception reports highlight

missing, but needed knowledge
 Accelerate development. Maximize team's ability to do parallel and

aligned thinking.

OBSE Benefits

26 26 UNCLASSIFIED

Contact Information

Pradeep Mendonza
Team Lead (Acting)
Policy, Process & Tools Development
TARDEC Systems Engineering Group
(586) 282-4835
pradeep.mendonza.civ@mail.mil

John A. Fitch
Senior Systems Engineer
Science Applications International Corporation
(586) 943-6323
john.a.fitch.ctr@mail.mil

** Disclaimer: Reference herein to any specific commercial company, product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or the Department of the Army (DoA). The opinions of the authors expressed herein do not
necessarily state or reflect those of the United States Government or the DoA, and shall not be used for advertising or product
endorsement purposes.**

	Slide Number 1
	OBJECTIVES
	Background
	Limitations of �document-based artifacts
	Limitations of �view-based artifacts
	Motivation for OBSE
	Evolution of Systems Engineering Practice
	Object Based SE �Concepts
	Information Architecture Benefits
	Roadblocks to OBSE realization
	OBSE Principles
	OBSE Principle 1
	OBSE Information Architecture
	Questions traceability can answer
	Slide Number 15
	Slide Number 16
	Requirements Hierarchy
	OBSE Principle 4
	Ambiguity vs. Uncertainty
	Ambiguity vs. Uncertainty
	OBSE Principle 5
	Requirement States
	OBSE Principles 6 & 7
	OBSE Principles 8, 9 & 10
	Slide Number 25
	Contact Information

