

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

MULTISCALE ARCHITECTURES AND PARALLEL ALGORITHMS
FOR VIDEO OBJECT TRACKING

UNIVERSITY OF MISSOURI

OCTOBER 2011

FINAL TECHNICAL REPORT

AFRL-RI-RS-TR-2011-252

 ROME, NY 13441 UNITED STATES AIR FORCE  AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or
permission to manufacture, use, or sell any patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs
security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and
AFRL/CA policy clarification memorandum dated 16 Jan 09. This report is available to the
general public, including foreign nationals. Copies may be obtained from the Defense Technical
Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2011-252 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/

STANLEY LIS PAUL ANTONIK, Technical Advisor
Work Unit Manager Advanced Computing Division

Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
October 2011

2. REPORT TYPE
Final Technical Report

3. DATES COVERED (From - To)
June 2010 – April 2011

4. TITLE AND SUBTITLE

MULTISCALE ARCHITECTURES AND PARALLEL
ALGORITHMS FOR VIDEO OBJECT TRACKING

5a. CONTRACT NUMBER
FA8750-10-1-0182

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62788F

6. AUTHOR(S)

Kannappan Palaniappan

5d. PROJECT NUMBER
T3CS

5e. TASK NUMBER
MI

5f. WORK UNIT NUMBER
SS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Missouri
W1025 Lafferre Hall
Columbia, MO 65211

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/Information Directorate
Rome Research Site/RITB
525 Brooks Road
Rome NY 13441

10. SPONSOR/MONITOR'S ACRONYM(S)
 AFRL/RI

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2011-252

12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research
deemed exempt from public affairs security and policy review in accordance with SAF/AQR memorandum
dated 10 Dec 08 and AFRL/CA policy clarification memorandum dated 16 Jan 09.
13. SUPPLEMENTARY NOTES

14. ABSTRACT
Implementation and performance of an extended set of parallel multicore video processing chain of modules were investigated
including Cell/B.E. flux tensor for motion detection, morphology, connected component labeling, and object statistics for blob
extraction. A limitation of earlier work included unsatisfactory end-to-end performance and a need for better integration within the
Net-Centric Exploitation and Tracking (N-CET) software framework. We examined software integration for Phoenix support,
reducing thread overhead, video processing module interoperability, enhancing streaming performance, evaluating power
requirement tradeoffs between different algorithms, assisting with tighter integration of the individual modules and gathering
benchmarking data to analyze performance bottlenecks in communication pathways and computational algorithms. The video
processing modules were ported to the IBM QS20/QS22 Blade architectures with 16 Synergistic Processing Elements for improved
numerical computation performance, especially for the flux tensor computation.
15. SUBJECT TERMS
parallel multicore algorithms, IBM Cell Broadband Engine, video processing pipeline, moving object detection, flux tensor, binary
morphology, connected component labeling

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

63

19a. NAME OF RESPONSIBLE PERSON

STANLEY LIS
a. REPORT

U
b. ABSTRACT

U
c. THIS PAGE

U
19b. TELEPHONE NUMBER (Include area code)

N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.

Contents

1 Summary 1

2 Introduction 3

3 Methods, Assumptions and Procedures 6

3.1 Overview of the Cell/B.E. Processor Architecture . 6

3.2 Video Motion Analysis Algorithms . 6

3.3 Registration Using Block Matching . 9

3.4 Parallel Implementation on Cell/B.E. 9

3.5 Power Efficient Parallel Flux Tensor Computation for Motion Detection 11

3.5.1 Flux Tensor-based Motion Detection . 13

3.5.2 Numerical Computation of the Flux Tensor . 15

3.5.3 Sequential Implementation of the Flux Tensor Operator 16

3.5.4 Parallel Implementation of the Flux Tensor Operator on the Cell/B.E. 17

3.5.5 Theoretical Estimation of the Flux Tensor Computational Requirements 20

3.5.6 New Implementation of Flux Tensor . 23

3.6 Binary Mask Processing Using Morphology Operators . 23

3.7 Blob Extraction by Connected Component Labeling . 24

4 Results and Discussion 28

4.1 Multicore Flux Tensor Performance . 28

4.2 Multicore Morphology Performance . 38

4.3 Multicore CCL Performance . 39

5 Conclusions 51

6 References 53

7 List of Acronymns 56

i

List of Figures

1 N-CET sensor node overall system architecture including gimbaled high-definition video cam-
era and a directional RF antenna sensors on the left, the head processing node in the center
running 100X JBI, PS-3 Cell/B.E. nodes for video processing, Joint Capability for Airborne
Networking (JCAN) for inter-N-CET node communication and other off-node communications
links. Figure from Metzler, et al.30 . 4

2 Overview of the Cell multicore architecture showing the nine processing cores – one Power
Processing Element (PPE) with 256 MB of L2 cache and eight Synergistic Processing Elements
(SPEs) without any cache but 256 KB of local store memory. 6

3 N-CET video processing chain using heterogeneous multicore architectures. 7

4 N-CET motion estimation client and integrated parallel pipelined workflow. 7

5 Overview of specific moving object detection algorithms for N-CET video motion analysis. . . 7

6 Frame division in blocks of rows. The overlapping search window region for adjacent blocks
in a row allows data reuse. 10

7 SAD value calculation scheme on SPU using vector instructions 11

8 Operator-centric data flow view of the various stages required to compute the flux tensor
operator on a 3D spatiotemporal volume showing the task dependency relationships. Note
that the magnitude squaring operators are explicitly shown. The summation stage is done
prior to spatiotemporal averaging steps for computational efficiency at the cost of reduced
parallelism. 16

9 Steady state flow in sequential flux tensor implementation. The memory footprint (MF) for
the given filter sizes (nDt

= 5, nAt
= 5) is MF = 25×M ×N × 4 bytes. 17

10 Steady state flow in flux tensor implementation on Cell/B.E.. The memory footprint for the
given filter sizes (nDt

= 5, nAt
= 5), MF = 14 ×M ×N × 4 bytes is much smaller than for

the sequential version where there is often a large amount of fast memory available for the
processor cores. 18

11 Data partitioning scheme showing Work Unit (WU) block width in pixels on SPEs. The
3D block represents the spatiotemporal 3D grid of input data that needs to be processed to
produce one flux tensor output frame. The 3D grid of data is chunked uniformly to distribute
to each SPE. Since the partition is too large to fit into the limited SPE memory, each work
block is further divided into smaller work units. The WU sizes are dependent on the filter
sizes as labeled. 19

12 Efficient SPE implementation of a three tap convolution filter in the x-direction. 19

13 New parallelization approach for flux tensor is about four times faster than the previous version. 24

14 Parallelization model for Connected Component Labeling on Cell/B.E. showing adjacent tile
overlap or hook regions. 25

15 An example of list of labels in Region[i] . 25

16 Output of flux tensor motion estimation and blob extraction algorithm on selected frames of
color visible and FLIR (forward looking long-wave infrared) data from the ARL FPSS dataset.11 28

17 Results for several intermediate frames in this long FPSS sequence. 29

18 Results for three additional intermediate frames in this long FPSS sequence. 30

19 Dependence of flux tensor scalability on image tiling or slicing. With 4 and 5 SPEs there is
no advantage over 3 SPEs since the chunking requires two stages of computation (in all three
cases) to complete the calculation for the full frame. In these cases there are many idle SPEs
(two and four idle cores respectively). 33

ii

20 Number of tasks launched per image during performance testing with varying number of SPEs. 34

21 Including the cost of thread creation and destruction reduces the influence of image chunking. 34

22 Excluding the cost of thread creation and destruction clearly shows the influence of image
chunking by the flatline behavior that is dependent on filter size when the number of available
SPEs is increased. 34

23 Performance plotted as time per frame (instead of fps) for the same data as in Figure 22. . . 35

24 Performance of flux tensor (MU-BRS implementation) in frames per second on SD (upper) and
HD (lower) video using different number of SPE cores on the IBM QS22 Blade to characterize
scalability. Each plot is for a different filter size as shown in the legend to the upper right
and tested on 100 images five repetitions each to get averages. The legend are derivative and
averaging filter tap sizes a b c d to be interpreted as fxtap = a, fytap = a, fttap = b, ixtap =
c, iytap = c, ittap = d. 36

25 Performance of flux tensor (MU-BRS implementation) in terms of speed-up on SD (upper) and
HD (lower) video compared to using one SPE cores on the IBM QS22 Blade to characterize
scalability. Ideal linear speedup is shown in the solid red line. Each plot is for a different
filter size as shown in the legend to the upper right and tested on 100 images five repetitions
each to get averages. The legend are derivative and averaging filter tap sizes a b c d to be
interpreted as fxtap = a, fytap = a, fttap = b, ixtap = c, iytap = c, ittap = d. 37

26 Performance of morphology operations in microseconds on SD video using different number
of SPE cores (on the IBM QS22 Blade) to characterize scalability. 40

27 Performance of morphology operations in terms of speed-up compared to a one SPE core
on SD video using different number of SPE cores (on the IBM QS22 Blade) to characterize
scalability. 41

28 Sample test images from random blob dataset, with varying percentage of foreground pixels
(FG), number of connected components (C) and total intermediate labels (T), used for CCL
testing and performance measurement. 45

29 Sample test images from diagonal lines dataset with varying percentage of foreground pixels
for CCL testing and performance measurement . 46

30 Variation of parameters characterizing our test dataset for CCL workload 46

31 Execution time per frame for six different implementations of CCL on our random dataset.
For parallel version, execution time includes DMA transfers of inputs to and outputs from SPE. 47

32 Execution time per frame for different implementations of Union-Find CCL algorithm on
diagonal line dataset. For parallel version, execution time includes DMA transfers of inputs
to and outputs from SPE. 47

33 Execution time per frame for six different implementations of CCL. For parallel version, exe-
cution time includes DMA transfers of inputs to and outputs from SPE. 48

34 Speedup of parallel implementations of CCL with respect to their sequential counterpart. For
parallel version, execution time includes DMA transfers of inputs to and outputs from SPE. . 49

35 Variation in parallel CCL performance across different number of SPEs on Cell. Execution
time includes DMA transfers of inputs to and outputs from SPE 49

iii

List of Tables

1 Speedup and performance to power ratios of the parallel multicore PS-3 Cell/B.E. implemen-
tation with 6 SPEs using 135 watts is compared to the optimized sequential implementation
running on an Intel Xeon core in a Dell 1850 server using 550 watts. Sequential performance in
frames per second are shown in the (T Seq

1)–1 columns. Parallel PS-3 speed-up (SPS-3
6) is com-

pared to the sequential implementation running on an Intel Xeon CPU. The power efficiency
improvements of the parallel implementations compared to the sequential implementations for
different filter sizes are shown in the PPR columns. 31

2 Parallel speed-up of the flux tensor operator implemented on the Cell/B.E. with 6 SPEs com-
pared to the sequential implementation running on an Intel Xeon processor for nine different
filter configurations and using two different sizes of 3D spatiotemporal grids (1920× 1080× t)
for HD video. Typically up to ten repetitions were done for each test condition using 100
frames of video. 35

3 Parallel speed-up of the flux tensor operator implemented on the Cell/B.E. with 6 SPEs com-
pared to the sequential implementation running on an Intel Xeon processor for nine different
filter configurations for SD video (640 × 480 × t). Typically up to ten repetitions were done
for each test condition using 100 frames of video. 38

4 Performance comparison of our parallel morphology to the sequential and Cell/B.E. OpenCV41

implementation. The execution time measured is for one dilation or erosion operation on a
1024× 768 sized image. 39

5 Comparison of execution times for relabeling and statistic computation done on PPE (sequen-
tial) versus SPE (parallel). 48

6 Performance summary of major algorithms at different stages of moving object detection
workload prior to integration of the code base. The Cell performance is measured using only
6 SPEs on the PS3. 50

iv

1. SUMMARY

Implementation and performance of an extended set of parallel multicore video processing chain of modules
for the Cell Broadband Engine-based (Cell/B.E.) were investigated including flux tensor for motion detection,
morphology, connected component labeling, and object statistics for blob extraction. The processing goal
was to achieve real time moving object detection in 2 Mpixel, 25 Hz high-definition (HD) video imagery
with a bandwidth of approximately 1.5 Gb/s. A limitation of earlier work included unsatisfactory end-
to-end performance, quality of Graphics Processing Unit (GPU)-based image registration and a need for
better integration within the Net-Centric Exploitation and Tracking (N-CET) software framework. We
examined software integration for Phoenix support, reducing thread overhead, video processing module
interoperability, enhancing streaming performance, evaluating power requirement tradeoffs between different
algorithms, assisting with tighter integration of the individual modules and gathering benchmarking data
to analyze performance bottlenecks in communication pathways and computational algorithms. The video
processing modules were ported to the IBM QS20/QS22 Blade architectures with 16 Synergistic Processing
Elements for improved numerical computation performance, especially for the flux tensor computation. A
technical report and publications were produced.

A summary of specific activities includes:

1. Interoperability: Tighter integration of morphology, connected component labeling (CCL) and blob
statistics to enable the code to fit onto a single Cell processor and run as a single binary image in
order to minimize multiple thread creations, memory management and communication overheads and
achieve interoperability requirements.

2. Performance: Enhancement of the Cell/B.E. implementation of morphology, CCL, blob statistics, and
flux tensor using code profiling and optimization tools to improve overall performance towards N-CET
benchmarks. Extensive performance testing on SONY Playstation-3 (PS-3) and IBM QS22 versions of
the Cell/B.E. multicore processor.

3. Power Tradeoffs: Examined performance optimization options and compared two or more versions of
video processing modules and parallel implementations, namely for the flux tensor, to compare tradeoffs
between memory, space, interoperability, interprocess communication and power requirements, in order
to achieve 25 frames/sec end-to-end sustained data flow.

4. Parameter tuning: Applied performance tuning of various modules to better characterize moving object
detection, blob detection and tracking performance using field experiment data such as the Stockbridge
HD video sequence. This required adding feedback between the different modules to adapt to different
environmental conditions and performance parameters.

5. Registration algorithm: There was a pressing need to improve the registration algorithm currently
available to N-CET and delivered to AFRL by an outside contractor. The quality of the mosaics
produced by this code was unsatisfactory since the algorithm is limited to translation only motion
which does not adequately model the actual camera motion and perspective transformations between
adjacent images captured by the moving camera. A structure tensor-based algorithm was tested on
sample data provided by AFRL and evaluated for N-CET needs. This evaluation is ongoing and the
sequential code is available to AFRL. Further improvement and parallelization of the structure tensor
algorithm is proposed as a new activity depending on the target multicore architecture.

Further improvements were made to the flux tensor implementation for moving object detection as this is
the most computationally expensive part of the video processing chain. The details of the new implementation
that reorders the spatial and temporal derivatives are provided along with benchmarking data particularly
related to power efficiency of the flux tensor computation. The flux tensor operator estimates significant
orientations in multidimensional gridded datasets and is an efficient technique for moving object detection
in video datasets. The original parallel algorithm implemented for the Cell/B.E. PS-3 architecture with
six SPE computational cores achieved a speed-up improvement factor of 40 compared to the sequential

1
Approved for Public Release; Distribution Unlimited

algorithm using the smallest filter sizes which offers substantial energy efficiency optimization choices. The
super-linear speed-up behavior is due to the extensive use of vectorized floating point operations, fused short
vector multiply add (FMA) instructions and double buffering to overlap computation and communication.
Using larger filter sizes the speed-up gain decreased to a factor of 12 since the total volume of computations
increases faster on the Cell/B.E. as the parallel implementation must recompute the intermediate spatial
derivatives in comparison to the sequential implementation which uses significantly more memory. For larger
filter sizes the limited local store on the SPEs also leads to smaller data partitioning sizes that requires more
than six threads of execution which results in two stages of computation thus reducing speed-up. For all filter
sizes tested the parallel flux tensor algorithm was able to exceed realtime performance requirements using a
single PS-3 Cell/B.E. processor for standard definition (SD) sized video streams and for most of the filter
sizes for HD sized video streams. The lower power requirements for the multicore PS-3 Cell/B.E. compared
to an Intel Xeon processor makes the energy efficiency performance to power ratio of the flux tensor more
than 160 times better for the smaller filter sizes and more than 50 times better for the larger filter sizes for
HD video streams. The dependency of the energy efficiency factor on the flux tensor filter size provides an
additional optimization dimension based on output image quality, that is using slightly smaller filter sizes
for a marginal reduction in performance.

Specific deliverables for the project included:

1. Improved parallel Cell/B.E. implementation with source code of the flux tensor and thresholding
modules with faster performance.

2. Improved parallel Cell/B.E. implementations with source code the blob extraction modules including
morphology, CCL and blob statistics with better integration and interoperability.

3. Performance benchmarks of the improved flux tensor, thresholding, morphology, CCL and blob statis-
tics modules using both real and synthetic datasets.

4. Energy efficiency of the multicore implementation of the flux tensor computation on the Cell/B.E.

5. Recommendations for tradeoffs between performance optimization and N-CET interoperability in the
context of the video processing modules running on heterogeneous architectures in order to meet real
time performance targets.

6. Recommendations for parameter choices based on moving object detection, blob detection and tracking
performance requirements using different types of performance analysis and metrics.

7. Provide a sequential version of the registration algorithm that is capable of producing improved mosaic
quality under wider operating conditions than the current algorithm being used in N-CET. Initial
parallelization of the block-based matching sequential algorithm subject to contract time constraints.

There were several primary publications resulting from the work completed in the project. The first
paper under review forms the basis for this report. The other two have been published or presented:

1. Praveen Kumar, K. Palaniappan, Ankush Mittal, G. Seetharaman ”Parallel implementation of video
processing algorithms on the multicore Cell/B.E. processor”, J. Real-Time Image Processing, 2011,
Under revision.

2. K. Palaniappan, I. Ersoy, G. Seetharaman, S.R. Davis, P. Kumar, R. M. Rao, R. Linderman, Parallel
flux tensor analysis for efficient moving object detection, 14th Int. Conf. Information Fusion, Chicago,
2011.

3. K. Palaniappan, I. Ersoy, G. Seetharaman, S.R. Davis, R. M. Rao, R. Linderman, Multicore energy effi-
cient flux tensor for video analysis, IEEE Workshop on Energy Efficient High-Performance Computing
(HiPC), Goa, India, 2010.

2
Approved for Public Release; Distribution Unlimited

2. INTRODUCTION

The continuous increase in imaging sensor data rates and increasing computational complexity of video
processing algorithms for real-time motion activity analysis applications has created a pressing need for em-
bedded high-performance computing solutions. The emergence of heterogeneous multicore architectures like
the Cell Broadband Engine (Cell/B.E.) processor provides an appealing platform to explore algorithm trans-
formations that extract data level parallelism to reach real-time performance on video streams. However,
the potential benefits of such multicore processors with architecture specific data paths can be efficiently
harnessed only by developing fine-grained, vectorized, embedded parallelization strategies along with algo-
rithmic innovations. We developed parallel implementations of a typical video processing pipeline for moving
object extraction consisting of several stages including flux tensor based moving object detection, binary mor-
phological operations for noise filtering, connected component labeling (CCL) for object labeling and blob
statistics for object tracking. We describe novel parallelization approaches using fine-grained optimization
techniques for fully exploiting the multicore architecture and compute performance of the heterogeneous
processors Synergistic Processing Elements (SPEs) on the Cell/B.E. processor. Experimental results show
speedups ranging from a factor of over 600 for binary morphology to a factor of 7 for mixture of Gaussians
and 5 for CCL in comparison to equivalent sequential implementations.

The recent emergence of multicore processors enables a new trend of parallel computing for achieving
real-time implementations of image and video processing algorithms. New architectures and parallelization
strategies are being developed for several video processing applications due to the increased accessibility of
multicore, multi-threaded processors along with general purpose graphics processing units. The explosive
growth in data volumes for such applications and the increasing complexity of state-of-the art algorithms
necessitates a tighter optimization between utilizing new architectures and parallelization strategies for
optimizing the efficient use of multicore processors. Using multi-core processors such as the IBM Cell/B.E.
offers a number of advantages including low cost for the SONY PS-3 hardware solution, scalability to a
larger number of cores using the IBM QS22 Blade for handling higher video processing workloads (but at
higher cost per core), low power consumption and compact footprint for embedded sensor pod systems such
as those envisioned for N-CET.30 Net-centric exploitation of video sensors requires sensor management and
control, monitoring and managing data collection for on-board sensors, efficient communication protocols
for publishing data streams for processing as shown in Figure 1.

The N-CET project and its associated sensor pod hardware and software intelligence were designed to
evaluate the tradeoffs in: 1) optimal sensor positioning, 2) reducing the need to modify aircraft avionics, and
3) broad sensor data sharing by avoiding stove-piping or one-of architectures. N-CET looks at survivability
to operate close-in, ease of fielding, and reconfigurability.30 Each N-CET node provides various information
brokering services including data management, data federation among nodes, fusion of remote information
with local information, and sensor control.

Automated video activity analysis has a wide range of applications, such as a target tracking, homeland
security, infrastructure monitoring, urban traffic surveillance and recognizing activity patterns, etc.8,13,36,39

Video activity analysis algorithms represent a class of video processing methods that are computationally,
data and bandwidth intensive. A good analysis of video surveillance workload can be found in.22 Obtaining
the desired processing frame rate of 20 to 30 frames per second (fps or fr/sec) for such algorithms in realtime,
especially for high-definition video (HD), is one of the critical challenges faced by the N-CET project.

Recent multicore processors can potentially serve the needs of such workloads. For example, IBM’s
Cell Broadband Engine (Cell/B.E.) is based on an architecture made of eight SPEs delivering an effective
peak performance of more than 200 gigaflops (GFlops), using very wide data-paths and memory interchange
mechanisms. A good exposition of scientific computing and programming on the Cell/B.E. is provided in.10

Details of implementing scientific computing kernels and programming the memory hierarchy can be found
in44 and,16 respectively. The potential benefits of multicore processors can only be harnessed efficiently
by developing parallel implementations optimized for execution on individual processing elements requiring
explicit handling of data transfers and memory management. The process of refactoring legacy code and
algorithms – originally optimized for sequential architectures – to modern multicore architectures invariably

3
Approved for Public Release; Distribution Unlimited

Figure 1: N-CET sensor node overall system architecture including gimbaled high-definition video camera
and a directional RF antenna sensors on the left, the head processing node in the center running 100X JBI,
PS-3 Cell/B.E. nodes for video processing, Joint Capability for Airborne Networking (JCAN) for inter-N-
CET node communication and other off-node communications links. Figure from Metzler, et al.30

requires insight and reanalysis which opens the door for creative innovations in algorithm design, data
structures and application specific strategies.

Research efforts from both the academia and industry have demonstrated the suitability of Cell/B.E. in
video processing and retrieval,25,46 compression20,31 and other computer vision applications.12 Program-
ming frameworks/platforms like RapidMind,28 Multicore Framework by Mercury,7 CellSs,6 StarPU,4 etc.
have also emerged to support efficient programming for multicore processors. In,25 the authors implement
background subtraction algorithm on Cell/B.E. by using task partitioning approach where the application is
divided into modules and the PPE allocates and synchronizes the execution of different modules on different
SPUs. The output is pipelined from one module or the SPE to another SPE as input to the next module.
However, this approach is critically dependant on the scope of dividing the tasks into as many number of
modules as there are free SPEs and how balanced is the load distribution on different SPEs. Our approach
aims to extract data parallelism by implementing parallel algorithms that are scalable to the number of
cores available for processing. There are quite a number of papers related to parallelizing video encoding
algorithms in different standards like Joint Photographic Experts Group (JPEG) 2000,20 H.26425,31 on Cel-
l/B.E. and some of them describe in detail the implementation of wavelet transform, arithmetic coding, Sum
of Absolute Differences (SAD) based block matching31 etc. However, there is not much detailed description
on parallelizing video processing algorithms for the Cell/B.E.

In this report, we present our work on implementing video activity analysis algorithms applied at various
stages of video processing for parallel execution on the multiple cores of Cell/B.E. For instance, we focus on
algorithms like (1) Flux tensor for distinguishing stationary and moving objects, (2) Binary morphological
operations and (3) Connected component labeling for blob extraction and statistics for blob characterization.

4
Approved for Public Release; Distribution Unlimited

l.(geod

ihlli "'''
~

i:M!\'k'IJ

Rr .
Receiver ·

N-CET No de

Plavstation3

.~o:x~
ID

lntcrcefot {Emitter

Llne-ol-3earlng)

!CAN

>eP/e•nv•tlOOxJSI

Forwarder

- .
NVIDIA Tesla

[ie~t!~· ·

Kb/!

Remote
N·CET
r~ode~

Query

lnie·cept
Targ·t
Spe<JkeriO
SNAResults
Glance
Pancramic
lrna~e Chips
TreeSe

These algorithms have varying degree of computation, memory and data flow dependency characteristics
which require specific parallelization and optimization strategies to handle algorithm and architecture issues.
We present novel parallelization strategies for extracting data parallelism in the algorithms and offloading
the computationally intensive task for parallel and scalable execution on the specialized cores. Fine grained
optimization strategies like specialized vector SIMD instructions for instruction level parallelism, double
buffering for overlapping computation with communication etc. is used wherever possible to fully exploit the
parallel processing ability of the multicore Cell/B.E. architecture. The experimental results are conducted on
different datasets with varying characteristics to test the scalability, performance gain, power efficiency, etc.
of our implementation of various stages of the video processing chain for N-CET. Some relevant materials from
the Phase I Technical Report are also included here for completeness especially the algorithm implementation
details so that the extensive experimental results can be understood in the context of the architecture.

5
Approved for Public Release; Distribution Unlimited

3. METHODS, ASSUMPTIONS AND PROCEDURES

3.1 Overview of the Cell/B.E. Processor Architecture

This short overview previously presented in the Phase I technical report is included here again to enable a
self-contained report with important details of the Cell architecture emphasized in later sections. The basic
architecture of the Cell/B.E. is shown in Figure 2. The 3.2 GHz SPEs deliver most of the computational
capacity by executing two floating point instructions per cycle in a single instruction, multiple-data (SIMD)
fashion and they can also be optimized for vector processing. Thus a peak performance of 25.6 single
precision GFlop/s per SPE can be obtained. The SPE offers a high bandwidth interface to a direct memory
access (DMA) engine that can transfer 32 GB/sec to and from the 256 KB local memory. The important
point to note is that the SPE works only on the data that is in its local memory area called “local store”,
which does not operate as a conventional central processing unit (CPU) cache. However the SPE local
storage is a limited resource as only 256 Kbytes is available for program, stack, local bufferes and data
structures. As such feeding the SPEs has more to do with program and data structure than with concern
over any internal bottlenecks. A programmer explicitly writes DMA operation code to transfer data between
the main memory and the local store. Rather than considering cache control and the impact of memory
bandwidth, the focus is on structuring data movement within the Cell/B.E. processor to keep the SPEs
busy, and dividing the application into vectorized functions to make efficient use of the SPEs. There are
various levels of optimization possible for exploiting parallelism on the Cell/B.E. First thing to do is to
divide the processing into several groups so that multiple SPEs can independently operate each group. Then
execution can be optimized using Single Instruction Multiple Data (SIMD) instructions. The SPEs are short
vector SIMD workhorses of the Cell/B.E. and posses a rich set of SIMD instructions which can operate
simultaneously on 2 double precision values, 4 single precision values, 8 16-bit integers or 16 8-bit chars.
Most of instructions are pipelined and can complete one vector operation in each clock cycle. Furthermore,
communication and computation can be overlapped by double buffering mechanism. A data processing unit
and a memory flow controller on SPE can operate simultaneously. The data processing unit processes the
current data, while the memory flow controller transfers the next data from the main memory to the local
store.

. . . .

SPE

SPU

LS

MFC

SPE

SPU

LS

MFC

SPE

SPU

LS

MFC

SPE

SPU

LS

MFC

EIB (Upto 96B/cycle)

PPU

L1

L2

cache

Memory

I/O

FlexIO

Main Storage
 IO

16B/cycle

16B/cycle
 16B/cycle
 16B/cycle (2x)

PPE

Figure 2: Overview of the Cell multicore architecture showing the nine processing cores – one Power Pro-
cessing Element (PPE) with 256 MB of L2 cache and eight Synergistic Processing Elements (SPEs) without
any cache but 256 KB of local store memory.

3.2 Video Motion Analysis Algorithms

The N-CET video processing chain and the interactions with the JBI/Phoenix database pub-sub services
for managing large volume of image data flows is shown in Figure 3. The N-CET motion estimation client
modules and groups responsible for their implementation are shown in Figure 4. Figure 5 shows the multiple

6
Approved for Public Release; Distribution Unlimited

Figure 3: N-CET video processing chain using heterogeneous multicore architectures.

Figure 4: N-CET motion estimation client and integrated parallel pipelined workflow.

Motion Estimation

and Detection of

Moving Regions

Flux Tensor

Computation

Refinement and

Filtering of

Motion Detection

Morphological

operations

Blob Extraction

Connected

Component

Labeling

Video

Sequence

Foreground

Mask

Processed

Mask

Blob list

and

Properties

Blob Filtering

and Analysis

Statistics

Calculation

Labelled

Mask

Figure 5: Overview of specific moving object detection algorithms for N-CET video motion analysis.

7
Approved for Public Release; Distribution Unlimited

NCET: Video Tracking Data Flow Using
Het erogeneous Multicore Processors

PC Head node
~1-.tlab(Oct .. ~

011'>~!1' PfOCJ:!.<(,fJ~ Nl\•lh)fl' I'II!III'J: :
CJ<-

- ll"tt'*'"' ;,,,. 1:. lfl"lnn
lt~GP\1

f"'PPO!t:M1<t

TJCfl~

He:eroge'"leou~ Cluster

fl~•• a •ntoflt:.lo \ PS ~Cdef
Cfc~'''fro$1't

:·····-L ~~-~9:~!1f . . en& GI;~~J t4."pl!on~r ~ . St.'liriu .
• llktb fxtr;ttio"'
~

-=·~ '5 " -. .c.!,
~ '• ,_

1': , : .,,,,, , ... ,

(1) ... ~"'-"' ..• _ ... ,.,
li f!~::::~;r~~-~:~-~:~:1~~--,·~---,
: ; ; G~ ~r :
• ; : : :>

• 7 s~"'"
1 ""'" '' ~

'
'"'""C • ~
ll<!t IX< j !<-><11•·11

"
{ ,.,.---
... ·---

it. ~·
!~On~ ,YI::~ SIII1:••

fnt<~tt:l, rn~>l'>:rr• fiU!I'
-N t• ' lfooit;. •

.l'llo!lfli!I•Uudlr .. l ,-

registeredrrame nux
ConnP.ct~d

b oblist . -:> fv1(J I'pholo~;· COil'l fH)fl(!l"li'
Subscription Tensor

lahP.Iin~
Publisher

AfRL MU 8RS MU AFRL

stages involved in typical video-based moving object detection and tracking tasks. The different stages are
briefly outlined below.

1. Video frame registration. This step is required whenever the camera is not stationary for example
in airborne video surveillance. The registration process occurs in three steps. First, the input video
frame is divided into sub-blocks which are compared to the previous video frame to determine a motion
vector for that block, and a weighting value corresponding to the expected reliability of that motion
vector. Next, a least-squares fit is used to reduce this field of motion vectors to an affine transformation,
and this transformation is accumulated with the previous transformation to produce the cumulative
transformation over the video stream. Finally, the input video frame is transformed according to this
cumulative transformation to produce the registered video frame. The most computational part of this
process involves the first step of motion estimation using block matching. Although adaptive search
algorithms like diamond search and efficient methods like fast normalized cross correlation, etc. have
been developed, real time implementation becomes very difficult, especially for HD size images. Thus,
parallel implementation of block matching algorithm is highly desirable.

2. Detection of moving foreground regions. This step forms the bulk of computation which varies depend-
ing on the complexity and robustness of the algorithm used. We use pixel-level flux tensor analysis
which does not depend upon background modeling and foreground detection but uses spatiotemporal
energy change to detect regions with motion. The flux tensor is an extension of the grayscale struc-
ture tensor concept and has highly structured computational organization that can be exploited in
the Cell/B.E. implementation. There is high degree of data parallelism in the algorithm as it involves
independent operations for every pixel making it suitable for parallelization on multicore processors.
However, to meet the memory requirement of this algorithm in the limited amount of available memory
within the embedded SPE cores was a challenge.

3. Consolidation, filtering and noise elimination using binary morphology. With a suitable threshold
operation a binary image or mask corresponding to moving regions is created. Morphological operations
“opening” and “closing” are applied to clean-up spurious responses to detach touching objects and fill
in holes for single objects. Opening is erosion followed by dilation and closing is dilation followed
by erosion. More details on basic erosion and dilation operator are explained in Section 3.6 in the
context of parallel implementation. Opening is applied to remove small spurious flux responses, and
closing would merge broken responses. There is a high degree of parallelism in this computationally
expensive step as these operators have to be applied several times across the whole image. Therefore,
faster parallel implementations are not only intuitively beneficial for morphological image processing
but indispensable for real-time requirements.

4. Detection of connected components. In principle, the binary image resulting from Step 2 must have
one connected region for each separately moving object. These regions or blobs must be uniquely
labeled, in order to uniquely characterize the object pixels underlying each blob. Since there is spatial
dependency at every pixel, it is not straightforward to parallelize it. Although the underlying algorithm
is simple in structure, the computational load increases with image size and the number of objects −
the equivalence arrays become very large and hence the processing time.27 Furthermore, with all other
steps being processed in parallel with high throughput, it becomes imperative to parallelize this step
so as to avoid it from becoming a bottleneck in the processing stream. Once the connected components
are detected their statistical properties such as size, bounding box, centroid, etc. are computed for
input to the tracking module.

The blobs produced from the moving objects by the above algorithms are then analyzed for tracking.
Blob statistics (bounding box, centroid, area, perimeter etc.) for each blob/object is calculated and used for
tracking them over sequence of frames for trajectory analysis. Generally the number of objects which are
candidates for tracking are not very large, this step is relatively less computationally intensive for simple
tracking algorithm. Complex tracking algorithms such as multiple hypothesis tracking (MHT) are difficult to
parallelize and are not dealt with in this work. The parallelization of tracking algorithms was not part of the

8
Approved for Public Release; Distribution Unlimited

technical scope of this project. This statistics computation can takes a significant amount of time and was
parallelized in two different ways. One where the computation took place on the PPE during the relabeling
stage of connected component labeling which was found to be too slow. And using a more fine-grained
approach on the SPEs which sped up the computation substantially.

3.3 Registration Using Block Matching

There are several approaches for parallelizing block matching algorithms in the context of H.264 video com-
pression26,31 and video retrieval applications.46 Our intent is to present a summary of our implementation
of the Sum of Absolute Differences technique in the context of video registration for completeness in the
context of the N-CET motion activity analysis workload study. Although this approach was explored as part
of the project we did not perform extensive experiments nor include the code as part of the final deliverable
to AFRL for several reasons. An alternative GPU-based registration algorithm developed by PAR Systems
under contract to AFRL was used for the N-CET video processing chain to evaluate heterogeneous archi-
tectures combining GPU and Cell/B.E. processors. The SAD implementation may not provide sufficient
accuracy and quality of results desired for N-CET video processing. The SAD implementation has not been
fully tested and debugged within the N-CET software environment including video streaming, sharing SPE
threads, communication with JBI or Phoenix pub-sub database system for sharing results, etc.

Block matching algorithms are an important class of motion estimation algorithms, which is usually the
most computationally expensive component of classical approaches to registration. These algorithms divide
each frame into subblocks, called macroblocks (MBs), typically of size 16×16 pixels. The algorithm estimates
the amount of motion on a block by block basis, i.e. for each block in the current frame, a block from the
previous/after frame, called Reference Frame (RF) is found, that is said to match this block based on a
certain criterion. Here, the block matching criteria is the Sum of Absolute Differences (SAD) and the search
algorithm can be a Full Search, a three step search and a diamond search. Each block within a given search
window in reference frame is compared to the current search block I(x,y). At each search step, the sum
of absolute differences between the current search block and the given reference block RF (i, j) is evaluated
using the following criterion:

SAD =

K−1∑
i=0

K−1∑
j=0

| RF (i, j)−MB(i− vx, j − vy) | (1)

Where, K is the size of the block, vx and vy refers to the motion vector, which means amount of motion from
the current macroblock to the reference block. The best match is obtained if SAD achieves the minimum.
Only the intensity values (not the color information) is used in the computation, meaning that pixel values
are simple unsigned character values that may be stored in one byte.

Performing a full search over all 32 × 32 possible locations guarantees the location with the lowest
SAD value is found. But this is also computationally expensive, requiring for each point calculated 256
subtractions, 256 absolute values and 255 additions. Instead, the three step search checks eight points in
a square pattern around a center pixel, re-center on the point with the lowest value, then repeat using a
smaller size of square. The sizes used in pixels measured from the center are 8, 4, 2 then 1. Diamond search
is similar, but uses only four points in the cardinal directions and searches only one pixel away. It terminates
when no lesser SAD value can be found.

3.4 Parallel Implementation on Cell/B.E.

In order to efficiently compute a full field of motion vectors over an entire image, the PPE partitions the
frames in terms of subblocks (SBs) and distributes the computation task across multiple SPEs in parallel.
Choosing a rectangular region that is a multiple of 16 in both height and width for the SB works well over
a large variety of image sizes. A SPE accesses the frame data in data chunks which is composed of a row of
SBs from the current frame and a row of search windows from the reference frame. This division in block
of rows allows large chunk of data to be transferred into the local memory in a single DMA transaction and
also allows for data reuse as the search window for the adjacent SBs overlap in the reference frame. This

9
Approved for Public Release; Distribution Unlimited

is illustrated in Figure 6. The left part of the figure shows the first SB (white block) in the current frame
and the search window (darker gray area) in the reference frame. The right part of the figure shows the
adjacent SB in the same row along with the first SB in dotted outline. This leads to a region of overlap
in the search window. When all the SBs in a row are processed, the obtained results, the Motion vectors
and the SAD distortion measures, are passed back to the PPE in a single DMA transaction. This process
is repeated for subsequent rows of SBs allocated to the SPE. Note that there is also an overlap of data in
two consecutive rows of search windows which will end up being transferred from main memory to SPE
memory twice. However since the algorithm is computationally bound the extra bandwidth utilized is not a
significant factor.

Motion block in

Current Frame

Search window in

Reference Frame

Data Overlap

Figure 6: Frame division in blocks of rows. The overlapping search window region for adjacent blocks in a
row allows data reuse.

The Cell/B.E. processor is optimized for loading data from the local store that is aligned into 128-bit
or 16 byte vector cache lines. Thus the data is packed in aligned byte vectors for optimized vector based
calculations. The size of SB being a multiple of 16, allows the data from the current frame SB to be accessed
in aligned 16 bytes. However, search is done by shifting pixel by pixel, requiring pixel based (misaligned)
data access from the reference frame. The following code snippet shows the procedure and use of specialized
instructions from SIMD intrinsic library for loading misaligned quadword on the SPE.

Listing 1: SPE code for loading misaligned quadwords

vec uchar
load qword una l igned (vec uchar ∗ptr)
{
vec uchar qw0 , qw1 , qw ;
unsigned int s h i f t ;
qw0 = ∗ptr ;
qw1 = ∗(ptr +1);
s h i f t = (unsigned int) (ptr) & (16−1);
qw = spu or (spu s lqwbyte (qw0 , s h i f t ,

spu rlmaskqwbyte (qw1 , (signed) (s h i f t −16))) ;
return qw ;
}

The SAD value calculation scheme is presented in Figure 7. It is similar to the method proposed in31 as
far as the use of intrinsic instructions is concerned. The SPE SIMD intrinsic library provides two optimized
vector instructions for performing: spu absdb and spu sumb intrinsic. The spu absdb calculates the absolute
value of the differences between 16 intensity values simultaneously and the spu sumb sums up four by four
bytes of each argument vectors in eight elements (16-bit short) of the resultant vector. 16× 16 pixel macro-
blocks nicely map onto these instructions because 16 128-bit vectors can represent an entire macro-block.
Issuing 16 spu absdb instructions followed by 8 spu sumb instructions leaves 8 vectors of 8 values each. After
seven more adds, the sum is accumulated to a single SAD vector of 8 values, which are finally summed into
a 32-bit signed value. The sums may be computed in any order, so the algorithm is not restricted in how
the data values are accessed, leaving potential for further optimization.

10
Approved for Public Release; Distribution Unlimited

A00

B00

A01
 A14

B01
 B14

. . .

. . .

spu_absd

D00
 D01
 D14
. . .

A15

B15

D15

S0
 S7
. . .

spu_sumb

spu_add

Sum

Current MB

Reference MB

Absolute Diff.

Partial Sums

00
 01
 02
 03
 04
 05
 06
 07
SAD Vector

spu_extract

Figure 7: SAD value calculation scheme on SPU using vector instructions

3.5 Power Efficient Parallel Flux Tensor Computation for Motion Detection

The flux tensor motion flow algorithm is a versatile computer vision technique for robustly detecting moving
objects in cluttered scenes. The flux tensor calculation has a high computational workload consisting of
3-D spatiotemporal filtering operations combined with 3-D weighted integration operations for estimating
local averages of the flux tensor matrix trace. Power efficient real-time flux tensor processing is required
in a variety of operational scenarios including video-based net-centric exploitation and tracking on airborne
platforms and ground-based multi-sensor imaging for force protection. In order to achieve efficient real-
time processing of high bandwidth video streams a data parallel multicore algorithm was developed for
the Cell/B.E. processor and evaluated in terms of the energy to computation efficiency compared to a
fast sequential CPU implementation. The Cell/B.E. has an appealing power-efficient multicore SPMD
architecture for parallelizing video exploitation algorithms close-to-the-sensor. We describe the multicore
parallel implementation of the dense regular computation of the flux tensor moving object detection algorithm
on 3D grids, discuss architecture and algorithm specific issues and provide initial performance results. Our
multicore implementation is 12 to 40 times faster than the sequential version for HD video using a single PS-3
Cell/B.E. processor and is faster than realtime for a range of filter configurations and video frame sizes. We
report on the power efficiency measured in terms of performance per watt for the Cell/B.E. implementation
which is 50 to 160 times better than the sequential version for HD video depending on the filter size. The
results suggest an additional strategy to trade off output image quality or nominal change in accuracy of
detection for improved energy efficiency in suitable environments.

Realtime persistent moving object detection and tracking for surveillance applications is a computa-
tionally challenging problem. Current trends in distributed sensor networks and agile systems favors the
processing of large volumes of raw data closer to the sensor to reduce bandwidth requirements, extract
high priority scene information more rapidly and exchange integrated information for cooperative down-
stream processing. Energy efficiency has become a leading design constraint for both hardware and software.
Algorithmic approaches to improve energy efficiencies are complementary to hardware and systems-based
approaches. Switching between active and sleep (or multiple low-power) modes in the idle state using a
randomized algorithm for state transitions, dynamic speed-scaling using a job scheduler with fixed or flex-
ible completion deadlines, and adaptive network topologies are several approaches that are being actively
investigated for energy-efficient algorithms.1 Multicore parallel processing environments are widely available
today for which energy efficient algorithms are equally important and have greater flexibility in that the
number of processors used can be dynamically changed based on a completion time versus energy tradeoff.
Scheduling algorithms to minimize total energy across identical parallel processors has been shown to be
non-deterministic polynomial-time hard (NP-hard) even for unit-sized jobs.2

11
Approved for Public Release; Distribution Unlimited

We characterize the workload of the flux tensor algorithm for moving object detection in high bandwidth
video streams. The parallel flux tensor algorithm exhibits super-linear speed-up due to the vectorization, loop
unrolling, FMA operations and double-buffering optimizations for the Cell/B.E. architecture which along
with the power efficiency of the Cell/B.E. processor provides a tremendous improvement in the performance
per watt metric compared to an optimized sequential implementation. The variation in performance efficiency
for different flux tensor filter sizes further suggests another avenue for energy efficient algorithm design –
namely output image quality. That is trading off the accuracy of the flux tensor operator under certain
environmental conditions using a slightly smaller filter to reduce energy use but with marginal impact on
moving object detection.

Power efficient real-time flux tensor processing is required in a variety of operational scenarios includ-
ing video-based net-centric exploitation and tracking on airborne platforms and ground-based multi-sensor
imaging for force protection. Synergistic collaborative computation exploiting net-centricity can enable dis-
tributed interacting compute and sensor nodes to accomplish mission goals more effectively in terms of
survivability, ease of fielding, and reconfigurability using a modular joint information management system30

(see Figure 1). Such agile sensor networks need to be further enhanced to minimize overall power consump-
tion under the constraint of still yielding the best exploitable information in a timely manner. Embedded
video processing requires efficient algorithms in terms of power-aware computing as well as parallelization
to enable real time performance in analyzing complex video.

There are a number of challenging computer vision problems that need to be solved for stabilizing,
detecting, extracting, verifying and tracking moving objects in airborne video.3,14,15,19,40,47 In this section
we focus on the flux tensor part of the video processing pipeline, namely power-efficient realtime moving
object detection that is robust to variations in illumination, moving cast shadows or cloud movements, clutter,
noise, and occlusions. In order to reliably detect moving blobs in unconstrained video, we use the recently
proposed flux tensor (JF) operator,8,9 which captures the temporal variations of the optical flow field within
the local 3D spatiotemporal volume. The flux tensor detects only the moving structures, and is less sensitive
to illumination, focus and related problems compared to other moving object detection algorithms including
classical background subtraction, mixture of Gaussians and 3D structure tensor orientation estimation. The
flux tensor motion detection results have in general better spatial coherency enabling more accurate motion-
based object segmentation. The flux tensor is more efficient in comparison to the 3D grayscale structure
tensor since motion information is more directly incorporated in the flux calculation which is less expensive
than eigenvalue decompositions at each pixel in the image.

This section describes in detail the parallel implementation of the flux tensor optimized for the mul-
ticore Cell/B.E. processor for real-time processing of high-bandwidth video streams in power constrained
environments. Some early supercomputing architectures like the SIMD MasPar were ideally suited for im-
age analysis tasks like deformable motion estimation34 and similar architectures are being mapped onto
the embedded processor level. The PS-3 Cell/B.E. processor provides a modern power efficient single chip
high performance computational platform, with seven heterogeneous cores - one Power Processing Element
(PPE) and six (of eight) active Synergistic Processing Elements (SPEs). The PPE is a 64-bit processor that
is binary-compliant with the PowerPC 970 but with a simpler architecture supporting dual issue, in-order
execution. Each SPE consists of a 3.2 GHz Synergistic Processing Unit (SPU), a large 128-entry 128-bit
vector register file, a small 256 Kbytes of private local store memory, short pipelines, and a memory-flow
controller (MFC) to access the 256 MB of shared main memory using non-blocking DMA commands at 25.6
Gbytes/s. The SPUs are in-order dual-issue statically scheduled short-vector number crunchers with support
for SIMD instructions operating on packed multiple data value without dynamic branch prediction. The
PS-3 version of the Cell processor is optimized for single-precision arithmetic (double-precision peak is less
than 11 GFLOP/s) with truncation rounding. Each SPE can perform 25.6 GFLOP/s single-precision floating
point operations at 3.2GHz. Although the six SPEs can deliver 153.6 GFLOP/s peak performance, memory-
intensive single-precision calculations max out at 12.8 GFLOP/s (and double-precision at 6.4 GFLOP/s)
due to memory bandwidth limits.24 The Cell/B.E. uses the single program multiple data (SPMD) paral-
lel processing model which is more powerful than the single instruction multiple data (SIMD) model for
heterogeneous multithreaded data flow execution mapped onto SPEs.

12
Approved for Public Release; Distribution Unlimited

The Cell/B.E. offered one of the first commercial implementations of a power efficient high performance
single chip multiprocessor with a significant number of general-purpose programmable cores targeting a broad
set of workloads.18 A good description of scientific computing and programming on the Cell is provided in10

and other details of implementing scientific computing kernels and programming memory hierarchies can
be found in.16,44 In,45 the authors discuss interesting code transformation techniques for moving scientific
simulation codes to the Cell/B.E. and5 describes the fastest Fourier transform for the Cell processor (18.6
GFLOP/s). Several programming models like RapidMind,28 Multicore Framework by Mercury,7 CellSs,6

StarPU4 have also emerged to support efficient programming for multicore processors. In order to reduce
complexities of task management, multithreading and synchronization for programming the Cell/B.E. some
tools for mapping serial code in a semi-automatic fashion are in development.37,38 We first give a brief
overview of the flux tensor method and discuss the sequential implementation along with the computation
and memory characteristics. Then we discuss the parallel architecture issues involved in our Cell/B.E.
implementation. A description of the data partitioning scheme and parallelization procedures to map the
flux tensor algorithm onto the Cell/B.E. cores is followed by experimental results.

3.5.1 Flux Tensor-based Motion Detection

The 3D flux tensor was shown to be a robust and computationally efficient method for coherent detection
of moving regions in video.8,9, 33 The flux tensor is a more efficient operator in comparison to the 3D
grayscale structure tensor35,43 since motion information is more directly incorporated in the flux calculation
without the necessity for computing eigenvalue decompositions as with the 3D grayscale structure tensor. We
summarize the mathematical description of the structure tensor and flux tensor multidimensional orientation
estimation methods in order to provide a background on the types of operators needed to compute the flux
tensor quantity for robust motion estimation.

Under the constant illumination model, the optic-flow (OF) equation of a spatiotemporal image volume
I(x) centered at location x = [x, y, t] is given by Eq. 2 where, v(x) = [vx, vy, vt] is the optic-flow vector21 at
x,

dI(x)

dt
=

∂I(x)

∂x
vx +

∂I(x)

∂y
vy +

∂I(x)

∂t
vt

= ∇IT (x) v(x) = 0 (2)

and ∇I(x) is the image gradient vector field. A constrained total least-squares minimization approach
can be used to estimate the spatio-temporal orientation vectors v(x). Using the normalization constraint
||v(x)|| = 1 in order to avoid degenerate solutions, leads to the minimization functional,

els(x) =

∫
W (x,y)

(
∇IT (y) v(x)

)2
dy

+λ
(

1− v(x)
T
v(x)

)
(3)

with Lagrange multiplier λ, W (x,y) = W (x−y) is a spatially invariant weighting function (e.g., Gaussian)
that is localized, centered at x and emphasizes image gradients near the central pixel32 and the integral is
a multidimensional integral. Assuming a constant orientation v(x) model within the neighborhood W (x,y)
solving for the minimum of els(x) in (Eq. 3) leads to the eigenvalue problem,

J(x,W) v̂(x) = λ v̂(x) (4)

where v̂(x) is the best spatiotemporal orientation estimate of v(x), and J(x,W) the 3D structure tensor
matrix associated with the spatiotemporal volume centered at x is shown below using an outer product
notation,

J(x,W) =

∫
W (x− y)

(
∇I(y) ∇IT (y)

)
dy (5)

13
Approved for Public Release; Distribution Unlimited

The structure tensor matrix J(x,W) is symmetric, real and composed of first-order derivatives with each
matrix element given by,

Jpq(x,W) =

∫
W (x− y)

(
∂I(y)

∂xp

∂I(y)

∂xq

)
dy (6)

The elements of J (Eq. 6) describes information relating to local spatial and temporal gradients in simple
neighborhoods. A typical approach in motion detection is to threshold Trace(J),

Trace(J(x)) =

∫
W (x− y)||∇I||2dy

=

∫
W (x− y)

(∂I
∂x

)2
dy +

∫
W (x− y)

(∂I
∂y

)2
dy

+

∫
W (x− y)

(∂I
∂t

)2
dy (7)

but this results in ambiguities in distinguishing responses arising from stationary versus moving features (e.g.,
edges and junctions with and without motion), since Trace(J) incorporates total gradient change information
but fails to capture the nature of these gradient changes (i.e. spatial only versus spatiotemporal).42 To resolve
this ambiguity and to classify the video regions experiencing motion, the eigenvalues and the associated
eigenvectors of J are usually analyzed.9,35,42,48 Motion associated with small eigenvectors are classified
as noise and discarded. However, eigenvalue decomposition at every pixel is computationally expensive
especially if real time performance is required. In order to reliably detect only the moving structures
without performing expensive eigenvalue decompositions, the flux tensor has been shown to be a more
robust operator.8,33 The flux tensor is composed of the temporal variations in the optical flow field within
the local 3D spatiotemporal volume. Computing the second derivative of Eq. 2 with respect to t, Eq. 16 is
obtained where, a(x) = [ax, ay, at] is the acceleration of the image brightness located at x.

∂

∂t

(
dI(x)

dt

)
=
∂2I(x)

∂x∂t
vx +

∂2I(x)

∂y∂t
vy +

∂2I(x)

∂t2
vt

+
∂I(x)

∂x
ax +

∂I(x)

∂y
ay +

∂I(x)

∂t
at (8)

which can be written in vector notation as,

∂

∂t
(∇IT (x)v(x)) =

∂∇IT (x)

∂t
v(x) +∇IT (x) a(x) (9)

Using the same approach for deriving the classic 3D structure, minimizing Eq. 16 assuming a constant
velocity model and subject to the normalization constraint ||v(x)|| = 1 leads to,

eFls(x) =

∫
W (x,y)

(
∂∇IT (y)

∂t
v(x)

)2

dy

+λ
(

1− v(x)
T
v(x)

)
(10)

Using a constant velocity model within a local neighborhood Ω(x,y), results in the acceleration field being
zero everywhere. As with its 3D structure tensor counterpart J in Eq. 5, the 3D flux tensor JF based on
the total least squares solution of Eq. 10 can be written as,

JF(x,W) =

∫
W (x,y)

∂

∂t
∇I(x) · ∂

∂t
∇IT (x)dy (11)

which can be expanded to the matrix form,

JF =



∫
W
{

∂2I
∂x∂t

}2
dy

∫
W ∂2I

∂x∂t
∂2I
∂y∂t

dy
∫
W ∂2I

∂x∂t
∂2I
∂t2

dy

∫
W ∂2I

∂y∂t
∂2I
∂x∂t

dy
∫
W
{

∂2I
∂y∂t

}2
dy

∫
W ∂2I

∂y∂t
∂2I
∂t2

dy

∫
W ∂2I

∂t2
∂2I
∂x∂t

dy
∫
W ∂2I

∂t2
∂2I
∂y∂t

dy
∫
W
{

∂2I
∂t2

}2
dy

 (12)

14
Approved for Public Release; Distribution Unlimited

As seen from Eq. 12, the elements of the flux tensor incorporate information about temporal gradient changes
which leads to efficient discrimination between stationary and moving image features. Thus the trace of the
flux tensor matrix can be compactly written and computed as,

Trace(JF(x)) =

∫
W (x− y)|| ∂

∂t
∇I||2dy (13)

and can be directly used to classify moving and non-moving regions without the need for expensive eigenvalue
decompositions. The trace of the flux tensor matrix, referred to as Tr JF , can be written explicitly as,

Trace(JF) =

∫
W (x− y)

{ ∂2I

∂x∂t

}2
dy +

∫
W (x− y)

{ ∂2I

∂y∂t

}2
dy +

∫
W (x− y)

{ ∂2I

∂t∂t

}2
dy (14)

where W is a spatially invariant weighted averaging operator. Using the simplified derivative notation,

Ixt =
∂2I

∂x∂t
, Iyt =

∂2I

∂y∂t
, Itt =

∂2I

∂t∂t
(15)

then Eq. 17 requires calculating the second derivatives Ixt, Iyt and Itt followed by numerically integrating
the squares of Ixt, Iyt and Itt within the spatiotemporal window W . Robust statistics methods can be used
to scale and compare the flux tensor trace response in a data adaptive manner while minimizing the use of
fixed thresholds for determining which pixels belong to the set of moving objects.49,50

To summarize, in order to reliably detect moving structures without performing expensive eigenvalue
decompositions, the flux tensor has been shown to be a more robust operator in comparison to the more
widely used structure or orientation tensor.8,33 The flux tensor is composed of the temporal variations in the
optical flow field within the local 3D spatiotemporal volume. Computing temporal derivative of the optical
flow equation and setting the image brightness acceleration to zero gives,

∂

∂t

(
dI(x)

dt

)
= Ixt vx + Iyt vy + Itt vt, (16)

where I(x) is the spatiotemporal image volume, t is time, v(x) = [vx, vy, vt] is the optic-flow vector at x, and
the second derivative terms are defined as before. The Ixt and Iyt terms capture information about moving
edges or gradients in the video while Itt incorporates information on moving textures and temporal illumina-
tion changes. A total least squares solution to Eq. 16 leads to the structure tensor matrix, JF(x,W (x,y)),
with an integration kernel W (x,y). We use the trace of the flux tensor matrix, referred to as Tr JF , that is
defined below,

Tr JF =

∫
Ω

W (x− y)(I2
xt(y) + I2

yt(y) + I2
tt(y))dy (17)

as the computational operator to reliably detect moving regions in video streams. A spatially invariant
integration kernel W (x− y), also referred to as the local averaging operator, is used for low power operation
(instead of a more expensive spatially varying kernel) and is applied after the derivative computations in the
flux tensor trace are completed.

3.5.2 Numerical Computation of the Flux Tensor

The calculation of the second derivative operators needed to compute the trace of the flux tensor matrix are
implemented as convolutions with appropriate kernel filters. Although general 3D convolution kernels can
be used, separable kernels are preferred as the 3D convolutions then can be decomposed into a cascade of
1D convolutions with a substantial reduction in computational cost from O(n3

k) to O(nk) for an nk×nk×nk
sized filter. For numerical stability as well as noise reduction, a smoothing filter is applied along the third
dimension that is not involved in the specific second derivative filter. The calculation of the first component
of the trace, Ixt, uses derivative filters in the x- and t-dimensions and smoothing along the y-dimension,
whereas calculation of Iyt uses smoothing along the x-dimension. The final component of the flux tensor
matrix trace, Itt, is the second derivative along the temporal direction and in this case the smoothing

15
Approved for Public Release; Distribution Unlimited

Dx

Sx

Sy

Sy

Dy

Dt

Dtt

Dt

| |2

| |2

| |2

 Ax Ay At

IDx

ISx

ISx

IDxSy

ISxDy

ISxSy

Ixt

Iyt

Itt

I2
xt

I2
tt

I2
yt

I(x,y,t) Tr(JF) ∑

Figure 8: Operator-centric data flow view of the various stages required to compute the flux tensor operator
on a 3D spatiotemporal volume showing the task dependency relationships. Note that the magnitude squaring
operators are explicitly shown. The summation stage is done prior to spatiotemporal averaging steps for
computational efficiency at the cost of reduced parallelism.

is applied along both spatial dimensions. The integral operator is also implemented numerically as an
averaging filter decomposed into three 1D filters. The operation flow is illustrated in Figure 8. The data flow
objects IDxSy

, ISxSy
and ISxDy

represent the intermediate spatial convolution results required to calculate
Ixt, Iyt and Itt. The operator modules shown in Figure 8, are the spatial smoothing filters Sx and Sy,
the spatial derivative filters Dx and Dy, both in the x- and y-directions respectively, and the temporal
derivative operators Dt and Dtt, representing first and second derivative filters in t respectively. The final
averaging filters are the integral part of the flux tensor operator with Ax, Ay and At representing averaging
filters in x-, y- and t-directions respectively. The data flow shown in Figure 8 reflects optimizations for
a sequential implementation. Specifically, the summation block is being done prior to the spatiotemporal
averaging operators for improved computational efficiency but at the expense of increased task dependencies
and reduced parallelism (see Eq. 18 discussion). Exchanging the order of the sum and averaging filters will
increase parallelism but would require more memory or additional computation. For the implementation
shown in Figure 8, calculating the flux tensor trace for each video pixel requires eight 1D convolutions for the
three spatiotemporal derivatives and three 1D convolutions for local averaging filters within the corresponding
spatiotemporal cubes. The number of temporal filtering operations is reduced by saving intermediate results
using additional memory.

The filter lengths or tap sizes associated with the three kernels for computing the flux tensor trace,
(nSx

, nSy
, nDx

, nDy
, nDt

, nDtt
, nAx

, nAy
, nAt

) are the full set of filter parameters that would need to be
specified for a given application. Since we use spatially isotropic filters, we have a reduced set of parameters
to specify, with nDx = nDy = nDs , nSx = nSy = nSs , nAx = nAy = nAs . Typically we use the same
filter lengths for the first and second temporal derivative kernels (= nDt

) and for the spatial smoothing
and derivative kernels, i.e., nSs

= nDs
. Thus, there remains four main parameters of the flux tensor;

(nDs
, nDt

, nAs
, nAt

) which are the 1D filter sizes of the spatial derivative filter, the temporal derivative filter,
the spatial averaging filter, and the temporal averaging filter respectively. In medium to close view shots,
the choice of (5, 5, 5, 5) for filter sizes works well for detection. For the very far view sequences, where the
objects may be quite small and moving very slowly, a (3, 9, 3, 3) size works best. The large temporal filter
size helps to catch the slow motion, the small spatial filter size helps to detect small motion and keeps the
smoothing to a minimum.

3.5.3 Sequential Implementation of the Flux Tensor Operator

The flux tensor implementation uses just the luminance component of the RGB video (1920×1080 pixels). In
our earlier work,9 we described a reference sequential implementation that has minimum memory requirement
and used just a single input image First In First Out (FIFO) buffer of size (nDt

+nAt
−1) for storing the input

16
Approved for Public Release; Distribution Unlimited

frames but at the cost of recomputing all spatiotemporal derivatives and integrals for each new video frame.
This can be a significant penalty in terms of time and power since many intermediate filtering results that can
be reused now have to be recomputed. A more efficient sequential implementation that minimizes redundant
computations using one larger FIFO buffer of size 4 ∗ (nDt

+ nAt
− 1), for the intermediate spatial and

temporal derivatives, and storing these intermediate results to be reused across temporal stages is described
previously.8 Here, we discuss a new alternative approach that further improves memory efficiency by using
dual FIFO buffers with a smaller memory footprint of 3∗nDt +nAt plus a few additional frames. Each frame
of the input sequence is first convolved with spatial derivatives and smoothing filters. The intermediate
results are stored as frames to be used in temporal convolutions, and pointers to these frames are stored in
a FIFO buffer. The size of the first FIFO structure is of length nDt

and for each input frame three spatial
derivative frames IDxSy

, ISxDy
and ISxSy

are calculated and stored. Hence, the number of frames that need
to be stored in the first FIFO structure is 3nDt . Once nDt frames are processed and stored, the FIFO
structure has enough frames for calculation of the temporal derivatives. Three frames of storage are needed
to hold the temporal derivatives in memory for the current timestep.

Since averaging is distributive over addition for linear operators, the sum of squares I2
xt + I2

yt + I2
tt, which

is the trace of the flux tensor matrix is computed first, then spatial averaging is applied to this result and
stored in a second FIFO structure of size nAt

, to be used in the temporal part of averaging. The numerical
expression that is being computed is,

Tr JF (x) =
∑

y∈N (x,y,t)

W (x− y)
(
I2xt(y) + I2yt(y) + I2tt(y)

)
(18)

where N is the local neighborhood over which the square of the second derivatives are summed. A weighted
averaging filter, such as a Gaussian, can be used at the expense of additional computing cost. Typically box
filters are used for a power efficient implementation. This temporal averaging FIFO keeps nAt frames at a
time and produces the flux tensor trace after it is full. Once both FIFO’s are full, processing a new input
frame causes a shift of pointers in both FIFO’s, reusing intermediate results from previous calculations and
reducing the total computation per flux tensor output frame. Figure 9 shows the steady state operation of
FIFO’s for nDt

= 5 and nAt
= 5.

I
t-10
 I
t-9
 I
t-8
 ...
 ...
 ...
 ...
 I
t-3
 I
t-2
 I
t-1
 I
t

n
D
t

I
xt
 I
yt
 I
tt

T-6
 T-5
 T-4
 T-3
 T-2

T-4

Sequence of Input Frames

FIFO 1

Spatio
 -temporal Derivatives

Tr_J
F

Weighted Averaging

=5

=5

I
D
x
S
y

I
S
x
D
y

I
S
x
S
y

FIFO 2

n
A
t
 2
2
2

tt
yt
xt

I
I
I
 +
+

T-8
 T-7
 T-6
 T-5
 T-4
 T-3
 T-2
 T-1
 T
T-8
 T-7
 T-6
 T-5
 T-4
 T-3
 T-2
 T-1
 T
T-8
 T-7
 T-6
 T-5
 T-4
 T-3
 T-2
 T-1
 T

Figure 9: Steady state flow in sequential flux tensor implementation. The memory footprint (MF) for the
given filter sizes (nDt

= 5, nAt
= 5) is MF = 25×M ×N × 4 bytes.

3.5.4 Parallel Implementation of the Flux Tensor Operator on the Cell/B.E.

A power efficient multicore implementation needs to take full advantage of the intrinsic Cell/B.E. architecture
specific hardware accelerations in order to use the best choice of data and task partitioning across SPEs,
managing memory transfers, taking full advantage of vectorization and using local buffers. The 3.2 GHz

17
Approved for Public Release; Distribution Unlimited

SPEs deliver their peak performance while executing a fused short vector multiply add instruction (FMA)
on each clock cycle that operates on a four floating-point element vector to complete eight floating point
operations in SIMD fashion. Thus a peak performance of 25.6 single-precision GFLOP/s per SPE can be
obtained. An important point to note is that the SPEs work only on data that is in its local memory (local
store). However, the SPE local storage is a limited resource as only 256 Kbytes is available for program,
stack, local buffers and data structures. Making sure the SPEs efficiently receive and operate on current
data without excessive buffering is critical to achieving high performance on the Cell/B.E. architecture.
Rather than considering cache control and the impact of memory bandwidth, we focus on structuring data
movement within the Cell/B.E. processor to keep the SPEs busy, and dividing the application into vectorized
functions to make efficient use of the SPE hardware.

We implemented and tested our code on the SONY PS-3 which is a very energy efficient multicore
processor but only six of eight Cell SPE processors are available and the main/external XDR memory on
the PPE is a restrictive 256 MB of which only about 200 MB is available to the Linux OS. To accommodate
the required frame storage buffers and data structures for the parallel implementation, the data partitioning
and grouping of the operations needed careful consideration. For main memory the parallel algorithm uses
two FIFO buffers of size nDt and nAt for calculation of temporal derivatives and temporal averaging. In
the sequential implementation, all the spatial derivatives are kept in the first FIFO buffer which requires
3nDt

frames to be stored in main memory. However, there is insufficient shared (global) memory on the
Cell/B.E. to cache this many intermediate results. Additionally, there is significant communication overhead
increasing the communication-to-compute ratio, since the intermediate results need to be transferred back
and forth between main memory and the SPE local store, which reduces overall efficiency. Consequently,
for the Cell/B.E. parallel implementation of the flux tensor, we store only the input sequence of images in
the first FIFO buffer of size nDt

(instead, of 3nDt
for storing the spatial derivatives) and recalculate the

spatiotemporal derivatives for each successive frame at the cost of redundant calculations. We estimate the
amount of redundant work to be between a factor of 2 and 5 depending on the filter sizes shown in Table
1, compared to the sequential version. There is no overlap in the work unit computation between adjacent
SPEs, as shown by the vertical lines and faces marked in red in Figure 11 but there is an extra quad word
data transfer (16 bytes) on left and right sides to provide pixel padding in the x-convolution direction. The
second buffer FIFO2 operates the same as in the sequential case. The steady state behavior of the FIFO’s
for the Cell/B.E. implementation is shown in Figure 10.

I
t-10
 I
t-9
 I
t-8
 I
t-7
 I
t-6
 I
t-5
 I
t-4
 I
t-3
 I
t-2
 I
t-1
 I
t

n
D
t

I
xt
 I
yt
 I
tt

T-6
 T-5
 T-4
 T-3
 T-2

T-4

Sequence of Input Frames

Spatio
 -temporal Derivatives

Tr_J
F

Weighted Averaging

=5

=5

FIFO 1

n
A
t
 2
2
2

tt
yt
xt

I
I
I
 +
+

FIFO 2

Figure 10: Steady state flow in flux tensor implementation on Cell/B.E.. The memory footprint for the
given filter sizes (nDt

= 5, nAt
= 5), MF = 14 ×M ×N × 4 bytes is much smaller than for the sequential

version where there is often a large amount of fast memory available for the processor cores.

In order to parallelize across SPEs, the data needs to be partitioned into equal work blocks amongst
different SPEs for optimal performance. Since there are convolutions in three dimensions (x, y, t), the whole
work unit can be visualized as a 3D block. This is partitioned into as many overlapping blocks as there
are number of active SPEs. The data is fetched and processed one row at a time. Due to finite size of
the local store memory, each SPE may further subdivide the work block into smaller chunks and process

18
Approved for Public Release; Distribution Unlimited

Figure 11: Data partitioning scheme showing Work Unit (WU) block width in pixels on SPEs. The 3D block
represents the spatiotemporal 3D grid of input data that needs to be processed to produce one flux tensor
output frame. The 3D grid of data is chunked uniformly to distribute to each SPE. Since the partition is too
large to fit into the limited SPE memory, each work block is further divided into smaller work units. The
WU sizes are dependent on the filter sizes as labeled.

Figure 12: Efficient SPE implementation of a three tap convolution filter in the x-direction.

a work unit width of WU columns each time. The data partitioning scheme and full work unit block is
illustrated in Figure 11. The execution process on the PPE and SPE side is summarized in Algorithms 1 and
2 respectively. Optimized convolution operators are represented using the ⊗ symbol, without the explicit
loop unrolling or optimized FMA operations are explicitly shown for simplicity. The efficient implementation
of the convolution operators is shown in Figure 12.

19
Approved for Public Release; Distribution Unlimited

/ , ,
SPE0

... SPE"

II

Original 3D Block Partitioned Work Blocks

1 nDt I ~ I

11 nov

no. ~--------------------------------~ nox
2 w

One Work Unit

prelude

p;:,rt :!
part 3
part 4

steps are marked with a black number,
with th e prelude starting at 0 .

lD l ll

28

3 accum_A=fi tterO OA

6 accum_A+ = fi lterl ,. lA
accum_A+=fi lter2 .. 2A

10 (result++)= accum_A

s accum_B=fi tt~rc • 08

9 accum_B+=fi lterl,. 18
accum_B+=fi lter2 + 28

2

s accum_C=f1 tt~ro t ex_

Algorithm 1 Parallel Flux Tensor: PPE side

Input : Input Image sequence I(x, y, t)

Output : Flux Trace frame Tr JF (x, y, t− bnDt/2c − bnAt/2c)

1: for each time t do

2: Push(I(x, y, t), FIFO1)

3: Initialize number of intermediate flux frames, Nm ← 0

4: if FIFO1 contains nDt frames then

5: Partition data into blocks.

6: Put SPE control block information including work unit W and output location for intermediate flux F and

final output Tr JF .

7: Set up SPE threads and wait for results F , Tr JF .

8: Push(F , FIFO2)

9: Nm ← Nm + 1

10: if Nm > nAt then

11: Write output Tr JF

12: end if

13: end if

14: end for

3.5.5 Theoretical Estimation of the Flux Tensor Computational Requirements

The steady state operation of FIFO’s for nDt
= 5 and nAt

= 5 is shown in Figure 9. The memory footprint
(MF) in number of frames and the delay or lag (`) between input and output are given as,

MF = 3nDt
+ nAt

+ 5, ` = b(nDt
+ nAt

)/2c − 1 (19)

Our initial theoretical estimates for the number of multiplications (Nm) required to calculate the flux response
of a frame of N ×M pixels for a given filter sizes (nDs

, nDt
, nAs

, nAt
) was,

Nm = MN(3nDt
+ nAt

+ 2nAs
+ 6nDs

+ 3) + (M + N)[nAs
(1 − nAs

) + 3nDs
(1 − nDs

)] (20)

For (nDs
, nDt

, nAs
, nAt

) = (7, 5, 7, 5) and M = 640, N = 480 image size then Nm = 24, 268, 800 multiplica-
tions (and an equivalent number of additions) per frame. For 30 fps performance the flux tensor operator
would require 1.5 GFLOPs (728 megaflops (MFlops) each for multiply and add) and for HD about 330
MFlops per frame for the sequential algorithm.

Further analysis, led a more refined estimate for the theoretical estimate of the computational cost for
the flux tensor implementation. Using a consistent notation between the report and the earlier work we gave
the following calculations. Following are the old notation and their new counterparts:

Nsx = Nsy = Ndy = Ndx =nDs
spatial derivative filter size

Nax = Nay =nAs
spatial averaging filter size

Ndt = Ndtt =nDt
temporal derivative filter size

Nat =nAt
temporal averaging filter size

20
Approved for Public Release; Distribution Unlimited

Algorithm 2 Parallel Flux Tensor: SPE i

Input : Images in FIFO1, Nm, starting col Ci, and work block width W .

Output : Blocks of Intermediate Flux into FIFO2 and flux trace Tr JF

1: for each row r of Work Block do

2: Load from FIFO1, pixel data Ir from column Ci − bnDs/2c up to Ci + W + bnDs/2c into local store

3: Push(Ir ⊗ Sx, ISx buffer);

Push(Ir ⊗Dx, IDx buffer);

4: if ISx buffer and IDx buffer have nDs rows then

5: ISxDy = ISx ⊗Dy;

6: ISxSy = ISx ⊗ Sy;

IDxSy = IDx ⊗ Sy;

7: Iyt = ISxDy ⊗Dt;

Itt = ISxSy ⊗Dtt;

Ixt = IDxSy ⊗Dt;

Fr = I2xt + I2yt + I2tt ;

8: Push(Fr, FIFO2);

Pop(ISx buffer);

Pop(IDx buffer);

9: end if

10: end for

11: if Nm ≥ nAt then

12: for each row r of Work Block do

13: Load from FIFO2, Fr data from column Ci − bnAs/2c up to Ci + W + bnAs/2c into local store

14: Push(Fr ⊗Ax,IAx buffer);

15: if IAx buffer has nAs rows then

16: IAxAy = IAx ⊗Ay;

17: Tr JF = IAxAy ⊗At;

Pop(IAx buffer);

18: end if

19: end for

20: end if

21
Approved for Public Release; Distribution Unlimited

Black River System’s notation in excel file:

fx = fy =nDs

Ix = Iy =nAs

ft =nDt

It =nAt

Sequential Flux Tensor Computation

This computation accounts for both multiplications and additions. The total is given per frame for a
P ×Q image.

Ixs =P (2(Q− nDs
+ 1)nDs

− 1) +Q(2(P − nDs
+ 1)nDs

− 1)

Isy =P (2(Q− nDs
+ 1)nDs

− 1) +Q(2(P − nDs
+ 1)nDs

− 1)

Iss =P (2(Q− nDs
+ 1)nDs

− 1) +Q(2(P − nDs
+ 1)nDs

− 1)

Ixst =PQnDt

Isyt =PQnDt

Isst =PQnDt

Fluxtrace =5PQ

Avgxy =P (2(Q− nAs
+ 1)nAs

− 1) +Q(2(P − nAs
+ 1)nAs

− 1)

Avgxyt =PQnAt

Totalframe =Ixs + Isy + Iss + Ixst + Isyt + Isst + Fluxtrace + Avgxy + Avgxyt

Totalframe =2PQ(6nDs
+ 3nDt

+ 2nAs
+ nAt

+ 5)

+ (P +Q)(6nDs
(1− nDs

)− 3 + 2nAs
(1− nAs

)− 1)

Mflop =Totalframe/1e6

Parallel Flux Tensor Computation (Black River System’s estimate)

This computation accounts for both multiplications and additions. The total is given per frame. W is
work unit width.

Idx =W (2nDs − 1)nDt

Isx =W (2nDs − 1)nDt

Isysx =W (2nDs − 1)nDt

Idysx =W (2nDs − 1)nDt

Isydx =W (2nDs − 1)nDt

Ixt =W (2nDt − 1)

Iyt =W (2nDt − 1)

Itt =W (2nDt − 1)

Avgx =W (2nAs − 1)nAt

Avgxy =W (2nAs − 1)nAt

Avgxyt =W (2nAt − 1)

Fluxout =5W

22
Approved for Public Release; Distribution Unlimited

Total =Idx + Isx + Isysx + Idysx + Isydx + Ixt + Iyt + Itt + Avgx + Avgxy + Avgxyt + Fluxout

Total =5W (2nDs − 1)nDt + 3W (2nDt − 1) + 2W (2nAs − 1)nAt +W (2nAt − 1) + 5W

Totalframe =Total× height

Mflop =Totalframe × (#SPEs)/1e6

3.5.6 New Implementation of Flux Tensor

The flux tensor computation can be reorganized by exploiting the commutative property of convolution to
change the order of the spatial and temporal derivatives as shown in Figure 13. This decreases the memory
footprint as well as the operation count. This enables the new implementation to operate on complete lines of
the image instead of just a (vertical) slice. The resulting multicore SPE code is simpler. But there is a higher
communication overhead relative to the operation count. This means that the new flux tensor algorithm is
less efficient in the use of the Cell/B.E. processor but is much faster. The new flux tensor implementation is
about four times faster (from about 740 MFlops to 209 MFlops) and is not computation limited but rather
communication limited at this point. The performance characteristics and differences for the new flux tensor
implementation compared to the previous implementation are still being studied.

3.6 Binary Mask Processing Using Morphology Operators

Morphological operations process an input image by applying a structuring element and producing an output
image where each pixel is based on a comparison of the corresponding pixel in the input image with its
neighbors depending upon the size and shape of the structuring element. The most basic morphological
operations are dilation and erosion and all others like opening, closing etc. consist of some combination
of these two operations. Dilation, denoted by the operator ⊕, adds pixels to the boundaries of objects in
an image, while erosion, denoted by the operator 	, removes pixels on object boundaries. Mathematically,
these operations on binary images can be defined using set theoretic notations as:

A⊕B = {z|(B̂)z ∩A 6= ∅} (21)

A	B = {z|(B)z ⊆ A} (22)

where B̂ is the reflection of set B and (B)z is the translation of set B by point z as per the set theoretic
definition. So in dilation, if any pair of pixels in A and B are one is set to the value 1, the output pixel
is set to 1. In erosion, if any pair of pixels in A and B-complement is set to 0, the output pixel is set
to 0. In a recent work,41 the authors describe their parallel implementation of morphology on Cell/B.E.
for OpenCV interface. However they use one byte to represent pixel data and hence can process only 16
pixels simultaneously by utilizing the 128-bit SIMD computing unit on each SPE. Since in blob segmentation
algorithm, these operations are applied on a binary mask, our implementation represents each pixel by a single
bit and utilizes bitwise comparison AND/OR SIMD operations to process 128 pixels simultaneously. The
input image can be processed using square, circular and elliptical shaped structuring elements depending
on the type of image blobs to be processed. Each row of structuring element is represented using one
byte element with appropriate bit pattern stored in a array SE values and which is replicated to 16 byte
vector array SE Mask to operate on 128 pixel data of I at once. However, this required appropriate bit
manipulation strategy for pixel based data access (i.e., bit by bit) as required by the algorithm. Hence,
specialized shuffle (spu shuffle) and bit rotate operations (spu rlqw) are needed to access pixel data that
is located on arbitrary alignment or the boundary of the 16 byte alignment. The spu shuffle combines the
bytes of two vectors as per an organization pattern defined in third vector. The required alignment patterns
are stored in static look-up tables in the SPU local store. Figures showing how to access a 16 byte aligned
vector data (current) and its neighbor vector data with one byte shift in left (previous) and right (next)
direction, showing how to get further bit by bit access by bit rotate and shuffle operations and the subsequent
comparison operations and showing the subsequent comparison operations can be found in our publication.23

23
Approved for Public Release; Distribution Unlimited

Figure 13: New parallelization approach for flux tensor is about four times faster than the previous version.

3.7 Blob Extraction by Connected Component Labeling

Connected Component Labeling (CCL) scans an image and groups its pixels into components based on pixel
connectivity. In the first step, the image is scanned pixel-by-pixel (from top to bottom and left to right) in
order to identify connected pixel regions, i.e. regions of adjacent pixels which share the same set of intensity
values and temporary labels are assigned. CCL works on binary or graylevel images and different measures
of connectivity (4-connectivity, 8-connectivity etc.) are possible. For our blob segmentation, the input is
binary image and 8-connectivity measure is considered. After completing the scan, the equivalent label pairs

24
Approved for Public Release; Distribution Unlimited

are sorted into equivalence classes and a unique label is assigned to each class. As a final step, a second
scan is made through the image, during which each label is replaced by the label assigned to its equivalence
classes.

The proposed parallelization approach for the Cell/B.E. heterogeneous architecture belongs to the class
of divide and conquer algorithm where the PPE runs the main process, divides the image into multiple
regions or data chunks for allocating the task of labeling to multiple threads running on the various SPEs
and finally merges the results from different SPEs to generate actual label within the entire image. Each SPE
performs DMA data loading from the system memory and labeling the allocated region in an independent
way. As argued previously, division of data into blocks of rows is preferred because a bulk of data (several
rows) can be transferred per DMA request issue. Some components may span over multiple regions and to
ensure that such components get unique label during merging, each region is divided in such a manner that
it has one overlapping row with its adjacent regions. Figure 14 shows the main phases of our parallelization
approach.

SPE 0

SPE 1

SPE n

DMA Load

DMA Store

(Results)

PPE

Image Frame in

System Memory

Local Store
 Merging

Figure 14: Parallelization model for Connected Component Labeling on Cell/B.E. showing adjacent tile
overlap or hook regions.

The resultant array of local labels within each region is put back into main memory through DMA store
operation. The PPE uses a list of pointers Region[i] to point to arrays that maintain the local labels with
respect to SPEi. Initially, index for each array element is the local label before equivalence resolution
whereas the array element itself is the local label after equivalence resolution in the corresponding regions.
Since the labeling starts from value 1, the array location for index 0 is used to store the total number of
distinct labels after resolution of equivalence class of labels. To connect each region with its neighboring
regions to generate the actual label within the entire image, the PPE updates the array elements in Region[i]
by adding the total labels T that reached at the end of Region[i− 1]. Figure 15 depicts an example of list
of labels for Region[i] which shows that local label 1, 2 and 5 are equivalent with local label 1 and their
global label within the entire image is T +1; local label 3, 4, and 6 are equivalent with local label 2 and their
global label is T + 2 where T is the total labels reached at the end of Region[i − 1]. While updating the
labels in the global list we also need to resolve equivalences of pixel labels for the overlapping row between
regions. To do this we use a list of pointers, OverlapBottom[i] and OverlapTop[i] to store the local labels
for the overlapping pixel in the bottom and the top row respectively, of the region processed by SPEi. Now
for any pixel k in the overlapping row between regions i and i − 1, the local labels as calculated by SPEi

and SPEi−1 are stored in OverlapTop[i][k] and OverlapBottom[i − 1][k] which should be equivalent. We
use this information to resolve equivalence of labels across different regions for merging.

1
 1
 2
 2
 1
 2

1
 2
 3
 4
 5

Region [i] =

(index: Local label before

equivalance resolution)

(element: Local label after

equivalence resolution)

T+1
 T+1
 T+2
 T+2
 T+1
 T+2

6

(element: global label

before merge)

Figure 15: An example of list of labels in Region[i]

25
Approved for Public Release; Distribution Unlimited

The part of the proposed algorithm implemented on the PPE side is presented in algorithm 3. In the
beginning, four buffers are created: Frame,Region,OverlapTop and OverlapBottom. These buffers are
used to store the frame pixels to be sent to the SPEs and the results obtained from each SPE. The image is
divided into N (the number of available SPEs) regions or data blocks with an overlap of one row at the top
and bottom of each image region with the adjacent regions. The first region and the last region do not have
any overlap at the top and bottom respectively. Correspondingly, the address locations in the buffers are
determined and send as control block to the SPE thread. The SPE performs DMA operations to load the
input data and store the results at these locations. PPE waits for the SPE to finish computing and notify the
total number of local labels through mailbox communication. Then it updates the labels by going through
each Region[i] one by one, adding the total labels reached till previous region and resolving the equivalence
by calling merge function.

Algorithm 3 Parallel Connected Component Labeling: PPE Side

1: Allocate Frame,Region,OverlapTop,OverlapBottom and control block cb buffer

2: Divide image into N regions along with the overlaps

3: for each SPE thread i do

4: Create thread i to run on SPE i

5: Load the control blocks cb[i] with the corresponding address location for

Frame,Region,OverlapTop,OverlapBottom buffer to the thread

6: end for

7: for each SPE thread i do

8: Get Total number of local labels from SPE i mailbox into Labels[i]

9: Wait for thread joining and destroy the context

10: end for

11: Initialize total number of labels T ← 0

12: for each region i do

13: for each label index j = 1 to Labels[i] do

14: Region[i][j]← T + Region[i][j]

15: end for

16: T ← T + Region[i][0]

17: if region is not first then

18: Merge(i, T,Region,OverlapTop,OverlapBottom) function to update global labels and value of T

19: end if

20: end for

On the SPE side, the first stage of the algorithm is essentially like any standard sequential algorithm which
scans the allocated region of the image pixel by pixel, assigning a temporary label to a new pixel and marks
the labels of connected pixels as equivalent. However, the algorithm used to resolve the equivalence class
is implemented in a way that utilizes the SIMD instructions. The Union-Find algorithm which efficiently
resolves the equivalence class of labels for sequential execution was not preferred because of its search based
flow to keep the height of the search tree minimum. SPEs deliver most of the computational capacity
by issuing vectorized instructions in SIMD fashion. Thus, the choice of an algorithm for implementing an
application on SPE depends more on how the operations can be grouped for issuing in SIMD fashion to utilize
the 128-bit SIMD units which can operate on 16 8-bit integers, eight 16-bit integers, four 32-bit integers,
or four single precision floating-point numbers in a single clock cycle. Hence, we choose to implement an
alternative algorithm that resolves equivalences by expressing equivalent relations as a binary matrix and
applying Floyd-Warshall algorithm to obtain transitive closure. An interesting point to note about this
algorithm is that although it takes O(n3) OR operations, these operations can be calculated in parallel
very efficiently on the SPE using SIMD bitwise OR operations in hardware reducing approximately 16 OR
operations to a single (clock-cycle) operation. The corresponding vectorized code on the SPE side is as
follows:

26
Approved for Public Release; Distribution Unlimited

Listing 2: SPE Code Segment for Equivalence Class Resolution Using Vectorized SIMD bitwise OR Opera-

tions

for (j =1; j<n ; j ++){
for (i =1; i<n ; i ++){

i f (T[i ∗n+j]==1){
vec uchar16 ∗ v1=(vec uchar16 ∗) & T[i ∗n] ;

vect uchar16 ∗ v2=(vect uchar16 ∗) & T[j ∗n] ;

for (k=1;k<s i z e /16 ; k++)

v1 [k]= spu or (v1 [k] , v2 [k]) ;

} } }

Due to the memory constraint on the local store, only a part of the image data can be brought into
the SPE local store at any given time. This required the implementation to handle the spatial dependency
on the previous row pixel, whenever a new block of rows is fetched. This was done by keeping two arrays
OverlapTop and OverlapBottom that store the labels of the pixels in the top and bottom row of the present
block of rows. The bottom row for the previous block of rows is used for checking pixel connectivity for the
first row of the next block of rows and the OverlapBottom is updated for the new block of row. Finally
when the scan is complete, OverlapTop and OverlapBottom array is send to the PPE for use in merging
labels in the adjacent regions. The SPE also sends out the array of labels after resolving the equivalences of
classes, in the buffer Region[i].

27
Approved for Public Release; Distribution Unlimited

4. RESULTS AND DISCUSSION

4.1 Multicore Flux Tensor Performance

The output of the flux tensor-based video object detection algorithm applied to a sample video sequence from
the ARL Force Protection Surveillance System (FPSS) video collection11 is shown in Figure 16. The first
row shows color and long-wave infrared frames from the original video sequence. The second and third rows
show the grayscale flux tensor response and the thresholded binary masks respectively using the flux tensor
motion analysis with (5, 5, 5, 5) filters, followed by grayscale closing (circular structuring element of radius
5) and using histogram based thresholding, adaptively switching between global Otsu and 80% cumulative
histogram value. The colored blobs show the detected moving objects after post processing steps including
morphological noise removal using area opening and connected component labeling to identify contiguous
regions. The pink blobs are associated with two people walking in the far background. The FLIR channel is
not affected by shadows and produces more compact blobs of moving objects suitable for tracking.

Figure 16: Output of flux tensor motion estimation and blob extraction algorithm on selected frames of color

visible and FLIR (forward looking long-wave infrared) data from the ARL FPSS dataset.11

28
Approved for Public Release; Distribution Unlimited

Figure 17: Results for several intermediate frames in this long FPSS sequence.

29
Approved for Public Release; Distribution Unlimited

Figure 18: Results for three additional intermediate frames in this long FPSS sequence.

30
Approved for Public Release; Distribution Unlimited

Table 1: Speedup and performance to power ratios of the parallel multicore PS-3 Cell/B.E. implementation

with 6 SPEs using 135 watts is compared to the optimized sequential implementation running on an Intel

Xeon core in a Dell 1850 server using 550 watts. Sequential performance in frames per second are shown in

the (T Seq
1)–1 columns. Parallel PS-3 speed-up (SPS-3

6) is compared to the sequential implementation running

on an Intel Xeon CPU. The power efficiency improvements of the parallel implementations compared to the

sequential implementations for different filter sizes are shown in the PPR columns.

Filter Configuration HD video SD video

nDs nDt nAs nAt (T Seq
1)–1 SPS-3

6 PPR (T Seq
1)–1 SPS-3

6 PPR

3 3 3 3 1.75 40.1 164 17.32 18.2 74

5 3 5 3 1.68 38.6 157 14.35 20.0 82

7 3 7 3 1.54 38.1 155 13.02 19.3 79

9 3 9 3 1.37 39.6 161 11.52 19.6 80

3 5 3 5 1.53 30.8 125 13.99 14.7 60

5 5 5 5 1.42 29.6 120 12.28 14.9 61

7 5 7 5 1.34 28.7 117 10.99 15.2 62

9 5 9 5 1.23 28.3 115 10.05 14.8 60

3 7 3 7 1.34 25.6 104 12.01 13.5 55

5 7 5 7 1.25 24.7 101 10.44 13.2 54

7 7 7 7 1.18 23.6 96 9.88 11.9 48

9 7 9 7 1.11 14.2 58 9.03 12.0 49

3 9 3 9 1.24 22.0 89 10.45 12.0 49

5 9 5 9 1.14 21.3 87 9.34 11.3 46

7 9 7 9 1.09 12.4 51 8.63 11.1 45

9 9 9 9 1.02 13.0 53 7.97 10.7 43

The sequential code was tested on a Dell PowerEdge 1850 server running CentOS Linux 5.4 using a
single core of a dual CPU dual core Intel Xeon 2.8 GHz with 2 MB of cache per core, 4GB of memory
and an 800MHz front side bus compiled using gcc -O3 version 4.1.2. The parallel code was tested on a
PS3 Cell/B.E. with 6 SPEs using an appropriate SPE work unit for HD sized (1920 × 1080, WU=320 or
smaller) and Standard Definition (SD) sized (640× 480, WU=112 pixels) images. The PS-3 uses about 135
watts while the Dell PowerEdge 1850 uses about 550 watts for system operation including CPU, peripheral
devices, operating system, multitasking, etc. Total system power was used to measure the performance to
power efficiency ratios without doing detailed power measurements that can become complex to instrument
and compare. The work unit size that can be accommodated by one SPE with 256 KB of local store depends
on the size of the 3D convolution filters, especially the temporal filters, data alignment and partitioning
requirements (usually multiples of 16 bytes). Parallel performance benchmarking done on an IBM QS20 and
QS22 Blade servers with dual Cell/B.E.s both running Fedora Linux all compiled using gcc -O3 version 4.1.2
are reported below.

We compared the performance between the sequential and parallel implementations of flux tensor for
different filter configurations on two different frame sizes of video streams using 3D grids. Speed-up using p
processors was calculated as,

SPS-3
p =

T Seq
1

TPS-3
p

(23)

where Tp is the average time measured across p processors to complete the flux tensor computation for one

frame and T Seq
1 is the time taken for the single core sequential implementation; p = 6 SPEs on the PS-3.

The performance to power efficiency improvement ratio was calculated as,

PPR = SPS-3
p

PSeq

PPS-3
(24)

where PA is the system power used by architecture A and SPS-3
p is the speed-up ratio.

31
Approved for Public Release; Distribution Unlimited

Table 1 shows the range of spatial and temporal sizes for both derivative and integral/averaging filters
varying between 3, 5, 7 and 9 that were used for performance benchmarking. The sequential frame rate or
inverse of the time to compute one frame on the Intel Xeon processor is given in column (TSeq

1)−1 in frames
per second, the speed-up measured on the PS-3 Cell/B.E. platform compared to the sequential performance
is given in column SPS-3

6 . For the smallest derivative and integral filters of size 3 the speed-up of the
parallel implementation compared to the sequential performance was more than a factor of 40 even though
there are only six computational cores. The super-linear speed-up behavior is due to the use of extensive
vectorization, loop unrolling and FMA operations to implement the flux tensor convolution kernels despite the
additional work done by the SPEs recomputing intermediate results in the parallel implementation compared
to the sequential version. As the filter sizes increase the speed-up gain decreases since the total volume of
computations increases faster on the Cell (linearly with the size of the filter) as the parallel implementation
recomputes all of the intermediate spatial derivatives, whereas the sequential implementation is able to store
and reuse them at the cost of extra memory. For larger filter sizes the limited local store on the SPEs requires
smaller data chunks (work unit width in Figure 11) and consequently more than six threads of execution
which results in two stages of computation and reduces speed-up; the filter configurations needing two stages
of execution are shown in bold font in Table 1. This can be partly mitigated by using the more expensive
IBM Cell/B.E. Blade processors which have a lot more main memory but also higher power consumption.
More detailed performance figures for HD and SD video with work width (WW) size in pixels are given in
Tables 2 and 3 respectively including speedups relative to the PS3, QS20 and QS22 Blades.

The speed-up of the multicore flux tensor implementation ranged from a factor of 11 to 20 for the smaller
SD video frame sizes to between 12 and 40 for the larger HD frame size video streams as shown in Table
1. The results for 16 different filter configurations for both HD and SD video frame sizes are compared
and show substantial improvement in terms of both parallel speed-up as well as performance to power
efficiency. Our implementation on the PS-3 Cell/B.E. was able to deliver 34.9 fr/s ×1.32 GFLOPs/frame
= 46 GFLOP/s which is 30% of single-precision peak performance (153.6 GFLOP/s) but significantly better
than the expected memory-intensive peak of 12.8 GFLOP/s. The identical code reaches 39%, 35% and 24%
of peak performance on the QS20 (410 GFLOP/s for 16 SPEs) with 6, 8 and 16 SPEs respectively for the
same filter size configuration of nDs = 9, nDt = 5, nAs = 9, nAt = 5. An earlier implementation that used
better data alignments but could only handle a limited number of filter sizes and image widths was able to
reach 68 fr/s and 58% of peak on the QS20. We found that explicit memory management and some assembly
coding on the Cell is required to reach high performance even though this hand tuning incurs additional
programming effort. Multicore GPU architectures are also well suited for computer vision algorithms.17 In
future work we will compare the energy efficiency of the flux tensor on GPUs based on a Compute Unified
Device Architecture (CUDA) or OpenCL implementation.

Some specific performance results measured by Black River Systems to compare with the graphs produced
with the assistance of Barcelona Supercomputing Center are given below. The BRS numbers measure only
the time spent on the SPEs, but the BSC numbers usually include the SPE thread creation and destruction
times also.

• 6 SPEs 1920x1080 5,5,5,5 0.016033 per frame 62 fps

• 6 SPEs 1920x1080 7,5,7,5 0.018675 per frame 53 fps

• 6 SPEs 640x480 5,5,5,5 0.004513 per frame 221 fps

• 6 SPEs 640x480 7,5,7,5 0.005353 per frame 186 fps

The set of graphs described in this section were based on an extensive number of experiments organized
as follows: 100 frames per sequence, 9 filter sizes, 10 runs or repetitions per filter size, 16 different SPE
configurations, two video formats. This requires a total of 9×10×16×2 = 2880 runs for mean and variance
estimation for each data point which at 15 seconds per run took about 12 hours on the Cell Blade. For the
HD size images testing sequential performance took about one minute per sequence and 15 seconds per run
for SD video or about 30 hours total for the full experiment to get the comparison statistics in the tables.

32
Approved for Public Release; Distribution Unlimited

Figure 19: Dependence of flux tensor scalability on image tiling or slicing. With 4 and 5 SPEs there is

no advantage over 3 SPEs since the chunking requires two stages of computation (in all three cases) to

complete the calculation for the full frame. In these cases there are many idle SPEs (two and four idle cores

respectively).

The chunking (or tiling or slicing) of the image into vertical or horizontal strips leads to certain constraints
in the interpretation of scalability with increasing number of SPEs. In order to test the code for different
numbers of SPEs the variable max phys spes in the source code is appropriately modified. The flux tensor
application calculates the number of slices per image as num spes. In Figure 20 the num spes (tasks) is
plotted against max phys spes for a particular filter configuration. For example, with 1 to 6 SPEs, each
image is subdivided into 6 blocks. So the flux application for these parameters should scale well up to 3
SPEs, and not scale at all from 4 to 5 SPEs, etc. as shown in Figure 19. The large influence of the cost of
thread creation and destruction can hide this dependence as shown in Figure 21. Here the flux tensor seems
to scale well up to three SPEs when the SPE thread creation and destruction times are included. But when
we ignore thread creation and destruction times then we get Figure 22 and Figure 23 for HD image sizes.
These measurements do exhibit the flatlining behavior one can expect from Figure 20.

The proposed implementation can be used to serve any large scale surveillance system that requires scal-
able processing up to HD Wide-Area Motion Imagery. As a case study, the flux tensor parallelization required
most of the significant effort (about 3 staff months) centered on efficiently mapping memory management
and data alignment, data (DMA) transfers, vectorization and shuffling issues to partition the 3D grid of
video data and fit each working block within the memory constraints on an SPE. Since the SPU has only
256 KBytes of memory and limited programmer development tools, this required manual code partitioning
and coordinating data movement into and out of the SPE registers. For optimizing the major bulk of the
flux tensor computation involving separable 3D convolutions on the SPE, we utilized fused vector multiply
adds (FMA) to approach the peak SPU performance. However, the fused vector multiply add operation has
a latency of 6 cycles. Thus, loop unrolling was essential and the number of unrolls was further dependent on

33
Approved for Public Release; Distribution Unlimited

Figure 20: Number of tasks launched per image during performance testing with varying number of SPEs.

Figure 21: Including the cost of thread creation and destruction reduces the influence of image chunking.

Figure 22: Excluding the cost of thread creation and destruction clearly shows the influence of image chunking

by the flatline behavior that is dependent on filter size when the number of available SPEs is increased.

34
Approved for Public Release; Distribution Unlimited

Figure 23: Performance plotted as time per frame (instead of fps) for the same data as in Figure 22.

Table 2: Parallel speed-up of the flux tensor operator implemented on the Cell/B.E. with 6 SPEs compared

to the sequential implementation running on an Intel Xeon processor for nine different filter configurations

and using two different sizes of 3D spatiotemporal grids (1920× 1080× t) for HD video. Typically up to ten

repetitions were done for each test condition using 100 frames of video.
Filter Configuration HD video (1920× 1080× t)

nDs nDt nAs nAt WW Seq fps PS3 fps PS3× QS20 fps QS20× QS22 fps QS22×
3 3 3 3 320 1.75 70.2 40.1 110.7 63.3 107.6 61.5

5 3 5 3 320 1.68 64.8 38.6 92.1 54.8 91.2 54.3

7 3 7 3 320 1.54 58.7 38.1 79.4 51.6 80.3 52.1

9 3 9 3 320 1.37 54.3 39.6 70.8 51.6 72.0 52.6

3 5 3 5 320 1.53 47.1 30.8 73.6 48.1 71.8 46.9

5 5 5 5 320 1.42 42.0 29.6 60.2 42.4 59.5 41.9

7 5 7 5 320 1.34 38.4 28.7 51.2 38.2 51.9 38.7

9 5 9 5 320 1.23 34.9 28.3 45.3 36.8 46.3 37.6

3 7 3 7 320 1.34 34.2 25.6 54.9 40.9 52.9 39.5

5 7 5 7 320 1.25 30.8 24.7 44.5 35.6 44.3 35.4

7 7 7 7 320 1.18 27.8 23.6 37.7 31.9 37.9 32.1

9 7 9 7 240 1.11 15.7 14.2 19.7 17.7 20.3 18.3

3 9 3 9 320 1.24 27.2 22.0 44.0 35.5 42.7 34.5

5 9 5 9 320 1.14 24.3 21.3 35.5 31.1 35.3 31.0

7 9 7 9 240 1.09 13.6 12.4 17.6 16.2 18.0 16.5

9 9 9 9 192 1.02 13.3 13.0 17.7 17.3 18.4 18.1

the work block width. An additional challenge was in moving the data from local store to the SPU registers.
The Cell/B.E. processor is optimized for loading data from the local store that is aligned into 128-bit vector
cache lines. Since the data necessary for the x-dimension convolutions overlap, those entries that are not
aligned can be easily produced from the values that are aligned. SPU shuffle operations were used to create
a result vector from two input vectors via selection of their constituent bytes which is more efficient than
explicitly unpacking and repacking the vectorized data. Shuffle operations were not needed for convolutions
in y- and t-directions since all the input vectors are separate and can be loaded as aligned vectors. The
current implementation supports larger image frame sizes and variable filter sizes in an efficient manner as
long as the partitioned 3D grid data and associated program instructions can fit within the limited SPE
private memory (256 Kbytes local store). Once moving objects have been detected then Cell/B.E. based or
GPU-based parallel algorithms for blob extraction using morphology operations and connected component

35
Approved for Public Release; Distribution Unlimited

Figure 24: Performance of flux tensor (MU-BRS implementation) in frames per second on SD (upper) and

HD (lower) video using different number of SPE cores on the IBM QS22 Blade to characterize scalability.

Each plot is for a different filter size as shown in the legend to the upper right and tested on 100 images

five repetitions each to get averages. The legend are derivative and averaging filter tap sizes a b c d to be

interpreted as fxtap = a, fytap = a, fttap = b, ixtap = c, iytap = c, ittap = d.

36
Approved for Public Release; Distribution Unlimited

Figure 25: Performance of flux tensor (MU-BRS implementation) in terms of speed-up on SD (upper) and HD

(lower) video compared to using one SPE cores on the IBM QS22 Blade to characterize scalability. Ideal linear

speedup is shown in the solid red line. Each plot is for a different filter size as shown in the legend to the upper

right and tested on 100 images five repetitions each to get averages. The legend are derivative and averaging

filter tap sizes a b c d to be interpreted as fxtap = a, fytap = a, fttap = b, ixtap = c, iytap = c, ittap = d.

37
Approved for Public Release; Distribution Unlimited

Table 3: Parallel speed-up of the flux tensor operator implemented on the Cell/B.E. with 6 SPEs compared

to the sequential implementation running on an Intel Xeon processor for nine different filter configurations

for SD video (640 × 480 × t). Typically up to ten repetitions were done for each test condition using 100

frames of video.
Filter Configuration SD video (640× 480× t)

nDs nDt nAs nAt WW Seq fps PS3 fps PS3× QS20 fps QS20× QS22 fps QS22×
3 3 3 3 112 17.32 315.0 18.2 473.0 27.3 481.9 27.8

5 3 5 3 112 14.35 287.4 20.0 385.2 26.8 399.2 27.8

7 3 7 3 112 13.02 251.6 19.3 326.4 25.1 343.3 26.4

9 3 9 3 112 11.52 225.6 19.6 286.3 24.9 301.2 26.1

3 5 3 5 112 13.99 205.5 14.7 311.9 22.3 318.5 22.8

5 5 5 5 112 12.28 183.1 14.9 249.3 20.3 257.1 20.9

7 5 7 5 112 10.99 167.5 15.2 208.7 19.0 220.6 20.1

9 5 9 5 112 10.05 148.9 14.8 181.6 18.1 192.0 19.1

3 7 3 7 112 12.01 162.3 13.5 232.2 19.3 236.2 19.7

5 7 5 7 112 10.44 137.5 13.2 184.0 17.6 192.2 18.4

7 7 7 7 112 9.88 117.6 11.9 153.3 15.5 161.6 16.4

9 7 9 7 112 9.03 108.4 12.0 132.9 14.7 141.0 15.6

3 9 3 9 112 10.45 125.3 12.0 185.3 17.7 189.5 18.1

5 9 5 9 112 9.34 105.5 11.3 146.1 15.6 152.2 16.3

7 9 7 9 112 8.63 95.6 11.1 121.2 14.0 128.0 14.8

9 9 9 9 112 7.97 84.9 10.7 104.9 13.2 111.8 14.0

labeling can be used.23,29 More extensive performance benchmarking and testing in the context of the overall
end-to-end system for multi-stage video analysis is ongoing.

4.2 Multicore Morphology Performance

In our experiments with morphological processing, we compared the performance of our proposed parallel
multicore implementation on the Cell/B.E. to the sequential version as well as a published OpenCV im-
plementation for the Cell/B.E.41 The experiment was performed using all 6 SPEs and varying the size and
shape of the structuring element. The sequential code implemented in OpenCV was executed only on the
PPE to measure the sequential performance and the proposed parallel implementation was executed on the
SPEs to measure the parallel performance and speedup. Table 4 shows the measured execution time of one
dilation or erosion operation averaged over 10 executions when the input image size is 1024× 768. The orig-
inal code implemented only on the PPE represents the sequential performance baseline and the optimized
code implemented on the SPEs represents the parallel performance achieved on the Cell/B.E. As shown in
Table 4, our implementation on the Cell/B.E. successfully achieved very high speed up ratios as high as 628
and significantly outperforming the published Cell/B.E. OpenCV benchmarks. The speedup increased for
larger sized structuring elements i.e., as the amount of computation increased. Further interesting point to
note is that for a given size of structuring element, regardless of the structuring element shape our implemen-
tation has roughly constant cost, whereas the sequential and OpenCV implementations become significantly
slower as reflected in Table 4. This is because our representation of the structuring element uses the same
number of bits for a given window size irrespective of shape which has a dramatic impact on the morphology
computation for elliptical structuring elements. Figure 26 shows the performance measurements for mor-
phology using three different structuring elements on SD video for one opening and one closing. Figure 27
measures speedup compared to a baseline of one SPE and performance for one opening and one closing.
The measurements shown are for time spent in the CellSs tasks. Each graph plots results for a particular
structuring element (”SE”) and for a particular blocking including for example, the average and standard
deviation for structuring element one where each task processes three rows per task. A blocking factor of 60
divides the image neatly into 8 panels, resulting in almost perfect speedup.

38
Approved for Public Release; Distribution Unlimited

Table 4: Performance comparison of our parallel morphology to the sequential and Cell/B.E. OpenCV41

implementation. The execution time measured is for one dilation or erosion operation on a 1024× 768 sized

image.

Structuring Sequential OpenCV Proposed parallel Cell/B.E. OpenCV

Element execution on PPE (ms) execution on SPE execution on SPE

Size Shape Time (ms) Speedup Time (ms) Speedup

7 x 7 Ellipse 89.806 0.143 628.7 0.973 92.4

5 x 5 47.740 0.104 459.0 0.562 84.9

3 x 3 16.324 0.064 254.7 0.308 52.9

7 x 7 Rectangle 24.235 0.135 179.5 0.337 71.9

5 x 5 18.782 0.098 191.6 0.289 64.9

3 x 3 14.341 0.062 231.3 0.276 51.9

In the process of testing and evaluation a likely/potential coding error in the morphology code was
discovered. For example, the function erode() contains the code fragment:

Listing 3: Row column indexing problem in morphology implementation

i n l i n e

void erode (vec to r unsigned char ∗ rows [] ,

unsigned char mask [] ,

unsigned int row len , unsigned int s i z e ,

vec to r unsigned char ∗ r e s u l t)

{
unsigned int i , j ;

for (i = 0 ; i < row len ; i++) {
vec to r unsigned char buf 0 = FF;

vec to r unsigned char buf 1 = FF;

vec to r unsigned char buf 2 = FF;

vec to r unsigned char buf 3 = FF;

vec to r unsigned char buf 4 = FF;

vec to r unsigned char buf 5 = FF;

vec to r unsigned char buf 6 = FF;

vec to r unsigned char buf 7 = FF;

for (j =0; j < s i z e ; j++) {
vec to r unsigned char xprev =

s p u s h u f f l e (rows [j] [i −1] , rows [j] [i] , g e t l e f t o v e r l a p) ;

}
}

The last assignment accesses ”rows[0][-1]” on the first iteration, for example. Now, this might not be a
problem if one takes special care to arrange the data, and explicitly take care of such constructions in the
code. In general this implementation would have problems with the borders of the image, or needs additional
checks to deal with the spillover in the overlapping regions.

4.3 Multicore CCL Performance

In evaluating our implementation of the CCL algorithm, we compared performance between different se-
quential and parallel versions. We implemented a sequential version of the Union-Find algorithm (sequen-
tial UnionFind) and a sequential version of the Floyd-Warshall algorithm (sequential FW) for execution
on the PPE. We implemented parallel versions of the connected component labeling algorithm with and
without SIMD instructions for resolution of equivalence class labels, referred to as parallel CCL and par-
allel CCL SIMD respectively that execute on both the PPE and all 6 SPEs. We measured the results of

39
Approved for Public Release; Distribution Unlimited

Figure 26: Performance of morphology operations in microseconds on SD video using different number of

SPE cores (on the IBM QS22 Blade) to characterize scalability.

40
Approved for Public Release; Distribution Unlimited

Figure 27: Performance of morphology operations in terms of speed-up compared to a one SPE core on SD

video using different number of SPE cores (on the IBM QS22 Blade) to characterize scalability.

41
Approved for Public Release; Distribution Unlimited

8

7

u 6
ill
:J
(;) 5
E
-;::;
c
0 4
~
u
Q)
X 3 Q)

8

7

6
u
Q)
Ul

5 :J
(;)
E
:;::; 4
c
0

§
u 3
Q)
X
Q)

0

8

7

u 6
Q)
Ul
:J
(;) 5
E
:;::;
c
0 4 :g
u
Q)
X 3 Q)

morphology 640x480 opening+ closing: speedup

se 1 bs 3
se 1 bs 16
se 1bs60

2 3 4 5 6 7

number of SPEs

morphology 640x480 opening+ closing: speedup

se 2 bs 5
se 2 bs 20
se2bs60

2 3 4 5 6 7

number of SPEs

morphology 640x480 opening+ closing: speedup

se 3 bs 8
se 3 bs 30
se 3 bs 60

2 3 4 5 6 7

number of SPEs

8

8

8

these four CCL algorithm applied to different sized images, with the maximum number of regions set to 250
and the total amount of foreground pixels set to 30% for all images. It was observed that sequential FW
gave better performance than sequential UnionFind probably because branch instructions and recursions in
sequential UF code are not efficiently supported for execution. The average speedup for the parallel imple-
mentation without using the SIMD vectorization was about a factor of two. But when the SIMD instructions
are used, the speedup is significantly higher improving to about 5 to 6 times faster. We measured how the
parallel performance scales as the number of SPEs is varied. It can be observed that the execution time for
the parallel implementation without SIMD instructions is greater than the serial execution time up to 3 SPEs
due to the overhead of thread creation, data communication, merging the results, etc. which does not scale
up linearly for a low number of SPE cores. Moreover the variation is not smooth as the total time is bounded
by the maximum execution time amongst all the SPEs. By varying the number of SPEs, the data chunk
partitioning area/boundary changes, which changes the number of regions or data chunks and consequently
the number of foregrounds pixels (connected components) that needs to be processed by one SPE depending
on the distribution pattern of components in the image. This also explains the unexpected increase in the
execution time for 6 versus 5 SPEs. However, the optimized performance using SIMD instructions is always
superior to that of the serial version and scales up consistently with increasing number of SPEs.

Thread creation and deletion was minimized by adding thread management code to reuse threads on SPEs
during the code integration effort done by Black River Systems. This may have inadvertently introduced bugs
that were later discovered by AFRL during testing (of the June 22, 2011 version of the code base). Testing
was done using a Java program to create synthetic image frames with one to n simple color or grayscale
objects of various sizes moving at various velocities (variable speed and direction). The bitmask produced by
the flux tensor is correct so errors were shown to be restricted to the subsequent morphology, CCL or statistics
modules. Some memory leak issues were addressed: within morphology.c, the function spu morphology(), the
heap was reset to zero whenever the function was called. This removed the extraneous Labels left in memory
when the statistics function received a morphology frame. Within statistic.c, in computestats(), the heap is
reinitialized to zero whenever it is called to remove the cumulative problem with statistics. But this caused
the appearance of extraneous labels during further testing. In the function ccl(), the variable ymax remains
stuck at its original lower right position and does not appear to be updated correctly, whereas, xmin, ymin,
and xmax appear to be updated as expected. Some sample debugging output from the integrated testing is
shown below that exhibit these problems:

Listing 4: Row column indexing problem in morphology implementation

run mode i s 0

th r e sho ld i s 100.000000

Connected to s e s s i o n management s e r v i c e

i n i t i a l i z e d b l o b e x t r a c t i o n

Enter ing Connection Loop

Connected to s e s s i o n management s e r v i c e

Input channel s t a r t e d

Reg i s t e r ed p r e d i c a t e

d o b l o b e x t r a c t i o n

Ca l l i ng morphology

Ca l l i ng s t a t i s t i c s

PPU: spe 273177152 Tota l ind 1

PPU: spe 273233776 Tota l ind 1

PPU: spe 273238736 Tota l ind 1

PPU: spe 273237728 Tota l ind 1

PPU: spe 273256224 Tota l ind 1

PPU: spe 273259488 Tota l ind 1

PPU: spe 273177200 Tota l ind 1

PPU: spe 273175584 Tota l ind 1

Label =1; Area= 773 ; Centroid= [1900 1 0 5 3] ; BB= [1884 1039 1918 1066]

num stats=1

42
Approved for Public Release; Distribution Unlimited

Rate = 16.141002

d o b l o b e x t r a c t i o n

Ca l l i ng morphology

Ca l l i ng s t a t i s t i c s

PPU: spe 273177152 Tota l ind 1

PPU: spe 273233776 Tota l ind 1

PPU: spe 273238736 Tota l ind 1

PPU: spe 273237728 Tota l ind 1

PPU: spe 273256224 Tota l ind 1

PPU: spe 273259488 Tota l ind 1

PPU: spe 273177200 Tota l ind 1

PPU: spe 273175584 Tota l ind 1

Label =1; Area= 1582 ; Centroid= [1900 1 0 5 3] ; BB= [1883 1039 1918 1066]

num stats=1

Rate = 17.758704

d o b l o b e x t r a c t i o n

. . . .

Ca l l i ng morphology

Ca l l i ng s t a t i s t i c s

PPU: spe 273177152 Tota l ind 1

PPU: spe 273233776 Tota l ind 1

PPU: spe 273238736 Tota l ind 1

PPU: spe 273237728 Tota l ind 1

PPU: spe 273256224 Tota l ind 1

PPU: spe 273259488 Tota l ind 1

PPU: spe 273177200 Tota l ind 1

PPU: spe 273175584 Tota l ind 1

Label =1; Area= 52460 ; Centroid= [1849 1 0 0 9] ; BB= [1779 946 1918 1066]

num stats=1

Rate = 21.458542

d o b l o b e x t r a c t i o n

Ca l l i ng morphology

Ca l l i ng s t a t i s t i c s

. . .

num stats=18

Rate = 19.884500

d o b l o b e x t r a c t i o n

Ca l l i ng morphology

Ca l l i ng s t a t i s t i c s

PPU: spe 273177152 Tota l ind 18

PPU: spe 273233776 Tota l ind 18

PPU: spe 273238736 Tota l ind 18

PPU: spe 273237728 Tota l ind 18

PPU: spe 273256224 Tota l ind 18

PPU: spe 273259488 Tota l ind 18

PPU: spe 273177200 Tota l ind 18

PPU: spe 273175584 Tota l ind 18

Label =1; Area= 610708; Centroid= [1151 4 8 8] ; BB= [0 541 1919 1066]

Label =2; Area= 33807 ; Centroid= [1145 5 8 9] ; BB= [0 549 1919 966]

Label =3; Area= 19210 ; Centroid= [294 3 7 0] ; BB= [0 557 1919 938]

Label =4; Area= 15839 ; Centroid= [403 2 7 0] ; BB= [0 565 1919 938]

Label =5; Area= 10709 ; Centroid= [287 3 5 4] ; BB= [0 573 1919 938]

Label =6; Area= 14765 ; Centroid= [332 3 3 3] ; BB= [57 579 1919 938]

Label =7; Area= 12687 ; Centroid= [409 2 5 5] ; BB= [0 581 1919 938]

43
Approved for Public Release; Distribution Unlimited

Label =8; Area= 14801 ; Centroid= [403 2 7 0] ; BB= [0 589 1919 938]

Label =9; Area= 11518 ; Centroid= [377 2 8 0] ; BB= [0 597 1919 938]

Label =10; Area= 11761 ; Centroid= [361 3 0 1] ; BB= [0 605 1919 938]

Label =11; Area= 10573 ; Centroid= [273 3 7 2] ; BB= [0 613 1919 938]

Label =12; Area= 15045 ; Centroid= [338 3 3 3] ; BB= [0 621 1919 938]

Label =13; Area= 11518 ; Centroid= [335 3 2 5] ; BB= [0 629 1919 938]

Label =14; Area= 10287 ; Centroid= [347 3 1 1] ; BB= [0 637 1919 938]

Label =15; Area= 8433 ; Centroid= [270 3 6 9] ; BB= [0 645 1919 938]

Label =16; Area= 9528 ; Centroid= [314 3 4 1] ; BB= [0 653 1919 938]

Label =17; Area= 7295 ; Centroid= [264 3 6 9] ; BB= [0 661 1919 938]

Label =18; Area= 2643 ; Centroid= [324 2 3 6] ; BB= [0 669 1919 938]

For evaluating the standalone implementation of the connected component algorithm, we generated test
dataset of random images by introducing random gaussian noise and then dilating and resizing it to 1k×1k to
increase the size of each components. Using the cumulative histogram of the resultant image, the threshold
value was varied to obtain binary images with varying percentage of foreground pixels. Figure 28 shows
some sample test images from the random noise blob dataset with varying percentage of foreground pixels,
intermediate labels and components. We also generated another test dataset of diagonal lines (width greater
than 2 pixels) which produces large number of intermediate labels for 4-connected component labeling and
is useful for evaluating the scalability of algorithm as the number of intermediate labels grows. Test images
of diagonal lines were generated using a sinusoidal image generator function using Eq. 25 with parameter
values θ = π/4 and ω = 10; thresholding the resultant images with a threshold value between −1 to 1
produced binary images with a varying percentage of foreground pixels.

f(x, y) = sin(2πω(x cos(θ) + y sin(θ))) (25)

Figure 29 shows several diagonal line test images generated using Eq. 25.

Our CCL workload can be characterized in terms of following parameters: Percentage of foreground pixels
(FG) in image, number of connected components (C), total number of intermediate labels (T), average labels
per component (T/C) and average labels/SPE (A). Increase in FG, increases the time taken for scanning and
establishing equivalences. Increase in C or T increases the operations for maintaining identities and resolving
equivalences. The ratio T/C gives average number of labels per component, reflecting the complexity of shape
and increases the time taken for resolving equivalences. Finally A gives a measure of average labels that each
SPE has to handle in case of parallel execution. Figure 30 shows how the workload in the random blob test
dataset varies in terms of these parameters for 8-connected analysis. C decreases with increase in FG pixels,
except at the extreme zero. T is relatively lower at the ends and higher in between. A remains much less
in comparison to T due to division among 6 SPEs with the standard deviation S of distribution of labels to
SPEs as shown in Figure 30. For the test images with FG ≤ 50, A remains small (less than 15) and are thus
relatively less complex for resolving equivalences as compared to test images with FG > 50. It should be
noted here in the context of Floyd-Warshall algorithm that when there are more number of labels that are
equivalent, the operations in the innermost loop becomes more. For the diagonal line dataset the number
of components is equal to 146 and the number of intermediate labels is equal to 74, 523 using 4-connected
algorithm and the percentage of foreground pixels is varied by changing the thickness of the lines.

We compared the performance with different versions of the sequential and parallel code. We implemented
sequential code using Union-Find algorithm (referred as sequential UF) and Floyd-Warshall algorithm
(referred as sequential FW) for execution only on the PPE. The proposed parallel implementation for
Union-Find algorithm is done without and with using SIMD instructions for labeling during first scan,
referred to respectively as parallel UF and parallel UF SIMD. The proposed parallel implementation
for Floyd-Warshall algorithm is also done with and without using SIMD instructions for both labeling
and resolution of equivalence class labels, which we refer to as parallel FW and parallel FW SIMD,
respectively. Figure 31 shows the performance results of these six different implementations on the random
blob datasets by executing the sequential algorithms on the PPE and the parallel algorithms on the 6 SPE’s of
the PS3 with the PPE handling the control and merge tasks. We use a logarithmic scale to plot the execution

44
Approved for Public Release; Distribution Unlimited

(a) FG=90,C=2,T=1171 (b) FG=80,C=7,T=1380 (c) FG=70,C=17,T=1551

(d) FG=60,C=35,T=1567 (e) FG=50,C=96,T=1505 (f) FG=40,C=243,T=1415

(g) FG=30,C=382,T=1174 (h) FG=20,C=483,T=910

Figure 28: Sample test images from random blob dataset, with varying percentage of foreground pixels

(FG), number of connected components (C) and total intermediate labels (T), used for CCL testing and

performance measurement.

times on the y-axis in order to capture the range of both sequential and parallel implementations on the
same graph; so it should be noted that the differences become quite large as T increases. It was observed
that the time taken for sequential FW increases rapidly as T becomes large due to O(n3) complexity
whereas the sequential UF shows almost a linear increase and thus outperforms the sequential FW . The
sequential FW for images with FG ≥ 50 percent increases more than for FG < 50 even though T decreases
gradually for FG ≥ 50. This can be understood by observing that the ratio T/C increases for FG ≥ 50
explaining the additional operations in the innermost loop for resolving the redundant labels per component.
The parallel UF also shows almost a linear performance speedup of about 4.5 compared to its sequential
implementation. The parallel FW shows high variability in performance depending on the amount of work
per SPEs; the average number of labels per SPE (A) is one-sixth of T and thus it speeds up the processing,
especially for FG > 50 where the sequential FW becomes very slow, reaching a maximum speedup of 30.7
at FG = 90. The parallel UF SIMD improves the performance further by a factor of 1.4 with respect to
parallel UF due to vectorizing the scanning step and thus achieving average speedup of about 5.5 times

45
Approved for Public Release; Distribution Unlimited

-t !1""' Llo.. .. 0 • ,. ,~. ...~--.,. ,_,
• ~ ;--'! · "\...:,.;"'

•llr~ ~--- ~ :~:'t·~ ._, ..
)11 ~-··~-=-:x· ~ .. ,,.};.; • • ·:r"':_,.. , ' ... "'~ •
·~~·.·..v.:-·. . . ,4f.~.J 'r'. 11/. •, o4 . · I I' ':f '\.'· '

· •? · ~~ ~""~
'• ··~' ~r,,.~..., .• :-·
. I ._. 'J • "'· • ~.~ -~l~·.-c~.:•
• • \." . . L.:_ -·~· J . , t 7 -.; .- 0 - <f 0 , 0

~- "• ,~
'• :.')oo: • .•• ~·~,...._ u;._, i

• .,. ..& · ' --:·~~· , , . ' ., c . . + -~ ".: :c.~~ 0 0 . ' •• (' ": .J'{..·;~.:('·" ,.~ ..

,, .. c.· ..:· • .. •. ... C"
•· .. ~. ··J. •"'"-'i. :;.•·.·;:- .
. 3.:~ . :. • .. • ... •. ---..·~~ &·
·~ .. ·.·· · .. · , ...

)
.J..-..'•·· •• , •.• y ..

• 'I.,....·:-.::·~· .. ,,··-. "'t' .· .. ' • l .. f 'A • ,.l •y '-' · ... ~ '\ ,·.'(... : .. · -., ·~ . ·'~· ' . ~ .- . . ~ • , :4.t r ' ,.. ,
~--:. :~.~-· .. ',.·_;.~·0·:. '
.o,fi,· ~· .• .- (. ~: • ... · .,·,,.

, •• ·". 'Y_.I ~" • '. :. 1 ,[·.~··-.·:·_·=.'.or.· , . .. }._:-:,.; \ · ~ :-·~ ..
.'•·" '•. ·~ •. ~u:oo\,:
.. -~ .. ,.:-: ... r.•· -A" ,•'-,, /#..:.•. 0 •• ~ ..

. .;·.: :~·~-: ·) ... :..~ :·.-· ~.:.
I~': •.1!1~ • { 1lj • ._..f

(a) FG=20,C=146,T=74,523 (b)

FG=40,C=146,T=74,523

(c) FG=60,C=146,T=74,523

(d)

FG=80,C=146,T=74,523

Figure 29: Sample test images from diagonal lines dataset with varying percentage of foreground pixels for

CCL testing and performance measurement

0 20 40 60 80 100
0

200

400

600

800

1000

1200

1400

1600

% Foreground pixels

N
u

m
b

e
r

o
f

In
te

rm
e
d

ia
te

 L
a
b

e
ls

S=26
S=38 S=62 S=74 S=67 S=49

S=62
S=67

S=50

Total Intermediate Labels (T)

Average Labels/SPE (A)

Connected Components (C)

Average Labels (T)/Component(C)

Figure 30: Variation of parameters characterizing our test dataset for CCL workload

with respect to sequential UF . However, parallel FW SIMD improves the performance drastically with
respect to parallel FW and sequential FW due to the use of SIMD instructions for vectorizing the label
resolution step which involved the bulk of computation. The speedup achieved was variable with maximum
of about 729 at FG = 60. Overall, parallel UF SIMD achieved the best performance for most of the time
with moderate speedup but parallel FW SIMD achieved the best speedup with performance very close to
parallel UF SIMD and even better when A < 150. On experimenting with the diagonal lines dataset, we
found that the Floyd-Warshall algorithm could not scale up to handle such a large number of intermediate
labels (74, 523) both in terms of memory requirements especially on the SPU local store and processing time.

46
Approved for Public Release; Distribution Unlimited

On the other hand, the Union-Find algorithm is able to scale well to handle large intermediate labels by
flattening the tree every time so that almost linear performance is achieved as in the case of the random noise
blob dataset. Figure 32 shows the performance result of the sequential and parallel versions of Union-Find
algorithm on the diagonal line dataset. In this case, the speedup achieved without using SIMD is on average
4.5 and with using SIMD is on average 6.5.

0 10 20 30 40 50 60 70 80 90 100
10

0

10
1

10
2

10
3

10
4

% Foreground Pixels

L
o

g
 (

E
x
e
c
u

ti
o

n
 t

im
e
)

in
 m

s
e
c

Sequential_FW

Sequential_UF

Parallel_FW

Parallel_UF

Parallel_FW_SIMD

Parallel_UF_SIMD

Figure 31: Execution time per frame for six different implementations of CCL on our random dataset. For

parallel version, execution time includes DMA transfers of inputs to and outputs from SPE.

0 10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

% Foreground Pixels

E
x

e
c

u
ti

o
n

 t
im

e
 i

n
 m

s
e

c

Sequential_UF

Parallel_UF

Parallel_UF_SIMD

Figure 32: Execution time per frame for different implementations of Union-Find CCL algorithm on diagonal

line dataset. For parallel version, execution time includes DMA transfers of inputs to and outputs from SPE.

Figure 33 shows the performance of the six different sequential and parallel CCL algorithms using five
different input image sizes. The binary image was selected from the random dataset with foreground pixels
occupying 30% of the image and it was rescaled to different sizes. The execution time is plotted on logscale
because the time taken by sequential FW algorithm increases exponentially due to large number of interme-
diate labels. Figure 34 shows the speedup of the parallel CCL algorithms using 6 SPEs, compared to the
corresponding sequential versions (UF and FW) running on the PPE which converts the timing informa-
tion presented in Figure 33 to speedup ratios (plotted on logscale). Similar speedup pattern was observed
amongst different implementations but it can be observed that the speedup obtained for 1280× 780 and HD

47
Approved for Public Release; Distribution Unlimited

... HHHH HHHH HHH~·····

~ u: u: H. . H•• Hu •••• ••••u••

Table 5: Comparison of execution times for relabeling and statistic computation done on PPE (sequential)

versus SPE (parallel).

Image Size Sequential Parallel Speedup

(time in msec) (time in msec)

512 x 512 3.8 1.3 2.9

720 x 480 5.4 1.6 3.5

1280 x 720 15.12 3.5 4.3

1024 x 1024 16.53 4.1 4.0

1920 x 1080 32.6 6.5 5.0

image size is larger than others due to larger width to height aspect ratio. Increase in the width achieves
more parallelization than increase in the height of the image because of row wise partitioning and merging.
Figure 35 shows how the parallel performance scales as the number of SPEs is varied using the same test
image. It can be observed that the execution times for the parallel implementation of the FW and UF
algorithms without the use of SIMD instructions, using up to five and two SPEs respectively, are greater
than the serial execution time due to the overhead of thread creation, data communication, etc. Moreover
the variation is not smooth as the total time is bounded by the maximum of the execution time of all the
SPE. By varying the number of SPE’s, the data partitioning area/boundary changes, which can cause in-
crease or decrease in the number of regions and foreground pixels to be processed by any SPE depending on
the distribution pattern in the image. However, the fully optimized implementation with the use of SIMD
instructions is always superior to the serial version and it scales up consistently with increasing number of
SPEs. Similar performance was measured on the QS20 and QS22 servers when using only a single processor
with six of the eight SPEs active. This is again because the algorithm involves only comparison operations
and does not benefit from the additional memory or improved double precision floating point performance
of the QS20 and QS22 servers.

512x512 720x480 1280x720 1024x1024 1920x1080

1

10

100

1000

10000

Image Size (width x height)

E
x

e
c

u
ti

o
n

 t
im

e
 i

n
 m

s
e

c
 (

lo
g

 s
c

a
le

)

Sequential_FW

Parallel_FW

Sequential_UF

Parallel_UF

Parallel_FW_SIMD

Parallel_UF_SIMD

Figure 33: Execution time per frame for six different implementations of CCL. For parallel version, execution

time includes DMA transfers of inputs to and outputs from SPE.

Table 5 compares the time taken for statistics computation and relabeling done sequentially on PPE
against parallel implementation on SPEs for the same random noise test image with FG=30% and 382
number of components. The speedup increases for larger size images (up to a factor of 5 for HD sizes)
as the overhead for parallelization decreases compared to the amount of computation. It can be observed
that although this part of computation involves simple arithmetic operations and memory access but the
execution time becomes significantly large for larger size images and thus doing it in parallel makes it more

48
Approved for Public Release; Distribution Unlimited

512x512 720x480 1280x720 1024x1024 1920x1080
0

0.5

1

1.5

2

2.5

Image size (Width x Height)

S
p

e
e

d
 u

p
 (

in
 l
o

g
s

c
a

le
)

Parallel_FW

Parallel_UF

Parallel_FW_SIMD

Parallel_UF_SIMD

Figure 34: Speedup of parallel implementations of CCL with respect to their sequential counterpart. For

parallel version, execution time includes DMA transfers of inputs to and outputs from SPE.

1 2 3 4 5 6 7 8

1

10

100

1000

10000

Number of SPEs

E
x

e
c

u
ti

o
n

 t
im

e
 i

n
 m

s
e

c
 (

lo
g

 s
c

a
le

)

Parallel_FW

Parallel_UF

Parallel_FW_SIMD

Parallel_UF_SIMD

Sequential_FW

Sequential_UF

Figure 35: Variation in parallel CCL performance across different number of SPEs on Cell. Execution time

includes DMA transfers of inputs to and outputs from SPE

efficient.

For testing the performance of the whole system with the interconnection of the different processing
modules on the Cell processor, we had to consider some important issues. The limited local memory of
SPEs could not accommodate the code and the data for all the modules. To execute same task on all the
SPE’s at a time and completing the entire chain of processing in the successive sequence of tasks required
re-initializing the SPE’s again and again with different code which produced lot of overhead due to code
loading, thread initialization, synchronization etc. Therefore, we divided the processing into two groups for
execution on two PS3 Cell processors so as to achieve real-time processing on the HD video. We dedicate one
Cell processor for flux tensor computation only as it is most expensive and we combine the blob extraction
modules (morphology + CCL + statistics) together for execution on the second Cell processor. Since the
output from the flux tensor is a compressed foreground mask with one pixel represented by one bit, the data
communication between the Cell processor did not raise a serious concern. We observed that for HD size
video frames, the flux tensor on the first Cell processor produced output at the rate of about 41 frames/sec
(previous version) and the blob extraction modules on the second Cell processor produced the output at the
rate of about 38 frames/sec. We exclude the IO time for fetching the image frames for the flux tensor and

49
Approved for Public Release; Distribution Unlimited

1e

I

I · .

I

~
L_____j

t · ...

Table 6: Performance summary of major algorithms at different stages of moving object detection workload

prior to integration of the code base. The Cell performance is measured using only 6 SPEs on the PS3.

Algorithm Flux Tensor Motion Morphology (1 Opening + 1 Closing) CCL

Specification Deriv. filters-(7,7,5), Avg. filters- (7,7,5) Strel. 7 x 7 Ellipse FG 30%,Components - 382

Image Size 640× 480 1920× 1080 640× 480 1920× 1080 640× 480 1920× 1080

Sequential Code 12.37 fps 1.6 fps 7.36 fps 1.04 fps 134.7 fps 23.5 fps

(80.8 msec) (0.625 sec) (0.135 sec) (0.961 sec) (7.42 msec) (42.42 msec)

Parallel on Cell 243.1 fps 54 fps 4464.2 fps 688.7 fps 709.2 fps 118.2 fps

(4.12 msec) (18.5 msec) (0.224 msec) (1.45 msec) (1.41 msec) (8.46 msec)

Operation count 177.7 1.2 123.8 836 36.5 219

Mflop/frame Gflop/frame Mega comparisons/frame Mega comparisons/frame

Speedup on Cell 19.65 33.2 616.4 660.6 5.3 5.0

the communication of flux output to the blob extraction module in our performance measurement.

We provided a description of the parallel algorithms for flux tensor motion estimation, binary image
morphology and connected component labeling optimized for execution on multicore Cell processor. A
significant amount of implementation time was devoted to memory management and data alignment, data
movement (DMA transfers), vectorization and shuffling issues. Since the SPU has only 256KB of memory
and limited programmer development tools, this required manual code partitioning and coordinating data
movement into and out of the SPE registers. Flux tensor calculations involving separable 3D convolutions
were done using fused vector multiply adds (FMA) to approach the peak SPU performance. Data partitioning
and loop unrolling required careful tuning of implementation parameters like work unit data chunking,
number of stages to unroll loops that is constrained by the amount of available SPE local store memory, 6
cycle latency in the FMA unit and other factors. For using SIMD instructions, additional shuffle operations
are required to transfer data into the SPE registers that may not be aligned to 128-bit vector cache lines.
For HD image size and filter configuration of nDs = 7, nDt = 5, nAs = 7, nAt = 5 a speedup of about 33
times was observed on the Cell BE.

The binary morphology operations were optimized for execution on the Cell SPE by representing each
pixel by a single bit and utilizing bitwise comparison AND/OR SIMD operations to process 128 pixels simul-
taneously. Novel bit level data access and alignment techniques for Cell BE were proposed in this context.
Our implementation using 6 SPE’s achieves a speedup of up to 660 times for processing erosion/dilation
operation using 7× 7 pixels size kernels on HD size image. The parallelization approach for CCL algorithm
proposed a suitable data partitioning and merging algorithm for execution on PPE and multiple SPEs. We
implemented parallel versions of the Union-Find and Floyd-Warshall algorithms for labeling and equivalence
label resolution on the SPE side. Three different variations for both algorithms Viz. sequential, parallelized
and vectorized using SIMD operation were implemented and tested on a dataset with varying workload
characteristics to test the performance. The CCL implementation using the Union-Find algorithm achieved
the best performance for most cases due to its linear time behavior with the parallel version showing a
moderate speedup of about 5 compared to the sequential version. The Floyd-Warshall algorithm performed
well only when the intermediate labels remain low (< 150) and degrades rapidly with increase in number
of labels. However the parallel implementation using SIMD instructions for resolving equivalence achieves
maximum speedup, especially when the total intermediate labels becomes large and closely follows the best
performance of the parallel implementation using Union-find. An average speed up of about 5 times was
achieved for labeling the random noise image with 30% foreground pixels and 382 components. Statistic
computation and relabeling could also be speedup to the factor of 5 by parallel computation on SPEs for
HD size image. Table 6 shows a workload summary of major algorithms implemented as separate modules
(prior to integration) at different stages of moving object detection and the performance gain achieved by
the parallel implementation on Cell for HD size images. The parallel performance observed on PS3, QS20
Cell Blade and QS22 PowerXCell Blade was observed to be the same with using only 6 SPEs (as in PS3) for
our algorithms. The system processes HD sized video frames in real time using two PS3 Cell processors.

50
Approved for Public Release; Distribution Unlimited

5. CONCLUSIONS

Parallel video processing algorithms in the context of N-CET sensor pod requirements were implemented
for object tracking in high definition video streams at a data capture bandwidth of 1.5Gb/s. Parallelization
of algorithms was primarily focused on the IBM Cell/B.E. class of multicore architectures due to its high
performance to power efficiency ratio (PPR), low cost and representativeness of other similar architectures
for high performance computing. The specific set of end-to-end video processing chain of algorithms was
implemented in a modular fashion for rapid prototyping followed by inclusion in the AFRL N-CET specific
software environment. Multicore algorithms implemented to exploit fine-grained parallelism included flux
tensor for motion estimation to identify potential moving objects, frame averaging and thresholding, binary
image morphology for pre- and post-processing to reduce noise, connected component labeling to group
image pixels into moving blobs, and object statistics after blob extraction to characterize blobs for real time
tracking. We assisted with integrating the Cell/B.E. processor modular codes with the Phoenix pub-sub
high performance database, reduced thread overhead, improved video processing module interoperability,
enhanced video streaming performance, evaluated power requirement tradeoffs between different algorithms,
assisted with tighter integration of the individual modules across multiple Cell/B.E. processors and gathered
benchmarking data to analyze performance bottlenecks in communication pathways and within computa-
tional modules. The video processing modules were ported to the IBM QS20/QS22 Blade architectures with
16 SPEs for improved numerical computation performance, especially for the flux tensor computation.

A significant amount of implementation time was devoted to memory management and data alignment,
data movement (DMA transfers), vectorization and shuffling issues. Since the SPU has only 256KB of mem-
ory and limited programmer development tools this required manual code partitioning and coordinating
data movement into and out of the SPE registers. Flux tensor calculations involving separable 3D convolu-
tions were done using fused vector multiply adds and filter specific optimizations to approach the peak SPU
performance. The flux tensor SPE implementation previously partitioned the data into vertical data blocks
or strips for each SPE. The vertical data chunking does not match with the horizontal data block-based
implementations for the other modules (morphology, CCL, statistics). So the flux tensor implementation
was modified to use horizontal data blocks in line with the rest of the interprocess data flow patterns. The
flux tensor component operators were further reordered to perform the temporal derivatives first which sig-
nificantly reduced the number of computations, reduced memory requirements and sped up the algorithm
by a factor of two for the smallest filter sizes to about six for the larger filter sizes.

Data partitioning and loop unrolling required careful tuning of implementation parameters like work unit
data chunking, number of stages to unroll loops that is constrained by the amount of available SPE local
store memory, 6 cycle latency in the FMA unit and other factors. For using SIMD instructions, additional
shuffle operations are required to transfer data into the SPE registers that may not be aligned to 128-bit
vector cache lines. For HD image size and filter configuration of nDs = 7, nDt = 5, nAs = 7, nAt = 5 a
speedup of about 33 times was observed on the Cell BE.

The binary morphology operations were optimized for execution on the Cell SPE by representing each
pixel by a single bit and utilizing bitwise comparison AND/OR SIMD operations to process 128 pixels simul-
taneously. Novel bit level data access and alignment techniques for Cell BE were proposed in this context.
Our implementation using 6 SPE’s achieved a speedup of up to 660 times for processing erosion/dilation
operation using 7× 7 pixels size kernels on HD size image. The parallelization approach for CCL algorithm
proposed a suitable data partitioning and merging algorithm for execution on PPE and multiple SPEs. We
implemented parallel versions of the Union-Find and Floyd-Warshall algorithms for labeling and equivalence
label resolution on the SPE side. Three different variations for both algorithms Viz. sequential, parallelized
and vectorized using SIMD operation were implemented and tested on a dataset with varying workload
characteristics to test the performance. Implementation using Union-Find algorithm achieved the best per-
formance for most cases due to its linear time behavior and the parallel implementation achieved a moderate
speedup of about 5. The Floyd-Warshall algorithm performed well only when the intermediate labels re-
main low (< 150) and degrades rapidly with increase in number of labels. However, the proposed parallel
implementation using SIMD instructions for resolving equivalence achieves maximum speedup, especially
when the total intermediate labels becomes large; and closely follows the best performance of the parallel

51
Approved for Public Release; Distribution Unlimited

implementation using Union-Find. An average speed up of about 5 times was achieved for labeling the
random noise image with 30% foreground pixels and 382 components. Statistic computation and relabeling
could also be speedup to the factor of 5 by parallel computation on SPEs for HD size image. Table 6 presents
a summary of characteristics of major algorithms implemented in this report at different stages of moving
object detection workload and the performance gain achieved by the parallel implementation on Cell for HD
size image. The parallel performance observed on PS3, QS20 Cell Blade and QS22 PowerXCell Blade was
observed to be the same with using only 6 SPEs (as in PS3) for our algorithms. The whole system can
process HD size video frames in real time using two PS3 Cell processors. The proposed implementation can
be used to support N-CET class large scale video object detection and tracking applications that require
scalable processing for sensor networks and distributed dissemination of data and processing results up to
HD resolution.

52
Approved for Public Release; Distribution Unlimited

6. REFERENCES

[1] S. Albers. Energy efficient algorithms. Communications of the ACM, 53(5), May 2010.

[2] S. Albers, F. Muller, and S. Schmelzer. Speed scaling on parallel processors. In Proc. 19th ACM
Symposium on Parallelism in Algorithms and Architectures, pages 289–298, 2007.

[3] S. Ali and M. Shah. COCOA - Tracking in aerial imagery. In Daniel J. Henry, editor, SPIE Air-
borne Intelligence, Surveillance, Reconnaissance (ISR) Systems and Applications III, number 6209 in
Proceedings of the SPIE, page Online, 2006.

[4] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and P.A. Wacrenier. StarPU: A unified platform
for task scheduling on heterogeneous multicore architectures. Concurrency and Computation: Practice
and Experience, 23:187–198, 2011.

[5] D. A. Bader and V. Agarwal. FFTC: Fastest Fourier transform for the IBM Cell Broadband Engine.
Lecture Notes in Computer Science (HiPC), 4873:172–184, 2007.

[6] Pieter Bellens, Josep M Perez, Rosa M Badia, and Jesus Labarta. CellSs : A Programming Model for
the Cell BE Architecture. In Proc. ACM/IEEE Conference Supercomputing, 2006.

[7] B. Bouzas, R. Cooper, J. Greene, M. Pepe, and M-J. Prelle. Multicore framework: An API for pro-
gramming heterogeneous multicore processors. Technical report, Mercury Computer Systems, Inc.,
2006.

[8] F. Bunyak, K. Palaniappan, S. K. Nath, and G. Seetharaman. Flux tensor constrained geodesic active
contours with sensor fusion for persistent object tracking. J. Multimedia, 2(4):20–33, August 2007.

[9] F. Bunyak, K. Palaniappan, S.K. Nath, and G. Seetharaman. Geodesic active contour based fusion
of visible and infrared video for persistent object tracking. IEEE Workshop Applications of Computer
Vision (WACV 2007), page Online, 2007.

[10] A. Buttari, P. Luszczek, J. Kurzak, J. Dongarra, and G. Bosilca. A rough guide to scientific computing
on the Playstation 3. Technical Report UT-CS-07-595, Innovative Computing Laboratory, University
of Tennessee Knoxville, 2007.

[11] A. L. Chan. A description on the second dataset of the U.S. Army Research Laboratory Force Protection
Surveillance System. Technical Report ARL-MR-0670, Army Research Laboratory, Adelphi, MD, 2007.

[12] T. P. Chen, D. Budnikov, C. J. Hughes, and Yen-Kuang Chen. Computer vision on multi-core processors:
Articulated body tracking. IEEE International Conference on Multimedia and Expo, pages 1862–1865,
2007.

[13] R. T. Collins, A. J. Lipton, T. Kanade, H. Fujiyoshi, D. Duggins, Y.Tsin, D. Tolliver, N. Enomoto,
O. Hasegawa, P. Burt, and L.Wixson. VSAM: A system for video surveillance and monitoring. PA,
Technical Report CMU-RI-TR-00-12, Carnegie Mellon Univ., Pittsburgh, 2000.

[14] R.T. Collins, A.J. Lipton, H. Fujiyoshi, and T. Kanade. Algorithms for cooperative multisensor surveil-
lance. Proc. of the IEEE, 89:1456–1477, October 2001.

[15] R.T. Collins, Y. Liu, and M. Leordeanu. Online selection of discriminative tracking features. IEEE
Trans. Pattern Anal. Mach. Intel., 27(10):1631–1643, Oct. 2005.

[16] K. Fatahalian, T. J. Knight, M. Houston, M. Erez, D. R. Horn, L. Leem, J-Y. Park, M. Ren, A. Aiken,
W. J. Dally, and P. Hanrahan. Sequoia: Programming the memory hierarchy, p. online. Proc.
ACM/IEEE Conference Supercomputing, 2006.

[17] S. Grauer-Gray, C. Kambhamettu, and K. Palaniappan. GPU implementation of belief propagation
using CUDA for cloud tracking and reconstruction. In 5th IAPR Workshop on Pattern Recognition in
Remote Sensing (ICPR), pages 1–4, 2008.

[18] M. Gschwind. The Cell Broadband Engine: Exploiting multiple levels of parallelism in a chip multi-
processor. International Journal of Parallel Programming, 35(3):233–262, 2007.

[19] A. Hafiane, K. Palaniappan, and G. Seetharaman. UAV-video registration using block-based features.
In IEEE Int. Geoscience and Remote Sensing Symposium, volume II, pages 1104–1107, 2008.

[20] M. Hidemasa, D. Munehiro, N. Hiroki, and M. Yumi. Multilevel parallelization on the Cell/B.E. for a
motion JPEG 2000 encoding server. Proc. 15th International Conference Multimedia, pages 942–951,
2007.

[21] B.P. Horn and B.G. Schunck. Determining optical flow. Artificial Intell., 17(1-3):185–203, Aug. 1981.

53
Approved for Public Release; Distribution Unlimited

[22] K. Jefferson and C. Lee. Computer vision workload analysis - case study of video surveillance systems.
Intel Technology Journal, 09(02), 2005.

[23] P. Kumar, K. Palaniappan, A. Mittal, and G. Seetharaman. Parallel blob extraction using the multi-core
Cell processor. Lecture Notes in Computer Science (ACIVS), 5807:320–332, 2009.

[24] Jakub Kurzak, Alfredo Buttari, Piotr Luszczek, and Jack Dongarra. The PlayStation 3 for high-
performance scientific computing. IEEE Computing in Science and Engineering, pages 84–87, May/June
2008.

[25] L. Liu, S. Kesavarapu, J. Connell, A. Jagmohan, A. Leem, L. Paulovicks, B. Sheinin, V. L. Tang, and
H. Yeo. Video analysis and compression on the STI Cell broadband engine processor. IEEE International
Conference on Multimedia and Expo, 2006.

[26] Y. Liu and K. N. Ngan. Fast multiresolution motion estimation algorithms for wavelet-based scalable
video coding. ACM Image Communication, 22(5):448–465, 2007.

[27] M. Manohar and H.K. Ramapriyan. Connected component labeling of binary images on a mesh con-
nected massively parallel processor. Computer Vision, Graphics, and Image Processing, 45(2):133–149,
1989.

[28] M. D. McCool. Data-parallel programming on Cell BE and the GPU using the rapidmind development
platform, p. online. In GSPx Multicore Applications Conference, 2006.

[29] S. Mehta, A. Misra, A. Singhal, P. Kumar, A. Mittal, and K. Palaniappan. Parallel implementation of
video surveillance algorithms on GPU architectures using CUDA. In 17th IEEE Int. Conf. Advanced
Computing and Communications (ADCOM), 2009.

[30] J. M. Metzler, M. H. Linderman, and L. M. Seversky. N-CET: Network-centric exploitation and tracking.
In IEEE Military Communications Conf. (MILCOM), pages 1–7, 2009.

[31] S. Momcilovic and L. Sousa. A parallel algorithm for advanced video motion estimation on multicore
architectures. International Conference Complex, Intelligent and Software Intensive Systems, pages
831–836, 2008.

[32] H.H. Nagel and A. Gehrke. Spatiotemporally adaptive estimation and segmentation of OF-Fields. In
LNCS-1407: Proc. 5th ECCV, volume 2, pages 86–102, Freiburg, Germany, June 1998. Springer-Verlag.

[33] K. Palaniappan, I. Ersoy, and S. K. Nath. Moving object segmentation using the flux tensor for biological
video microscopy. Lecture Notes in Computer Science (PCM), 4810:483–493, 2007.

[34] K. Palaniappan, M. Faisal, C. Kambhamettu, and A. F. Hasler. Implementation of an automatic semi-
fluid motion analysis algorithm on a massively parallel computer. 10th IEEE Int. Parallel Processing
Symp., pages 864–872, 1996.

[35] K. Palaniappan, H. S. Jiang, and T. I. Baskin. Non-rigid motion estimation using the robust tensor
method. In IEEE CVPR Workshop on Articulated and Nonrigid Motion, volume 1, pages 25–33,
Washington DC, USA, June 27–July 2 2004.

[36] I. Pavlidis, V.Morellas, P. Tsiamyrtzis, and S. Harp. Urban surveillance systems: From the laboratory
to the commercial world. Proceedings of IEEE, 89(10):1478–1497, 2001.

[37] J. M. Perez, P. Bellens, R. M. Badia, and J. Labarta. CellSs: making it easier to program the Cell
broadband engine processor. IBM Journal of Research and Development, 51(5):593–603, 2007.

[38] P. Bellens J. M. Perez, , R. M. Badia, and J. Labarta. CellSs: A programming model for the Cell BE
architecture. In Proc. ACM/IEEE Conference Supercomputing, 2006.

[39] A.C. Sankaranarayanan, A. Veeraraghavan, and R. Chellappa. Object detection, tracking and recogni-
tion for multiple smart cameras. Proceedings of the IEEE, 96(10):1606–1624, 2008.

[40] G. Seetharaman, G. Gasperas, and K. Palaniappan. A piecewise affine model for image registration in
3-D motion analysis. In IEEE Int. Conf. Image Processing, pages 561–564, 2000.

[41] H. Sugano and R. Miyamoto. Parallel implementation of morphological processing on Cell/BE with
OpenCV interface. 3rd International Symposium Communications, Control and Signal Processing, pages
578–583, 2008.

[42] Hai-Yun Wang and Kai-Kuang Ma. Spatio-temporal video object segmentation via scale-adaptive 3D
structure tensor. EURASIP J. Appl. Signal Process., 2004(6):798–813, 2004.

54
Approved for Public Release; Distribution Unlimited

[43] C. Weele, H. Jiang, and et al. A new algorithm for computational image analysis of deformable motion
at high spatial and temporal resolution applied to root growth. Plant Physiology, 132(3):1138–1148,
July 2003.

[44] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, and K. A. Yelick. Scientific computing kernels
on the Cell processor. Int. J. Parallel Programming, 35:263–298, 2007.

[45] P. R. Woodward, J. Jayaraj, P-H. Lin, and P-C. Yew. Moving scientific codes to multicore micropro-
cessor CPUs. IEEE Computing in Science and Engineering, 10(6):16–25, 2008.

[46] J. Yu and H. Wei. Video processing and retrieval on cell processor architecture. Lecture Notes in
Computer Science, 4740:255–262, 2007.

[47] Z. Yue, D. Guarino, and R. Chellappa. Moving object verification in airborne video sequences. IEEE
Trans. Circuits and Systems for Video Technology, 19(1):77–89, Jan. 2009.

[48] J. Zhang, J. Gao, and W. Liu. Image sequence segmentation using 3-D structure tensor and curve
evolution. IEEE Trans. Circuits and Systems for Video Technology, 11(5):629–641, May 2001.

[49] X. Zhuang, Y. Huang, K. Palaniappan, and Y. Zhao. Gaussian mixture density modeling, decomposition
and applications. IEEE Trans. Image Processing, 5(9):1293–1302, Sept. 1996.

[50] X. Zhuang, K. Palaniappan, and R. M. Haralick. Highly robust statistical methods based on minimum-
error bayesian classification. In C. W. Chen and Ya-Qin Zhang, editors, Visual Information Repre-
sentation, Communication and Image Processing, Optical Engineering, pages 415–430. Marcel-Dekker,
1999.

55
Approved for Public Release; Distribution Unlimited

7. LIST OF ACRONYMNS

AFRL - Air Force Research Laboratory

Cell/B.E. - IBM Cell Broadband Engine multicore processor

CCL - connected component labeling

CPU - central processing unit

CUDA - Compute Unified Device Architecture (nVidia)

DMA - direct memory access

FLOPS - floating point operations per second

FMA - fused multiply add

FPSS - Force Protection Surveillance System video collection

GFLOPS - gigaflops (billion floating point operations per second)

GPU - graphics processing unit

HD - high definition

JBI - Joint Battlespace Infosphere database

JCAN - Joint Capability for Airborne Networking

JPEG - Joint Photographic Experts Group

KB - kilobyte (1024 bytes)

MB - megabyte

MBB - minimum bounding box

MFC - memory-flow controller

MFLOPS - megaflops (million floating point operations per second)

MHT - multiple hypothesis tracking

N-CET - Net-Centric Exploitation and Tracking

NP-hard - non-deterministic polynomial-time hard

Phoenix - follow-on to JBI

PS-3 - SONY Playstation 3

PPE - Power Processing Element

SAD - Sum of Absolute Differences

SB - subblock or macroblock

SD - standard definition

SIMD - single instruction

SPE - Synergistic Processing Element

SIMD - single instruction multiple data

SPMD - single program multiple data

WW - work width

56
Approved for Public Release; Distribution Unlimited

