
 

 
Size-Dependent Strengthening of  

Particle-Reinforced Aluminum Matrix Composites 

 
by Cyril L. Williams 

 
 

ARL-TR-5530 May 2011 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Approved for public release; distribution is unlimited.   



NOTICES 
 

Disclaimers 
 
The findings in this report are not to be construed as an official Department of the Army position unless 
so designated by other authorized documents. 
 
Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the 
use thereof. 
 
Destroy this report when it is no longer needed.  Do not return it to the originator. 



Army Research Laboratory 
Aberdeen Proving Ground, MD  21005-5066 
 

ARL-TR-5530 May 2011 
 
 
 
 

Size-Dependent Strengthening of  
Particle-Reinforced Aluminum Matrix Composites 

 
Cyril L. Williams 

Weapons and Materials Research Directorate, ARL 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Approved for public release; distribution is unlimited.   



 ii

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering 
and maintaining the data needed, and completing and reviewing the collection information.  Send comments regarding this burden estimate or any other aspect of this collection of information, 
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to 
comply with a collection of information if it does not display a currently valid OMB control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 

May 2011 
2. REPORT TYPE 

Final 
3. DATES COVERED (From - To) 

January 2010–December 2010   
4. TITLE AND SUBTITLE 

Size-Dependent Strengthening of Particle-Reinforced Aluminum Matrix 
Composites 

5a. CONTRACT NUMBER 

 
5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 

Cyril L. Williams 
5d. PROJECT NUMBER 

AH80 
5e. TASK NUMBER 

 
5f. WORK UNIT NUMBER 

 
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

U.S. Army Research Laboratory 
ATTN:  RDRL-WMP-B 
Aberdeen Proving Ground, MD  21005-5066 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 

ARL-TR-5530 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

 
10. SPONSOR/MONITOR’S ACRONYM(S) 

 

11. SPONSOR/MONITOR'S REPORT 
      NUMBER(S) 

 
12. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 

13. SUPPLEMENTARY NOTES 

 

14. ABSTRACT 

The finite-element-based microstructural modeling technique developed by Suh et al. (Suh, Y. S.; Joshi, S. P.; Ramesh, K. T.  
Acta. Mater. 2009, 57, 5848) was reviewed and used for studying the different responses between isotropic and anisotropic 
aluminum matrix with varying particle sizes.  The results show that the overall response of the material was identical when the 
matrix material was changed from isotropic-elastic/plastic aluminum to anisotropic-elastic/isotropic-plastic aluminum, 
especially for the 5% volume fraction.  However, the anisotropic-elastic/isotropic-plastic aluminum exhibited a lower elastic 
modulus than that of the isotropic-elastic/plastic-aluminum.  Also, the flow stresses were lower for anisotropic-elastic/isotropic-
plastic aluminum for the 20% volume fraction. 

15. SUBJECT TERMS 

size dependent, strengthening, failure, dislocation, particle-reinforced 

16. SECURITY CLASSIFICATION OF:   
17. LIMITATION 
OF ABSTRACT 

 
UU 

18. NUMBER 
OF PAGES 

 
24 

19a. NAME OF RESPONSIBLE PERSON 

Cyril L. Williams 
a. REPORT 

Unclassified 
b. ABSTRACT 

Unclassified 
c. THIS PAGE 

Unclassified 
19b. TELEPHONE NUMBER (Include area code) 

410-278-8753 
 Standard Form 298 (Rev. 8/98) 

 Prescribed by ANSI Std. Z39.18 



 iii

Contents 

List of Figures iv 

List of Tables v 

1.  Introduction 1 

2.  The Micromechanics of Dislocation Punching 2 

3.  Computational Approach 5 

4.  Numerical Results and Discussion 7 

5.  Summary 11 

6.  References 12 

Distribution List 13 



 iv

List of Figures 

Figure 1.  Schematic illustration of (a) discrete distribution of punched regions around 
individual particles, (b) prismatic punching of dislocations loops due to thermal 
quenching, and (c) the punched zone boundary corresponding to equilibrium location of 
punched dislocations. .................................................................................................................3 

Figure 2.  Unit-cell for the case of a perfectly bonded particle-matrix interface. ............................6 

Figure 3.  The effects of particle size on punched zone size, dislocation density, yield 
strength, and unit-cube size for 5% and 20% volume fractions. ...............................................8 

Figure 4.  The effects of particle size on punched zone size, dislocation density, yield 
strength, and unit-cube size for 5% and 20% volume fractions (continued). ............................9 

Figure 5.  Composite stress-strain curves for (a) f = 5% and (b) f = 20% with different 
particle sizes (note that the aluminum matrix is isotropic elastic-plastic). ..............................10 

Figure 6.  FEA results for the 5% volume fraction with various particle sizes. ............................10 

Figure 7.  Composite stress-strain curves for (a) f = 5% and (b) 20% with different particle 
sizes (note that the aluminum matrix is anisotropic elastic-isotropic plastic). ........................11 

 



 v

List of Tables 

Table 1.  Material properties for SiC and Al. ..................................................................................6 
 
 



 vi

INTENTIONALLY LEFT BLANK. 



 1

1. Introduction 

Materials with high elastic modulus that are considered to be non-deformable relative to the 
constituent matrix material have long been used to enhance the elastic stiffness and yield strength 
of lightweight structural metals such as aluminum.  When used as particle reinforcements, the 
average size of these materials can be on the order of several microns.  For use in conventional 
metal matrix composites (MMC), relatively large-size particles in the range of 30–50 m have 
been exploited in high volume fractions (f) greater than 30% to achieve higher strength.  
However, this can be detrimental to the overall ductility of the resulting material.  It has been 
observed from experiments that for a fixed f, the yield strength of MMCs can increase with 
decreasing particle size (1–3).  This observation raises the prospect of using smaller particles and 
low volume fractions compared to conventional MMCs in order to achieve high strengths but 
also retain ductility.  A model based on prismatic punching of dislocations around a particle was 
proposed by Arsenault and Shi (1).  The model suggests that this particle size-dependence is due 
to a geometrically necessary dislocation (GND) density in order to accommodate the plastic 
strain arising from the mismatch in the coefficient of thermal expansion (CTE) (4).  Qu et al. (5) 
have suggested that the plastic strain gradients that arise during deformation also generate GNDs 
due to the elastic-plastic mismatch at the particle-matrix interfaces.  However, it was pointed out 
by Xue et al. (6) that the contribution of the yield strength appears to be significantly smaller 
than that due to the CTE mismatch.  The importance of these GND arguments is that they 
introduce a microstructural length-scale in the otherwise length-scale independent plasticity 
framework that predicts particle size-dependent strengthening. 

To fully understand the behavior of MMCs, there are three characteristics of GND density that 
are important and require special attention.  The first characteristic is that the GNDs will not be 
uniformly distributed throughout matrix in general but will rather be inclined to cluster close to 
the reinforcing particles.  The length-scale inside the material is established using the average 
distance the GNDs propagate away from the reinforcing particles.  Secondly, the GNDs will 
often be distributed in a non-symmetric or anisotropic pattern around the reinforcing particle, 
depending on the shape of the reinforcing particle and the anisotropy of the matrix.  Third and 
finally, the spatial distributions of the reinforcing particles that are non-uniform can result in 
abnormal GND densities due to the inclusions themselves being clustered in regions of the 
matrix.  Although this may seriously affect the overall strength of the composite material, a more 
serious implication is on the nucleation and growth of different microstructural failure modes (7, 
8).  Suh et al. (9) considered only the first of the three characteristics mentioned previously (the 
length-scale associated with the GND distributions).  In their study, they considered only the 
spherical particles and neglected the spatial distributions of the reinforcing particles by assuming 
a periodic array of the reinforcing particles in the matrix.  Suh et al. (9) investigated the size-
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dependent micromechanics of failure in MMCs using the classical continuum approach with 
dislocation-based micromechanics.  Their formulation can be easily implemented in elasto-
plastic finite-element analysis (FEA).  Their basic idea is that the GNDs that emanate from 
thermal quenching and the resulting CTE mismatch between the constituent materials are 
responsible for the highly dislocated volume (punched zone) that surrounds the particle.  They 
calculated the additional dislocation density in the punched zone using the size of the punched 
volume (10).  They also calculated the size of the punched zone as a function of the particle size 
and matrix properties (11).  The punched zone size and its resulting dislocation density are used 
in the computational model.  As the particles and their surrounding punched zones interact with 
their neighbors through evolving stress-fields, a non-local interaction arises.  The computational 
approach used by Suh et al. (9) retains the capability to model regular and irregular particle 
distributions while accounting for particle size-dependence using the relevant physics.  They 
demonstrated that in the absence of damage, their model predicts particle size-dependent 
strengthening that is in accordance with experimental results, especially at small strains.  The 
objective of this report is to extend the model developed by Suh et al. (9) to probe the response 
of a unit-cell consisting of an elastically stiff particle (silicon carbide) and its resulting punched 
zone in an anisotropic-elastic/isotropic-plastic matrix material (aluminum).  The interface 
between the matrix and the particle that captures the overall size dependent strengthening in the 
composite is assumed to be perfectly bonded, and hence no form of damage is accounted for.  
Also, it is assumed that the equations developed by Shibata et al. (11) based on the Eshelby 
inclusion theory for calculating the punched zone size are valid for cylindrical inclusions.  
Findings from the numerical simulations are compared to those ascertained by Suh et al. (9) and 
further discussed. 

2. The Micromechanics of Dislocation Punching 

The approach taken here is to reproduce the pertinent equations methodically assembled by Suh 
et al. (9) as they relate to the micromechanics of dislocation punching.  During thermal 
quenching, large stresses are developed in the MMC due to thermoelastic mismatch between the 
particle and the matrix material.  If the stresses are larger than the yield strength of the matrix 
material, then dislocations are punched out into the matrix material to accommodate the 
deformation, and this also relaxes the stresses developed.  According to Ashby’s model (12), 
these changes are geometrically necessary and hence the name geometrically necessary 
dislocations.  It is noteworthy to point out the two possible sources of GNDs.  First is the primary 
source, which represents the dislocations that are punched out into the matrix as a result of the 
CTE mismatch between the particle and matrix material during cooling of the composite to room 
temperature from the processing temperature.  Analytically, the primary sources are treated as if 
they have redistributed themselves over the entire matrix to form a background dislocation 
density (5, 13).  However, this is not generally the case (11), and these GNDs tend to redistribute 
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themselves over a length scale lz, and this redistribution is considered reasonable when lz is equal 
to or larger than the spacing between the particles, as shown in figure 1a.  This discreteness of 
the GND redistribution must be accounted for in the micromechanics of composites.  The plastic 
mismatch is the second source of GNDs, and it is the result of the deformation-induced plastic 
strain gradients that arise during plastic deformation.  This is due to the matrix deforming 
plastically when the particles do not.  Although this source of strengthening plays a major role at 
large strains, its contribution at small plastic strains post yield is not likely to be significant.  It 
has been confirmed by Suh et al. (9) that the dominant contribution to particle size-dependent 
strengthening comes from the thermal quenching stress. 

 

 

Figure 1.  Schematic illustration of (a) discrete distribution of 
punched regions around individual particles, (b) prismatic 
punching of dislocations loops due to thermal quenching, 
and (c) the punched zone boundary corresponding to 
equilibrium location of punched dislocations (9). 

Because of the low Zener anisotropy ratio (defined in the next section) of the aluminum matrix, 
it is reasonable to assume that the excess density due to the GNDs is uniformly distributed in a 
cylindrical shell called the punched zone of volume (Vz) and size (lz) bounded by the punched 
zone size (rp) and inner particle radius (r).  Employing the Ashby model (12), the total 
dislocation line length (L) due to N number of dislocations punched out from a cylindrical 
particle-matrix interface can be estimated using equation 1: 

ܮ                                               ൌ ܰݎߨ2 ൌ
଼గ௥మఌ೛

௕
ൎ ௞గ௥మሺ∆ఈ∆்ሻ

௕
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where b is the magnitude of the Burgers vector, Δα = α* – α is the CTE mismatch with α* being 
the CTE of the particle and α that of the matrix material, ΔT is the processing temperature 
change, and εp is the plastic strain.  The parameter k accounts for the geometry and plastic part of 
the total thermal strain responsible for the dislocation punching.  The excess dislocation density 
ρg in the punched zone can be obtained as follows: 

௚ߩ                                                        ൌ
௅

௏೥
ൌ ஺ᇲ௥మሺ∆ఈ∆்ሻ

௕ሺ௥೛
యି௥యሻ

 ,                                                          (2) 

where the parameter A’ has been determined to be of the order 102 (10, 12).  Utilizing equation 2 
requires the calculation of the punched zone size (rp), which can be derived from the equations of 
Shibata et al. (11) that are based on the Eshelby inclusion theory.  These equations are quite 
attractive because they account for the effect of other particles (essentially the volume fraction) 
on the punching distance.  Noting that the Eshelby tensor for an elliptic inclusion can be reduced 
to the Eshelby tensor for a cylindrical inclusion by letting the third dimension approach infinity 
(14), it is assumed that the equations developed by Shibata et al. (11) are valid for estimating the 
punching distance (rp) from the center of a cylindrical particle.  Therefore, rp is estimated to be 

 rp=r ൝
B൫1-2Pf൯+ටB2(1-2Pf)

2
+16ቀ

τy
G
ቁPB

൬
4τy
G
൰

ൡ

1/3

 ,       (3) 

for which r is the particle radius and f is the volume fraction of the particles.  The coefficients are 
determined from the following equations as 

ܤ                                                       ൌ
ሺଵାఔሻ|୼ఈ୼்|

ሺଵିఔሻ
                                                    (4) 

and 

                 ܲ ൌ
ଶሺଵିଶఔሻሺଷఒഥାଶ ҧீሻ

ሺଵିఔሻቂሺଵି௙ሻ൫ଷఒഥାଶ ҧீ൯
ሺభశഌሻ
ሺభషഌሻ

ାଷሼ௙ሺଷఒכାଶீכሻାሺଵି௙ሻሺଷఒାଶீሻሽቃ
  ,                           (5) 

 
where the asterisked material quantities represent those for the particle, and the ones without 
asterisks represent those for the matrix.  Referencing the previous equations, τ is the shear yield 
strength and ν is the Poisson’s ratio of the matrix.  Furthermore, ߣҧ ൌ כߣ െ ҧܩ and ߣ ൌ כܩ െ  are ܩ
the mismatches of the Lame constants.  Using the approach by Shibata et al. (11), it can be 
deduced that there exists a region around each particle created by the punched zone whose extent 
is affected by its surrounding particles through the volume fraction f.  Therefore, for a given 
material, smaller volume fractions f (i.e., larger interparticle distances) and larger particle 
diameters (dr = 2r) could result in punching distances (rp) large enough to occupy the entire 
matrix region of the unit-cell or causing the neighboring punched regions to overlap.  As in the 
case with Suh et al. (9), a restriction is placed to allow only those combinations of f and r in 
which such situations do not arise.  Most of the particle sizes considered in this work restrict the 
model to volume fractions (f ) that are ≤20%.  Finally, using equation 6 in conjunction with the
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excess dislocation density calculated in the punched zone (equation 2), the strength of the 
material within the punched zone due to GND density can be estimated as follows:  

ߪ      ൌ ௬ߪ ൅  ௚ ,                 (6)ߩඥܾܩܽ

where ܽ = 1.25 for aluminum (15). 

3. Computational Approach 

In contrast to the isotropic aluminum matrix material used by Suh et al. (9), the aluminum matrix 
material considered here is a linear-anisotropic-elastic/isotropic-plastic solid.  An anisotropic 
body is one that at a given point has different values of a material property in different directions 
in that the material properties are directionally dependent.  The constitutive equation describing 
such behavior can be written in indicial notation form as 

௜ ߪ                                                     ൌ ௜ ߝ  ௝  orߝ௜௝ܥ ൌ ௜ܵ௝ߪ௝ ,                                (7) 

where Cij is the stiffness matrix and Sij is the compliance matrix.  For anisotropic systems, the 
Zener anisotropic ratio (A) is defined as 

ܣ       ൌ ଶ஼రర
஼భభି஼భమ

  .                 (8) 

It is a measure of the anisotropy of a material.  Some metals, such as copper, have a high Zener 
anisotropy ratio (3.21), whereas others, such as aluminum and tungsten, exhibit values close to 1 
(1.22 and 1.00, respectively).  It is noteworthy to point out that the closer the value is to 1, the 
more isotropic the material is.  Therefore, for tungsten with a value of 1.00, even single crystals 
are almost isotropic. 

For this study, a regular array of cylindrical, linear-elastic silicon carbide (SiC) particles 
embedded in a linear-anisotropic-elastic/isotropic-plastic aluminum metal matrix is modeled 
using a finite-element analysis scheme (16).  The unit-cell consists of the particle, the punched 
zone, and the matrix, as shown in figure 2a.  The particle size and volume fraction are 
independently controlled, but the punched zone size is adjusted using equation 3.  The matrix-
particle interface is modeled as perfectly bonded for simplicity.  Roller-boundary conditions are 
imposed at the base of the unit-cell that is pinned on the bottom left corner, and a uniform 
displacement is applied in the positive y-direction (010) along the top boundary.  The composite 
true stress (ߪത) and true strain (ߝҧ) behavior of the unit-cell is derived from the y-displacement, uy, 
and the tensile force Fy generated at the top boundary using the following equations: 

തߪ       ൌ ଵ

௛೎
మ ׬ ௬หܨ

௛೎
଴ ௬ୀ௛೎

 (9)           , ݔ݀
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and 

ҧߝ       ൌ ݈݊ ቀ1 ൅
௨೤
௛೎
ቁ ,                (10) 

where hc is the initial height of the unit-cell. 

 

Figure 2.  Unit-cell for the case of a perfectly bonded particle-matrix interface. 

The meshed unit-cube is shown in figure 2b, and the average number of elements used in a 
typical simulation is ~17,000 with a concentration of finer mesh in the particle and punched zone 
region.  Prior to the actual simulations, mesh convergence studies were performed to ensure 
consistent results.  The material properties used as input in Abaqus (16) are listed in table 1 (9, 
17).  The plastic hardening behavior of both the matrix and the punched zone regions was 
modeled using J2 flow theory, using as input the uniaxial-stress/plastic-strain relation ߪ ൌ
464ሺ0.00274 ൅  ௣ሻ଴.ଵଷ଺ MPa based on experimental data in the open literature (3, 5).  The onlyߝ
difference between the plastic-hardening behavior for the matrix and punched zone is that the 
yield stress for the punched zone is higher than the rest of the matrix material, with the 
strengthening determined by a thermal quenching ΔT of 474 K (3). 

Table 1.  Material properties for SiC and Al. 

Material E 
(GPa) 

E010 

(GPa) 
E100 

(GPa) 
 CTE 

(1/K) 
y 

(GPa)
C11 

(GPa)
C12 

(GPa) 
C44 

(GPa) 

Al — 63.861 63.861 0.33 23.63 × 10–6 208 108.2 61.3 28.5 
SiC 427 — — 0.17 4.3 × 10–6 — — — — 

 

                                                 
Abaqus is a registered trademark of Abaqus, Inc. 

 

(a)                                                             (b) 

Matrix

Punched
Zone

Particle

[010]

[100]
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4. Numerical Results and Discussion 

Prior to running FEA simulations, sensitivity studies were conducted with the objective of 
understanding how the different parameters within the punched zone vary with changes in the 
particle radius for both volume fractions (5% and 20%, respectively).  The results acquired from 
such studies are shown in figures 3 and 4.  From figure 3a, it is observed that increasing the 
particle radius leads to an increase in punched zone size for both volume fractions, with the 
largest increase attributed to the 5% volume fraction at a particle radius 16 m.  For both volume 
fractions, an exponential decay was observed in the dislocation density as the particle size 
increases and appears to saturate at approximately 16 m particle radius (figure 3b).  It should be 
noted that prior to saturation, the 5% volume fraction curve is lower than that of the 20%.  As a 
result, the strength of the 20% volume fraction material in the punched zone due to GND is 
dramatically increased as the particle size is decreased more than that of the 5%.  This behavior 
affects the response of the composite material as shown by Suh et al. (9).  Similar trends were 
observed for the yield strength of the punched zone as the particle size was decreased as shown 
in figure 4c.  This implies that as the particle size is decreased, there is a dramatic increase in the 
yield strength of the punched zone.  Finally, when the particle size was increased, the unit-cube 
size linearly increased in both cases as shown in figure 4d.  The unit-cube size with the 5% 
volume fraction increased at a rate far greater than that of the 20% volume fraction.  The 
physical implication of this is that the particle with the 5% volume fraction is surrounded by a 
larger matrix than that of the 20% volume fraction. 

The response of the composite predicted by Suh et al. (9) with varying particle size is shown in 
figure 5 for both volume fractions.  As expected, it was shown by Suh et al. (9) that the effect of 
particle size on the yield strength at 0.2% strain is small at low volume fractions but significant 
at higher volume fractions.  Suh et al. (9) were also able to show that for a given volume fraction, 
the initial work hardening after yield is higher for smaller particle sizes, and this is in good 
agreement with the experimental observations by Lloyd (3).  They pointed out that from the 
continuum viewpoint, this size-dependent strain hardening results from the fractional proportion 
of the GND zone in the increased unit-cell, which further stiffens the overall plastic response.  
From figure 4, one can easily notice that for a constant volume fraction, there is a higher overall 
hardening as the particle size is decreased because smaller particles create stronger punched 
zones.  But from a dislocation mechanics perspective, this behavior may be attributed to the 
increased forest hardening due to the high dislocation density near the particles.  The results for 
the case where the matrix material was modeled as anisotropic-elastic/isotropic plastic are shown 
in figures 5 and 6.  Figure 5 shows the FEA results for the 20% volume fraction with all three 
particle sizes (1, 4, and 32 m).  Clearly and intuitively, the regions of high stresses are 
developed at the interface between the particle and the matrix material due to the mismatch in 
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Figure 3.  The effects of particle size on punched zone size, dislocation 
density, yield strength, and unit-cube size for 5% and 20% 
volume fractions. 
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Figure 4.  The effects of particle size on punched zone size, dislocation density, 
yield strength, and unit-cube size for 5% and 20% volume fractions 
(continued). 
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Figure 5.  Composite stress-strain curves for (a) f = 5% and (b) f = 20% with different particle sizes (note that 
the aluminum matrix is isotropic elastic-plastic) (9). 

 

 

Figure 6.  FEA results for the 5% volume fraction with various particle sizes. 

yield strength.  As shown in figure 6, the overall results in both cases are similar to those 
obtained by Suh et al. (9) except that for the case with anisotropic-elastic/isotropic-plastic matrix 
material, the elastic modulus was lower in both the (100) and (010) directions (63.861 GPa 
compared to 76 GPa as in the isotropic elastic-plastic case). 

This result was somewhat expected because of the low Zener anisotropic ratio (1.22) 
approaching full isotropy.  Therefore, changing the matrix material from isotropic-elastic/plastic 
aluminum to anisotropic-elastic/isotropic-plastic aluminum does not produce any gain in yield 
strength or overall hardening but can lead to substantial reduction in elastic stiffness. 

 

 

     

 (a)                             (b)       (c) 

20% Volume Fraction – 1 m Diameter Particle 20% Volume Fraction – 4 m Diameter Particle 20% Volume Fraction – 32 m Diameter Particle
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Figure 7.  Composite stress-strain curves for (a) f = 5% and (b) 20% with different particle sizes (note that the 
aluminum matrix is anisotropic elastic-isotropic plastic). 

5. Summary 

The finite-element-based microstructural modeling technique developed by Suh et al. (9) was 
reviewed and used for studying the different responses between isotropic and anisotropic 
aluminum matrix with varying particle sizes.  The model incorporates a discrete representation of 
the punched zones in a matrix with excess dislocation density around reinforcing particles due to 
CTE mismatch, giving a size-dependent composite strengthening.  The robustness of this model 
is that it addresses the size-dependent strengthening using first principles while retaining the 
simplicity of the conventional unit-cell modeling approach.  Furthermore, this model was 
successfully extended to study the response of a unit-cell with a cylindrical inclusion.  The 
results show that the overall response of the material was identical when the matrix material was 
changed from isotropic-elastic/plastic aluminum to anisotropic-elastic/isotropic-plastic 
aluminum, especially for the 5% volume fraction.  However, the anisotropic-elastic/isotropic-
plastic aluminum exhibited a lower elastic modulus than that of the isotropic-elastic/plastic-
aluminum.  Also, the flow stresses were lower for anisotropic-elastic/isotropic-plastic aluminum 
for the 20% volume fraction. 
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