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ABSTRACT 

 
Detecting and predicting maneuvering satellites is an important problem for Space Situational Awareness. The 

spatial envelope of all possible locations within reach of such a maneuvering satellite is known as the Reachable 

Volume (RV). As soon as custody of a satellite is lost, calculating the RV and its subsequent time evolution is a 

critical component in the rapid recovery of the satellite. In this paper, we present a Monte Carlo approach to 

computing the RV for a given object. Essentially, our approach samples all possible trajectories by randomizing 

thrust-vectors, thrust magnitudes and time of burn. At any given instance, the distribution of the "point-cloud" of the 

virtual particles defines the RV. For short orbital time-scales, the temporal evolution of the point-cloud can result in 

complex, multi-reentrant manifolds. Visualization plays an important role in gaining insight and understanding into 

this complex and evolving manifold. In the second part of this paper, we focus on how to effectively visualize the 

large number of virtual trajectories and the computed RV. We present a real-time out-of-core rendering technique 

for visualizing the large number of virtual trajectories. We also examine different techniques for visualizing the 

computed volume of probability density distribution, including volume slicing, convex hull and isosurfacing. We 

compare and contrast these techniques in terms of computational cost and visualization effectiveness, and describe 

the main implementation issues encountered during our development process. Finally, we will present some of the 

results from our end-to-end system for computing and visualizing RVs using examples of maneuvering satellites. 

 

 

1. INTRODUCTION 

 

Detecting and predicting maneuvering satellites is an important problem for Space Situational Awareness (SSA). In 

the absence of a maneuver, it is a straightforward exercise to predict where a satellite will go once its orbit has been 

determined. If a satellite does maneuver, though, it quickly moves away from its initial trajectory, especially in the 

Low Earth Orbit (LEO) regime. The spatial envelope of all possible locations within reach of such a maneuvering 

satellite is known as the Reachable Volume (RV). The determination of an RV serves a few distinct purposes. Since 

an RV spans all possible locations a particular object can maneuver to given a certain burn-budget and elapsed time, 

it is an excellent representation of the probability density distribution of the target, i.e., the RV tells us how likely we 

are to find the object at any given location. This information is very useful in chain-of-custody applications. As soon 

as custody of a satellite is lost, calculating the RV and its subsequent time evolution is a critical component in the 

rapid recovery of the satellite, because searching and asset-tasking based on the RV can result in more efficient 

recovery methods. 

 

An additional application for the RV is assessing whether certain targets are within reach of the maneuvering object. 

This is an extension of the conjunction analysis module we reported on last year [16], in the sense that it will do a 

probabilistic conjunction against the RV instead of against another orbiting object. Finally, since the RVs tend to 

grow rapidly with time, depending on the allowed maximum delta-v, it is useful to have additional constraints to 

limit the growth. Especially in the LEO regime, it does not take very long for the RV to wrap around the Earth (a 

few hours typically). Once this has happened, the usefulness of the RV diminishes rapidly as it starts filling more 

and more of the available space. By inserting additional knowledge about the maneuver, e.g., specific knowledge on 

thrust limits (the satellite is using an ion-thruster), or information about the intent of the maneuver (it is on its way to 

Geostationary Earth Orbit (GEO)), this allows us to extend the usefulness of the RV to many days. This restricted 

RV, which we are calling Trajectory Volume (TV), is especially useful for LEO to GEO transfer maneuvers. 

 

At Lawrence Livermore National Laboratory (LLNL), we have developed a comprehensive modeling, simulation 

and visualization environment for SSA [10]. One of the tools that we have developed performs debris-cloud threat 

assessments against other orbiting objects in order to determine how a threatened target would have to maneuver to 

reduce the risk of a collision. This tool generates virtual debris-clouds based on just a few key parameters (e.g., 

mass, overlap, and relative velocity), all calibrated against hydro-code simulations [13]. A virtual cloud of debris 
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particles is not so much different than a set of virtual trajectories of a maneuvering object. Both cases concern new 

trajectories that are different from the unperturbed orbit. If there are no constraints on the maneuver other than a 

certain upper limit to the delta-V (e.g., burn in any direction, with any speed up to the maximum) the virtual 

trajectory “cloud” is indistinguishable from a virtual debris cloud with a similarly small velocity range. Instead of 

calculating collision risks, we are now using the trajectory cloud for chain-of-custody purposes. After a particular 

object has been lost due to a maneuver, all possible locations to where it could have moved, assuming a limit to the 

burn-budget (and time period over which the maneuver was executed), constitute a volume of space that is reachable 

from the maneuvering object. Another parallel between the two cases is that in the former it is debris posing a risk to 

a certain asset, while in the latter it is a maneuvering satellite that could potentially interfere with the asset. 

 

In this paper, we present our Monte Carlo approach to computing RVs for a given object. Essentially, our approach 

samples all possible trajectories by randomizing thrust-vectors, thrust magnitudes and the time of burn. As an initial 

condition, it typically uses the state-vector of the last successful observation. Simple two-body propagation of the 

virtual trajectories captures the evolution of the RV over time. At any given instance, the distribution of the "point-

cloud" of the virtual particles defines the RV. To computationally represent the volume, we utilize a structured grid 

in Earth-centered coordinate system. At each time step, the underlying probability density distribution is estimated 

by first accumulating the number of trajectory points that are contained within the grid cells and then normalizing 

the accumulation by the total number of trajectory points. Next, we present techniques for visualizing both the 

virtual trajectories and the computed RVs. We present a real-time out-of-core rendering technique for visualizing the 

large number of virtual trajectories. We also examine different techniques for visualizing the computed volume of 

probability density distribution, including volume slicing, convex hull and isosurfacing. We compare and contrast 

these techniques in terms of computational cost and visualization effectiveness, and describe the main 

implementation issues encountered during our development process. Finally, we will present some of the results 

from our end-to-end system for computing and visualizing RVs using examples of maneuvering satellites. 

 

 
Fig. 1. This diagram illustrates our Monte Carlo approach to computing the virtual trajectories for the RV of a given 

object and its unperturbed orbit. At time tburn, we compute vvirtual by adding an offset vector to vactual. 

 

 

2. COMPUTING REACHABLE VOLUME 

 

A maneuver can be defined as a deviation from an unperturbed orbit. External forces like drag acting on a drag-

plate, or thrust from an engine, will change the trajectory and therefore can be considered a maneuver. The former, 

given its small magnitude and inherently long time-scales are more appropriate for station-keeping. We are, for the 

purposes of our RV/TV calculations, solely concerned with the large and immediate thrust cases powered by internal 

engines. From an orbital mechanics standpoint, the thrust acts as a modification of the velocity vector. An 

instantaneous impulse would be a single addition to the velocity component of the state vector in the appropriate 



direction, whereas a more continuous thrusting maneuver would continue to modify the state vector for the duration 

of the burn. Since we are focused in this paper on more conventional propulsion mechanisms as opposed to, for 

instance, continuous ion-thrust propulsion, we make the assumption that our simulated burns are instantaneous. 

 

All object propagation is done using a force-model propagator [14]. In its simplest incarnation, this propagator is 

just a strictly Newtonian two-body case with a Runge-Kutta method for solving the second order differential 

equation of motion. We have also implemented a version that includes, among other things, the higher gravitational 

moments, atmospheric drag and solar radiation pressure. The main difference between the two propagators, other 

than accuracy, is a factor of about 100 in execution speed. Both are well suited for our purpose though: a maneuver 

is nothing more than a modification of the velocity component at a certain time. 

 

There are only four free parameters in our Monte Carlo framework: the magnitude of the burn, two directional 

angles (θ and ϕ), and the time of the burn t. Each one can be varied in a few ways. The burn magnitude can be kept 

fixed (in cases where it is known), it can be varied uniformly (e.g., between 0.0 and 2.0 km/s), or it can be varied 

about a mean value by a Gaussian σ. Both directional angles are varied such that the resulting vector is uniformly 

distributed on a sphere. This is done by varying θ uniformly between 0 and 2π, while at the same time setting ϕ = 

acos(α) with α varied uniformly between -1 and 1. Finally, the burn-time t can be kept fixed, varied uniformly over 

a particular period, or varied about a mean with a certain Gaussian σ. 

 

Fig. 1 provides a diagram that illustrates our Monte Carlo approach to computing the virtual trajectories of the RV 

of a given object and its unperturbed orbit. At time tburn, we compute vvirtual by adding an offset vector to vactual. Our 

example RV calculation is done with a fixed tburn, set at the time of last good observation on the object
1
, with both 

thrust angles varied uniformly (i.e., we do not know where it is going), and a burn magnitude of anywhere between 

0.0 and 2.0 km/s (see Section 5 for more details). To computationally represent the volume, we utilize a structured 

grid in either Earth-centered inertial (ECI) or Earth-center, Earth-fixed (ECEF) coordinate systems. Our approach 

can operate on both rectilinear and curvilinear (spherical) grids. At each time step, the underlying probability density 

distribution is estimated by first accumulating the number of trajectory points that are contained within the grid cells 

and then normalizing the accumulation by the total number of trajectory points. The resulting volume is sampled 

with 1E5 to 1E7 virtual trajectories depending on desired grid resolution (see Section 4 for more details). 

 

As the volume expands over time, certain checks are performed to ensure that virtual trajectories are properly 

removed in case of collision with the Earth or the Moon. Then, at each time of interest, the positions of all the 

remaining virtual particles are used to construct the volume. Relative densities are directly related to the relative 

likelihood that the maneuvering object is in that location. An additional filtering step is implemented that removes 

all trajectories that do not coincide with a given target trajectory/orbit. We call this subset of an RV a Trajectory 

Volume. It involves stepping through time and at each step generating a large Monte Carlo cloud of virtual 

trajectories. Only those trajectories that arrive at the target over the period of interest are kept. As such it can be 

considered a maneuver “with purpose”. A typical example is a LEO to GEO maneuver where it is not known when 

and how the maneuver is executed other than that it has a known destination (e.g., a GEO longitude slot). 

 

 

3. VISUALIZING REACHABLE VOLUME 

 

Visualization plays an important role in gaining insight and understanding into the complex and evolving manifolds 

of the RV of an object. In the following section, we describe the different visualization techniques that we utilize for 

both the virtual trajectories and the computed RV. We describe a real-time out-of-core rendering technique for 

visualizing the large number of virtual trajectories. We also examine various techniques for visualizing the 

computed volume of probability density distribution, including volume slicing, convex hull and isosurfacing. 

 

4.1 Out-of-Core Rendering 

 

Rendering the set of virtual trajectories is a challenging problem due to the sheer number of trajectories involved. 

Naively trying to render all the trajectories at once may not even be feasible using a standard workstation due to 

memory constraints. Even if memory was not a bottleneck, the amount of time it takes to render all that data, even if 

                                                           
1
 In other words, we assume the object is initiating a maneuver immediately after we lose custody of it. 



the rendering is just simple line drawing, would result in a non-interactive visualization system. One way to address 

this issue is to access the data in an out-of-core fashion [12, 15], so that at any time only part of the data is resident 

in memory for the rendering. A similar approach was presented in [6] for building a scalable visualization system for 

SSA. In an out-of-core rendering approach, the idea is to decouple the data access from the rendering and execute 

them on separate threads. The entire process becomes asynchronous. As the data access thread reads in data, it 

signals the rendering thread when a sufficient amount of data is ready for rendering. Likewise, the data access thread 

can be interrupted by the rendering thread when a change in view occurs and a new scene needs to be rendered. Care 

must be taken in order to maintain the previously rendered data within the same view. A simple and effective way to 

accomplish this is to maintain the OpenGL depth buffer (i.e., do not clear it) throughout all the renderings within the 

same view. In this fashion, the incremental rendering converges in an iterative fashion towards the final rendering 

with accuracy and correctness ensured. Hence, the entire rendering process remains interactive and scalable for 

large-scale data sets. 

 

    
 

    
Fig. 2. Top row shows the results from the out-of-core rendering of time steps from the beginning of the propagation 

(red) to the end (blue) in the ECEF coordinate system. Bottom row shows out-of-core rendering of subsets of the 

virtual trajectories. 

 

We present two approaches for iteratively rendering the virtual trajectories in an out-of-core fashion. The first 

approach utilizes the positional data from the orbit propagator at each time step and iteratively renders the time steps 

in order to visualize the temporal evolution of the virtual trajectories. Points within each time step are connected to 

the corresponding points from the previous time step to visualize the individual trajectories. The second approach 

constructs the trajectories from the positional data across all time steps and iteratively renders a subset of the 

trajectories until the desired number of trajectories has been rendered. Fig. 2 shows the results for both approaches. 

The top row shows the out-of-core rendering of time steps in the ECEF coordinate frame. The bottom row shows 

out-of-core rendering of subsets of the virtual trajectories. All line segments representing trajectories are color 

mapped according to the time step from the beginning of the propagation (red) to the end (blue). 

 

Whereas the first approach is ideal for visualizing the temporal evolution of the cloud of trajectory points, the 

second approach is better suited for navigating the trajectory data because the overall structure of the trajectories is 

visible even with a few subsets of the rendered trajectories. In the current implementation, each approach has its 

own out-of-core representation. In order to utilize both approaches, one would have to double up the amount of 

stored data. This increase in data storage requirement may not be necessary if one employees an effective spatial-

temporal data representation scheme [17]. In general, one disadvantage with out-of-core rendering is what is known 

as the popping effect, which occurs when one switches from a final rendering to an initial rendering after a change in 

view. One way to reduce this effect is to keep a set of data resident in main memory so that it can always be 

rendered as part of the initial rendering. Another disadvantage of this approach is that as the data size increases, so 



does the number of iterations to converge to a final rendering. One way to overcome this issue is to introduce a 

notion of multi-resolution representation: coarse levels can be used to render an overview and finer levels can be 

used for specific detailed views. 

 

     
Fig. 3. Three visualization techniques for RV: (left) volume slicing within each dimension, (middle) convex hull of 

the grid points, and (right) isosurfacing of the extracted curvilinear grid at various contour values. 

 

4.2 Volume Visualization 

 

Once the structured grid representing the RV is computed, we utilize three visualization techniques: volume slicing, 

convex hull and isosurfacing, to explore the scalar volume data (probability density distribution). The first technique 

is volume slicing [5], which extracts a 2D plane from the 3D volume and maps colors to the scalar value on the 

plane. Color mapping is one of the most basic forms of scalar visualization. In order to get a better sense of the 3D 

volume, one can extract planes along each dimension as shown in the left image of Fig. 3. In this example, the slice 

planes were pre-selected to illustrate the high probability density core region. This is an efficient technique that 

works well for simple volumes. Unfortunately, this technique cannot adequately capture the shape of volumes with 

complex structures. This technique also requires more user interaction in the form of moving the slice planes back 

and forth in order to see different parts of the volume. 

 

One way to better capture the shape of the underlying volume is to construct a convex hull to represent the outer 

envelope of the volume. The convex hull of a set of points is the smallest convex polygon for which each point in 

the set is either on the boundary of the polygon or in its interior [1]. Although there are several algorithms for 

computing the convex hull, we utilize the approach of computing the 3D Delaunay triangulation on the grid points. 

Note that the 3D Delaunay triangulation is computationally expensive, which is the main reason why we do not use 

the original trajectory points for this computation. In a sense, one can think of the structured grid as a way to prune 

spatially proximate points in order to reduce the run-time of the algorithm. For more details on convex hull and 

Delaunay triangulation, please see [1]. 

 

The middle image of Fig. 3 shows the convex hull extracted for the grid points of the RV. We rendered a semi-

transparent convex hull as well as the grid points color mapped to their probability density, in order to better 

visualize the internal probability distributions enveloped by the convex hull. One of the issues with using the convex 

hull to visualize the RV is that one can only visualize the outer envelope of the RV, and not any of the probability 

density envelopes within. Given that the outer envelope contains very low probability density, the visualization may 

not be useful especially when large amounts of time have elapsed since the maneuver. Although rendering the 

convex hull surface semi-transparent can help better visualize the internal structure of the RV, the issue remains for 

how to effectively visualize the internal structures. 

 

One way to better capture the internal structures of the RV is to extract isosurfaces at various isovalues, which 

correspond to contours of the probability density distribution. An isosurface is a surface that represents points of 

constant value (contours) within a volume; in other words, it is a level set of a continuous function in 3D space. 

Marching Cubes [8] is a standard technique that is based on the divide-and-conquer approach. The basic assumption 

is that a contour can pass through a grid cell in only a finite number of ways. A case table is constructed that 

enumerates all possible topological states of a grid cell, given combinations of scalar values at the cell points. The 



number of topological states depends on the number of cell vertices and the number of inside/outside relationships a 

vertex can have with respect to the contour value. A vertex is considered inside/outside a contour if its scalar value 

is larger/smaller than the contour value. Acceleration techniques for isosurface extraction, such as using interval 

trees [4] and octrees [17], have been proposed, as well as isosurfacing in higher dimensions (e.g., time-varying) [2]. 

 

The right image of Fig. 3 shows the extracted isosurfaces, rendered semi-transparently, corresponding to a set of 

isovalues that was automatically computed based on the range of the probability density distribution. For visualizing 

the RV, isosurfacing provides an effective way to not only visualize the outer envelope of the RV, but also the 

internal structures as well, by specifying higher isovalues that correspond to higher probability densities for the 

extraction algorithm. More importantly, by keeping the isovalues constant across all time steps, one can visualize the 

temporal evolution of the RV by visualizing the evolution of these nested isosurfaces. Since extracting isosurfaces 

can be much less computationally expensive than extracting the convex hull of the grid points, then this approach is 

a better option for visualizing RVs. (See [3] for a clustering based approach to visualizing spatial probability density 

function data.) 

 

    
Fig. 4. One of the issues with constructing the RV using virtual trajectories is undersampling, which results in a 

sparsely populated volume. The images show a slice of the spherical grid and only the non-zero grid cells are 

rendered. The different numbers of virtual trajectories are: 40K, 80K, 160K and 320K. (Note the colormap has been 

inverted to provide better visual contrast with the background imagery.) 

 

 

4. IMPLEMENTATION DETAILS 
 

One of the issues with constructing the structured grid to represent the RV using is undersampling. The resolution of 

a structured grid is typically selected based on the desired level of detail one wishes to capture from the RV. At finer 

grid resolutions, the number of virtual trajectories that is needed to fully capture the RV must increase in order to 

avoid generating sparsely populated volumes. This problem is illustrated in Fig. 4, for which we populated the same 

structured grid, with a resolution of (360,180,500), using different numbers of virtual trajectories: 40K, 80K, 160K 

and 320K. To avoid the problem of occlusion, we rendered a slice of the structured grid by only displaying the 

populated grid cells. Note the colormap was inverted (from red to blue) to provide better visual contrast with the 

Blue Marble Earth imagery. Using Fig. 3 as a reference, one can clearly see the sparseness of the volume and the 

convergence towards the fully filled volume as the number of virtual trajectories increases. (The number of virtual 

trajectories used in Fig. 3 is 1E7.) 

 

Clearly, generating more virtual trajectories requires not only longer running time, but also more data storage. This 

impacts both the data generation phase as well as the data analysis and visualization phase. If a coarser resolution 

grid is not desirable, then one way to address this issue is to apply a smoothing filter to the structured grid in order to 

fill-in the missing grid cells by spreading the accumulated probability density around to neighbors. Fig. 5 provides 

an example of smoothing filter which we implemented as a 3D Gaussian filter on the structured grid. For this RV, 

we used 1E5 virtual trajectories to populate the same structured grid as above. The left image of Fig. 5 shows the 

sparse volume slice and the right image shows smoothing after 5 iterations of a 3x3x3 Gaussian kernel. Note the 

colormap in the image was re-normalized to show the full dynamic range of the smoothed probability density. One 

of the side effects of Gaussian smoothing is that it can reduce the dynamic range of the data by reducing the extrema 

within the data. Note that for curvilinear grids, the more accurate method to applying Gaussian smoothing is to solve 

an equivalent heat equation on the hexahedral grid cells by using the finite element method. The implementation for 

this method is non-trivial and computationally more expensive. 



 

     
Fig. 5. One way to address the sparse RV issue is to apply a smoothing filter to the grid in order to fill in the empty 

grid cells. Left image show the slice of the RV constructed using 1E5 trajectories. Right image shows the same 

volume smoothed using a Gaussian kernel. (Note the colormap was re-normalized to show the full dynamic range.) 

 

Another issue that we encountered during the implementation was using the spherical grid, which has a singularity 

at each pole that causes the hexahedral grid cells to shrink and degenerate into wedges. The large variations in the 

grid cell sizes can cause problems for the visualization algorithm, especially near the pole region. The left image in 

Fig. 6 shows this problem for the BURNSAT simulation in the outer isosurface (blue) near the North Pole region. 

Notice the deformation in the otherwise smooth isosurface that occurs only near the pole region. A more subtle 

problem is that the probability density accumulation does not take into account of the grid cell size when 

normalizing. For the spherical grid, the accumulation is carried out in the computational space (right ascension, 

declination, radius), where the grid cell sizes are constant, as opposed to the physical space (ECI or ECEF), where 

they are not. 

 

Another issue we encountered with using the spherical grid is dealing with the boundary condition when filtering or 

visualizing the volume data. One must handle the periodic boundaries appropriately; otherwise, misalignments and 

discontinuities can occur in the visualization result. The right image in Fig. 6 shows the isosurfacing results for the 

TDRS_BURN simulation. Note that there are discontinuities and misalignments in all the isosurfaces near where 

right ascension jumps from 360 back to 0. One approach to dealing with these issues is to avoid the use of spherical 

grids and use a rectilinear grid in ECI or ECEF instead, which is what we used for the TEST_TV simulation. 

 

     
Fig. 6. Left image shows the pole singularity problem for the spherical grid in the BURNSAT simulation. The outer 

isosurface (blue) near the North Pole region is clearly deformed. Right image shows the boundary problem for the 

spherical grid in the TDRS_BURN simulation. There is a discontinuity and misalignments of the isosurfaces. 

 

 

5. RESULTS 

 

We conducted three simulations to test the performance and effectiveness of our RV computation and visualization 

algorithms. For the first simulation, BURNSAT, we kept the burn time fixed, the thrust direction uniform, and only 



varied the burn magnitude between 0.0 and 2.0 km/s. The propagation time spans from 55458.065 to 55458.165 in 

Modified Julian day (MJD). We used a spherical grid to accumulate the probability density distribution, with a grid 

resolution of (360,180,500), where positions along the radial direction are given by: 10^(i*0.0017886+6.8181), for 0 

≤ i ≤ 499. For this simulation, we generated 1E7 virtual trajectories for 100 time steps, with a step size of 0.001 day. 

The Two-Line Element (TLE) for this simulation is given in the top row of Fig. 7. The volume visualization images 

in Fig. 3 were generated using this simulation. The top row of Fig. 8 shows the orbit in red and the isosurfacing 

results at time steps: 46, 62, 78 and 94. The contour values used for the isosurface extraction were kept constant 

across all time steps: 1E-6, 8.5E-5, 1.7E-4, 2.55E-4, 3.4E-4 and 4.25E-4. 

 

BURNSAT 

1 50001U 10001A   10284.00000000  .00000000  00000-0  00000-0 0    01 

2 50001 078.0000   0.0000 0050000   0.0000   0.0000 14.42576614    02 

TDRS_BURN 

1 27566U 00000000 10265.70740741  .00000000  00000-0  00000-0 0 00003 

2 27566  27.0277 179.7786 7261736 179.8588 359.4731  2.27457895    07 

TEST_TV_SRC 

1 50001U 10001A   10284.00000000  .00000000  00000-0  00000-0 0    01 

2 50001 033.5000 100.0000 4000000   0.0000   0.0000  2.59338460    02 

TEST_TV_TGT 

1 50002U 10001A   10284.00000000  .00000000  00000-0  00000-0 0    01 

2 50002 000.0000   0.0000 0001000   0.0000  90.0000  0.99164129    02 

Fig. 7. The TLEs used for the three simulations: BURNSAT, TDRS_BURN and TEST_TV. 

 

For the second simulation, TDRS_BURN, we also kept the burn time fixed, kept the thrust direction uniform, and 

only varied the burn magnitude between 0.0 and 2.0 km/s. The propagation time spans from 55464.6 to 55464.85 in 

MJD. We used the same spherical grid with a resolution of (360,180,500), where positions along the radial direction 

are given by: 10^(i*0.0023906+6.80615), for 0 ≤ i ≤ 499. For this simulation, we only generated 1E6 virtual 

trajectories for 180 time steps, with a step size of 120 seconds. The TLE for this simulation is given in the middle 

row of Fig. 7. The out-of-core rendering images in Fig. 2 were generated using this simulation. The bottom row of 

Fig. 8 shows the orbit in red and the isosurfacing results at time steps: 45, 80, 115 and 150. The contour values used 

for the isosurface extraction were kept constant across all time steps: 1E-6, 2E-5, 4E-5, 8E-5, 1.6E-4, 3.2E-4, 6.4E-4 

and 1.28E-3. 

 

    
 

    
Fig. 8. Top row shows the BURNSAT orbit in red and the isosurfaces of the RV as they evolve across time. Bottom 

row shows the TDRS_BURN orbit and the corresponding isosurfaces for its RV across time. 



In the third simulation, TEST_TV, we experimented with how to compute and visualize a restricted RV (or TV) by 

specifying a source object in LEO and a target object in GEO. For the restriction step, we kept only those virtual 

trajectories that arrive at the target over the period of interest. For this simulation, we varied the burn time uniformly 

over 3 days, kept the thrust direction uniform, and varied the burn magnitude between 0.0 and 3.5 km/s. The 

propagation time spans from 55480.0 to 55483.0 in MJD. Rather than using a spherical curvilinear grid as in the 

previous two simulations, we used a rectilinear grid instead, with a resolution of (400,400,400) and bounds between 

-200E6 m to 200E6 m in ECEF coordinate system. For this simulation, we initially generated 692E6 virtual 

trajectories, which after filtering were reduced to 2.5E5. The TLE for this simulation is given in the bottom row of 

Fig. 7. The top row of Fig. 9 shows the results from the out-of-core rendering of the virtual trajectories at time steps: 

104, 536, 968 and 1400. The bottom row of Fig. 9 shows the corresponding results from the isosurfacing of the TV. 

The contour values used for the isosurface extraction were kept constant across all time steps: 1E-6, 4E-4, 8E-4, 

1.6E-3, 3.2E-3 and 4.8E-3. (Note the grid shown in the images of Fig. 9 corresponds to the equatorial plane, and it 

was included to provide a visual context – it was not part of the rectilinear grid used to compute the TV.) 

 

    
 

    
Fig. 9. Top row shows the results from the out-of-core rendering of the virtual trajectories for the TEST_TV 

simulation at time steps: 104, 536, 968 and 1400. Bottom row shows the corresponding results from the isosurfacing 

of the TV. 

 

 

6. CONCLUSION 

 

In this paper, we presented a Monte Carlo approach to computing the RV for a given object and several techniques 

for visualizing the RV and its virtual trajectories. Our approach samples all possible trajectories by randomizing 

thrust-vectors, thrust magnitudes and time of burn. At any given instance, the distribution of the "point-cloud" of the 

virtual particles defines the RV. For short orbital time-scales, the temporal evolution of the point-cloud can result in 

complex, multi-reentrant manifolds. To computationally represent the volume, we utilize a structured grid in Earth-

centered coordinate system. At each time step, the underlying probability density distribution is estimated by first 

accumulating the number of trajectory points that are contained within the grid cells and then normalizing the 

accumulation by the total number of trajectory points. We also presented a real-time out-of-core rendering approach 

for visualizing the large number of virtual trajectories. Our out-of-core rendering approach can operate on the point 

cloud through time steps or subsets of virtual trajectories. We also examined different techniques for visualizing the 

computed volume of probability density distribution, including volume slicing, convex hull and isosurfacing. We 

compared and contrasted these techniques in terms of computational cost and visualization effectiveness. We also 

described the main implementation issues encountered during our development process. Finally, we presented 

results from our end-to-end system for computing and visualizing RVs using three different simulations of 

maneuvering satellites. 



For future work, we plan to investigate adaptive techniques, such as adaptive mesh refinement, for computing the 

RV in order to minimize the high computational and storage requirements for large number of virtual trajectories. 

As an alternative to our approach of accumulation and normalization for estimating the probability density 

distribution, we plan to examine kernel density estimation [7]. We also plan to investigate other spatial partitioning 

schemes [11] based on the sphere that can overcome the pole singularity issue as well as the boundary condition 

issue of the spherical grid. In terms of visualization techniques, we plan to examine direct volume rendering 

techniques [9, 18], such as volume ray casting and splatting, and transfer function design for alternative ways to 

visualize the underlying probability density distribution. 
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