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LONG-TERM GOAL

The long-term goal of this research is to use remotely sensed ocean optical data for estimates of
the regional and global scale significance of photochemistry to dissolved organic carbon (DOC) cycles
and optical changes resulting from these processes.

SCIENTIFIC OBJECTIVES

The central objective of this research program is to examine quantitatively the links between
optical measurements and photochemical carbon transformations in the sea. Our goal is to establish
guantitative methods to relate variability in water-leaving radiance to photochemical reactions that lead
to direct loss of colored dissolved organic matter (CDOM) and consequent changes in UV optical
properties in the photic zone. By examining these quantitative relationships, we also hope to gain both
an understanding of the dominant variables controlling UV optics in the mixed layer and the critical
parameters influencing DOC photochemical reactions in seawater.

APPROACH

To achieve the objectives stated above requires a wavelength dependent descriptionsttithe
optical field for ultraviolet radiation (UV) together with spectral efficiency data for photooxidation of
CDOM. Our general approach uses three connected principles:

(1) Diffuse attenuation coefficients for visible spectral irradiance can be related to ocean color
(i.e., ratios of near-surface water-leaving radiance; Austin and Petzold 1981). Our results thus far
indicate that comparable relationships between water-leaving radiance in the visible and diffuse
attenuation of UV radiation can also be determined.

(2) CDOM is a dominant contributor to the absorption and attenuation of UV in coastal waters.
With appropriate caution, and proper accounting for adsorption by particles, diffuse attenuation of
UV can be related directly to absorption by dissolved organic matter.

(3) The absorption of UV by CDOM leads to photochemical transformations that include the
destruction of chromophores and the production of lower-molecular weight compounds.
Wavelength-dependent quantum yields for these transformations can be determined experimentally
as action spectra.

Given measurements of solar radiation and upwelling radiance at the sea-surface, we will estimate
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photochemical transformations of surface-layer DOM by applying empirical relationships between: (1)
reflectance and diffuse attenuation, (2) spectral diffuse attenuation and UV absorbance, and (3) UV
absorbance and action spectra for photochemical transformations.

Field optical data are collected with two instruments (Satlantic, Inc.) that add UV measurements to
visible wavebands compatible with the SeaWiFS ocean color satellite. The first is a modified Tethered
Spectral Radiometer Buoy (TSRB-II) which simultaneously measures incident irradiance (Ed) and
upwelling radiance (Lu) in 14 wavebands, including 4 in the UV (2 nm bandwidth). The second is a
SeaWiFS Profiling Multichannel Radiometer (SPMR) which measures vertical profiles of
downwelling irradiance in wavebands identical to the TSRB-II. Both instruments are deployed
simultaneously to accumulate UV/VIS optical data (Ed, Lu, & Kd) while collecting discrete rosette
samples at the same station. Each sample is evaluated for particulate absorption (including detrital
correction), dissolved absorption (at least in the UV), and particulate pigments.

We use two laboratory irradiation strategies to quantify photochemical carbon mineralization (DIC
& CO): (1) Full spectrum irradiations with a solar simulator (DSET Suntest CPS, Heureus) and/or
natural sunlight that allows evaluation of the statistical uncertainties and upper bounds for
mathematical predictions of photoproduction in different waters. (2) Narrow bandwidth
monochromatic irradiations (normally using an Oriel 1/4 meter monochromator with 1000W Xe
source) that establish wavelength-based quantum efficiedejdsr(photochemical and coincident
physical/chemical (ex. fading) alterations of the CDOM . Photochemical production rates are
compared to wavelength dependent extinction coefficients, irradiation history, bleaching rate, and
environmental variables (pH, temperature, salinity, efthle combination of spectral photochemical
efficiency data, absorbance data, irradiation profiles generated either using the SPMR or optical
models, and measurements of solar spectral irradiance will allow predictions of whole column
photoproduction.

Using relationships developed by deployments of the TSRB-Il and SPMR, we plan to combine
remotely-sensed data with irradiance and water optical models to estimate the photomineralization of
CDOM in the coastal ocean (&4 la. J.J. Cullen et al., ASLO 1997). These data will represent the
beginning of regional photochemical inventories and a starting point for long term regional scale
studies of photochemical carbon transformations in the coastal ocean.

At Dalhousie, Sophie Johannessen (Ph.D. student) and W. Miller (PI) are involved in all
components of this approach. Another graduate student (Lori Ziolkowski) and a technician (Penny
Kuhn) have been added to the effort this year. Lori's background is in chemistry and Penny’s is in
optical modeling. Our field optical component benefits greatly from the participation of J.J. Cullen’s
group (w/ R. Davis, B. Nieke, also at Dalhousie) and assistance from Satlantic, Inc. (instrument
development, optical expertise, field and computer assistance). We have collaborated with N.
Blough’s group at the University of Maryland (w/ A. Vodacek) by sharing shiptime and they have
provided additional field optical data.

WORK COMPLETED
This year, a conductivity probe and tilt sensor were added to the SPMR and both were tested for

compatibility and data quality during a cruise in the Atlantic Bight. These additions complete the
planned instrument complement for the SPMR that we have assembled over the first three years of this



project. The current configuration includes 14 UV-VIS optical channels, a WETStar miniature
fluorometer, tilt sensor, and instruments to provide conductivity, temperature, and pressure. The 1998
cruise resulted in 31 optical stations with an average of 3 replicate profiles each. This completes our
field collaboration with Blough in the Atlantic Bight (four 7-day cruises, 118 stations, 3 seasons). We
are currently comparing and compiling field and laboratory optical data for publication.

We have used a newly constructed irradiation box (15 long-pass filters over custom quartz
containers) to allow quantum yield data to be generated more quickly than traditional monochromatic
irradiation techniques. This system saw its first successful use at sea in the North Atlantic to examine
the wavelength efficiency for carbon disulfide photoproduction (Xie et al., 1998). We also began
experiments of CDOM fading and CO2 photoproduction using the box to determine the wavelength
dependent efficiencies for these processes.

New MATLAB® code has been developed to speed the analysis of both field and laboratory spectral
data. We have successfully incorporated the methods of Rundel (1983) in our quantum efficiency
calculations and improved procedures for calculating Kd and dark-correction in collaboration with M.
Lewis and J.J. Cullen.

RESULTS

In accordance with our approaches listed above, we have continued to accumulate samples and
optical data for diverse water types in an effort to build robust optical relationships that will be useful
in predicting photochemistry from remotely sensed data. We have assembled optical instrumentation
that gives excellent data for both in sind reflected UV/VIS radiation (Ed, Lu, & Kd). We began
evaluating the relationships present in field data between Lu and Ed in each waveband in the UV
(typical result for the 323nm channel presented in Figure 1 below) and are evaluating similar
extrapolation between Lu’s in the visible and Kd'’s in the UV. We are currently examining methods to
account for particle absorption in the UV using ratios for visible bands. Profile data has been used to
calculate the in sitgpectral slope of attenuation for comparison to CDOM spectra at the same stations
(Miller et al., EOS, 1998).



80T

0.0035; 704

y=0.0073¢ 20038

n
Qo
®
E
=
~— c
e o
u Is)
3 &
= 0.0030] £
E @ R2=0.9083 5 607
(55}
o 0.0025] £ g0t
™ ©
7 0.00201 S 407
o >
2 0.0015] £ 307t
b 2
@ 0.0010; § 207
& 0.0005{ [©LWEd S 1ot
c
0.0000 : - - . — S 0 . . .
0.3 0.4 0.5 0.6 0.7 0.8 § 300 350 400 450
Downwelling Attenuation Coefficient at 323 nm, Kd (m-1) Irradiation Band Wavelength (nm)
Figure 1. Relation between attenuation and Figure 2. Spectral dependence for CDOM

reflected radiation at 323 nm, Bering Sea  fading at SPMR wavelengths, N.W. Arm water

Data from some vertical optical profiles in the Atlantic Bight supported the presence of a
photochemically faded water mass in the seasonal mixed layer. At these stations, an increase in UV
attenuation was observed at the base of the mixed layer while an equivalent trend was not seen for
visible wavelengths. Follow-up laboratory irradiations have provided data on the wavelength
dependence of this CDOM fading process. These preliminary data from local waters (Figure 2 above)
are presently being used to structure a mixed layer model that will provide a tool to examine the
subtleties of CDOM spectral fading (particularly changes in spectral slope) in different water types.

IMPACT / APPLICATION

The optical properties of CDOM in the ocean control photochemical rates, effect oceanic chemical
cycles, and influence the interpretation of ocean color (Miller, 1998a; 1998b). Based on data from the
field, we feel that instrumentation capable of characterizing UV radiation in the surface ocean will
prove invaluable to the understanding of the variability in the CDOM signal. While a large effort will
be needed on both optical and photochemical research fronts, the approach developed thus far appears
to be sound and should lead to novel and critical insight on the link between ocean optics and
photochemical carbon transformations. It will also result in the unique ability to address the regional
and global significance of photochemical reactions in the ocean.

TRANSITIONS

In addition to our main work in the Atlantic Bight, both instruments developed as part of this
project have also been successfully deployed in the Gulf of St. Lawrence (B. Nieke, post. doc. w/
Cullen) the Bering Sea, and the Southern Ocean (Cullen). The TSRB-II (mounted in a modified frame
for very shallow Lu deployment) has been deployed to study UV effects on coastal lakes (collaboration
with J. Cullen, and T. Clair, Environment Canada). Based on the utility of the optical system we have
assembled, we have received offers to participate with several groups interested in other photochemical
processes. This should result in the opportunity to add varied water types to our expanding database.



Parts of the field data for the Atlantic Bight will be preparedpiabslication with N. Blough (Univ.
Maryland, ONR funded). Planned development affMB® algorithms for optical data base
management (M. Lewis, Dalhousie Univ., ONR) will incorporate our field optical data as part of a
searchable database.

RELATED PROJECTS

As stated above, we have collaborated with N. Blough (ONR) on fieldwork, sharing optical data
and ship time. His efforts are on CDOM photochemistry.

We have a collaborated with M. Lewis (ONR), also at Dalhousie, in his study of bio-optical
variability and development of novel optical instrumentation. J. Cullen works closely with both Dr.
Lewis and myself on optical models, data analysis, and instrument development. The timely
development of our novel Satlantic instruments depends heavily on these relationships.

During 1998 we conducted fieldwork for a project funded by the Canadian National Science and
Engineering Council (NSERC) to study DOM photochemistry in an Arctic polynya. During 4
continuous months at sea we collected over 1000 discrete CDOM measurements from vertical profiles
at about 40 stations. We will use these data to examine CDOM variability and its relaticituo
optics and reflectance data measured by others in the project. We are not funded for optical
measurements in this project.
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