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ABSTRACT
There has recently been considerable interest in applying

Total Variation regularization with an �1 data fidelity term

to the denoising of images subject to salt and pepper noise,

but the extension of this formulation to more general prob-

lems, such as deconvolution, has received little attention.

We consider this problem, comparing the performance of �1-

TV deconvolution, computed via our Iteratively Reweighted

Norm algorithm, with an alternative variational approach

based on Mumford-Shah regularization. The �1-TV decon-

volution method is found to have a significant advantage in

reconstruction quality, with comparable computational cost.

Index Terms— Image restoration, Deconvolution, Im-

pulse noise, Total Variation

1. INTRODUCTION

The standard Total Variation (TV) regularization functional

[1], which we shall refer to as �2-TV, may be written as
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,

where s is the data, K is the linear operator representing the

forward problem, and we employ the following notation:

• the p-norm of vector u is denoted by ‖u‖p,

• scalar operations applied to a vector are considered to

be applied element-wise, so that, for example, u =
v2 ⇒ uk = v2

k and u =
√

v ⇒ uk =
√

vk, and

• horizontal and vertical discrete derivative operators are

denoted by Dx and Dy respectively.

This functional has been applied to a wide variety of image

restoration problems, including denoising [1] and deconvolu-

tion [2, 3] of images subject to Gaussian white noise.

More recently, the �1-TV functional [4, 5]
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has attracted attention due to a number of advantages [6], in-

cluding superior performance with non-Gaussian noise such

as salt and pepper noise. While rapid progress has been made

on the development of efficient algorithms for minimizing

this functional [7, 8, 9], the majority of these methods are

restricted to the denoising problem, corresponding to setting

K to the identity operator, and, presumably for this reason,

application of the �1-TV functional for more general inverse

problems, such as deconvolution, has received little attention

in the literature. In this paper we provide new experimental

results for our Iteratively Reweighted Norm (IRN) algorithm

[10, 11] applied to the problem of deconvolution subject to

salt and pepper noise, and compare performance on this prob-

lem with that of a prominent recent approach [12] based on a

different variational principle.

2. ITERATIVELY REWEIGHTED NORM
APPROACH

The IRN algorithm [10, 11] for minimizing the generalized

TV functional

T (u) =
1
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is motivated by the Iteratively Reweighted Least Squares

(IRLS) method [13, 14, 15] for solving the minimum �p norm

problem minu
1
p‖Ku − s‖p

p by solving a sequence of mini-

mum weighted �2 norm problems. These methods represent

the �p norm of u

1
p
‖u‖p

p =
1
p

∑
k

|uk|p,

by the weighted �2 norm of u

1
2

∥∥∥W 1/2u
∥∥∥2

2
=

1
2
uT Wu =

1
2

∑
k

wku2
k

with diagonal weight matrix W = (2/p) diag
(|u|p−2

)
. At

each iteration of an iterative scheme, the �p norm is approx-

imated by the weighted �2 norm using the weights from the

previous iteration.
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The weighted �2 equivalent of (1) may be written (the

reader is referred to [10, 11] for full details of the derivation)

as

T (u) =
1
2

∥∥∥W
1/2
F (Ku− s)

∥∥∥2

2
+
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,

where

WF = diag
(

2
p
fF (Ku− s)

)

WR = diag
(

2
q
fR

(
(Dxu)2 + (Dyv)2

))

D =
(

Dx

Dy

)
W̃R =

(
WR 0
0 WR

)
,

and functions (with corresponding threshold parameters εF

and εR)

fF (x) =
{ |x|p−2 if |x| > εF

εp−2
F if |x| ≤ εF ,

and

fR(x) =
{ |x|(q−2)/2 if |x| > εR

0 if |x| ≤ εR,

are required to avoid the possibility of infinite weights when

p < 2 and q < 2 respectively. The minimum of this func-

tional is

u =
(
KT WF K + λDT W̃RD

)−1

KT WF s, (2)

and the resulting algorithm consists of the following steps:

Initialize
u0 =

(
KT K + λDT D

)−1
KT s

Iterate

WF,k = diag
(

2
p
fF (Kuk−1 − s)

)

WR,k = diag
(

2
q
fR

(
(Dxuk−1)2 + (Dyuk−1)2

))

uk =
(
KT WF,kK + λDT

x WR,kDx

+λDT
y WR,kDy

)−1
KT WF,ks

The matrix inversion is achieved using the Conjugate Gradi-

ent (CG) method.

3. RESULTS

We compare the performance of �1-TV deconvolution, com-

puted via the IRN algorithm, with that of an alternative vari-

ational approach [12] (which we shall refer to as the BKS

method) combining an approximate �1 data fidelity term with

the Mumford-Shah regularization term [16]. The BKS results

are computed using the Matlab code written by the authors

of [12], and the �1-TV results are computed using the purely

Matlab implementation (for a fair comparison of computation

times) of the IRN algorithm from the NUMIPAD library [17].

The first test uses the 236×236 pixel Einstein image (see Fig.

1), convolved with a 3×3 pillbox kernel and subjected to salt

and pepper noise. This example is identical to one of those

set up by Bar et al. [12], allowing us to make a fair compar-

ison by using their parameter choices for their method. The

second test uses the 512× 512 pixel Boat image (see Fig. 2),

convolved with a 7× 7 Gaussian kernel of standard deviation

2.0, and subjected to salt and pepper noise. In this case we

made our own best effort to select optimal parameters for the

BKS algorithm.

Fig. 1. Einstein test image (236× 236 pixel).

Fig. 2. Boat test image (512× 512 pixel).

Reconstruction SNR values and computation times are

compared in Table 1, and noisy and reconstructed images are

displayed in Figs. 3 to 5. The �1-TV results are significantly

better for both noise levels of the Einstein image, exhibiting

both less residual noise and less blur. In the 30% noise case

in particular, the visual quality of the �1-TV result is remark-

able, considering the level of degradation to the test image. A

similar comparison holds for the Boat image (note the SNR

values), but the visual difference, while obvious when viewed
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at full size on a display unit, is much less apparent in the

small printed version in Fig. 5(b). Computation times for

both methods are very similar.

SNR (db) Time (s)

Image Noise BKS �1-TV BKS �1-TV

Einstein 10% 7.9 20.5 58 55

30% 2.2 15.8 57 50

Boat 10% 9.3 20.1 282 356

30% 9.7 16.5 282 289

Table 1. Deconvolution performance comparison between

BKS [12] method and �1-TV, computed via the IRN algo-

rithm, on the Einstein and Boat test images.

4. CONCLUSIONS

The recent IRN algorithm is a computationally efficient ap-

proach to minimizing the �1-TV functional for general in-

verse problems, which are not addressed by most alternative

�1-TV algorithms, which concentrate on the denoising prob-

lem. Computations times for the problem of deconvolution of

images with salt and pepper noise are similar to those of the

BKS algorithm, but the �1-TV functional appears to provide

significantly better results than the �1-Mumford-Shah func-

tional minimized by the BKS algorithm.

5. ACKNOWLEDGMENT

The authors thank Leah Bar for providing us with the Matlab

code implementing the BKS algorithm [12].

6. REFERENCES

[1] L. Rudin, S. J. Osher, and E. Fatemi, “Nonlinear total

variation based noise removal algorithms.,” Physica D,

vol. 60, no. 1-4, pp. 259–268, Nov. 1992.

[2] C. R. Vogel and M. E. Oman, “Iterative methods for

total variation denoising,” SIAM J. Sci. Comput., vol.

17, no. 1-4, pp. 227–238, Jan. 1996.

[3] T. Chan, S. Esedoglu, F. Park, and A. Yip, “Recent de-

velopments in total variation image restoration,” in The
Handbook of Mathematical Models in Computer Vision,

N. Paragios, Y. Chen, and O. Faugeras., Eds. Springer,

2005.

[4] S. Alliney, “Digital filters as absolute norm regulariz-

ers,” IEEE Trans. Signal Process., vol. 40, no. 6, pp.

1548–1562, 1992.

[5] M. Nikolova, “Minimizers of cost-functions involving

nonsmooth data-fidelity terms. application to the pro-

cessing of outliers,” SIAM J. Numerical Analysis, vol.

40, no. 3, pp. 965–994, 2002.

[6] T. F. Chan and S. Esedoglu, “Aspects of total variation

regularized L1 function approximation,” SIAM J. Appl.
Math., vol. 65, no. 5, pp. 1817–1837, 2005.

[7] J. F. Aujol, G. Gilboa, T. Chan, and S. Osher, “Structure-

texture image decomposition - modeling, algorithms,

and parameter selection,” Int. J. Comput. Vision, vol.

67, no. 1, pp. 111–136, 2006.

[8] J. Darbon and M. Sigelle, “Image restoration with dis-

crete constrained total variation part I: Fast and exact

optimization,” J. Math. Imaging and Vision, vol. 26, no.

3, pp. 261–276, 2006.

[9] D. Goldfarb and W. Yin, “Parametric maximum flow al-

gorithms for fast total variation minimization,” Tech.

Rep. CAAM TR07-09, Department of Computational

and Applied Mathematics, Rice University, 2007.

[10] B. Wohlberg and P. Rodrı́guez, “An iteratively

reweighted norm algorithm for minimization of total

variation functionals,” IEEE Signal Process Lett., vol.

14, no. 12, pp. 948–951, Dec. 2007.

[11] P. Rodrı́guez and B. Wohlberg, “Efficient min-

imization method for a generalized total variation

functional,” IEEE Trans. Image Process., 2009,

doi:10.1109/TIP.2008.2008420.

[12] L. Bar, N. Kiryati, and N. Sochen, “Image deblurring in

the presence of impulsive noise,” Int. J. Comput. Vision,

vol. 70, no. 3, pp. 279–298, Dec. 2006.

[13] A. E. Beaton and J. W. Tukey, “The fitting of

power series, meaning polynomials illustrated on band-

spectroscopic data,” Technometrics, , no. 16, pp. 147–

185, 1974.

[14] J. A. Scales and A. Gersztenkorn, “Robust methods in

inverse theory,” Inverse Problems, vol. 4, no. 4, pp.

1071–1091, Oct. 1988.

[15] K. P. Bube and R. T. Langan, “Hybrid �1/�2 minimiza-

tion with applications to tomography,” Geophysics, vol.

62, no. 4, pp. 1183–1195, Jul-Aug 1997.

[16] D. Mumford and J. Shah, “Optimal approximations by

piecewise smooth functions and associated variational-

problems.,” Comm. Pure Appl. Math., vol. 42, no. 5, pp.

577–685, 1989.

[17] P. Rodrı́guez and B. Wohlberg, “Numerical methods

for inverse problems and adaptive decomposition (NU-

MIPAD),” Software library available from http://
numipad.sourceforge.net/.

1259



(a) Blur and 10% salt and pepper noise (b) BKS reconstruction (c) �1-TV IRN reconstruction

Fig. 3. Deconvolution with 10% salt and pepper noise.

(a) Blur and 30% salt and pepper noise (b) BKS reconstruction (c) �1-TV IRN reconstruction

Fig. 4. Deconvolution with 30% salt and pepper noise.

(a) Blur and 30% salt and pepper noise (b) BKS reconstruction (c) �1-TV IRN reconstruction

Fig. 5. Deconvolution with 30% salt and pepper noise.
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