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ABSTRACT 

 

The semi-analytical theory for the motion of a space object replaces the conventional equations of motion with two 

formulas:  (1) equations of motion for the mean equinoctial elements, and (2) expressions for the short periodic 

motion in the equinoctial elements.  Very complete force models have been developed for the mean element 

equations of motion and for the short periodic motion.  There is also a semi-analytical theory for the partial 

derivatives of the perturbed motion.  An interpolation strategy greatly assists in producing the mean elements, the 

osculating elements, the perturbed position and velocity, and the partial derivatives at the output request times.  The 

semi-analytical satellite theory has been interfaced with a variety of batch least squares and Kalman Filter estimation 

processes.  The current effort improves the software implementation of the semi-analytical theory for the partial 

derivatives so that (1) the mean element state transition matrix can be integrated backwards in time consistent with 

the interpolation architecture and (2) the epoch in a mean element orbit determination process can have an arbitrary 

location in a span of observation data.  Both of these new capabilities support studies of the propagation of the state 

error covariance in the mean equinoctial elements.  The paper describes the mathematical formulation and the 

software implementation in the Linux GTDS DSST program, and provides several test cases to illustrate the 

capabilities. 

 

 

1. INTRODUCTION 
 

The semi-analytical theory for the motion of a space object replaces the conventional equations of motion with two 

formulas [1]: 

1. Equations of motion for the mean elements 

2. Expressions for the short periodic motion 

The intent of the semi-analytical theory is that the very small integration grid of the Cowell numerical integration 

(on the order of hundreds of steps per orbital revolution) be replaced with a much larger step (on the order of one or 

two steps per day).  Such large steps are very computationally efficient.  Also, the motion of the non-singular 

equinoctial mean elements is more linear and this has positive implications for orbit determination processes based 

on the semi-analytical theory.  The semi-analytical theory includes a comprehensive interpolation strategy. 

Andrew Green [2] developed a general semi-analytical theory for the partial derivatives of the perturbed motion that 

is compatible with the semi-analytical theory for the motion.  The primary emphasis in Green’s work was on 

weighted least squares orbit determination processes.  The perturbed partial derivatives are expressed by  
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where G is a 6 x l matrix (l is the number of solve-for parameters).  The vector *( )a t  is composed of the osculating 

equinoctial elements at an arbitrary time, t.  Green assumed that the epoch time was at the beginning of the 

observation time interval.  The vector 
0a is composed of the non-singular equinoctial mean elements at the epoch 

time.  The vector is c  is composed of the dynamical parameters (such as an atmospheric drag parameter or a solar 

radiation pressure coefficient).  The G matrix can be expanded as 
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The matrices 
1B  and 

4B  represent the short periodic portion of the semi-analytical partial derivatives.  The 
2B  and 

3B  matrices are the partial derivatives of the mean elements at arbitrary time with respect to the solve-for 

parameters.  The 
2B  and 

3B  matrices are governed by the linear differential equations: 
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where it is understood that ( )*d a
dt

 stands for the right hand side of the equations of motion for the mean elements.  

The 1B  and 4B matrices can be obtained by direct application of Eqs. (3) and (6).  The form of the short periodic 

expansions is given in [1].  There is a comprehensive interpolation strategy for the partial derivatives that is 

analogous to the interpolation strategy for the satellite theory.  The partial derivative capabilities developed by 

Green were implemented in the GTDS R&D orbit determination program and tested via double-sided finite 

differencing techniques.  Generally the short periodic contributions to the partial derivatives are small. 

Subsequently Taylor [3], Wagner [4], and Herklotz [5] developed recursive filters to directly estimate the mean 

elements from the observation data.  Taylor and Wagner developed and tested an Extended Semi-analytical Kalman 

Filter (ESKF) that reconciles the conflicting goals of the perturbation theory (very large stepsizes) and the Extended 

Kalman Filter (EKF) (re-linearization at each new observation time).  Herklotz employed the Square Root 

Information Filter (SRIF) due to Bierman [6] in order to have the flexibility to process large numbers of 

observations. Semi-analytical SRIF filter algorithms which solve for the precision mean elements were developed.  

Herklotz tested his algorithm with simulated crosslink ranging data for an eight satellite constellation with four 

equatorial 24-hr orbits and four inclined 24-hr orbits.  The ESKF and the Semi-analytical SRIF algorithms taken 

together successfully employ various forms of the perturbed partial derivatives.   

In 2008, Folcik [7] developed a Backward Smoothing Extended Kalman Filter (BSEKF) for orbit determination 

which employed the Semi-analytical satellite theory.  This filter updates several previous time values of the mean 

element state at each step and introduces additional requirements for the mean element state transition matrix.  The 

major new requirement was to integrate the state transition matrix backward in time. 

More recently [8], there has been strong interest in the propagation of state error covariance in the mean equinoctial 

element coordinates.  Covariance can be propagated using the state transition matrix.  Specifically, the requirements 

that motivated the current work are the following: 

• Modification of the GTDS R&D orbit determination program so that the mean element state 

transition matrix 2B  can be integrated backwards in time using Eq.(7) and consistent with the 

interpolation architecture previously developed for the Semi-analytical Satellite Theory. 

• Modification of the GTDS R&D orbit determination program so that the epoch in a Semi-

analytical Satellite Theory Differential Correction step can occur later in time than some or all of 

the observation data 
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The roadmap of this paper is as follows.  In Section 2, we describe the GTDS DSST source code modifications 

needed to allow the backwards integration functionality.  We also describe the modifications required to allow 

backwards integration or a combination of forward and backwards integration while running the differential 

correction (DC) subprogram with DSST.  In Section 3, we describe the DSST orbit propagation test cases required 

to exercise the new capability.  These include orbit propagation with state transition matrix propagation.  The results 

of forward and backward propagation of the state transition matrix are combined in a test checking the semigroup 

property of the state transition matrix.  In Section 4 we describe the DSST orbit determination test cases.  The test 

cases demonstrate the location of the solve-for state epoch at various places in the observation span.  Conclusions 

and Future Work end the paper. 

 

 

2. GTDS DSST SOURCE CODE MODIFICATIONS 

Linux R&D GTDS is a comprehensive, multi-functioned orbit determination system that is maintained under 

configuration control by the authors.  Linux R&D GTDS currently employs the Fortran 77 programming language.  

Linux R&D GTDS originally stems from the efforts at the Draper Laboratory and by graduate students of the MIT 

Aeronautics and Astronautics Department from 1979 onward.  References [7] and [9] through [14] describe the 

evolution of GTDS R&D in the MIT community.  This was aided by the efforts of AFRL personnel from the mid 

90’s onward.  From 2001 onward, MIT Lincoln Laboratory personnel have been involved in the maintenance of 

R&D GTDS.  More recently, Pacific Defense Solution (PDS) personnel supporting AFRL have participated. 

The source code modifications needed to allow the GTDS/DSST backwards integration functionality involved 

several subroutines.  These subroutines were RESWRV, SNGSTP, ORBITV, and SKFPRT.  The top level GTDS 

ephemeris generation driver ORBIT calls RESWRV to reinitialize the integration after a change in direction.  

Subroutine SNGSTP initiates and executes the Runge-Kutta integrator and also calls the short periodic coefficient 

generation process (SPGENR) for the GTDS DSST.  Subroutine ORBITV provides the output at request time 

functionality for the DSST.  Subroutine SKFPRT is concerned with the computation of partial derivative matrices 

via short arc interpolation and the averaged interpolator.  This improves the efficiency in runs with high data rate 

sensors. 

In order for backwards Semi-analytical integration to function for ephemeris generation, subroutines ORBITV and 

SKFPRT required modifications.  There were several conditional statements that were used to detect whether 

enough time had progressed in the integrator in order to recalculate interpolation coefficients.  These conditional 

statements were modified to correctly detect the passage of time while time was progressing backward as well as 

forward.   

In order to allow backward integration or a combination of forward and backward integration while running the 

differential correction (DC) subprogram, substantial modifications were made to the RESWRV subroutine.  This 

subroutine was called by the ORBIT subroutine when integration had to restart because a change in the direction of 

integration was needed.  This situation occurred, for example, when processing observations in the DC subprogram.  

If the set of observations included observations both before and after the epoch time of the initial orbital conditions, 

the DC subprogram would first propagate backwards to process the observations that were before the epoch time 

and would then change direction to propagate forward to process the observations that were after the epoch time.  

Because the RESWRV subroutine did not include code to handle a change in integration direction for the DSST 

propagator, several statements were added to perform the necessary tasks.  These tasks included:  (1) changing the 

sign of the integration stepsize variable, (2) resetting arrays used for quadrature and orbit element partial derivatives, 

(3) re-computing the Greenwich Hour Angle, and (4) calling SNGSTP to restart the integrator in the new direction.  

In subroutine RESWRV, the SNGSTP call was made with a particular value of the IERR argument.  SNGSTP was 
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modified to check for that value of IERR so that an unnecessary call to AVRINT that would usually be made in 

SNGSTP was avoided.  The SKFPRT and ORBITV modifications ensure that the state transition matrix is correct 

when doing backward propagation.  Some smaller scale changes were required for the Differential Correction 

program to correctly process space-based observations. 

 

 

3. DSST ORBIT PROPAGATION TEST CASES 

 

The following approaches are employed in testing the new backwards in time integration and partial derivative 

capabilities: 

4. Closure test of the backwards/forward integration of the mean element equations of motion (Test 1 

and 1B) 

5. Closure test of the backwards/forward integration of the full semi-analytical theory (mean element 

equations of motion plus short periodic model) (Test 2 and Test 2B) 

6. Comparison of the mean element state transition matrices (B2) computed with backwards and 

forward integration via the semigroup property and its corollary (Test 3 and Test 3B) 

Closure Test with Mean Elements Only (Test Case 1 and 1B) 

This test starts with a 10-day forward propagation of the mean elements.  The epoch and epoch mean elements for 

this propagation are given in Table 1. 

Table 1. Epoch Mean Elements for the Forward in time Orbit Propagation (Test Case 1) 

Orbit Element  

Semi-major axis 6706.9662 km 

Eccentricity 0.0010252154D0 

Inclination 87.266393 deg 

Longitude Ascending Node 64.668178 deg 

Argument of Perigee 94.431363 deg 

Mean Anomaly 105.69973 deg 

Epoch (UTC) 2008 Sept 15,  21 h 59 m 46 s 

 

The coordinate system usage in this test case is as follows: 

1. The epoch mean element set is in J2000 coordinates 

2. The integration of the mean elements is carried out in J2000 coordinates 

3. The output mean element sets are in J2000 coordinates 

This choice of coordinate systems is designed to avoid the proliferation of coordinate systems which would occur if 

the epoch mean elements were assumed to be in TOR coordinates. 
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The mean element integration is carried out using the Runge-Kutta integration process over an interval of 10 days.  

The mean element element interpolator interval is 1 day and the 3-pt Hermite interpolator algorithm is employed. 

The mean element dynamics includes the J2 and J2-squared terms. 

The output mean elements at the 10-day time are given in Table 2. 

Table 2. Ten Day Mean Elements for the forward in time propagation (Test Case 1) 

Orbit Element  

Semi-major axis 6706.966200 km 

Eccentricity 0.1025391325E-02 

Inclination 87.26465414 deg 

Longitude Ascending Node 60.62245164 deg 

Argument of Perigee 53.13841140deg 

Mean Anomaly 84.86686503 deg 

Output (UTC) 2008 Sept 25,  21 h 59 m 46 s 

 

The output elements exhibit the expected secular motion in the Longitude Ascending Node, Argument of Perigee, 

and Mean Anomaly. 

The elements in Table 2 are then input into the GTDS DSST orbit propagator and the mean element integration is 

run backward in time for ten days.  This is Test 1B.  The input file for this backward in time integration is given in 

Fig. 1: 

CONTROL   DATAMGT 

OGOPT 

POTFIELD  1 11 

END 

FIN 

CONTROL   EPHEM 

EPOCH              1080925.0           215946.0 

ELEMENT1 11  6  1  6706.9662           0.001025391325      87.26465414 

ELEMENT2           60.62245164         53.13841140         84.86686503 

OUTPUT   11  2  1  1080915.0           215946.0            43200.0   

ORBTYPE   5  1 11  43200.0             1.0      

OGOPT 

GMCON     1        398600.436D0 

BODYRAD   1        6378.137 

CNM       3  2  0  -0.0010826256063587 

MAXDEGEQ  1        2.0 

MAXORDEQ  1        0.0 

SPOUTPUT        1  1.0  

NCBODY    1 

SCPARAM            3.1415D-6           685.D0 

SPSHPER   1 

AVRHARM                                                     1.0 

END 

FIN 

Figure 1. GTDS Input file for the backward in time integration process 

The 10 day output for the backward in time integration process is given in Table 3. 
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Table 3. Ten Day Mean Elements for the Backward in Time Propagation (Test Case 1B) 

Orbit Element  

Semi-major axis 6706.966200 km 

Eccentricity 0.1025215399E-02 

Inclination 87.26639300 deg 

Longitude Ascending Node 64.66817800 deg 

Argument of Perigee 94.43136300deg 

Mean Anomaly 105.6997300  deg 

Output (UTC) 2008 Sept 15,  21 h 59 m 46 s 

 

Comparison of Tables 1 and 3 shows tight closure between the forward and backward mean element integration 

processes.   

Closure Test with Mean Elements and Short-Periodics (Test Case 2 and 2B) 

This test case repeats the previous test case with the short-periodic model enabled.  The forward integration (Test 

Case 2) again employs the epoch mean element set given in Table 1.  The process is the same as Test Case 1 except 

that the short-periodic model and the short-periodic Fourier coefficient interpolator construction process are 

exercised on the mean element integration grid.  The general, recursive first order zonal short-periodic model due to 

Slutsky [15] is used to generate the J2 short-periodic coefficients.  The Lagrangian process is used to generate the 

short-periodic coefficient interpolators.  The resulting mean element and short-periodic coefficient interpolators are 

exercised at each output time (once per hour over the 10 days).  Again, the J2000 coordinate system is used 

throughout the test case. 

Table 4. Epoch Perturbed Position and Velocity for the Forward Integration (Test Case 2) 

Coordinate  

x-position -2595.256643 km 

y-position -5741.664984 km 

z-position -2321.359682 km 

x-velocity 1.450193597 km/sec 

y-velocity 2.258205121 km/sec 

z-velocity -7.221683085 km/sec 

Output (UTC) 2008 Sept 15,  21 h 59 m 46 s 

 

The backward integration (Test 2B) uses the mean element set given in Table 2 as the initial values. 

The GTDS input file for this backward in time integration is given in Figure 2: 

CONTROL   DATAMGT 

OGOPT 

POTFIELD  1 11 

END 
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FIN 

CONTROL   EPHEM 

EPOCH              1080925.0           215946.0 

ELEMENT1 11  6  1  6706.9662           0.001025391325      87.26465414 

ELEMENT2           60.62245164         53.13841140         84.86686503 

OUTPUT   11  2  1  1080915.0           215946.0            3600.0   

ORBTYPE   5  1 11  43200.0             1.0      

OGOPT 

GMCON     1        398600.436D0 

BODYRAD   1        6378.137 

CNM       3  2  0  -0.0010826256063587 

MAXDEGEQ  1        2.0 

MAXORDEQ  1        0.0 

SPOUTPUT        1  1.0  

NCBODY    1 

SCPARAM            3.1415D-6           685.D0 

SPSHPER   2 

AVRHARM                                                     1.0 

END 

FIN 

Figure 2. GTDS Input file for the backward in time integration process (Test 2B) 

The 10 day output for the backward in time integration process is given in Table 4. 

Table 5. Output Perturbed Position and Velocity for the Backward Integration (Test Case 2B) 

Coordinate  

x-position  -2595.256644 km 

y-position  -5741.664983 km 

z-position -2321.359682 km 

x-velocity 1.450193597 km/sec 

y-velocity 2.258205121 km/sec 

z-velocity  -7.221683085 km/sec 

Output (UTC) 2008 Sept 15,  21 h 59 m 46 s 

 

We observe that the closure between the forward and backward DSST integration processes with the short-periodic 

model on is on the order of 1 mm. 

We also reviewed the output at time points off the interpolator construction time grid and observed a similar level of 

closure. 

Testing of the Mean Element State Transition Matrices Computed with the Forward and Backward 

Integration Processes (Test Case 3 and 3B) 

This test case repeats Test Case 2/2B with the mean element state transition matrix functionality enabled.  The 

forward integration (Test Case 3) again employs the epoch mean element set given in Table 1.  The mean element 

state transition matrix is integrated using Equation (7).  The Runge-Kutta integration process is used and the original 

mean element equation of motion integration grid is also used for the state transition matrix ordinary differential 

equations.  Since the state transition matrix rates are available, we can employ a Hermite interpolation process to 

construct the state transition matrix interpolators.  The resulting mean element, short-periodic coefficient, and state 



Rev 25 

 

9 

 

transition matrix interpolators are exercised at each output time (once per hour over the 10 days).  Again, the J2000 

coordinate system is used throughout the test case. 

The backward integration (Test Case 3B) uses the mean element set given in Table 2 as the initial values. 

In both Test Cases 3 and 3B, the mean element state transition matrix is initialized with the Identity matrix (see Eq. 

7). 

The input file for the forward in time integration with state transition matrix is given in Figure 3: 

CONTROL   DATAMGT 

OGOPT 

POTFIELD  1 11 

END 

FIN 

CONTROL   EPHEM 

EPOCH              1080915.0           215946.0 

ELEMENT1 11  6  1  6706.9662           0.0010252154D0      87.266393 

ELEMENT2           64.668178           94.431363           105.69973 

OUTPUT   11  2  1  1080925.0           215946.0            3600.0   

ORBTYPE   5  1 11  43200.0             1.0      

OGOPT 

GMCON     1        398600.436D0 

BODYRAD   1        6378.137 

CNM       3  2  0  -0.0010826256063587 

MAXDEGEQ  1        2.0 

MAXORDEQ  1        0.0 

SPOUTPUT        1  1.0  

NCBODY    1 

SCPARAM            3.1415D-6           685.D0 

SPSHPER   2 

AVRHARM                                                     1.0 

SSTESTFL  1 

SSTAPGFL  1 

STATEPAR  3 

STATETAB  1  2  3  4.0                 5.0                  6.0 

SSTESTOU     1 

END 

FIN 

Figure 3. GTDS Input file for the forward in time integration process with state transition matrix (Test 3) 

While the state transition matrices from Test Cases 3 and 3B don't close in the same way that the trajectories do, 

they are connected by the semi-group property [3]. 

Let the mean element state transition matrix from the forward integration process be denoted by 0( , )t tΦ , where t 

is an arbitrary output time and t0 is the initial epoch.  Let the mean element state transition matrix from the backward 

integration process be denoted by 
( , )finalt tΨ

, where t is an arbitrary output time and tfinal is the final epoch (in our 

case 10 days after the initial epoch).   

The semi-group property dictates that  

1

0 0( , ) [ ( , )]final finalt t t t
−Ψ = Φ  (11) 

The mean element state transition matrix (forward integration) at t=10 days was entered into Matlab as: 
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A(1,1) = [1.000000000000e+00] 

A(1,2) = [0.0e+00] 

A(1,3) = [0.0e+00] 

A(1,4) = [0.0e+00] 

A(1,5) = [0.0e+00] 

A(1,6) = [0.0e+00] 

 

A(2,1) = [-1.705570484467e-07 ] 

A(2,2) = [ 7.034768292492e-01 ] 

A(2,3) = [-7.107199186497e-01 ] 

A(2,4) = [-4.341053167104e-04 ] 

A(2,5) = [-2.057714946580e-04 ] 

A(2,6) = [ 0.000000000000e+00 ] 

 

A(3,1) = [-3.870317162654e-07 ] 

A(3,2) = [ 7.107197529401e-01 ] 

A(3,3) = [ 7.034735095352e-01 ] 

A(3,4) = [-9.850808568351e-04 ] 

A(3,5) = [-4.669412009957e-04 ] 

A(3,6) = [ 0.000000000000e+00 ]  
A(4,1) = [ 1.696212698224e-05 ] 

A(4,2) = [-4.760707514880e-05 ] 

A(4,3) = [ 1.245109740282e-04 ] 

A(4,4) = [ 1.641878389035e+00 ] 

A(4,5) = [ 2.358821484957e-01 ] 

A(4,6) = [ 0.000000000000e+00 ] 

 

A(5,1) = [-3.016668060990D-05 ] 

A(5,2) = [ 8.466784713193D-05 ] 

A(5,3) = [-2.214393800358D-04 ] 

A(5,4) = [-1.076343176998D+00 ] 

A(5,5) = [ 4.544245565769D-01 ] 

A(5,6) = [ 0.000000000000D+00 ] 

 

A(6,1) = [-2.213146568294D-01 ] 

A(6,2) = [-1.953402807553D-03 ] 

A(6,3) = [ 5.108909527527D-03 ] 

A(6,4) = [ 8.526135429444D-01 ] 

A(6,5) = [ 4.041498979315D-01 ] 

A(6,6) = [ 1.000000000000D+00 ]   
We can then use the Matlab matrix inversion command inv(A) to estimate the mean element state transition matrix 

from the backwards integration process.  The command inv(A) gives: 

 

  Columns 1 through 3 

     1.000000000000000e+00                         0                         0 
     3.950535127678441e-07     7.034735102802463e-01     7.107199194023942e-01 

     1.510495832951891e-07    -7.107197536927949e-01     7.034768299942281e-01 

    -1.482378846775489e-05     1.066049100030003e-04    -4.697861038582019e-05 

     3.127295131763229e-05    -2.248986333844597e-04     9.910829027270199e-05 

     2.213146568321223e-01     5.005170020777697e-03    -2.205677199161744e-03 
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  Columns 4 through 6 

 

                         0                         0                         0 

     9.699288967338311e-04     5.453717075001824e-04                         0 

     3.708544499813338e-04     2.085241742718125e-04                         0 

     4.544245565771885e-01    -2.358821484958433e-01                         0 

     1.076343176998657e+00     1.641878389036014e+00                         0 

    -8.224525163074912e-01    -4.624486689989787e-01     1.000000000000000e+00 

 

Comparison of inv(A) with the mean element state transition matrix computed in the backwards integration process 

shows 8 to 9 digits of agreement.  This accuracy is consistent with the manual entry the forward integration state 

transition matrix from GTDS into Matlab. 

 

 

4. DSST ORBIT DETERMINATION TEST CASES 

 

The following orbit determination cases demonstrate the application of the new GTDS DSST capability (backward 

in time integration) to support arbitrary location of the solve-for vector epoch in an observation span. 

For each distinct satellite case, we developed the following tests: 

1. DSST Differential Correction with the epoch at the beginning of the observation span  

2. DSST Differential Correction with the epoch at the end of the observation span  

3. DSST Differential Correction with the epoch at an intermediate (usually near the middle) point in 

the observation span  

Two satellite cases are employed: 

1. GPS case with observations from November 2008; the observations are actual position coordinates 

generated by the National Geospatial-Intelligence Agency [NGIA] [16, 17] 

2. Experimental Geodetic Payload (EGP) case with observations from August and September 2002; 

the observation are actual SLR ranges from approximately 20 ground stations [ILRS][18].  The 

EGP is in a near circular orbit at 1488 km altitude with a 50 degree inclination.  The EGP 

spacecraft is a hollow sphere covered by mirrors and corner reflectors. 

GPS Orbit Determination Test Cases 

All of the GPS test cases employ the same observation data from November 2008.  The observations are Earth-

Centered Earth-Fixed (ECEF) position coordinates.  The ECEF coordinates are a standard observation input format 

for GTDS [10].  The a priori quality of this data was assumed to be 10 meters.   

All of these cases employ the same physical models and DSST truncations: 

Dynamical Models: 

• 16 x 16 geopotential – GRACE Gravity Model (GGM02C) 

• lunar-solar point masses 
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• solar radiation pressure (spherical s/c model) 

DSST Truncations 

• Averaged Perturbation Models 

16 x 0 zonal harmonics 

tesseral resonance due to the even order harmonics 

J2-squared terms 

lunar-solar point masses 

solar radiation pressure (time-independent numerical model) 

• Short-periodic model 

zonal harmonic terms 

tesseral m-daily terms 

tesseral linear combination terms 

lunar-solar point masses 

J2-squared terms 

J2/tesseral m-daily coupling 

solar radiation pressure 

The solve-for vector includes the mean equinoctial elements and the solar radiation parameter.  The state transition 

matrix dynamics include the J2 terms.  The solar radiation pressure partial derivatives are obtained by numerical 

integration of Eq.(8).  The mean element equation of motion integration grid is used for the integration of Eq.(8). 

The details of the GTDS DSST input data file for the GPS DC are illustrated in Appendix A (for Test Case 9).  The 

DSST User Guides [19, 20] are useful in understanding this file. 

 

Table 6.  GTDS DSST Orbit Determination Test Cases for the GPS satellite (Test Cases 9, 10, and 11) 

Parameter Test Case 9 Test Case 10 Test Case 11 

Epoch of the solve-

for vector within 

the observation span 

Epoch at the 

beginning of the 

observation span 

Epoch at the end of 

the observation span 

Epoch near the 

middle of the 

observation span 

Iterations to DC 

convergence 

8 9 4 
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Converged semi-major 

axis standard 

deviation 

1.3 cm 1.3 cm 1.33 cm 

Converged solar 

radiation pressure 

coefficient  

0.2112312D+01 0.2112381D+01 0.2100249D+01 

Converged solar 

radiation pressure 

coefficient standard 

deviation 

0.728D-02 0.728D-02  0.750D-02 

Converged position 

error RMS, meters 

3.1970863 3.2141006 3.3499348 

Initial Weighted RMS 143957.34 401397.17 14.230453 

Converged Weighted 

RMS 

0.18724843 0.18729642 0.19369487 

Number of 

observations 

available 

579 579 579 

Number of 

observations 

accepted 

571 571 574 

Mean residual x, 

meters 

-0.2576  -0.2552 -0.2339 

Mean residual y, 

meters 

8.3581E-02 8.4007E-02 0.2729 

Mean residual z, 

meters 

-8.1697E-02 -8.1997E-02 -9.0637E-02  
Our goal with these test cases was to demonstrate that the epoch in a semianalytical DC can be located anywhere in 

an observation interval without significantly impacting the quality of the fit.  There are small variations; we think 

some of these relate to different errors in the apriori vector errors.  We note that the number of available 

observations is the same for all three cases.  We note that the percentage of accepted observations is very high (98 or 

99%) for all three cases.  This expected due to the quality of the GPS ephemerides that are used as data. 

We also note that two days of GPS precise ephemeris can be accurately approximated by a single mean equinoctial 

element set. 

EGP Orbit Determination Test Cases 
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All of the EGP test cases employ the same observation data from August and September 2002.  The observations are 

Satellite Laser Ranging (SLR) ranges.  The range data are a standard observation input format for GTDS.  The 

apriori quality of this data was assumed to be 2 meters.  The observation span is 10-days in length. 

All of these cases employ the same physical models and DSST truncations: 

Dynamical Models: 

• 30 x 30 geopotential – EGM96 Gravity Model 

• lunar-solar point masses 

• solar radiation pressure (spherical s/c model) 

• atmosphere drag (Jacchia-Roberts) 

• solid Earth tides 

DSST Truncations 

• Averaged Perturbation Models 

30 x 0 zonal harmonics 

tesseral resonance due to  tesseral coefficient pairs (25,25) through (30,25)  

J2-squared terms 

lunar-solar point masses 

solid Earth tides 

atmosphere drag (time independent numerical model) 

solar radiation pressure (time-independent numerical model) 

• Short-periodic model 

zonal harmonic terms 

tesseral m-daily terms 

tesseral linear combination terms 

lunar-solar point masses 

J2-squared terms 

J2/tesseral m-daily coupling 

solar radiation pressure 

The solve-for vector includes the mean equinoctial elements and the solar radiation parameter.  The state transition 

matrix dynamics include the J2 terms.  The solar radiation pressure and atmosphere drag partial derivatives are 
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obtained by numerical integration of Eq.(8).  The mean element equation of motion integration grid is used for the 

integration of Eq.(8). 

The details of the GTDS DSST input data file for the EGP DC are illustrated in Appendix B (for Test Case 13).  

Among other things, these cases test GTDS operation with a large number of ground based sensors. Table 7.  GTDS DSST Orbit Determination Test Cases for the EGP satellite (Test Table 7.  GTDS DSST Orbit Determination Test Cases for the EGP satellite (Test Table 7.  GTDS DSST Orbit Determination Test Cases for the EGP satellite (Test Table 7.  GTDS DSST Orbit Determination Test Cases for the EGP satellite (Test Cases 13, 14, and 15)Cases 13, 14, and 15)Cases 13, 14, and 15)Cases 13, 14, and 15)    
Parameter Test Case 13 Test Case 14 Test Case 15 

Epoch of the 

solve-for vector 

within the 

observation span 

Epoch at the 

beginning of the 

observation span 

Epoch at the end 

of the observation 

span 

Epoch at an 

intermediate point 

in the observation 

span 

Iterations to DC 

convergence 

7 5 5 

Converged semi-

major axis 

standard deviation 

0.693  cm 0.432 cm 0.216 cm 

Converged solar 

radiation pressure 

coefficient  

0.14164574D+01 0.141610744D+01   0.142206157D+01  

Converged solar 

radiation pressure 

coefficient 

standard deviation 

0.179D-01 0.179D-01 0.180D-01 

Converged 

atmosphere drag 

parameter 

0.4593108D+01 0.459162142D+01  0.4590957405D+01 

Converged 

atmosphere drag 

parameter standard 

deviation 

0.613D-01 0.613D-01  0.613D-01 

Converged position 

error RMS, meters 

7.7115502 7.7117070  7.7122563  

Initial Weighted 

RMS 

13563.2 14.2 177.2  

Converged Weighted 

RMS 

3.9244741 3.9246078 3.926902 

Number of 

observations 

3580 3580 3580 
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available 

Number of 

observations 

accepted 

3562  (99%) 3562  (99%) 3562  (99%) 

 

These EGP test cases, like the previous GPS orbit determination test cases, demonstrate that the epoch in the 

semianalytical DC can be located at multiple locations within the observation interval without significantly 

impacting the quality of the fit.  There are variations in the number of iterations required for convergence; we think 

that these relate to the different errors in the a priori vectors.  We note that the number of available observations is 

the same for all three cases.  We note that the percentage of accepted observations is very high (99%) for all three 

cases.  This is expected due to the quality of the SLR ranges that are used as data. 

We note that 10 days of EGP precise ephemeris can be accurately approximated by a single mean equinoctial 

element set. 

 

 

5. CONCLUSIONS 

The GTDS Semi-analytical Satellite Theory (DSST) architecture has been extended to allow backwards in time 

numerical integration.  This capability has been interfaced with the mean element interpolator and the short-periodic 

coefficient interpolator.  Computation and interpolation of the mean element state transition matrix has also been 

included.  The overall interpolator functionality including initialization of the interpolators and advancement of the 

interpolators in time (both forward and backwards) has been tested. 

The overall purpose of the GTDS DSST backwards in time capability is to increase the opportunities for comparison 

of GTDS DSST results with results obtained with other orbit determination programs.  Specifically, the goal of the 

current effort was to demonstrate the backwards in time capability with the GTDS DSST Ephemeris Generation 

(EPHEM) and Differential Correction (DC) programs. 

Several tests of the new capabilities have been completed.  We start in Case 1 with an assumed mean element set at 

a given epoch and integrate this mean element set forward in time over a 10-day interval.  We then record the mean 

elements at the 10-day point and use them as the epoch conditions in a backward integration (Case 1B).  Our metric 

for this test is the closure of the backwards integration with the assumed epoch mean element set in Case 1.  Almost 

exact closure is achieved. 

Test cases 2 and 2B repeat the mean element integrations of Tests 1 and 1B except that the DSST short-periodic 

model is now engaged.  Closure between the Test 1 and 1B perturbed state vectors at the initial epoch time are at the 

level of 1 mm.  Tests 1/1B and 2/2B employ the J2 and J2-squared terms in the mean element equations of motion 

and the J2 terms in the short-periodic model.  So the full recursive models (PZONAL and SPZONL, respectively) 

are employed but the evaluation is truncated at J2.  The purpose of this modeling choice was to reduce the 

complexity of these tests. 

Tests 3 and 3B are the same as tests 2 and 2B except that the mean element state transition matrix capability has 

been enabled.  The perturbed trajectories are unchanged.  While the state transition matrices from Tests 3 and 3B 

don’t close in the same sense that the perturbed trajectories do, they are connected by the semi-group property 

[Eq.(11)].  The semi-group property was demonstrated in these tests at the level of eight (8) to nine (9) digits which 
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was consistent the remainder of this process.  Matlab was employed to achieve the matrix inversion required to 

demonstrate the semi-group property. 

The two differential correction cases (Test Cases 9, 10 and 11 for the GPS case and Test Cases 13, 14, and 15 for the 

EGP case) provide further test of the backwards integration with time capability.  Cases 9 and 13 are conventional 

DSST DC runs with the solve-for epoch at the beginning of the observation span (2 days for the GPS case and 10 

days for the EGP case).   Cases 10 and 14 put the solve-for epoch at the end of the observation span.  Thus the DSST 

backwards integration capability is tested in the DC context with rather complete models for both the mean element 

equations of motion and the short-periodic model.  We note that these cases (10 and 14) also test the interaction 

between the DSST backwards integration capability and several GTDS physical model binary files.  Finally, Test 

Cases 11 and 15 place the solve-for epoch at an intermediate point in the observation span requiring the integration 

to go both backwards and forwards within a single DC iteration.  It is satisfying that all three GPS cases and EGP 

cases give similar results, respectively. 

Another way to look at these tests is with respect to how they exercise the partial derivative capability: 

• Test Cases 3 and 3B just compute the B2 matrix (see Eq. 7) 

• Test Cases 9, 10, and 11 compute the B2 matrix and the B3 matrix (see Eq. 8).  For the B3 matrix, only the 

solar radiation pressure parameter partial derivatives are computed. 

• Test Cases 13, 14, and 15 also compute the B2 and B3 matrices.  Now the B3 matrix includes both the solar 

radiation pressure and atmospheric drag parameter partial derivatives. 

Both the GPS and EGP cases demonstrate that long arcs of observation data can be accurately compressed into a 

single nonsingular mean element set.  Sequences of nonsingular mean element sets are of interest for studies that try 

to improve the prediction of the long term motion of such space objects. 

Version control for the Linux GTDS R&D orbit computation program used in this study is maintained using the 

subversion utility [21].  Finally we have given several GTDS DSST input files as examples. 

 

6. FUTURE WORK 

 

None of the test cases completed for this paper actually exercise the finite differencing method.  The A matrix in Eq. 

(9) is computed using just the closed-form J2 terms (see GTDS DSST subroutine J2PART).  For the solar radiation 

pressure and atmospheric drag parameter partial derivatives, the D matrix in Eq. (10) is just the portion of the mean 

element rates due to respective perturbation divided by the parameter.  See Eq. (2-94) in Green [2].  But several 

finite differencing options are connected to the GTDS DSST keyword SSTAPGFL.  These options should be tested 

using the methods and cases developed in this paper.  If the finite differencing approach causes observable error, 

consideration should be given to analytical and quadrature approaches for reducing the dependence on finite 

differences. 

We would like to develop a test for the B3 matrices (parameter partials) that connects the values from the forward 

integration with the values from the backward integration.  This would be analogous to the semi-group property test 

for the mean element state transition matrix. 

The association of the DSST with the Runge-Kutta 4 integration stems from the initial build of the DSST in the 

early 1980s. At that time, time intervals of just a few days were the primary interest.  We would like to investigate 

the application of Explicit Runge-Kutta Methods of Higher Order methods such as the Dorman & Prince 8(6) that is 

described in [22] to the DSST orbit propagator. 
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We would like to undertake covariance propagation tests.  One case would use the DSST DC to fit a set of 

observations.  The covariance would be recorded at the epoch.  One can then use the DSST ephemeris program to 

propagate that covariance forward to some time in the future and then backward to the original epoch again.  The 

covariance should be the same modulus any differences from numerical artifacts.  The existing Extended 

Semianalytical Kalman Filter (ESKF) [3, 4] may also play a role in these tests. 

Another test that could be run with the DSST DC is a demonstration that when one moves the initial state epoch 

from the beginning of the fitspan to the middle and then to the end of the fitspan that the covariance should be 

minimal at the center of the fitspan.  This should match the covariance when propagated with EPHEM from the 

beginning to the end of the fitspan and from the end of the fitspan back to the beginning. 

Finally, to demonstrate the value of the enhanced GTDS DSST functionality, we propose to develop a Spherical 

Simplex Unscented Kalman Filter (SSUKF) based on the Spherical Simplex Unscented Transformation [23] to 

estimate the mean equinoctial elements directly from the tracking data. 
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APPENDIX A – GPS Input File 
 

CONTROL   DC                                                GPSSAT     0099999 

EPOCH              1081109.0           001446.0000 

ELEMENT1 10  1  1-1.36990181020000E+04-8.48585960000000E+03+2.14410746720000E+04 

ELEMENT2         +9.77264236179275E-01-2.46212135521801E+00-3.53083683724679E-01 

OBSINPUT 20        1081109001446.0000  1081111001446.0000 

ORBTYPE   5  1 11  43200.0000          1.0 

DMOPT 

OBSDEV   21 22 23  10.0                10.0                    10.0 

END 

DCOPT 

CONVERG  30  3     0.0001 

EDIT         3     3.0 

PRINTOUT  1     4   10.0 

END 

OGOPT 

POTFIELD  1 11 

SSTESTFL  1  2  0  0.0 

SSTAPGFL  1  0  0  0.0                 0.0                 1.0 

SPGRVFRC  1  1  1  2.0                 1.0                 1.0 

SPTESSLC  6  6  4  2.0                 -8.0                8.0 

SPNUMGRV  7  1 10  2.0                 2.0                 3600.0 

SPZONALS  8  5 11 

SPJ2MDLY  4  4  5  2.0 
SPMDAILY  8  8  5 

POLAR     1        1.0 

MAXDEGEQ  1        16.0 

MAXORDEQ  1        16.0 

SOLRAD    1        1.0 

SOLRDPAR  1 
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NCBODY    1  2  3 

SCPARAM          +1.00000000000000E-06+1.00000000000000E+02 

STATEPAR  3  1 

STATETAB  1  2  3  4.0                 5.0                 6.0 

END 

FIN 

 

 

APPENDIX B – EGP Input File  
CONTROL   DC                                                SATSAT-0   0016908 

EPOCH              1020829.0           215305.292 

ELEMENT1  1  6  1 7866.628863685799    1.51219480042467E-03 49.99690802918278 

ELEMENT2  0       234.0990114753167    44.20804018942176    315.9207248379734 

OBSINPUT  5        1020829215305.292   1020908215305.292 

ORBTYPE   5  1 11  43200.0             1.0 

DMOPT 

/L75L   1 0999  3     75.8889          0505202.5723         0002010.0469 

/L79L   1 0999  3    804.5133          -351858.1309         1490035.5633 

/L11L   1 0999  3   1839.4914          0325330.2604         2433438.3848 

/L23L   1 0999  3    274.7100          0434725.8481         1252636.4466 

/L68L   1 0999  3    760.5880          0245437.9659         0462401.3133 

/L73L   1 0999  3    102.1025          0333439.6990         1355613.3396 

/L66L   1 0999  3     98.7288          0362754.9151         3534740.8834 

/L74L   1 0999  3    539.8719          0470401.6902         0152936.0992 

/L06L   1 0999  3    241.8078          -290247.3956         1152048.2860 
/L04L   1 0999  3   2004.7519          0304048.9635         2555905.2899 

/L72L   1 0999  3     28.3126          0310551.1457         1211130.2640 

/L94L   1 0999  3     31.8214          0565654.7843         0240332.6660 

/L62L   1 0999  3     74.5050          0601301.7555         0242340.3816 

/L38L   1 0999  3   1407.2622          -255322.9546         0274110.2274 

/L09L   1 0999  3     19.6660          0390114.1792         2831020.3022 

/L93L   1 0999  3    665.8497          0490839.9041         0125240.8289 

/L36L   1 0999  3   2489.3114          -162756.5816         2883025.3609 

/L20L   1 0999  3   3067.9800          0204225.9865         2034438.7206 

/L26L   1 0999  3     82.1399          0393624.9678         1155331.3934 

/L70L   1 0999  3   1323.3081          0434516.8903         0065516.0429 

/L63L   1 0999  3    951.8148          0465238.0256         0072754.7913 

END 

DCOPT 

CONVERG  30  3  1  0.0001 

EDIT         3     3.0  

BATCHTYP  7 

TRACKELV  3        1.0 

TRACKELV 13        3.0 

/L75L   001          2 

/L79L   001          2 

/L11L   001          2 

/L23L   001          2 

/L68L   001          2 

/L73L   001          2 

/L66L   001          2 

/L74L   001          2 

/L06L   001          2 

/L04L   001          2 

/L72L   001          2 

/L94L   001          2 

/L62L   001          2 

/L38L   001          2 

/L09L   001          2 

/L93L   001          2 

/L36L   001          2 

/L20L   001          2 
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/L26L   001          2 

/L70L   001          2 

/L63L   001          2 

PRINTOUT  1     4   10.0 

ELLMODEL  1        6378.13655          298.256421867 

END 

 

OGOPT 

DRAG      1        1.0 

ATMOSDEN        1                                                                

DRAGPAR   2        2.0                                     1.0                   

DRAGPAR2  1  1 

POTFIELD  1 11 

STATEPAR  3  1 

STATETAB  1  2  3  4.0                 5.0                 6.0 

SETIDE    1        0.29D0 

SOLRAD    1        1.0 

SOLRDPAR  2        1.2                                     0.005 

POLAR     1        1.0 

SPGRVFRC  1  1  1  1.0                 1.0                 1.0 

SSTESTFL  1  2  0  0.0 
SSTAPGFL  1  0  0  1.0                 6.0                 1.0 

SPTESSLC 14 14  4  2.0                 -10.0               10.0 

SPZONALS  8  7 16 

SPMDAILY 14 14 12 

SPJ2MDLY  8  8  6  1.0 

AVRDRAG   5  3  3 

RESONPRD           259200.0  

MAXDEGEQ  1        30.0 

MAXORDEQ  1        30.0 

NCBODY    1  2  3 

SCPARAM          +3.14150000000000E-06+6.85000000000000E+02 

END 

FIN 
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