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1. Introduction 

The modeling of fractures typically uses the Poisson distribution to select the number of particles 
resulting from a fracture of a solid body.  This applies to bullets when striking a plate.  If all the 
bullets are made by the same manufacturer using the same materials, then each bullet should 
have similar patterns of fragmentation.  This statement is also true for similar manufacturers 
using similar material.  In these cases, it is reasonable to expect a good fit of the fragmentation 
data to a single Poisson distribution.  The single parameter λ of the distribution captures the 
fragmentation of the interaction.  In practice and after an estimate is made, the fit to the data is 
checked both visually and through tests of fit. 

For the situation where a bullet strikes a plate and then travels and strikes a second object, the 
use of a single Poisson distribution does not always fit the data.  In this situation, each particle 
emerges from the first event, having undergone a unique experience of stress.  In this situation, 
each subparticle should have its own λ to represent its rate of secondary fragmentation.  This 
report develops a method to model the number of subparticles using a mixture of Poisson 
distributions.  The goal is to find the mixture with the smallest number of components that fits 
the data.  Rather than attempting to find the distribution of λ, it is assumed the values of λ are 
clustered and the centroids of these clusters constitute a useful model. 

 

2. Background 

The Expectation Maximization (EM) Algorithm was introduced by Dempster et al. in a seminal 
paper.1  This paper provided a theoretical framework for many existing ad hoc approaches and 
fostered the development of many new estimation procedures that can be thought of in terms of 
missing data.  The EM algorithm consists of two major steps.  In the first step, the missing data is 
estimated based on the available information.  This information is typically a combination of 
model parameters and observations.  Expectation is used to estimate the unavailable data and 
form a complete set of data.  The completed data is then used to find the maximum likelihood 
estimates of the model parameters.  These two steps are repeated until an exit criterion is met.  
Part of the appeal of the EM algorithm is in the simplification of the maximization of the 
likelihood function associated with the specific problem; this simplification typically results 
from the formation of the complete data set.  By approaching a problem from a more theoretical 
perspective, it is possible to find a solution; in many instances, the iterative algorithm is intuitive.

                                                 
1 Dempster, A. P.; Laird, N. M.; Rubin, D. B.  Maximum Likelihood from Incomplete Data via the EM Algorithm (with 

discussion).  Journal of the Royal Statistical Society B 1977, 39, 1–38. 
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The estimation of mixtures has a long history extending back to Karl Pearson’s paper2 in which 
he estimated the mixture components of crab measurements as the mixture of two univariate 
normal distributions.  His moments-based method was difficult to follow and required finding 
the proper root of a ninth-degree polynomial.  While he was successful, many of his colleagues 
stated that only an individual of his intellectual stature was likely to be able to successfully apply 
his method.  Although research continued in this area, it was not until the advent of the EM 
algorithm that mixtures of varied distributions were approachable.  

In mixture modeling, parameter identification can be difficult.  This difficulty arises because 
different mixtures of distribution functions can result in similar final distributions.  For 
seemingly reasonable values of N, it may be difficult to distinguish between candidate mixtures. 
Often, this is referred to as an over parameterization problem.  The ideas associated with 
observability of parameters based on the data can be used to discuss over parameterization; 
likewise, ideas associated with identifiability can also be applied to gain understanding.  From 
the perspective of modeling, being ignorant of these possibilities can lead to zealousness 
associated with a particular mixture that appears to fit the data.  Domain knowledge associated 
with the data can point out reasonable assumptions to make about the mixture and its 
components.  

There have been many articles that investigate mixtures without appealing to the EM algorithm. 
These articles typically deal with a specific application and an interesting approach to the 
likelihood function.  The EM algorithm allows a general approach that can be applied to a 
multitude of situations; thus, it is a useful technique for the prudent investigator.  An excellent 
source of information on the EM algorithm was prepared by McLachlan and Krishnan.3 

 

3. Algorithm Background 

The distribution of a Poisson distribution contains one parameter, λ.  This distribution is used to 
represent the number of occurrences of some event per unit.  For example, the number of failures 
per year, the number of defects per yard, or the number of fragments per impact are all examples 
of the number of events per unit.  Often, the number of times something happens per time unit is 
represented.  For the current situation, the number of fractures per impact is represented.  The 
distribution function for a Poisson is 

 ( )
x –e

f x;
x!

 = . (1)

                                                 
2 Pearson, K.  Contributions to the Mathematical Theory of Evolution.  Phil.  Transactions of the Royal Society of London A 

1894, 185. 
3 McLachlan, G. F.; Krishnan, T.  The EM Algorithm and Extensions; 2nd ed.; Wiley & Sons:  New York, 2008. 
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The maximum likelihood estimate of λ is the sample mean of the data.   

Consider a mixture of Poisson distributions; in this situation, the distribution would be 

 
1

( ) ( )
g

i i
i

f x, f x; 
=

=å  where 1
1




g

i
i , (2) 

where Ψ represents the parameters associated with the mixture concentrations and each 
distribution parameter.  For the current situation, the parameters are the mixture proportions and 
the Poisson parameters.  The likelihood function for this would be 

 
1 1

( ) ( )
gN

i j i
j i

L X f x ; 
= =

æ ö÷ç ÷= ç ÷ç ÷çè øå . (3) 

The difficulty with solving this likelihood function is associated with the summation.  The 
product of N factors each containing g terms is daunting.  Taking the log converts the product to 
a sum, but the log of a summation defies simplification.  It would be a straightforward process to 
solve this if it was known which component distribution generated each data point.  
Unfortunately, this information is not available.  If it were available, the data would be 
partitioned into g sets and the mean of each set would be the estimate for the λ of each 
component distribution.  Complete data for this problem would include a variable indicating 
group membership.  Let jiz  be an indicator variable for the jth observation belonging to the ith 

group.  A value of 1 indicates membership.  The likelihood function would then be 

 
1 1

( ) ( )
gN

i ji j i
j i

L X z f x ; 
= =

æ ö÷ç ÷= ç ÷ç ÷çè øå . (4) 

 
Given complete knowledge, there would be a single one in each row of the matrix Z, and i  

could be calculated as the mean of the ith group.  This simple procedure to maximize the 
likelihood function is attractive; but z is not observable and, hence, is unknown.  Since jiz  is 

unavailable, the expectation of jiz  is investigated. 

 

4. Algorithm Development 

As a first problem, consider estimating the mixture components i  for the distribution ( )f x, , 

where the individual Poisson parameters i  are known.  The unknown parameters of the log 

likelihood function are the mixture components, i ; thus, the partials with respect to the mixture 



 4

components are needed.  All these components are positive and their sum is 1.  They form a 
discrete probability distribution.  For this case, the log likelihood of equation 3 is  

 ( )
1 1

( ) ( )
gN

i j i
j i

log L X log f x ; 
= =

æ ö÷ç ÷= ç ÷ç ÷çè øå å . (5) 

Since 



g

i
i

1

1  , it is possible to eliminate one of the parameters in equation 5; without loss of  

generality, let 





1

1

1
g

i
ig  , and then taking the partial of equation 5 with respect to a specific 

i  leads to the following set of equations for ( 1 1)i , ,g –=   to be solved: 

 
1

( ) ( )
0

( ) ( )

N
j i j g

j j j

f x , f x ,
–

f x , f x ,

 
 =

ì üï ïï ï=í ï ïï ïî 
å . (6) 

Since the denominator is the same for each term, it can be multiplied out of the equation.  After 
reexamining equation 2, the reader may wish to convince their self that an explicit solution does 
not exist for the parameters, i .  The direct application of maximum likelihood does not lead to 

a solution. 

If the previously discussed indicator variable jiz  were known for this problem, the parameters 

could be computed as 

 
N

z
N

j
ji

i


 1 . (7) 

 
Knowledge of jiz  allows a simplification of the likelihood function.  Consider the log of 

equation 4.  The result seems similar to equation 5; however, the values of jiz  allow the log of 

the summation to be expressed as the log of a product. 

 ( )
1 1

( ) ( )
gN

i ji j i
j i

log L X ,Z log z f x ; 
= =

æ ö÷ç ÷= ç ÷ç ÷çè øå å . (8) 

The effect of the jiz  is to partition the inner sum based on mixture subcomponent, i.e., all 

subcomponents of ( )f x,  not related to the ith index will be zeroed out of the expression.  The 

variable Z allows the restructuring of the likelihood equation into a form that allows a closed 
form solution.  After changing the order of the summations, the likelihood function can be 
expressed in an amenable form. 
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( ) ( ) ( )

( ) ( )

1 1 1 1

1 1 1 1

g gN N

ji i j i ji i j i
i j i j

g gN N

ji i ji j i
i j i j

log L( X ,Z ) log z f ( x ; ) z log f ( x ; )

z log z log f ( x ; ) .

   

 


= = = =

= = = =

æ ö æ ö÷ ÷ç ç÷ ÷= =ç ç÷ ÷ç ç÷ ÷ç çè ø è ø
æ ö æ ö÷ ÷ç ç÷ ÷= +ç ç÷ ÷ç ç÷ ÷ç çè ø è ø

å å å å

å å å å
 (9) 

 
The right-most term of equation 9 will go to 0 when taking the partials with respect to the 
mixture parameters.  This separation of the mixing parameters and the distribution parameters 
will allow the mixing parameters to be estimated without regard to the distribution parameters 
when the problem is made more general, as the existence of Z segments the mixing parameters 
and distribution parameters within the likelihood function.  

It is also worth noting that the distributions do not need to be of the same family, for example, 
one component could be from a normal distribution and another from a Poisson.  With this 
ability to mix different distributions comes the responsibility to make the choices of distribution 
based on domain knowledge.  Domain knowledge will minimize the identifiability/observability 
problem by assisting the investigator in their choice of appropriate distributions.  

Equation 7 allows the maximum likelihood solution of the mixing parameters.  Since Z is not 
observable, its value will be based on expectation.  For this problem, there is a reasonable 
approach to find the expectation of Z.  The expectation of Z is found based on each observation. 
The expectation of jiz  is the probability that ),( iji xf   was the component that generated the 

observation.  The density value of an observation for each of the mixture component 
distributions can be found.  Each of these values is the mixture value multiplied by the 
probability density value.  The expectation of jiz  is described by the following formula: 

 
( )

( )
( )

i j i
ji

j

f x ;
E z

f x ;

 


=   . (10) 

 
The denominator can be considered a normalization factor and ensures that the sum of the 
expectations associated with each observation is 1.  Also note that the sum of all the jiz  will be 

N.  After the values of jiz  are found, the estimated mixture proportions can be found via 

maximum likelihood as 

 
N

z
N

j
ji

i


 1̂   . (11) 

Calculations for the expectation and maximization are alternated until a convergence criterion is 
met.  The final iterative algorithm is elegant in its simplicity and scope, and the contrast to 
Pearson’s original investigation1 is staggering.  
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The previously described algorithm will find the mixture proportions when the distribution 
parameters are known.  For the situation of interest, the mixture proportions are unknown and 
must be estimated.  It turns out that the introduction of the unknown membership variable, Z, 
also makes this a stand-alone step to add to the previous algorithm.  Only the right-most term of 
equation 9 contains the distribution parameters. 

 ( )
1 1

( )
g N

ji j i
i j

z log f x ;
= =

æ ö÷ç ÷ç ÷ç ÷çè ø
å å . (12) 

The maximum likelihood estimation of each Poisson parameter, i , follows the maximum 

likelihood procedure and is demonstrated in many textbooks.  Each i  can be found as the mean 

of its group.  

 








N

j
ji

N

j
jji

i

z

xz

1

1̂ . (13) 

The desired algorithm is formed by including the g computations associated with equation 13 to 
the maximization step of the previous algorithm.  As previously mentioned, the selection of the 
number of components can be considered a subjective decision.  In practice, it is possible to 
rerun the EM algorithm with an additional component and then stop when the percentage of an 
additional component is considered small or if two components have parameters that are almost 
equal.  Initial component percentages can be based on prior information, data observation, or the 
minimum entropy (equally likely) assumption.  The initial Poisson parameters can be selected.  
A valuable reference for application of the EM algorithm to mixtures has been prepared by 
McLachlan and Peel.4 

 

5. Application of the Algorithm 

The algorithm just described was instantiated in MATLAB code as a step or iteration.  This 
routine was placed within a control structure that reran it until the values of the parameters were 
stable to four decimal places.  Models with two to four components were run.  The three-
component model was chosen.  The two-component model did not fit the data well; there was 
little difference between the outputs of the three- and four-component models.  The four-
component model had a component with a probability of less than 0.05.  The strongest 
component of the selected model had a Poisson parameter of 0.1565 and a concentration of 

                                                 
4 McLachlan, G. F.; Peel, D.  Finite Mixture Models; Wiley & Sons:  New York, 2000. 
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0.4691.  Approximately 47% of the time the data had low probability of fracture.  The second 
component had a probability of occurrence of 0.3557 and an average of 4.998 fractures.  The 
third component occurred with a probability of 0.1752 and average 14.4648 fractures.  For a 
Poisson distribution, the variability increased as the mean increased, so the third component had 
a large effect on the variability, even though it had the lowest probability of occurrence.  

The actual data is displayed in figure 1.  Figures 2–4 are realizations of the model.  Visually, the 
model agrees with actual data.  A Kolmogorov-Smirnov goodness-of-fit hypothesis test was 
performed to obtain a quantitative measure of the agreement between the actual data and a data 
set generated from the previously described mixture of Poisson distributions; the test failed to 
reject the hypothesis that the two sets came from the same distribution. 
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Figure 1.  Actual data (number of fragments [x] vs. number of occurrences [y]).
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Figure 2.  Realization 2 (number of fragments [x] vs. number of occurrences [y]). 
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Figure 3.  Realization of the mixture model (number of fragments [x] vs. number of 
occurrences [y]).
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Figure 4.  Realization 3 of the mixture model (number of fragments [x] vs. number of 
occurrences [y]). 

6. Mixture of Poisson Regression Models 

Generalized linear models (GLM) can be used within the framework of the expectation 
maximization algorithm to estimate the parameters for a mixture of Poisson regression models. 
Poisson regression refers to a class of models where the Poisson distribution parameter, λ, is 
estimated from a function of explanatory variables.  Within the GLM framework, maximum 
likelihood is typically used to establish the relationship between the probability distribution and 
the explanatory variables.  Using GLM within the EM algorithm requires the use of weights.  
These weights are analogous to those described by equation 10.  For each observation, the 
normalized likelihood based on each GLM model is used as weight.  The sum of the weights 
associated with a particular model divided by the number of observations gives the estimated 
mixture parameter.  Mixtures of Poisson regression models are analogous to simple Poisson 
mixtures except that the parameter estimation step is more complicated.  Estimation procedures 
for sophisticated models can be devised in a straightforward manner using the same general steps 
as those for a mixture of Poisson distributions.
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7. Conclusions 

Poisson models have been used to model fragmentation.  In this report, the implementation of 
mixtures of Poisson models is discussed.  These models provide valuable models for secondary 
fragmentation.  In primary fragmentation where a bullet first strikes an object, the physical 
properties of the bullets are similar; however, after striking a plate, a bullet’s physical properties 
can be altered and have large variability between bullets or fragments.  The example used in this 
report demonstrated that it is possible to model this situation using a mixture of Poisson 
distributions.  This mixture can be thought of as clusters of bullets or fragments with the same 
physical properties.  The Kolmogorov-Smirnov test can be used to quantify the similarity 
between the data and the model. 

If the information is available on predictor variables, Poisson regression can be used to model the 
fragmentation event.  Models using striking velocity and angle information can be developed to 
increase modeling accuracy.  Secondary fragmentation can be modeled using mixtures of 
Poisson regression models. 

The investigator must always be aware of identifiability issues when utilizing mixture models. 
While a mixture model can be created to fit almost any data set, one should be skeptical of those 
with components not based on appropriate theory.  For fragmentation data, Poisson or Poisson 
regression mixture models provide an approach that can increase the fidelity of the modeling 
effort. 
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