

APPROVAL SHEET

Title of Thesis: Group Centric Information Sharing using Hierarchical Models

Name of Candidate: Am it Mahale
Master of Science, 2011

Thesis and Abstract Approved: ~ ~ l<;
Dr Tim Fin in . .,

Professor
Computer Science

Date Approved: (g ' '2t:{ lzo 1 f

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2011 2. REPORT TYPE

3. DATES COVERED
 00-00-2011 to 00-00-2011

4. TITLE AND SUBTITLE
Group centric information sharing using hierarchical models

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Maryland, Baltimore County,Computer Science and
Electrical Engineering,Baltimore,MD,21250

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Traditional security policies are often based on the concept of ?need to know? and are typified by
predefined and often rigid specifications of which principals and roles are pre-authorized to access the
information. A recommendations of the 9/11 commission was to find ways to move from this traditional
perspective toward one that emphasizes the ?need to share?. Ravi Sandhu and his colleagues have
developed the Group centric secure information sharing model (gSIS) as a new model that is more
adaptable to highly dynamic situations requiring information sharing. We present an implementation of
gSIS and demonstrate its usefulness to use-cases in information sharing in social media. Our contributions
include the prototype implementation extension to the model such as hierarchical groups and necessary
and sufficient conditions, and the use of the Semantic Web language for representing the central gSIS
concepts and associated data. Our framework uses a pragmatic approach of using semantic web
technology to represent and reason about the hierarchy and procedural method to compute access
decisions relying on the gSIS semantics.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

58

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Curriculum Vitae

Name: Amit Mahale

Degree and date to be conferred: M.S in Computer Science, 2011

Secondary education: Karnatak College Dharwad, Karnataka, India, 2004

Collegiate institutions attended:

University of Maryland at Baltimore County, M.S in Computer Science
(Aug 2009 – May 2011).

SDM College of Engineering and Technology, B.E in Information Science
(August 2004 – July 2008).

Major: Computer Science

Professional positions held:

Software Developer Intern, Millennial Media, Baltimore, MD, USA
(June 2010 – Aug 2010).

Programmer Analyst, Cognizant Technology Solutions, Chennai, India
(Nov 2008 – July 2009).

ABSTRACT

Title of Document: GROUP CENTRIC INFORMATION

SHARING USING HIERARCHICAL
MODELS

 Amit Mahale, Master of Computer Science, 2011

Directed By: Professor Dr Tim Finin,

Department of Computer Science and
Electrical Engineering

Traditional security policies are often based on the concept of “need to know” and are

typified by predefined and often rigid specifications of which principals and roles are

pre-authorized to access the information. A recommendations of the 9/11 commission

was to find ways to move from this traditional perspective toward one that

emphasizes the “need to share”. Ravi Sandhu and his colleagues have developed the

Group centric secure information sharing model (gSIS) as a new model that is more

adaptable to highly dynamic situations requiring information sharing. We present an

implementation of gSIS and demonstrate its usefulness to use-cases in information

sharing in social media. Our contributions include the prototype implementation,

extension to the model such as hierarchical groups and necessary and

sufficient conditions, and the use of the Semantic Web language for representing the

central gSIS concepts and associated data. Our framework uses a pragmatic approach

of using semantic web technology to represent and reason about the hierarchy and

procedural method to compute access decisions relying on the gSIS semantics.

Group centric information sharing using hierarchical
models

by

Amit Mahale

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, Baltimore County, in partial fulfillment

of the requirements for the degree of
Master of Science in
Computer Science

2011

© Copyright

Amit Mahale,2011

i

Dedicated to

Aayee (My Great Grandmother)
(May 10th 1911 – April 22nd 2010)

ii

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my graduate advisor Dr. Tim Finin.

His suggestions, motivation and advice were vital in bringing this work to

completion. I would like to thank Dr Anupam Joshi for playing an equally important

role in advising me towards my work; I am grateful to Dr Laura Zavala for her

guidance and suggestion towards the development and improvement of ontology for

gSIS. I would like to thank Dr Yelena Yesha for gracefully agreeing to be on my

thesis committee. I extend my sincere thanks to Air Force Office of Scientific

Research for funding this research under the MURI award FA9550-08-1-0265

(AFOSR). I would also like to thank all my friends at UMBC for their support and

encouragement.

Last but not the least; I would like to thank my parents and brother for their support

especially my parents for providing the best education at every stage of my life. I am

also thankful to my wife for her utmost belief and constant support without which a

master’s degree would not have been possible.

iii

Table of Contents

Dedication .. i

Acknowledgements ... ii

List of Tables .. v

List of Figures .. vi

Chapter 1: Introduction ... 1

Chapter 2: Background and Related Work ... 5

2.1 Semantic Web ... 5

2.2 Group Centric Information Sharing .. 7

2.2.1 Core properties .. 7

2.2.1 Group Operation Semantic…………………………..9

Chapter 3: System Usecase ... 13

3.1 Graduate Students Admission ... 13

3.2 Promotion and Tenure (P&T) ... 14

3.3 Social Network.. 15

3.3.1 Incorporating gSIS into Facebook ... 16

Chapter 4: System Architecture .. 19

4.1 Group Operation Data ... 20

4.2 Hierarchy Ontology .. 20

4.3 Inferred Data ... 22

4.4 gSIS Ontology .. 22

iv

4.5 Decision Engine ... 27

4.6 Model Extension ... 31

4.6.1 Automated Group Membership ... 31

4.6.2 Automated Document Classification ... 33

Chapter 5: System Implementation .. 34

Chapter 6: Results .. 37

Chapter 7: Conclusion and Future Work ... 42

References ... 40

v

List of Tables

2.1 Group Operation semantics.. …………………………………………………….11

vi

List of Figures

2.1: User Operations (figure courtesy: Ram Krishnan et al [1])………………….….10

2.2: Object Operations (figure courtesy: Ram Krishnan et al [1])…………...............11

3.1 Adding a Friend……………….…………………………………………............16

3.2 Adding a Document/Post………...………………………………………............17

3.3 Removing a Friend………………………………………………………............18

3.4 Removing a Document/Post……..………………………………………............18

4.1 High level system design…………………………………………….……..........19

4.2 Hierarchy of Disaster Management Group...………………………….…............21

4.3 gSIS Class hierarchy…………………….....……………………….….…...........23

4.4 gSIS classes and object properties relations with color codes……………...........26

4.5 Strict Join. Strict Add, Strict Leave, Strict Remove operations……..….…..........28

4.6 Liberal Add. Liberal Join, Liberal Remove, Liberal Leave operations….............29

4.7 Strict Join. Liberal Add, Strict Leave, Liberal Remove operations……………...30

4.8: Liberal Join. Strict Add, Liberal Leave, Strict Remove…………………...........30

4.9 OWL Model for Automated Group Classification...…………………………….33

5.1 Flowchart of the gSIS Access decision system…………………………………..34

6.1 Query 2: List all the documents that Dr Finin……………………………...........40

6.2 Query 3: List all the users who have access to……………………………..........40

6.3 Query 4: List all the documents that were accessible to users in 1994…………..41

6.4 Query 5: Did Dr Finin ever have access to ……………….………………..........42

1

Chapter 1

INTRODUCTION

The concept of “Need to share” has particularly gained popularity in the aftermath of

9/11 attack in comparison to the traditional Need to Know model.

Taking an example of the US Federal Systems, Each intelligence agency has its own

networks and data store that make it difficult to aggregate together the facts and warn

of adversaries ahead of time [10]. The inability or unwillingness to share information

was recognized as an Intelligence Community weakness by both the 9/11

Commission and the Weapons of Mass Destruction (WMD) Commission [10]. The

Need to Share environment is necessary to uncover, respond, and protect against

threats.

Secure Information Sharing (SIS) is of prime importance in today’s electronic world.

It application ranges from highly confidential federal systems to social media

application handling user data.

Collaborative system are not only restricted to federal systems, we can find such

systems in day to day life as well. An example for such a collaborative system can be

picturized in a university environment, which has a set of system like Admissions,

Library, University Health Service (UHS) sharing data for various purposes like the

Admissions department querying the UHS for immunization records prior to student

2

course registration, this will help the university enforce the policy of student

immunization during the start of the semester.

 Social Network like Facebook [21] is growing rapidly with currently having more

than 500 million registered users. It is a place for Information Sharing wherein people

communicate sharing data with others as well as with various third party applications

which pull our personal data to provide services on the Facebook platform.

From all the above examples, we understand that data sharing is important; however

at the same time protecting the information from unauthorized usage is equally

significant.

Traditional access control models do support important SIS aspect though it has not

been satisfying for varied domains and requirements of the modern information

sharing era. For example Discretionary Access Control (DAC) works on the concept

of owner control. Owner has the right to make decision about who can access a

particular object. While this is an important SIS aspect, DAC is fundamentally limited

in that it controls access only to the original object but not to copies. The lack of

constraints on copying information from one file to another makes it difficult to

maintain safety policies and verify that safety policies. If objects could be read, one

can read and create a copy of this object [7].

Further, DAC is also too fine-grained in practice since the secure information sharing

responsibility falls on the owner of the information. The system provides no guidance

as to how information can be effectively shared.

3

Mandatory Access Control or MAC and models such as that of Bell-LaPadula

(BLP) assigns security labels to subjects and objects and is based on restricting

information flow from more secure classification levels to less secure levels. In BLP,

information can only flow from a subject of lower clearance to that of higher

clearance and not vice-versa. The intended objective is that of confidentiality of

objects at higher security clearance from that of subjects executing at lower clearance

which is common in military to allow Generals to see certain information and not

Soldiers [11].

The modern concept of Role-Based Access Control (RBAC) [7] is a more generalized

model and can be viewed as an evolution of access control to simplify administration

in organizations bringing in additional concepts such as hierarchies and constraints. It

has also been shown that RBAC is policy neutral in the sense that it can be configured

to enforce both DAC and MAC policies [8].

However, As RBAC is too general it does not directly address information sharing

does not provide a framework for secure sharing.

Group-Centric sharing differs from other models as it advocates bringing the users

and objects together to facilitate sharing by focusing on semantics of group

operations.

Our focus in this thesis is to use the concepts of Group Centric Information Sharing

[1] and develop ontology’s in Web Ontology Language (OWL) [22] and further use

these ontology’s to build a framework to demonstrate the usefulness of such a system.

In this model users and Information (resources/objects) come together in a group to

4

facilitate sharing. We further extend this model to support hierarchical group. Finally

we support our work through a working prototype.

5

Chapter 2

Background and Related Work

2.1 Semantic Web

The Semantic Web refers to the W3C’s vision of the web of linked data. It

extends the World Wide Web that enables people to share content beyond the

boundaries of applications and websites. Semantic Web technologies enable people to

create data using RDF, build vocabularies using web ontology language (OWL),

write rules and query data stores using SPARQL [8].

The vision of Semantic Web was first articulated by Tim Berners Lee to extend the

existing web in which knowledge and data could be published in a form that is easy

for computers to understand and reason. This would support more sophisticated

software systems that share knowledge, information and data on the Web just as

people do by publishing text and multimedia [13].

Under the stewardship of the W3C, a set of languages, protocols and technologies

have been developed to partially realize this vision, to enable exploration and

experimentation and to support the evolution of those concepts and the technology.

The current set of W3C standards are based on RDF (Lassila et al. 1998), a language

that provides a basic capability of specifying graphs with a simple interpretation as

6

a “semantic network” and serializing them in XML and several other popular Web

systems (e.g., JSON). Since it is a graph based representation, RDF data are often

reduced to a set of ’triples’ where each one represents an edge in the graph.

The Web Ontology Language (OWL) (Bechhofer et al. 2004) is a family of

knowledge representation languages based on Description Logic (DL) (Baader 2003)

with a representation in RDF. OWL supports the specification and use of the

ontologies that consist of the terms representing individuals, classes of individuals,

properties, and axioms that assert constraints over them. The axioms can be realized

as simple assertions (e.g., ’Woman is a subclass of Person’, ’hasMother is a property

from Person toWoman’, ’Woman and Man are disjoint’) and also as simple rules. The

use of OWL to define policies has several very important advantages that become

critical in distributed environments involving coordination across multiple

organizations. First, most policy languages define constraints over classes of targets,

objects, actions and other constraints (For example, time or location). A substantial

part of the development of a policy is often devoted to the precise specification of

these classes, e.g., the definition of what counts as a ’student’ or an ’entertainment

activity’. This is especially important if the policy is shared between multiple

organizations that must adhere to or enforce the policy even though they have their

own native schemas or data models for the domain in question. Second, OWL is

based on description logic, a well understood subset of logic for which powerful and

efficient reasoning systems are available. By constraining our use of OWL to the right

subset, we can exploit existing OWL reasoners. A third advantage is that OWL’s

grounding in logic facilitates the translation of policies expressed in OWL to other

7

formalisms, either for analysis or for execution. Finally, OWL is designed of and for

the Web, making sharing policies and the ontologies they use both natural and easy

[4].

 2.2 Group Centric Information Sharing

Group centric Information sharing [1,2,3] is a novel concept developed by Ravi

Sandhu et al, It envisions bringing the users and objects together in a group to

facilitate sharing for a common purpose.

The model focuses on semantics of group operations: Join and Leave for users and

Add and Remove for objects, each of which can have two variations namely strict and

Liberal. The authors use Linear Temporal Logic (LTL) to characterize the core

properties of a group in terms of these operations [1].

We will not dwell into the LTL details and will concentrate on the core gSIS

properties followed by the group operation semantics.

2.2.1 Core gSIS Properties

The core properties [1] must be satisfied by any g-SIS specification. The core

properties are stated with the assumption that Join, Leave, Add and Remove are the

only events that influence authorization in g-SIS. In the future, these properties can be

extended to models involving additional aspects (e.g. attributes of users and objects).

8

1. Persistence Properties: These properties consider the conditions under which

authorization may not change.

a. Authorization Persistence: When a user u is authorized to access an

object o, it remains so at least until a group event involving u or o occurs.

b. Revocation Persistence: When a user u is not authorized to access an

object o, it remains so at least until a group event involving u or o occurs.

A generalized statement of these properties may be \Authorization does not change

unless an authorization changing event occurs." With this generalization, we believe

persistence property is required of all access control systems.

 The following properties are more specifically targeted at g-SIS. They seek to

recognize the additional authorizations enabled and disabled by group membership

and non-membership respectively.

2. Authorization Provenance: Intuitively, a user will not be authorized to read an

object until a point at which both the user and object are simultaneously group

members.

Two things can be inferred from the statement, if Authentication holds in a given

state then there was an overlapping period of membership between the user and

object at least once in the past. Next, authorization to read an object cannot begin for

the first time during a user's non-membership period (that is, only joining a group

can enable authorization).

9

3. Bounded Authorization: These properties require that authorizations not Increase

during non-membership periods of users and objects (note that authorizations may

decrease). Authorizations that hold during the non-membership period of users and

object should have held at the time of Leave and Remove respectively.

a. Bounded User Authorization: The set of all objects that a user can access

during non-membership period is bounded at Leave time. This set cannot

grow until the user re-joins.

The above property states that additional authorizations cannot be granted to a

user during non-membership period. Any object that is accessible after Leave

should have been authorized at the time of Leave.

b. Bounded Object Authorization: The set of all users who can access a removed

object is bounded at Remove time, which cannot grow until re-Add.

4. Availability: Availability specifies the conditions under which authorization must

succeed. This property states that after a user joins a group, any object that is added

subsequently should be authorized. Obviously, the user should be a current member

when the object in question is added.

2.2.2 Group Operation Semantics

The Group operation semantics are the additional properties that are based on specific

variations of group operations, these properties define certain group operation

semantics that are useful for a variety of applications. All these properties are not

required in the development of the system, in any system only a subset of these

10

properties will be used in accordance to the requirement and semantics of the system,

the designer plays a key role in deciding the properties to be used for the system.

Membership Properties characterize the semantics of authorizations enabled when a

user joins or an object is added and those which are disabled when a user leaves or an

object is removed from the group.

Strict Join (SJ) Vs Liberal Join (LJ): In SJ, the joining user may only access some or

all of the objects added after Join time. LJ additionally allows the user to access some

or all of the objects that were added prior to join time. Suppose that in figure 2.3.1 the

second Join (u1; g) is an SJ. Then u1 can access o4 and o5 but cannot access o2 and

o3. If the Join was an LJ instead of SJ, u1 can also access o2 and o3

Figure 2.1: User Operations (figure courtesy: Ram Krishnan et al [1])

Figure 2.2: Object Operations (figure courtesy: Ram Krishnan et al [1])

Strict Leave (SL) Vs Liberal Leave (LL):

objects. In LL, the leaving user may retain access t

authorized prior to Leave time. In figure

objects (o1 and o2) authorized during the membership period. An LL will allow

retain access to o2 (and possibly

Table 2.1: Group Operation semantics (Table courtesy: Ram Krishnan et al [1])

11

: Object Operations (figure courtesy: Ram Krishnan et al [1])

Strict Leave (SL) Vs Liberal Leave (LL): In SL, the leaving user loses access to all

objects. In LL, the leaving user may retain access to some or all of the objects

authorized prior to Leave time. In figure 2.2.1, on SL, u1 loses access to all group

2) authorized during the membership period. An LL will allow

2 (and possibly o1, depending on the type of Remove of

: Group Operation semantics (Table courtesy: Ram Krishnan et al [1])

In SL, the leaving user loses access to all

o some or all of the objects

1 loses access to all group

2) authorized during the membership period. An LL will allow u1 to

e of Remove of o1).

: Group Operation semantics (Table courtesy: Ram Krishnan et al [1])

12

Strict Add (SA) Vs Liberal Add (LA): In SA, the added object may only be accessed

by only some or all of the users who joined before Add time. In LA, the added object

may also be accessed by some or all of the users that join (e.g., LJ) later. If Add (o2;

g) in figure 3.2 is an SA, only u1 can access the object. Users u2 and u3, joining later,

cannot access this object. But on LA current user u1 and future users u2 and u3 may

access o2.

Strict Remove (SR) Vs Liberal Remove (LR): In SR, the removed object cannot be

accessed by any user. In LR, some or all of the users who had access at Remove time

may retain access (of course, users joining later are not allowed to access the removed

object this respects the Authorization Provenance core property). In figure 2.3.2, if

Remove (o1; g) is an SR, every group user (including u1) loses access to o1. If

Remove (o1; g) is an LR, u1 can continue to access o1. However u2 and u3 will not

have access to o1.

13

Chapter 3

SYSTEM USE CASE

Secure Information Sharing (SIS) or sharing information while protecting is

necessary. Use cases for SIS vary from applications like secure meeting room to

collaboration between organizations and social networking application handling user

interaction with an expectation of security and privacy.

3.1 Graduate Student Admissions: Graduate admissions [17] is a process where in

the graduate applications are scrutinized by a group of faculty members from the

department. The group consists of a mix of senior professors, Associate professors

and senior graduate students working towards the completion of masters and PhD.

Prospective graduate students send their applications to the department for evaluation

and the committee weighs the credibility of the applicant based on multiple factors

and makes a decision about his admission.

The gSIS model facilitates and promotes the process of information sharing among

the various committee members. As our model supports hierarchical groups handling

groups of Professors, Associate professors and grad students within the Graduate

student admissions group is simplified.

To implement this model, we have to enforce the following gSIS operations

� Enforce users to Join the group though ‘Liberal Join’, This would make sure

that in additional to the applications added to for this academic year, members

14

can also access previous applications to get better understanding of

university’s selection pattern.

� Add the application documents with ‘Liberal Add’ so that even committee

member joining the committee at a later point of time can access the

applications.

� If a member leaves the group, then use ‘Strict Leave’, so that he/she loses all

access to the documents of the Group.

� If the documents are to be removed from the group for some reason, then use

the ‘Liberal Remove’, this will ensure that the members present during the

review of that particular application have access to the removed documents

for analysis purpose.

3.2 Promotion and Tenure Committee (P&T): A promotion and tenure committee

[16] consists of a group of full professors (tenured) who decide on the fate of an

Associate professor under consideration for tenure.

The promotion and tenure committee resembles the group centric information sharing

as the group shares information towards a single goal, the goal being decision over

tenure, Also the access level of the members of the group varies from individual to

another. This is mainly dependent on his seniority in the group (Join timestamp of the

member).A senior member of the group can check the tenure documents of his fellow

junior group members but not the vice-versa. This serves as an excellent use case for

our model of group centric information sharing.

15

To implement gSIS for this use case, we would have to use the following group

operations,

� Enforce users to Join the group though ‘Strict Join’, This would make sure

that the users can access only the documents added after their join time.

� Add the P&T documents with ‘Strict Add’ so that only users joining prior to

Add time can access the documents.

� If a tenured professor leaves the group, then use ‘Strict Leave’, so that he/she

loses all access to the documents of the Group.

� If the documents are to be removed from the group for some reason, then use

the ‘Strict Remove’, this will ensure that none of the members have access to

the removed documents.

3.3 Social Media Application: Social Media platforms like Facebook handle user

profile information ranging from basic information to interests and social network

data. Currently when Bob becomes a friend of Alice on Facebook, Bob gets access to

all the personal information as well as the content (from Facebook Wall) that Alice

had shared earlier with her friends. Thus unintentionally sharing the data with Bob

that she has never intended to do so, this can cause serious privacy infringement [11,

15] to Alice.

This issue can be fixed by using the gSIS operations semantics while sharing

information and adding new friends to our existing list of friends.

Let us dwell into the details of gSIS operators and it’s semantic in social network

� Strict Join: if Alice adds a new friend Bob to her friend list through Strict

Join, then Bob will not be able to access

and documents are used interchangeably) shared by Alice prior to his Join

time. Thus Bob will not be able to spy about Alice’s online behavior

� Liberal Join: In addition to allowing access to new documents, Liberal

would allow Bob to access posts that Alice shared prior to his join time

through Liberal Add.

� Strict Add: Alice should use this operation, if she wants to share the post with

current set of friends and protect from her future friends

� Liberal Add: Thi

friends who join at a later point of time through Liberal Add.

If we carefully give a thought about the current Facebook model, we can

understand that it works on lines of Liberal Join for adding new

list and Liberal Add while posting documents.

About the delete and Remove options, Facebook currently emulates the Strict

Leave and Strict Remove semantics of gSIS.

3.3.1 Incorporating gSIS into Facebook

� Adding a Friend

16

Strict Join: if Alice adds a new friend Bob to her friend list through Strict

Join, then Bob will not be able to access any of the posts(In this scenario posts

and documents are used interchangeably) shared by Alice prior to his Join

time. Thus Bob will not be able to spy about Alice’s online behavior

Liberal Join: In addition to allowing access to new documents, Liberal

would allow Bob to access posts that Alice shared prior to his join time

through Liberal Add.

Strict Add: Alice should use this operation, if she wants to share the post with

current set of friends and protect from her future friends.

Liberal Add: This post can be accessed by current friends as well as new

friends who join at a later point of time through Liberal Add.

If we carefully give a thought about the current Facebook model, we can

understand that it works on lines of Liberal Join for adding new friends to our

list and Liberal Add while posting documents.

About the delete and Remove options, Facebook currently emulates the Strict

Leave and Strict Remove semantics of gSIS.

3.3.1 Incorporating gSIS into Facebook

Adding a Friend

Figure 2.1: Adding a Friend

Strict Join: if Alice adds a new friend Bob to her friend list through Strict

any of the posts(In this scenario posts

and documents are used interchangeably) shared by Alice prior to his Join

time. Thus Bob will not be able to spy about Alice’s online behavior

Liberal Join: In addition to allowing access to new documents, Liberal Join

would allow Bob to access posts that Alice shared prior to his join time

Strict Add: Alice should use this operation, if she wants to share the post with

s post can be accessed by current friends as well as new

If we carefully give a thought about the current Facebook model, we can

friends to our

About the delete and Remove options, Facebook currently emulates the Strict

After adding a friend to the list, The user preference can be asked as

illustrated above.

Sharing history with the newly added friend would mean liberally adding

the friend whereas preferring not to share the history wou

adding the friend.

� Adding a Post

While adding a post, the user can have a option

current set of friends’ v/s ‘Share the post with my current and future set of

friends’, the former

the later liberally adding the post.

17

a friend to the list, The user preference can be asked as

illustrated above.

Sharing history with the newly added friend would mean liberally adding

the friend whereas preferring not to share the history would mean strictly

adding the friend.

Adding a Post

Figure 3.2: Adding a Document

While adding a post, the user can have a option ’ Share this post with my

current set of friends’ v/s ‘Share the post with my current and future set of

friends’, the former meaning strictly adding the post to the profile while

the later liberally adding the post.

a friend to the list, The user preference can be asked as

Sharing history with the newly added friend would mean liberally adding

ld mean strictly

’ Share this post with my

current set of friends’ v/s ‘Share the post with my current and future set of

meaning strictly adding the post to the profile while

� Removing a Friend

� Removing a Post

18

Removing a Friend

Figure 3.3: Removing a Friend

Removing a Post

Figure 3.3: Removing a document(Post)

19

Chapter 4

SYSTEM ARCHITECTURE

The high level system design (Fig 4.1) demonstrates the Group Centric Information

sharing setup

Figure 4.1 High level system design

20

 The system is built to make access decisions in a group centric information sharing

environment.

Group-Centric sharing brings in the users and objects together to facilitate sharing by

focusing on semantics of group operations. User’s join the group through join

operation and leave the group through leave operation. The join and leave operations

further have strict and liberal flavors which are explained in the background section.

Similarly, the documents are added to the group through Add operation and removed

using the Remove operation. Even Add/Remove has strict and liberal variations

analogous to the Join/Remove.

We will now discuss the system component in detail

4.1 Group Operation data

The Group operation data is the data about the group members and their group

operations. Every member of the group either user or document is identified by a

unique id. There is no restriction on the number of transactions a member can have

with the group. In other words a group user can join and leave the group multiple

numbers of times without hurting the core gSIS properties.

4.2 Hierarchy Ontology

The hierarchy ontology is responsible for inferring the groups that the group

member belongs to. In real life scenario, groups may be created with hierarchy in

21

mind. For example consider a hierarchy of Professor, Asst Professor and Lab

Instructor.

Thus a user added to a Professor group should by default have access to the

documents added to Asst Professor and Lab Instructor group.

Thus the use of hierarchy ontology along with a reasoner reduces manual work and

automates the task of inferring groups that the user represents.

Another example can be quoted of a Disaster management group

Figure 4.2 Hierarchy of Disaster Management Group

From the figure, we understand that the Disaster Management Group(DMG) is a large

group comprising of the fire fighters, Police department and Ambulance who have

access to a particular subset of documents of the Disaster management group. The

DMG as a whole can access any of the documents of Fire fighters, Police Dept and

Ambulance but not vice versa.

In such a hierarchical setup, the documents added to Police department should be

accessible to the DMG as it is a super groups; this fact is true for other groups as well.

Thus the use of hierarchy ontology helps to automate the task of inferring additional

groups and facilitating information sharing for hierarchical groups.

22

The hierarchical groups can be represented in OWL using the property :subclassOf

<RoleName> gSIS:subclassOf <SuperRoleName>.

E.g.: PoliceDepartment gSIS:subclassOf :DMG

4.3 Inferred Data

The RDFS reasoner is used to infer additional group data using the hierarchy

ontology. The inferred data is then stored in a data store along with the group data and

is used to make access decisions in further steps.

4.4 gSIS Ontology

Our work is based on the theory of Group-Centric Secure Information Sharing

(g-SIS) described in [1], our focus is on creating ontology to represent the concepts in

the g-SIS model using OWL.

Our gSIS ontology primarily consists of four classes: Person, Document, Group and

Action.

The Action class is further divided into the Join, Leave, Add, and Remove each of

which further have Strict and Liberal variations. The Join and Leave actions are used

to represent the fact that a Person can join or leave a Group. Similarly, the Add and

Remove actions represent the fact that a Document can be added or removed from a

Group.

23

Figure 4.3: gSIS classes from top level to bottom

Actions can be allowed or denied depending on a few conditions on the time and a

combination on the variations (Strict or Liberal). For example, a Person can access a

Document in a Group if the person joined the group before the document was added

and the person joined with a strict joined and the document was added with a strict

add.

In order to represent the fact that an action is allowed (or not), we have created a

PermittedAction class, which is a subclass of Action which is used by the person and

document classes to check if the action is permitted according to the group semantics.

Here is an example ofan Action class declaration in owl

24

:Action rdf:typeowl:Class .

:Add rdf:typeowl:Class ;

rdfs:subClassOf :Action .

Further the ontology has object properties like ;hasDocument, :hasGroup, :hasPerson

The :hasDocument property is defined in owl as follows

:hasDocumentrdf:typeowl:InverseFunctionalProperty

,owl:ObjectProperty ;

 rdfs:domain :Add,:PermittedAccess ,:Remove .

 rdfs:range :Documents ;

The domain for :hasDocument vary from Add,Remove and PermittedAccess and the

range is restricted to the Documents. This will allow an individual instance of

Add,Remove or Permittedaccess to link to Document.

The :hasGroup property is defined in owl as follows

:hasGrouprdf:typeowl:ObjectProperty ;

rdfs:domain :Add, :Join, :Leave, :Remove ;

rdfs:range :Group.

The :hasPerson property is defined in OWL as follows

:hasPersonrdf:typeowl:ObjectProperty ;

25

rdfs:domain :Join , :Leave ,:PermittedAccess ;

rdfs:range :Person .

The ontology also has data property named :hasTimestamp which manages the

timestamp for the group operations like adding, removing documents and joining,

leaving the groups for members.

Let us walk through a simple example demonstrating the usage of gSIS ontology

:SJ1rdf:type :StrictJoin ,

owl:NamedIndividual .

:Amitrdf:type :Person ,

owl:NamedIndividual .

:Ebiquityrdf:type :Group ,

owl:NamedIndividual .

:SJ1 :hasPerson :Amit

 :hasTimestamp XXXX

 :hasGroup :Ebiquity

The relationship between the classes and the object properties is represented in the

next graph

26

Figure 4.4: gSIS classes and object properties relations with color codes

27

4.5 Decision Engine

The Decision engine is the central system of the gSIS model; the rules

pertaining to the working of gSIS are encoded in this module.

gSIS is governed by a number of parameter’s which control the access decision

between the user and the document. Along with the group operations the timestamp’s

associated with the Join, Leave, Add, and Remove are critical in making access

decisions to documents added to the group.

After analyzing the concepts, we have come up with a 16 combination of events that

can occur in a group centric information sharing environment and modeled our rules

to accommodate all possible interactions

Before jumping into the rules, let us briefly touch upon the basics axioms of gSIS,

i. Every user and document is associated with at least one group.

ii. Multiple groups may exist.

iii. Groups may further be hierarchical.

iv. A user may join and leave the group multiple number of times.

v. A document may be added and removed from the group multiple number of

 times.

vi. The access decision of a user to a document depends on multiple factors like

Join type, Add type and the timestamps associated.

Let us consider the following scenarios

28

4.5.1 Strict Join, Strict Add, Strict Leave, Strict Remove

In this scenario the user joins the group through Strict Join and leaves the group

through Strict Leave, whereas the documents are added through Strict Add and

removed through Strict Remove

From the definition [1],

� Strict Join: Only objects added after join time can be accessed.

� Strict Add: Only users who joined prior to add time can access.

� Strict leave: Lose access to all objects on leave.

� Strict Remove: All users lose access on remove.

Let Uj & UL be the User Join and Leave time and DA & DR be the Document Add and

Remove time

Then let us plot a simple example with these details on the time line.

Figure 4.5: Strict Join. Strict Add, Strict Leave, Strict Remove operations

From the timeline and the operations semantics, we find the document can be

accessed by the designated user from the fig between

Access time = [DA – Min (UL, DR)]

29

4.5.2 Liberal Join, Liberal Add, Liberal Leave, Liberal Remove

From the definition [1],

� Liberal Join: Can access objects added before and after join time.

� Liberal Add: Users who joined before and after add time can access.

� Liberal leave: Retain access to objects authorized before leave time.

� Liberal Remove: Users who had access at remove time retain access.

Figure 4.6 Liberal Add. Liberal Join, Liberal Remove, Liberal Leave operations

From the timeline and the operations semantics, we find the document can be

accessed by the designated user from the fig between

Access time = [Max (DA, UJ) – Max (UL, DR)]

4.5.2.1 Strict Join. Liberal Add, Strict Leave, Liberal Remove

Plotting a simple timeline for this scenario, we have

30

Figure 4.7 Strict Join. Liberal Add, Strict Leave, Liberal Remove operations

From the timeline and the operations semantics, we find the document can be

accessed by the designated user from the fig between

Access time = [DA - UL]

4.5.3 Liberal Join. Strict Add, Liberal Leave, Strict Remove

 Plotting a simple timeline for this scenario, we have

Figure 4.8: Liberal Join. Strict Add, Liberal Leave, Strict Remove

From the timeline and the operations semantics, we find the document can be

accessed by the designated user from the fig between

Access time = [DA - DR]

31

From the above scenario’s we can understand that the access decision is dependent on

multiple factors like operation type (Join, Leave, Add, Remove), operation time

(timestamps associated with the operation) and group membership. As representation

of all the mentioned parameter’s and constructing the rule becomes overly tedious

and complex to handle in OWL [5], we propose an alternative approach for the

purpose of building a working prototype of the gSIS framework. The prototype

consists of a decision engine developed using the Java environment and an access

decision algorithm which takes into account all the above mentioned parameters and

provides a fast and intuitive access decision system. The algorithm and

implementation details are covered in detail in the next chapter.

4.6 Model Extensions

Group management becomes a tedious task when the number of groups and

members increase. One way to manage this process is to automate group

membership. As we are using OWL to represent our system, we can use the

OWL’s Necessary and sufficient conditions to manage group membership

4.6.1 Automated Group Membership

The process of adding users to the relevant group can be a tedious process

especially when the users belong to multiple overlapping groups. This process

of membership can be automated by defining the necessary and sufficient

(N&S) conditions for each group and modeling the same using OWL.

As an example, we can consider the group to be ‘UMBC CS Tenure group’

and the membership requirement for this group is

� She/he is a Full Professor

32

� A Professor @ UMBC.

� Faculty in the CS Department.

These conditions can be represented in OWL using the N&S conditions

 <owl:Class rdf:ID="Tenure_Committee_UMBC_CS">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:allValuesFrom rdf:resource="#CS"/>
 <owl:onProperty>
 <owl:ObjectProperty
rdf:ID="hasDepartmentName"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty
rdf:ID="hasUniversityName"/>
 </owl:onProperty>
 <owl: allValuesFrom
rdf:resource="#UMBC"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="hasRank"/>
 </owl:onProperty>
 <owl: allValuesFrom>
 <owl:Class rdf:ID="Full__Professor"/>
 </owl: allValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

33

Figure 4.9 OWL Model for Automated Group Membership

Thus once a member with the above characteristics is added to the system then they

are automatically classified as the members of the UMBC CS Tenure group.

4.6.2 Automated document classification

This feature is especially useful for federal applications which deal with classified

documents. It is crucial that only the right set of people get access to the confidential

documents.

Classified information is sensitive information to which access is restricted

by law or regulation to particular groups of persons. Documents are usually

classified as Top Secret, Secret, Confidential, Restricted and Unclassified.

Groups can be governed by policies on the type of documents that would be a part of

the group. For example the ‘War room group’ should have access to all the Top

Secret documents and ‘Air Force Group’ can have access to documents which belong

to the ‘Air Force domain’ and are classified as ‘Top Secret’. These rules can be

enforced by using OWL’s Necessary and sufficient conditions and the process of

document classification can be automated.

34

Chapter 5

SYSTEM IMPLEMENTATION

Let us look into the flowchart of our access decision system

Figure 5.1 Flowchart of the gSIS Access decision system

35

The access decision algorithm consists of the following stages,

i. Read the file and parse the Group Membership details.

ii. Read the hierarchy ontology file and generate the additional tuples using a

reasoner by using the original Group membership data.

iii. `Store the original and inferred tuples.

iv. Cluster the tuples in accordance to their group membership.

v. Clustered tuples are read pair wise consisting of user and document

membership details.

vi. The next stage is to compute access interval between every user and document

of the group. The precomputed access intervals will greatly improve the

system’s readiness to handle any number of access decision queries.

a. The pair is tested against the gSIS Join and Add semantics, if true

i. The access start time is computed, [computation details are

explained in the previous section and depend on the type and

timestamp of the operation].

ii. The access end time is computed depending on the Leave and

Remove semantics.

iii. The generated access interval tuples are stored in the following

format.

<userid>,<docid>,<start_time>,<end_time>

vii. The system can now accept queries about access decision between any user

and document that is/was a part of the group.

36

A sample query would be “Does Amit has access to ppt at time stamp X” and

the system would look into the Access KB and answer the query.

Whenever the group membership changes, the system recomputes the access

intervals to maintains the Access KB up to date.

37

Chapter 6

RESULTS

6.1 Validation

Let us visualize the scenario of the Promotion & Tenure (P&T) committee use case in our

prototype.

The group membership information is the input to this prototype and is the format

<user_id>,<join_time>,<join_type>,<leave_time>,<leave_typ
e>, <group_name>

Sample data:

finin,1990,SJ,2011,SL,tenure_committee

joshi,1998,SJ,2011,SL,tenure_committee

nicholas,1995,SJ,2011,SL,tenure_committee

yesha,1993,SJ,2011,SL,tenure_committee

dejardens,2001,SJ,2011,SL,tenure_committee

oates,2003,SJ,2011,SL,tenure_committee

Andrew,2010,SJ,2011,SL,asso_prof_committee

Data represents the committee member (users) of the group. For example the first

tuple about Dr Finin says that, The user finin joined the tenure_committee in 1990

through Strict Join(SJ) and is still the part of the committee, For the purpose of

programmatic computation we set the leave date to current year.

Similarly documents are added to the group in the format

38

<doc_id>,<Add_time>,<Add_type>,<Remove_time>,<Remove_type

>, <group_name>

finindoc,1990,SA,2011,SR,tenure_committee

joshidoc,1998,SA,2011,SR,tenure_committee

nicholasdoc,1995,SA,2011,SR,tenure_committee

yeshadoc,1993,SA,2011,SR,tenure_committee

dejardensdoc,2001,SA,2011,SR,tenure_committee

oatesdoc,2003,SA,2011,SR,tenure_committee

Andrewdoc,2010,SA,2011,SR,asso_prof_committee

Every tenured member of the committee has a tenure document associated with them

that is a part of the tenure_committee.

In this sample example, Andrewdoc is the document of Dr Andrew who is been

considered for tenure and this document is a part of Associate professor group named

asso_prof_committee.

Let us walk through the process, in which the access intervals are computed,

1. Read the Group operations data file

2. In the next step, we read the hierarchy ontology file and generate the

additional tuples using a rdfs reasoner and the original Group membership

data.

In this case the hierarchy ontology file consists of two classes, the

tenure_committee’ class and the sub class ‘asso_prof_class’, which implies that

39

members of tenure_committee are also a part of the asso_prof_class and these

tuples are inferred and stored by the reasoner.

3. In the next part, the tuples are read pair wise and tested for correctness in

accordance to gSIS properties and the access start and end time is computed.

This information is stored in the knowledge base in the format

<user_id>,<doc_id>,<start_time>,<end_time>,

<group_name>

finin,nicholasdoc,1995,2011,tenure_committee

finin,joshidoc,1998,2011,tenure_committee

finin,finindoc,1990,2011,tenure_committee

finin,oatesdoc,2003,2011,tenure_committee

finin,Andrewdoc,2010,2011,asso_prof_committee

finin,dejardensdoc,2001,2011,tenure_committee

finin,yeshadoc,1993,2011,tenure_committee

The sample output is only for representation purpose and contains tuples only for the

member ‘Finin’, However the actual output access intervals are computed for all

group members and stored in the knowledge base.

The knowledge base is updated whenever group membership changes to maintain

consistency.

Once the knowledge base is ready it can answer queries of the format

� Query 1: Does Dr Finin have access to Dr Joshi’s Tenure file in 2005?

Access Granted

40

� Query 2: List all the documents that Dr Finin had access to

Figure 6.1 Query 2: List all the documents that Dr Finin had access to

� Query 3: List all the users who have access to ‘Andrewdoc'

[Andrew is an Assistant Prof and under consideration for tenure]

Figure 6.2 Query 3: List all the users who have access to ‘Andrewdoc'

41

� Query 4: List all the documents that were accessible to users in 1994

Figure 6.3 Query 4: List all the documents that were accessible to users in 1994

� Query 5: Did Dr Finin ever have access to Nicholasdoc?

Figure 6.4 Query 5: Did Dr Finin ever have access to Nicholasdoc

As the access intervals are pre computed, the query execution time is less and thus it

increases the responsiveness of the system. Such a scheme is efficient when the group

membership is comparatively stable and the number of access queries to be answered

at any point of time is large i.e.

At time t, No of group operations << No of access queries.

42

Chapter 7

CONCLUSION AND FUTURE WORK

In today’s world, there is a serious need for Information sharing model, On these lines

we have made an effort to demonstrate the worthiness of gSIS model in handling real

world scenario’s.

We have presented a framework for gSIS that promotes information sharing, our

focus also relied on modeling hierarchical groups and automating group membership

using semantic web.

The usefulness of gSIS model has also been demonstrated in real world applications

like Graduate Student admissions, P & T committee and Social Media applications.

In this thesis, we have focused on the operational semantics of gSIS model without

taking into consideration the administrative operation. We realize that the

administrative model is indeed necessary and is required for the gSIS model to grow

as a whole. Our next immediate task would be to work on this aspect of gSIS.

43

REFERENCES

[1]Ram Krishnan, Ravi Sandhu, Jianwei Niu and William Winsborough, Foundations

for Group-Centric Secure Information Sharing Models. Proc. 14th ACM Symposium

on Access Control Models and Technologies (SACMAT), Stresa, Italy, June 3-5,

2009, pages 115-124.

[2] Ram Krishnan, Ravi Sandhu, Jianwei Niu and William Winsborough, Towards a

Framework for Group-Centric Secure Collaboration. In Proc. 5th IEEE International

Conference on Collaborative Computing: Networking, Applications and Worksharing

(CollaborateCom), Crystal City, Virginia, November 11-14, 2009, pages 1-10.

[3] Ravi Sandhu, Ram Krishnan, Jianwei Niu and William Winsborough, Group-

Centric Models for Secure and Agile Information Sharing. In Proceedings 5th

International Conference, on Mathematical Methods, Models, and Architectures for

Computer Network Security, MMM-ACNS 2010, St. Petersburg, Russia, September

8-10, 2010, pages 55-69. Published as Springer Lecture Notes in Computer Science

Vol. 6258, Computer Network Security (Igor Kotenko and Victor Skormin, editors),

2010.

[4] T. Finin, A. Joshi, L. Kagal, J. Niu, R. Sandhu, W. Winsborough, and B.

Thuraisingham, ROWLBAC - Representing Role Based Access Control in OWL,

Proceedings of the 13th ACM symposium on Access Control Models and

Technologies, ACM Press New York, June 2008.

44

[5] Anne Cregan, Malgorzata Mochol, Denny Vrandecic, Sean Bechhofer Pushing

the limits of OWL, Rules and Protégé. A simple example Workshop - OWL:

Experiences and Directions (OWLED-2005), Galway, Ireland, November 2005

[6] R. Sandhu et al, Role-Based Access Control Models, IEEE Computer, 29(2):38-

47,Feb 1996, Google Scholar Search

[7] R. Sandhu and P. Samarati, Access Control: Principles and Practice, IEEE

Communications, 32(9): 40-48, Sept. 1994, Google Scholar Search

[8] Semantic web: http://www.w3.org/2001/sw/

[9] Bechhofer, S.; van Harmelen, F.; Hendler, J.; Horrocks, I.; McGuinness, D.; Patel-

Schneider, P.; and Stein, L. 2004. Owl web ontology language reference. w3c

recommendation.

[10] United States Intelligence community ‘INFORMATION SHARING

STRATEGY’, Office of the Director of National Intelligence,

http://www.dni.gov/reports/IC_Information_Sharing_Strategy.pdf

[11] Jones, H., and Soltren, J. 2005. Facebook: Threats to privacy.

45

[12] Ezedin Barka and Ravi Sandhu, Role-Based Delegation Model/ Hierarchical

Roles (RBDM1), ACSAC 2004.

[13] W3C. 2010. Primer: Getting into rdf and semantic web using n3

(http://www.w3.org/2000/10/swap/primer).

[14] Lujun Fang, Heedo Kim, Kristen LeFevre, and Aaron Tami, A Privacy

Recommendation Wizard for Users of Social Networking Sites, CCS 10, 2010

[15] Ralph Gross, Alessandro Acquisti, Information Revelation and Privacy in Online

Social Networks, ACM Workshop on Privacy in the Electronic Society (WPES),2005

[16] Promotion and Tenure in UMBC

http://www.umbc.edu/provost/Faculty_Handbook/section6.pdf

[17] Karthik Raghunathan, Demystifying the American Graduate Admissions

Process, 2010

[18] Hierarchical Groups, http://en.wikipedia.org/wiki/Hierarchical_organization

[19] James Hollenbach, Joe Presbrey and Tim Berners-Lee, Using RDF Metadata To

Enable Access Control on the Social Semantic Web, Workshop on Collaborative

Construction, Management and Linking of Structured Knowledge (CK 2009).

46

[20] Sandford Bessler and Joachim Zeiss, Semantic modelling of policies for

contextaware services, 17th Wireless World Research Forum (WWRF'06)

[21] Facebook, https://www.facebook.com/

[22] Web Ontology Language, http://www.w3.org/TR/owl-ref/

[23] Weitzner, D. J.; Hendler, J.; Berners-lee, T.; and Connolly, D. 2004. Creating a

policy-aware web: Discretionary, rule-based access for the world wide web. In in

Elena Ferrari and Bhavani Thuraisingham, editors, Web and Information Security.

IOS. Press.

[24] Lassila, O.; Swick, R. R.; Wide, W.; and Consortium, W. 1998. Resource

description framework (rdf) model and syntax specification.

[25] Protégé, free, open source ontology editor and knowledge-base framework.

http://protege.stanford.edu/

[26] Protege 4.x OWL, a guide,

http://protegewiki.stanford.edu/wiki/Protege4GettingStarted

[27] Pizzas in 10 Minutes, An Ontology for pizza,

http://protegewiki.stanford.edu/wiki/Protege4Pizzas10Minutes

47

[28] Jose Hiram Soltren, Query-Based Database Policy Assurance Using

Semantic Web Technologies, Sept 2009.

