
AFRL-AFOSR-UK-TR-2011-0045 
 
 
 
 
 
 

 
 

Symmetry of the Matrix Model of Anisotropic Media with 
Orthogonal Eigenmodes and its Application for the 

Developing of Remote Sensing Polarimetric Measurement 
Systems in Visible 

 
 
 

Sergey N. Savenkov 
 

 National Taras Shevchenko University of Kiyv 
 Department of Quantum Radiophysics 

 64, Volodymyrska Street 
 Kiev, Ukraine  01601 

 
 

EOARD STCU 08-8003 
 

October 2011 
 

Final Report for 01 November 2009 to 01 November 2010 
 

 
 
 

 
 
 

Air Force Research Laboratory 
Air Force Office of Scientific Research 

European Office of Aerospace Research and Development 
Unit 4515 Box 14, APO AE 09421 

Distribution Statement A:  Approved for public release distribution is unlimited. 



REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, 
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply 
with a collection of information if it does not display a currently valid OMB control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1.  REPORT DATE (DD-MM-YYYY) 

19-10-2011 
2.  REPORT TYPE

Final Report 
3.  DATES COVERED (From – To) 

01 November 2009 – 01 November 2010 

4.  TITLE AND SUBTITLE 

Symmetry of the Matrix Model of Anisotropic Media with 
Orthogonal Eigenmodes and its Application for the 
Developing of Remote Sensing Polarimetric Measurement 
Systems in Visible 

 

5a.  CONTRACT NUMBER 
 

STCU Registration No: P-383 
5b. GRANT NUMBER
 
STCU 08-8003 
 
5c.  PROGRAM ELEMENT NUMBER 

6.  AUTHOR(S) 
 

Dr. Sergey N. Savenkov 
 
 

5d.  PROJECT NUMBER 

5d.  TASK NUMBER 

5e.  WORK UNIT NUMBER 

7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
National Taras Shevchenko University of Kiyv 
Department of Quantum Radiophysics 
64, Volodymyrska Street 
Kiev, Ukraine 01601 
 

8.  PERFORMING ORGANIZATION
     REPORT NUMBER 
 

 
N/A 
 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 

EOARD 
Unit 4515 BOX 14 
APO AE 09421 

 

10.  SPONSOR/MONITOR’S ACRONYM(S) 
 
AFRL/AFOSR/RSW (EOARD) 

11.  SPONSOR/MONITOR’S REPORT NUMBER(S)
 
AFRL-AFOSR-UK-TR-2011-0045 

12.  DISTRIBUTION/AVAILABILITY STATEMENT 
 
Approved for public release; distribution is unlimited. 
 
 
13.  SUPPLEMENTARY NOTES 
 

 

14.  ABSTRACT 
This report results from a contract tasking National Taras Shevchenko University of Kiyv as follows:  This project studied theoretically and experimentally 
the Mueller matrix model of crystalline anisotropic medium basing on generalized polarimetric equivalence theorem.  Knowledge of these features is 
important for experimental retrieving the materials and media parameters and for classification of various types of media on the basis of their scattering 
models. Main objective of this study was determination of the conditions under which crystalline anisotropic medium has orthogonal eigenpolarizations 
(eigenmodes). It is known all four basic types of anisotropy, circular and linear birefringence and circular and linear dichroism, each taken separately, 
possess orthogonal eigenpolarizations. Generalized birefringence, i.e. the case of medium simultaneously exhibiting linear and circular birefringence is 
characterized by unitary matrix model and has orthogonal eigenpolarizations. At the same time, simultaneous presence of dichroism and birefringence in 
a medium may lead to nonorthogonal eigenpolarizations. So a systematic study of conditions under which such medium may possesses orthogonal 
eigenpolarizations was proposed.  
Initial expected results of this research includes: (i) ascertainment of generalized conditions for orthogonality of homogeneous anisotropic medium 
eigenmodes; (ii) determination of structure and symmetry of matrix model for such class of media; (iii) development of a polarimeter for the measurement 
of determined structures of incomplete Mueller matrices; (iv) assembling of the breadboard of 1D polarimeter; (v) check out of breadboard of 1D 
polarimeter. 

 
 
 
 
 
 
 
 
 
 

15.  SUBJECT TERMS 
 

EOARD, Materials, Laminates and Composite Materials, Mueller matrix 

16. SECURITY CLASSIFICATION OF: 17.  LIMITATION OF 
ABSTRACT 

 
SAR 

18,  NUMBER 
OF PAGES 

 
 39

19a.  NAME OF RESPONSIBLE PERSON
Brad Thompson 
 a.  REPORT 

UNCLAS 
b.  ABSTRACT 

UNCLAS 
c.  THIS PAGE 

UNCLAS 19b.  TELEPHONE NUMBER (Include area code) 
+44 (0)1895 616163 

                                                                                                                                     Standard  Form  298  (Rev.  8/98) 
Prescribed by ANSI Std. Z39-18

 



 1

 
 
 

Symmetry of the Matrix Model of Anisotropic Media with Orthogonal Eigenmodes  
and its Application for the Developing of Remote Sensing Polarimetric  

Measurement Systems in Visible 
 
 

 
Technical Report 

 
Project EOARD 08-8003 (STCU p383) 

 
1 November 2010 – 1 November 2011 

 
 
 
 
 
 

National Taras Shevchenko University of Kiyv  
Department of Quantum Radiophysics 

Kiev, Ukraine  
 
 

Sergey N. Savenkiov 
 

Contact telephone numbers: +38 044 526-05-80 
Contact email: sns@univ.kiev.ua 

 
 
                            

 
  

   
  

   
 
 
 

 
 

 
 



 2

Content 
List of figures and tables .................................................................................................................3 
1. Introduction .................................................................................................................................4 
2. Methods, Assumptions and Procedures.......................................................................................5 

2.1 Jones and Mueller matrix methods. Spectral problem ...........................................................5 
2.2 Generalized equivalence theorem ..........................................................................................7 
2.3 Symmetry of matrix model of medium with orthogonal eigenpolarizations. ........................8 

2.3.1 Conditions on matrices elements .....................................................................................8 
2.3.2 Orthogonality conditions in terms of anisotropy parameters.........................................14 

2.4 Development of optimized polarimeter ...............................................................................18 
3. Results and Discussion ..............................................................................................................26 
4. Conclusions ...............................................................................................................................34 
References .....................................................................................................................................35 
List of Symbols, Abbreviations, and Acronyms............................................................................37 

Distribution A:  Approved for public release; distribution is unlimited.



 3

List of figures and tables 
Fig.1. Meadowlark’s Liquid Crystal Variable Retarder (LCVR). 

Fig.2. Meadowlark’s Four Channel Digital Interface. 
Fig.3. CellDRIVE 3100 advanced software 

Fig.4. Dependences of LC transducers parameters on value of applied voltage. Analysis is 
performed in conformity with theorem Eq.(10). 

Fig.5. Scheme of Mueller matrix polarimeter used for LC transducers tests. 
Fig.6. Mueller-polarimeter based on four LC transducers. 
Fig.7. Stokes-polarimeter based on two LC transducers. 

Fig.8. Dependence of condition number on orientations of LC transducers 3 4,α α . 
Fig.9. Dependence of error of Stokes parameters definition on polarization state of analysed 

radiation (β - azimuth of polarization ellipse, ε - elliptisity angle). 
Fig.10. Developed software for Mueller matrix polarimeter operation and control which realizes 

the time-sequential strategy with using four LC transducers. Modules with Cloude’s 
decomposition and generalized equivalence theorem are implemented as well (see panel P6). 

Fig.11. Part of interface Fig.10 demonstrating the case when measured object is a prism 
polarizer. 

 
 

Table 1. Results of measurements of Mueller matrices of achromatic zero order quarter 
wave plate (Δ≈91o) and linear polarizer (P≈0) by 13 intensities approach. 

Table 2. Results of measurements of Mueller matrices of achromatic zero order quarter 
wave plate (Δ≈91o) and pure linear polarizer (P≈0) by 16 intensities approach. 

Table 3. Tabular Mueller matrices of 91o wave plate and linear polarizer with P=0 with 
orientations 0o, 45o, 90o. 

 

Distribution A:  Approved for public release; distribution is unlimited.



 4

 

1. Introduction 
One of the most promising approach for remote sensing is polarimetry. Polarimetry 

assumes the exposure of the medium with electromagnetic radiation with a given polarization 
and the subsequent study of the transformation of this polarization as a result of interaction 
between incident radiation and studied medium. 

It is known that if the interaction of radiation with the medium is linear, then it 
mathematically can be represented by a system of linear equations: 
 =out inE TE  (1) 
where in(out)E  - vectors representing the polarization of input and output radiation; T  - is a 
matrix that defines a linear transformation of polarization state of input radiation into the output 
one. 

When one intends to find the unknown parameters of the output radiation in(out)E  for a 
given T , this is the so-called “direct problem”. We interested in the “inverse problem”, the 
essence of which is finding the explicit form of the matrix T . It is clear that the matrix T  
contains all information about the properties of the medium in implicit form. To extract this 
information a number of relevant matrix models have been developed. The most perspective are 
the models based on the singular and the polar decompositions [1-5]. Using the singular and the 
polar decomposition with respect to the operator T  gives the possibility to represent an 
investigated media as a finite set of layers with well-studied and easily interpretable anisotropic 
properties. In the case of singular value decomposition the medium is represented as a set of four 
layers – one with a linear dichroism, one with the optical activity, and two layers with linear 
birefringence [6]. By polar decomposition the same medium is represented as two layers, which 
are the elliptical polarizer and an elliptical phase plate of general forms [2-5]. Thus, the complex 
anisotropy of the arbitrary deterministic medium is decomposed into simple components 
describing separately the transformation of phase and amplitude of the input radiation by studied 
medium. 

The fact that the model basing on singular value decomposition contains two components 
with the same types of anisotropy (linear birefringence) complicates the unique interpretation of 
decomposition results and thus leads to a relatively rare using of this model. Polar decomposition 
is used much more frequently, see for example Refs. 4,5,7 and 9. However, from our point of 
view, the parameters which are obtained in polar decomposition, i.e., diatenuation vector, 
polarizance and retardation, have also no clear physical interpretation. 

In scope of this project we used a model based on the so-called generalized equivalence 
theorem [10]. In concordance with this theorem arbitrary deterministic medium can be presented 
as a product of four basic types of anisotropy: linear phase and amplitude and circular phase and 
amplitude. Physics of these types of anisotropy is studied well and parameters characterizing 
these type of anisotropy have clear. 

Note that all mentioned multiplicative layered models of anisotropic media consist of the 
components which characterized by orthogonal eigenpolarizations. However the 
eigenpolarizations of the initial medium are not necessarily orthogonal. Elliptical polarizer in 
polar decomposition also has orthogonal eigenpolarizations. At the same time, the medium 
represented by a sequence of layers with dichotic properties: linear and circular dichroism, in 
general has a non-orthogonal eigenpolarizations. The absence of dichroism in medium results 
immediately in orthogonality of eigenpolarizations. 

The cases of orthogonal eigenpolarizations usually receives increased attention in the 
literature, and it has been a milestone for classifying polarization elements and studying their 
properties [1,2,6,11]. However, in scope of multiplicative matrix models there is no systematic 
study of the conditions under which the arbitrary anisotropic medium will have orthogonal 
eigenpolarizations in general case. Derivation of these conditions will determine the structure 
and symmetry of the matrix model of corresponding class of media. 
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Thus, the main goal of this study is derivation of the conditions, under which arbitrary 
crystalline anisotropic medium has in general the orthogonal eigenpolarizations. In addition we 
(i) developed the scheme of polarimeter, which is optimally fit for the measurement of structures 
of Mueller matrices with orthogonal eigenpolarizations; and (ii) assembled the breadboard of 1D 
polarimeter, which meets the requirements derived in scope of this research. 

Because of unknown structure of the matrix model for media with orthogonal 
eigenpolarizations in general case developed polarimeter should provide an “operation 
flexibility” between various measurement strategies for optimal measurement of given structures 
of matrices. One way to do this is using in input and output channels of polarimeter the 
polarization transducers with universally controllable parameters. 

Currently a number of schemes to measure the Stokes parameters of electromagnetic 
radiation (Stokes-polarimeter) have been proposed and implemented [11-15]. Key elements for 
these systems are polarization transducers with controllable parameters. Basing on approach to 
control of polarization parameters the Stokes-polarimeters can be divided into two classes: 
mechanically controllable and electrically controllable. Mechanically controlled transducers are 
the ones which parameters are mechanically altered (moved or rotated polarizers, phase plates, 
etc.). Schemes of Stokes-polarimeter with mechanically controlled polarization transducers are 
widely-spread due to simplicity in implementation and adjusting. However, they are 
characterized by significant disadvantages due to impossibility of providing the necessary level 
of accuracy and performance. 

Among the electrically controlled transducers it can be pointed out electro-, magneto-, 
acousto-optical cells etc. Anisotropic properties of these transducers are changed by applying an 
external electric (magnetic) field which can be accomplished with a quite high speed and 
accuracy without mechanical moving. Disadvantages of electrically controlled polarization 
transducers are: 1) nonlinear dependence of parametres on the applied external field, and 2) 
limitation of the range of anisotropy values, 3) as a rule only one parameter can be controlled 
(the orientation axis of anisotropy, values of anisotropy etc.). These disadvantages somewhat 
complicate the adjustment of Stokes-polarimeter and require the using of more than one 
transducer, or changing their orientations to expand the range of polarization transformation. 
Recently transducers on liquid crystals (LC) cells [16-29] become popular. LC cell consists of a 
layer of liquid crystal located between two transparent electrodes controlled by external voltage. 
This cell exhibits birefringence which axis is normal to the propagation direction. Thus, the LC 
cell is a wave plate (LC retarder) which phase shift (birefingence) is controlled by voltage. 
Coupling the relatively low price and satisfactory performance the LC cell allows to get a wide 
range of changes of birefringence by controlling voltage near 15-30V. Two consequently placed 
LC cells provide a range of polarization modulation of radiation enables to determine all four 
Stokes parameters. 

2. Methods, Assumptions and Procedures 

2.1 Jones and Mueller matrix methods. Spectral problem 
To describe the linear interaction of polarized radiation with the medium, see Eq.(1),  the 

Jones and Mueller matrix methods, which is uniquely related in case of a homogeneous 
anisotropic media [30], are used. 

When Jones matrix method is used than in Eq.(1) in(out)E  is the Jones vector of input 
(output) radiation, and T  denotes the Jones matrix. 

Jones matrix T (2x2 matrix with complex elements tmn) describes  anisotropic properties of 
homogeneous medium: 
 

 ⎥
⎦

⎤
⎢
⎣

⎡
=

2221

1211

tt
tt

T ;     where )exp(|| mnmnmn itt φ−= . (2) 
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Eigenpolarizations χ   of such matrix can be obtained as: 

 

 
21

2112
2

11221122
2,1

4)(
2
1

t
tttttt ⋅+−±−

=χ ; (3) 

 
where yx EE /=χ  - complex variable [30]; yxE ,  - components of the Jones vector E . 

For orthogonal eigenpolarizations the following relation: 
 

 121 −=∗χχ  (4) 
 

is satisfied. 
In experimental studies the Mueller method is used for description of interaction between 

electromagnetic radiation and medium because it operates with intensities of radiation that can 
be directly measured. 

When, in scope of the Muller matrix method Eq.(1) can be rewritten as: 
 

 =out inS M S  (5) 
 

where in(out)S  - denotes input (output) Stokes vector. 
The definition of Stokes vector is follows : 

 
cos(2 )cos(2 )
sin(2 )cos(2 )

sin(2 )

I
Ip
Ip

Ip

β ε
β ε

ε

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

S , (6) 

where I – overall intensity of radiation; p – polarization degree; ϑ  - azimuth and ε  - ellipticity 
angle of polarization ellipse. 

It can be seen from Eq.(6) that the elements of Stokes vector (called the Stokes parameters) 
have dimensions of intensity. Thus, the Stokes parameters and Mueller matrix elements can be 
measured directly in experiment. Besides, the Stokes parameters describe either completely 
polarized (p=1), partially polarized (0<p≤1) and depolarized (p=0) radiation. Similarly, the 
Mueller matrix can represent both homogeneous and inhomogeneous media. 

In accordance with Eq.(5) the Mueller matrix M is a 4x4 matrix with real elements 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

44434241

34333231

24232221

14131211

mmmm
mmmm
mmmm
mmmm

M . (7) 

This matrix, as well as Jones matrix, describes completely anisotropic properties of 
homogeneous medium for a given input and output (scattering) directions and wavelength of 
input radiation. 

Direct solving of the spectral problem [31] in scope of Mueller formalism, i.e., finding the 
conditions on Mueller matrix elements for eigenpolarizations to be orthogonal, is quite 
complicated task because of Mueller matrix dimension. However, this problem, as it is 
demonstrated below, can be solved in scope of the Jones formalism both in terms of matrix 
elements and in terms of anisotropy parameters (introduced below, see subsection 2.3). Taking 
into account the fact that Mueller M and Jones T matrices for homogeneous medium are 
interconnected by relation 
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 1)( −∗⊗= ATTAM , (8) 
where ∗  - conjugation; ⊗  - Kronecker product; and 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−
=

00
0110
1001

1001

ii

A , 

all results, which are obtained for the Jones formalism, can be translated to the Mueller 
formalism with Eq.(8). Note that the main condition for that is the medium under consideration 
does not depolarize input radiation. 

It is important to note that any 2x2 matrix could be called  “Jones matrix”, i.e., arbitrary 
2x2 matrix with complex elements describes always a physical realizable transformation of  
polarization trough the Eq.(1). The same can not to be said about any 4x4 matrix with real 
elements. To be named as “Mueller matrix” this matrix has to meet an ample of requirements 
[32]. 

Due to above conditions the solving of spectral problem even for Mueller-Jones matrix 
(which is determined by Eq.(8)) case is generally difficult. We can write it in the following form: 

 

 ( )1 1
1 1 2 2

1
0
0
0

ν ν− −

⎡ ⎤
⎢ ⎥
⎢ ⎥+ =
⎢ ⎥
⎢ ⎥
⎣ ⎦

M S S . (9) 

2.2 Generalized equivalence theorem 
For analysis of anisotropic parameters of medium we use the so-called generalized matrix 

equivalence theorem [33]. According to this theorem an arbitrary Jones (Mueller-Jones) matrix 
of crystalline anisotropic medium can be represented as the product of the Jones matrices of four 
basic types of anisotropy: linear dichroism (linear amplitude anisotropy) LAT , circular dichroism 
(circular amplitude anisotropy) CAT , linear birefringence (linear phase anisotropy) LPT , and 
optical activity or circular birefringence (circular phase anisotropy) CPT : 

 
 LACAlPCP TTTTT = . (10) 

 
The Jones and Mueller matrices of basic types of anisotropy are well-known [30] and 

presented below. 
Jones matrices: 

;
)γ(cos)γ(sin)1)(γsin()γcos(

)1)(γsin()γcos()γ(sin)γ(cos
22

22

⎥
⎦

⎤
⎢
⎣

⎡

+−
−+

=
PP

PPLAT   

;
1

1
⎥
⎦

⎤
⎢
⎣

⎡
⋅

⋅−
=

Ri
RiCAT   

(11) 

          
( )

( ) ;
)α(cos)α(sin1)αsin()αcos(

1)αsin()αcos()α(sin)α(cos
22

22

⎥
⎦

⎤
⎢
⎣

⎡

+−
−+

=
Δ−Δ−

Δ−Δ−

ii

ii
LP

ee
ee

T   

 .
)φcos()φsin(
)φsin()φcos(
⎥
⎦

⎤
⎢
⎣

⎡
−

=CPT   

Mueller matrices: 
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⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+±
−

−
±+

=

2

2

2

2

1002
0100
0010
2001

RR
R

R
RR

CAM ;  

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
=

1000
0)2cos()2sin(0
0)2sin()2cos(0
0001

ϕϕ
ϕϕCPM ;  

(12) 

 

( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

++−−
−++−

−−+

=

P
PPPP

PPPP
PPP

LA

2000
02cos2)1(2sin)1(2sin2cos2sin)1(
0)1(2sin2cos2sin2)1(2cos2cos)1(
02sin)1(2cos)1(1

22222

22222

222

γγγγγ
γγγγγ

γγ

M ;  

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ⎥

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

ΔΔ−Δ
ΔΔ+Δ−
Δ−Δ−Δ+

=

)cos()sin(2cos)sin(2sin0
)sin(2cos)cos(2cos2sin))cos(1(2sin2cos0
)sin(2sin))cos(1(2sin2cos)cos(2sin2cos0

0001

22

22

αα
ααααα
αααααlPM ,  

 
where: value of linear dichroism is in range P∈[0;1] and the azimuth of maximum transition is in  
range γ∈[-π/2;π/2]; value of circular dichroism is in range R ∈[-1;1]; value of linear birefringence 
is in range Δ ∈[0;2π] with it’s fast axis orientation in range α∈[-π/2;π/2]; value of optical activity 
is in range ϕ∈[-π;π]. 

Parameters, which characterize basic types of anisotropy, have clear physical meanings. 
They associate with time and spatial non-locality of the medium response on input light, i.e., 
with time and spatial dispersion. Last ones determine the form of Maxwell’s constitutive 
relations. Thus, generalized polarimetric equivalence theorem combines both mathematical 
generality and physical interpretability. 
 

2.3 Symmetry of matrix model of medium with orthogonal eigenpolarizations. 

2.3.1 Conditions on matrices elements 
Eigenpolarizations are those polarization states of light that do not change when passing 

through a medium. The amplitude and the overall phase of the beam of light with an 
eigenpolarization do, however, change. These changes are described by the corresponding 
eigenvalues. In optics and electrodynamics the crystalline medium is characterized by the types 
of eigenpolarizations that this medium possesses. Because of that, ascertainment of generalized 
conditions for orthogonality of medium’s eigenpolarizations allows determining the structure 
and symmetry of the matrix model for such class of media. 

Using Eq.(3) we have 

 
21

12
21 t

t
−=χχ . (13) 

Combining orthogonality condition in terms of the complex variables Eq.(4) with Eq.(3) 
we get first relation between non-diagonal elements of the Jones matrix in general case: 
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 12 21t t= . (14) 
 
Next, it can be seen that: 
 

 

( )221

2

1
1

2
1

22
1

2
1

2
1

*
12

*
21

2
2

2
1

2
21

1

1
2

1

χχ
χ

χ

χ

χ

χ
χχχχχχχχχ

−=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

=
⎟
⎠
⎞⎜

⎝
⎛ −

=−+=+++=+

. (15) 

 
If we rewrite the relation for eigenvectors as:  
 

 
21

21
2,1 2t

ee ±
=χ , where 11221 tte −= ; 2112

2
11222 4)( tttte +−= , (16) 

 
then Eq.(15) takes the form: 

 
21

21

21

21

21

1

22 t
ee

t
ee

t
e −

−
+

= , (17.a) 

or 

 2
1

2121 =
−−+

e
eeee

. (17.b) 

Let us present the parameters e1 and e2 in the exponential form: 
 

 )exp( 2,12,12,1 ψρ ie −= . (18) 
 
Then, after some mathematics, from Eq.(17.b) we obtain: 
 

 1)cos( 2
21 =−ψψ , (19.a) 

 
 πψψ n±= 21 . (19.b) 

 
Combining the equations Eq.(16) and Eq.(19.b), for the case 0=n  we can write: 

 
 ( ) ( ) ( )[ ]211212121

2
11221

2
2 exp42exp2exp φφψψ ++−= ittittie . (20) 

 
From Eq.(20) it can be deduced that 2ψ 1=φ 12+φ 21 ± nπ or, taking into account Eq.(16), it 

is transformed into 
 

 22 11 12 212 nφ φ φ π− = + ± . (21) 
 
For sum of matrix elements t21 and t12, allowing for Eq.(21), we can write: 
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( ) ( )[ ]

⎟
⎠
⎞

⎜
⎝
⎛ +−

=

=+++=+=+ +

2
exp

2
cos2

sinsincoscos)exp(

21122112
12

2112211212211212211221

φφφφ

φφφφφ

it

ititttt
, (22) 

 
from which it follows: 

 
 21 12 12 212 nφ φ φ π+ = + ± , (23) 

 
excluding the case when t21 = - t12. 

Taking into account Eq.(14), one more relation on phases of difference of matrix elements 
t21 and t12 can be also written: 

 

 
( ) ( ) ( ) ( )[ ]

⎟
⎠
⎞

⎜
⎝
⎛ +−

=

=−+−=−=− −

2
exp

2
sin2

sinsincoscos)exp(

21121221
12

2112211212122112211221

φφφφ

φφφφφ

it

itiittitti
 (24) 

 
From Eq.(24) it follows: 
 

 ( ) 12 2121 122 i nφ φ φ π− = + ± . (25) 
 

Using interrelation Eq.(8) between Jones and Mueller methods and description of spectral 
problem as Eq.(9) we can also study symmetry of the Mueller matrix of medium with orthogonal 
polarizations. 

In particular, from Eq.(8) it  follows: 

2
22122111

21
mmmmt −+−

= ;    
2

22122111
12

mmmmt −−+
= ; 

(26) 

2
22122111

11
mmmmt +++

= ;     
2

22122111
22

mmmmt +−−
= ; 

 

1211

2313
12 2

)cos(
tt
mm +

=φ ;   
1211

2414
12 2

)sin(
tt
mm +

=φ ; 

 
2111

3231
21 2

)cos(
tt
mm +

=φ ;   
2111

4241
21 2

)sin(
tt
mm +

=φ ; (27) 

2211

4433
22 2

)cos(
tt
mm +

=φ ;   
1211

3443
22 2

)sin(
tt
mm −

=φ . 

Here we assumed that all phases of Jones matrix elements Eq.2 are normalized on phase of 
the first matrix element (i.e. 11φφφ −→ mnmn ). Thus, in this case the phase of element 11m  is 

011 →φ . 
Condition Eq.(14) for orthogonality of eigenpolarizations of medium in terms of Jones 

matrix elements can be transformed using Eq.(24) into relation: 
 

2212211122122111 mmmmmmmm −−+=−+− , 

or 
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 2112 mm = . (28) 
 
Condition Eq.(21) in terms of Jones matrix elements can be transformed using Eq.(27) into 

relations: 
( ))sin()cos( mnmnmnmn itt φφ += ; 

12 21 22 11

12 21 22 11

sin( ) Im( )
tg 2arctg

cos( ) Re( )
t t
t t

φ φ
φ φ

⎛ ⎞⎛ ⎞+ −
= ⎜ ⎟⎜ ⎟⎜ ⎟+ −⎝ ⎠⎝ ⎠

; 

( )
221221114433

3443

1122

1122
1122 )Re(

)Im(
tg

mmmmmm
mm

tt
tt

−−−−+
−

=
−
−

=−φ ; 

)sin()sin()cos()cos()cos( 211221122112 φφφφφφ −=+ ; 

)sin()cos()sin()cos()sin( 122121122112 φφφφφφ +=+ ; 

2111

4241

1211

2414

2111

3231

1211

2313
2112 2222

)cos(
tt
mm

tt
mm

tt
mm

tt
mm ++

+
++

=+ φφ ; 

2111

3231

1211

2414

2111

4241

1211

2313
2112 2222

)sin(
tt
mm

tt
mm

tt
mm

tt
mm ++

−
++

=+ φφ , 

or in terms of Mueller matrix elements 

 

( )( ) ( )( )
( )( ) ( )( )

41 42 23 13 14 24 32 31

41 42 14 24 23 13 32 31

43 34

11 21 12 22 33 44

tg 2arctg

m m m m m m m m
m m m m m m m m

m m
m m m m m m

+ + − + +
=

+ + + + +

⎡ ⎤⎛ ⎞−
= ⎢ ⎥⎜ ⎟+ + + − −⎝ ⎠⎣ ⎦

(29) 

 

Expression Eq.(29) is evidently inconvenient for practical use. Thus, we propose to use 
relations 11 22 (21 12) (21 12) 12 212 2 2 i nφ φ φ φ φ π+ + += = = + ±  (see Eq.(21), Eq.(23), Eq.(25)). Then: 

)Re(
)Im(

))(Re(
))(Im(

1221

1221

1221

1221

tt
tt

tti
tti

+
+

=
−
− ; 

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ +
−

+
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
−

+
=−

1211

2414

1211

4241

1211

2313

1211

3231
121221 2222

)(
tt
mm

tt
mm

tt
mm

tt
mm

ittti  

( )[ ]2414424123133231
112

1 mmmmmmmmi
t

−−−−−−+= ; 

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
+

+
−+

+
+

+
=+

1211

4241

1211

2414

1211

3231

1211

2313
121221 2222 tt

mm
tt
mmi

tt
mm

tt
mm

ttt  

[ ]2414424123133231
11

(
2

1 mmmmimmmm
t

−−+++++= ; 

( )
( )

( )
( ) ⇒

+
+

=
−
−

1221

1221

1221

1221

Re
Im

)(Re
)(Im

tt
tt

tti
tti  
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32312313

24144241

24144241

32312313

mmmm
mmmm

mmmm
mmmm

+++
−−+

=
+++
−−+

, (30) 

or 
 ( ) ( ) ( ) ( )2

2414
2

4241
2

3231
2

2313 mmmmmmmm −−+=+−+  (30′) 
 

Finally we have 
 

 13 23 31 32 43 3441 42 14 24

41 42 14 24 13 23 31 32 11 21 12 22 33 44

m m m m m mm m m m
m m m m m m m m m m m m m m

+ − − −+ − −
= =

+ + + + + + + + + − −
 (31) 

 
Spectral problem in scope of Mueller formalism can be expressed in form Eq.(9) where the 

fact that eigenpolarizations S of the Mueller matrix are orthogonal was already taken into 
account. In other words Eq.(9) holds for following normalized Stokes vectors : 

 

 2 2
1 2

3 3

4 4

1 1

; .
s s
s s
s s

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟−⎜ ⎟ ⎜ ⎟= =
⎜ ⎟ ⎜ ⎟−
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

S S  (32) 

 
For Stokes vectors Eq.(32) one can write: 

11 12 13 14 11 12 2 13 3 14 4

21 22 23 24 21 22 2 23 3 24 42
11 12 2 13 3

31 32 33 34 31 32 2 33 3 34 43

41 42 43 44 41 42 2 43 3 44 44

1

(

m m m m m m s m s m s
m m m m m m s m s m ss

m m s m s
m m m m m m s m s m ss
m m m m m m s m s m ss

+ + +⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ = = + + +
⎜ ⎟ ⎜ ⎟⎜ ⎟ + + +
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠⎝ ⎠ ⎝ ⎠

1

2
14 4

3

4

1

) ;
s

m s
s
s

ν

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

1444442444443

  
(33) 

11 12 13 14 11 12 2 13 3 14 4

21 22 23 24 21 22 2 23 3 24 42
11 12 2 13

31 32 33 34 31 32 2 33 3 34 43

41 42 43 44 41 42 2 43 3 44 44

1

(

m m m m m m s m s m s
m m m m m m s m s m ss

m m s m
m m m m m m s m s m ss
m m m m m m s m s m ss

− − −⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ − − −−⎜ ⎟ ⎜ ⎟⎜ ⎟ = = − −
⎜ ⎟ ⎜ ⎟⎜ ⎟ − − −−
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟− − −−⎝ ⎠⎝ ⎠ ⎝ ⎠

2

2
3 14 4

3

4

1

) ;
s

s m s
s
s

ν

⎛ ⎞
⎜ ⎟−⎜ ⎟−
⎜ ⎟−
⎜ ⎟⎜ ⎟−⎝ ⎠

1444442444443

 
From Eq.(33) it follows: 

 
1

11 12 2 13 3 14 4

21 22 2 23 3 24 4 2
11 12 2 13 3 14 4

31 32 2 33 3 34 4 3

41 42 2 43 3 44 4 4

1 0
0

( ) ;
0
0

m m s m s m s
m m s m s m s s

m m s m s m s
m m s m s m s s
m m s m s m s s

ν

+ + +⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟− + + + =
⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + +
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟+ + + ⎝ ⎠⎝ ⎠⎝ ⎠

1444442444443
 (34) 

 
2

11 12 2 13 3 14 4

21 22 2 23 3 24 4 2
11 12 2 13 3 14 4

31 32 2 33 3 34 4 3

41 42 2 43 3 44 4 4

1 0
0

( ) ;
0
0

m m s m s m s
m m s m s m s s

m m s m s m s
m m s m s m s s
m m s m s m s s

ν

− − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − − − =
⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − − −
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟− − − − ⎝ ⎠⎝ ⎠⎝ ⎠

1444442444443
 (35) 

or 
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21 22 2 23 3 24 4 2 11 12 2 13 3 14 4

31 32 2 33 3 34 4 3 11 12 2 13 3 14 4

41 42 2 43 3 44 4 4 11 12 2 13 3 14 4

21 22 2 23 3 24 4 2 11 12 2 13 3 14 4

31

( ) 0
( ) 0
( ) 0
( ) 0

m m s m s m s s m m s m s m s
m m s m s m s s m m s m s m s
m m s m s m s s m m s m s m s
m m s m s m s s m m s m s m s
m

+ + + − + + + =
+ + + − + + + =
+ + + − + + + =

− − − − − − − =
− 32 2 33 3 34 4 3 11 12 2 13 3 14 4

41 42 2 43 3 44 4 4 11 12 2 13 3 14 4

( ) 0
( ) 0

m s m s m s s m m s m s m s
m m s m s m s s m m s m s m s

− − − − − − =
− − − − − − − =

 

By adding Eq.(34) to Eq.(35) we obtain: 
 

 
21 2 12 2 13 3 14 4

31 3 12 2 13 3 14 4

41 4 12 2 13 3 14 4

( ),
( ),
( ).

m s m s m s m s
m s m s m s m s
m s m s m s m s

= + +
= + +
= + +

 (36) 

 
Multiplying Eq.(36) by s2, s3, s4, respectively, and, taking into account that for completely 

polarized radiation normalized Stokes parameters obey the condition ( )1/ 22 2 2
2 3 4 1s s s+ + = , we 

have: 
 

 ( ) ( ) ( )2 21 12 3 31 13 4 41 14 0s m m s m m s m m− + − + − = , (37) 
 
or 

 
 ( ) ( ) ( )21 21 12 31 31 13 41 41 14 0m m m m m m m m m− + − + − = , (38) 

 

 
2 2 2

12 13 14

12 21 13 31 14 41

1
m m m

m m m m m m
+ +

=
+ +

. (39) 

Taking into account that for Mueller-Jones matrix the following condition 
 

 2 2 2 2 2 2
12 13 14 21 31 41m m m m m m+ + = + + , (40) 

 
is true [34], from Eq.(39) and Eq.(40) we can write that: 
 

 
( ) ( )

2 2 2 2 2 2
12 13 14 21 31 41 12 21 13 31 14 41

2 2 2
12 21 13 31 14 41

2( )

( ) 0

m m m m m m m m m m m m

m m m m m m

+ + + + + = + + ⇒

⇒ − + − + − =
 (41) 

 
from Eq.(41) it results that: 

 
12 21

13 31

14 41

,
,
.

m m
m m
m m

=
=
=

 (42) 

From Eq.(42) it follows that for complete description of anisotropy of medium with 
orthogonal eigenpolarizations the knowledge of second, third and fourth columns(rows) of 
Mueller matrix is sufficient. This result can be used during optimization of polarimeter for 
studying of given polarization class of media. 
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2.3.2 Orthogonality conditions in terms of anisotropy parameters. 
To derive orthogonality condition in terms of anisotropy parameters we use the mentioned 

matrix model of arbitrary homogeneous anisotropy (deterministic) Eq.(10), that has recently 
been presented in [33]. 

The relations Eqs.(16), Eq.(22) and Eq.(24) appear useful to rewrite in the form: 
 

 ( ) ⎟
⎠
⎞

⎜
⎝
⎛ Δ
−+=−

2
exp111122 iibatt , (43) 

 

 ( ) ⎟
⎠
⎞

⎜
⎝
⎛ Δ
−+=−

2
exp221221 iibatt , (44) 

 

 ( ) ⎟
⎠
⎞

⎜
⎝
⎛ Δ
−+=+

2
exp331221 iibatt , (45) 

Where, in compliance with Eqs.(10) and Eq.(11), parameters ia  and ib  have the following 
form: 

 

( ) ( ) ( ) ( )φγ2cos
2

cos1φα2sin
2

sin11 −
Δ

−−−
Δ

+= PRPa , 

( ) ( ) ( ) ( )φα2cos
2

sin1φγ2sin
2

cos11 −
Δ

+−−
Δ

−= PRPb , 

( ) ( ) ( ) ( )φsin
2

cos1φγ2α2cos
2

sin12
Δ

+−−−
Δ

−= PRPa , 

  (46) 

( ) ( ) ( ) ( )φ-2γ-2αsin
2

sin1φcos
2

cos12
Δ

−−
Δ

+= PRPb , 

( ) ( ) ( ) ( )φ-2γsin
2

cos1φα2cos
2

sin13
Δ

−+−
Δ

+= PRPa , 

( ) ( ) ( ) ( )φ-2αsin
2

sin1φ-2γcos
2

cos13
Δ

++
Δ

−= PRPb . 

 
Combining Eqs.(44) and (45), equation (14) can be written: 
 

 03232 =+ bbaa . (47) 
 
As it follows from Eq.(21), Eq.(23) and Eq.(25) 
 

 )1221(21121122 −+− == iφφφ , (48) 
 
Combining Eq.(43), Eq.(45) and Eq.(48) and further Eq.(43), Eq.(44) and Eq.(48) we 

obtain: 
 

 01331 =− baba , (49) 
 

 01221 =+ baba . (50) 
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Note that relation Eq.(47) can be obtained by combining Eq.(44), Eq.(45) and Eq.(48) as 

well. 
For further practical usefulness the relations Eq.(47), Eq.(49), Eq.(50) can be rewritten in 

the form: 
 

 01331 =− baba ,  

 ( ) ( ) ( ) ( ) 0φα2cosφα2sin 32321221 =−++−+ bbaababa , (51) 

 ( ) ( ) ( ) ( ) 0φα2sinφα2cos 32321221 =−+−−+ bbaababa .  
 
Finally, substitution Eq.(46) in Eq.(51) gives the relations for determining the values of 

anisotropy parameters for medium having the orthogonal eigenpolarizations: 
 

 0
2

sin)1()(2sin
2

cos
2

sin)1)(1(
2

cos)1( 222222 =
Δ

+−−
ΔΔ

−−−
Δ

− RPRPRP γα , (52) 

 
 [ ] 0)(2cos)1()(2cos)1()1( 22 =−−−−−+− γαφγα RRP , (53) 

 

 

( )

[ ]

[ ] 0)(2sin)1()(2sin)1(
2

cos)1(
2
1

)(2sin)1()(2sin)1(
2

sin)1(
2
1

2
cos

2
sin12

2222

2222

2

=−−+−−−
Δ

−−

−−−++−−
Δ

−+

+
ΔΔ

+

ϕγαγα

ϕγαγα

RRP

RRP

RP

. (54) 

 
From Eq.(52) it is follows=> 

 ( ) ( )( ) ⎟
⎠
⎞

⎜
⎝
⎛

⎥⎦
⎤

⎢⎣
⎡ +−−−−−

+
−

−=Δ 22222 412sin2sin)1(
1
1

2
1arctg2 RRR

P
P

R
γαγα  (55) 

 

 
21

1)(2cosarccos
2
1

2

2 πγαγαϕ −⎥
⎦

⎤
⎢
⎣

⎡
+
−

−+−=
R
R

 (56) 

 
Eq.(52) and Eq.(54) can be represented as 

 ( ) ( )( ) 0)(2sinsin11
2
1cos12 222 =−Δ−−+Δ++− γαRPRPPR ,  

(57) 

 ( ) ( ) ( ) ( )[ ] 0cos)(2sin1)(2sin11
2
1sin1 2222 =Δ−−−−−+−+Δ+ γαϕγα RRPRP .  

Making the following designations 

 
( )( ) ( ) ( )

( )( ) ( ),2sin11
2
1

;2

;1;2sin11
2
1

22

222

ϕγα

γα

−−+−−=−=

+=−−−=

RPDPRC

RPBRPA
 (58) 

then Eqs.(57) take the forms 
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.0sincos

,0cossin

=+Δ−Δ

=+Δ+Δ

DBA

CBA
 (59) 

For Eq.(59) to be satisfied the following equality is required 

 2222 DCBA +=+ . (60) 

Taking to account Eqs.(59) and (60) we have: 

 
( ) ( )

( ) ( ) .0
2

tan2
2

tan

,0
2

tan2
2

tan

2

2

=++
Δ

−
Δ

−

=++
Δ

+
Δ

−

ADBAD

BCABC
 (61) 

Solution of the system Eqs.(61) is 

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

−
−

−

−
+−

=
−

+−±−
=

−
+−±−

=
Δ

BC
DA

BC
DA

BC
BBDA

BC
BCAA 222222

2,12
tg , (62) 

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

−
−
−
+

=
−

+−±
=

−
+−±

=
Δ

AD
CB
AD
CB

AD
CBBB

AD
ADBB 222222

2,12
tg . (63) 

From Eq.(60) it follows: 

 

.

,

AD
CB

BC
DA

AD
CB

BC
DA

−
−

≠
−
+

−

−
+

=
−
+

−
 (64) 

Evidently, we need to choose in Eqs.(62) and (63) the same solutions, then 
 

 
BC

BCAA
CB
DA

−
+−+−

=
Δ

=
−
+

=
Δ 222

2
tg

2
tg . (65) 

 
As it can be seen Eq.(65) is equal to Eq.(55). Thus, we have 2 equations and 6 unknown 

parameters to be determined. Therefore, 4 out of 6 parameters we should fix and, then, other 2 
can be determined from Eq.(52) and Eq.(53). It turns convenient to determine the parameters Δ  
and ϕ  (see Eqs. (55) and (56)), while other 4 parameters are fixed in a range of definition. 

For depolarizing Mueller matrix interpretation the method of coherency matrix introduced 
by Cloude [35,36] has widely been used. According to this method an arbitrary Mueller matrix 
M including depolarization and errors effect are represented as a sum of four nondepolarizing 
(deterministic) Muller matrices 1 4

D
−M : 

 

 
4

1

k
k D

k
μ

=

= ∑M M . (66) 

 
In Eq.(66) μk – are eigenvalues of the Cloude’s coherency matrix playing the role of 

weighting multipliers. So, in compliance with Eq.(66) the anisotropic properties of object are 
presented by simultaneous parallel independent effects of four deterministic anisotropic parts. 

If in Eq.(66) only one eigenvalue μk is non-zero, the corresponding Mueller matrix 
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represents nondepolarizing (homogeneous anisotropic) medium. If all four eigenvalues of 
coherence matrix are non-zero the dominant type of deterministic effect of object on input 
polarization is described by Mueller matrix associated with the maximum eigenvalue in sum 
Eq.(66). The case of negative eigenvalues indicates that the Muller matrix describes a physically 
impossible transformation. This may occur as a result of measurement errors. If eigenvalues of 
coherency matrix are comparable, then the studied medium depolarizes input radiation 
completely. In this case dominant type of deterministic behaviour of studied medium can not be 
determined. 

Our previous studies have shown that direct using of the generalized equivalence theorem 
for the analysis of “raw” experimental Mueller matrices can lead to significant errors in the 
results analysis. This means that before interpreting initial experimental Mueller matrix should 
be filtered out to exclude negative eigenvalues of coherency matrix. 

The elements of Cloude’s coherency and Mueller matrix are related as follows [35,36]: 
 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

11 11 22 33 44 21 12 21 34 43

12 12 21 34 43 22 11 22 33 44

13 13 31 24 42 23 14 23 32 41

14 14 23 32 41 24 13 31 24 42

1 1, ,
4 4
1 1, ,
4 4
1 1, ,
4 4
1 1, ,
4 4

c m m m m c m m im im

c m m im im c m m m m

c m m im im c im m m im

c m im im m c im im m m

= + + + = + + −

= + − + = + − −

= + + − = + + −

= − + + = − + + +

  

(67) 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

31 13 31 24 42 41 14 23 32 41

32 14 23 32 41 42 13 31 24 42

33 11 22 33 44 43 12 21 34 43

34 12 21 34 43 44 11 22 33 44

1 1, ,
4 4
1 1, ,
4 4
1 1, ,
4 4
1 1, .
4 4

c m m im im c m im im m

c im m m im c im im m m

c m m m m c im im m m

c im im m m c m m m m

= + − + = + − +

= − + + + = − + +

= − + − = − + + +

= − + + = − − +

  

 
Coherency matrix C  has always four real eigenvalues, since it is Hermitian, i.e., , ,i j i jc c∗= , 

where ∗  denotes Hermitian conjugation. Four eigenvectors 1 4−Ψ  of the matrix C  are directly 
related to the Jones matrices 1 4−T  as follow: 

 
( ) ( ) ( ) ( ) ( ) ( )
11 1 2 12 3 4

( ) ( ) ( ) ( ) ( ) ( )
21 3 4 22 1 2

, ,
1 4

, ;

k k k k k k

k k k k k k

t t i
k

t i t

= Ψ + Ψ = Ψ − Ψ
= ÷

= Ψ + Ψ = Ψ − Ψ
;   (68) 

 
where k  - number of eigenvectors of coherency matrix C . 

The initial depolarizing Mueller matrix is represented by the sum of four deterministic 
Muller matrices 1 4

D
−M  corresponding to the Jones matrices Eq.(68). 

Eigenvalues of the coherency matrix C  are used to characterise the depolarization 
properties of the studied object by single-value depolarization metric called entropy H. 
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( ) 4
1

1

log ;
N

r
r N r r

r
j

j

H K K K
μ

μ=

=

= − =∑
∑

,    (69) 

 
where 4,1=N  is chosen such that the condition 10 ≤≤ H  is satisfied. In the case when all 
eigenvalues of the coherency matrix are positive one should set 4=N . In other cases, N  is the 
number of positive eigenvalues of the coherency matrix C. 

Entropy H  defined in Eq.(69) characterizes the degree of anisotropic disorder yielding 
depolarization of incident radiation. If 0=H , i.e., only one eigenvalue of coherence matrix is 
nonzero, the studied medium described by corresponding deterministic Mueller matrix is 
homogeneous and doesn't depolarize input radiation. If 1=H , the studied medium is ideal 
depolarizer. Intermediate values of H  correspond to anisotropic depolarizing medium that in 
addition to the depolarization, change the polarization of input radiation. As it was noted above, 
the author [35,36] suggested that a medium leading to depolarization can be characterized by the 
some dominant effective anisotropy in case of 5.0<H . If in Eq.(66) all four components have 
comparable weighting multipliers, all of them contribute equally to the change of polarization of 
radiation. 

2.4 Development of optimized polarimeter 
In given section we describe an assembled polarimeter that is optimized for accurate 

measurement of all elements of Mueller matrix of media. As we noted early it would be 
extremely desirable that this polarimeter could dynamically adjust to exact experimental 
conditions and have no moving units. This will provide a minimal measurement time with 
maximum accuracy and, hence, be a promising basis for new type of imaging Mueller 
polarimetry. One of possible ways to realize dynamically adjusted polarimeter which we 
implemented here is using  

LC retarders as polarization transducers, which retardation is electrically variable - Liquid 
Crystal Variable Retarders (LCVR). As it was shown in [16] a minimal number of LC 
transducers to measure complete Mueller (all of sixteen matrix elements) matrix is four. 

Mentioned LC transducers (Fig.1.) can replace an entire series of polymer and ordinary 
crystalline retarders. With new Swift LC Meadowlark technology (www.meadowlark.com), the 
switching speed is symmetric and approximately 150 microseconds. 

 

 
Fig.1. Meadowlark’s Liquid Crystal Variable Retarder (LCVR). 
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The Four Channel Digital Interface D3050 (Fig.2) designed for computer control of up to 
four Meadowlark Optics nematic liquid crystal devices at the same time. Package allows the 
amplitude of the 2 kHz square wave output to be driven either by an external DC analog signal 
supplied to a front panel connector or specific CellDRIVE (Fig.3) generated waveforms 
including sinusoidal, square, triangle, sawtooth and transient nematic effect waveforms. 
Additional functions include the capability to output a sync pulse on a front panel connector at 
desired points in the CellDRIVE generated waveforms and the ability to save/restore all 
CellDRIVE settings to/from a file. 

 

 
Fig.2. Meadowlark’s Four Channel Digital Interface. 

 

 
Fig.3. CellDRIVE 3100 advanced software 

 
The tests of purchased LC transducers (for the results see Fig.4) was realized on 

automatized Mueller-polarimeter which operates with rotatable crystal plates at input and output 
channels (Fig.5).  

Fig.4 shows nonzero anisotropies of LC transducers during applied voltage changing. It 
can be seen that besides main type of anisotropy (linear birefringece - Δ) the retarder’s cell have 
also dependence of difference in transmittance for eigenpolarizations (linear dichroism) versus 
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applied voltage. This is very important fact which must to be taken in to account during 
polarimeters designing. 

0 2 4 6 8 10
0,95

0,96

0,97

0,98

0,99

1,00

Voltage, V

P

0 2 4 6 8 10
-100
-80
-60
-40
-20

0
20
40
60

Voltage, V

γ, 
o

LCVR I9237

0 2 4 6 8 10
0

30
60
90

120
150
180

Voltage, V

Δ,
 ο

0 2 4 6 8 10
0

20
40
60
80

100

Voltage, V

α
, o

0 2 4 6 8 10
0,95

0,96

0,97

0,98

0,99

1,00

 Voltage, V

P

0 2 4 6 8 10
-120
-100
-80
-60
-40
-20

0
20 LCVR I9238

 Voltage, V

γ, 
o

0 2 4 6 8 10
0

30
60
90

120
150
180

 Voltage, V

Δ,
 o

0 2 4 6 8 10
-120
-100
-80
-60
-40
-20

0
20
40
60

 Voltage, V

α
, o

 

0 2 4 6 8 10
0,95

0,96

0,97

0,98

0,99

1,00

 Voltage, V

P

0 2 4 6 8 10
-120
-100
-80
-60
-40
-20

0
20

 Voltage, V

γ, 
o

0 2 4 6 8 10
0

30
60
90

120
150
180

 Voltage, V

Δ,
 o

0 2 4 6 8 10
-120
-100
-80
-60
-40
-20

0
20
40
60

LCVR I9239

 Voltage, V

α
, o

0 2 4 6 8 10
0,95
0,96
0,97
0,98
0,99
1,00
1,01

 Voltage, V
P

0 2 4 6 8 10
-120
-100

-80
-60
-40
-20

0
20 LCVR I9240

 Voltage, V

γ, 
o

0 2 4 6 8 10
0

30
60
90

120
150
180

 Voltage, V

Δ,
 o

0 2 4 6 8 10
-40
-20

0
20
40
60
80

100

 Voltage, V

α
, o

 
Fig.4. Dependences of LC transducers parameters on value of applied voltage. Analysis is 

performed in conformity with theorem Eq.(10). 
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usb-interface 
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Fig.5. Scheme of Mueller matrix polarimeter used for LC transducers tests. 
1. He-Ne laser; 
2. polarizer; 
3. rotatable crystal phase plate which orientation during measurement periodically 
consequently takes the discrete values (α1

i); 
4. LC transducers tested; 
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5. continuous rotatable crystal phase plate; 
6. analyzer; 
7. photodetector; 
8. PC; 
9. digital interface D3050. 

 
Figure 6 shows the scheme of Mueller-polarimeter. Receiving channel (PSA) is a complete 

Stokes-polarimeter using two LC transducers (LCVR3 and LCVR4), described above. In the 
probing channel (PSG) consists of two LC transducers (LCVR1 and LCVR2) as well. 
Orientations of all units in polarimeter scheme are indicated in Fig.6. Mathematics of polarimeter 
operation is presented below. 

 

 

1 2 3 4 1 2 3 4
11 12 13 14 1 1 1 1 1 1 1 1

1 2 3 4 1 2 3 4
21 22 23 24 2 2 2 2 2 2 2 2

1 2 3 4 1 2 3 4
31 32 33 34 3 3 3 3 3 3 3 3

1 2 3 4 1 2 3 4
41 42 43 44 4 4 4 4 4 4 4 4

m m m m r r r r s s s s
m m m m r r r r s s s s
m m m m r r r r s s s s
m m m m r r r r s s s s

⎛ ⎞ ⎛⎛ ⎞
⎜ ⎟ ⎜⎜ ⎟
⎜ ⎟ ⎜⎜ ⎟ =⎜ ⎟ ⎜⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎝

M G
14444244443144424443

⎞
⎟
⎟
⎟

⎜ ⎟⎜ ⎟
⎠

, (70) 

 
where M is a Mueller matrix of object, G – characteristic matrix of Mueller-polarimeter, ,i i

j jr s  
are j-th Stokes parameters for i-th polarization of input and transmitted light respectively. 
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Fig.6. Mueller-polarimeter based on four LC transducers. 
1. He-Ne laser; 
2,8. polarizer (analyzer) with orientation θP (θA); 
3,4,6,7. LC transducers (LCVR1-4) which orientations of fast axis’s are α1-4 

and introduced additional phase shifts are Δ1-4 (indexes i,j denotes 
changed phase shifts); 

5. test sample; 
9. photodetector; 
10. PC; 
11. digital interface D3050. 
Ii – intensity registered by detector; 
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R, S – Stokes vectors of input and transmitted light correspondingly; 
M – Mueller matrix of measured samples. 

 
According to Eq.(70), measurement of the Mueller matrix by polarimeter Fig.6 is occurred 

by the means of sequential irradiation of sample by electromagnetic radiation with four different 
polarizations. 

Through the fact that in Eq.(70) the Stokes parameters of output radiation are the measured 
parameters it needs to consider a PSA of polarimeter, Fig.6, in more details. PSA is a Stokes-
polarimeter based on two LC transducers (see scheme Fig.7). 
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(Polarization state analyzer (PSA)) 

S 

LCVR-3LCVR-4

Ii 

A 
D 

 
Fig.7. Stokes-polarimeter based on two LC transducers. 

LCVR-3,4 – LC transducers; 
A- analyzer; 
D – detector; 
S – Stokes vector of radiation to be analyzed. 

 
Expression for intensity (i.e., first parameter of the Stokes vector) after analyzer A, Fig.7, 

can be written as 

 ( )LCVR 4 4 4 LCVR 3 3 3 1
(0 ) ( , ) ( , )AI α α− −= ° ⋅ Δ ⋅ Δ ⋅M M M S . (71) 

where )(θAM , LCVR 3,4 ( , )α− ΔM  are the Mueller matrices of analyzer with orientation θ  and LC 
transducers with phase shift δ and orientation α . 

Due to the orientation α  of LC transducer can not be changed electronically for measuring 
of all four Stokes parameters it is necessary to change the values of birefringence of LC 
transducers four times (1 4)

1,2
−Δ  at least. Then, we can set a system of equations relative to 

measured Stokes parameters: 
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. (72) 

It is known [31] that the system Eq.(72) can be solved with minimal error when its 
condition number BV  is minimal: 

 ( ) ( ) ( ) ( ) 1
3 3 4 4 3 3 4 4 min|| ( , , , ) || || ( , , , ) || mini i i i

BV α α α α δ δ−= Δ Δ Δ Δ → ⇒ →B B S S . (73) 

where ||  || denotes Euclidian (metric) norm and  
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 0
0

|| || ;
|| ||

δ = = ±
SS S S S

S
Δ

Δ . (74) 

In Eq.(74) 0S is exact (table) Stokes vector; SΔ  denotes vector of errors of corresponding 
Stokes parameters. 

Eq.(73) results from the next relation [31] 

 ;
1

)(
B

IBS
δ

δδ
δ

B

B

V
V

−
+⋅

≤  (75) 

where IB δδ ,  - are errors of determination of matrix B (called characteristic matrix of the system 
of linear equations or instrumental matrix of Stokes-polarimeter) and of vector I  of intensities 
measured by detector D, see Fig.7. 

We have found that the minimum value of condition number is 5.4min =V  and it is reached 
when angle between orientations of LC transducers is 

 0
4 3 22.5α α− =  (76) 

and its phase shifts are 

 
( )
( )

(1 4)
3

(1 4)
4

3.2 , 162.5 , 32.6 , 167.0 ;

131.1 , 53.4 , 1.3 , 159.7 ;

−

−

Δ = ° ° ° °

Δ = ° ° ° °
. (76′) 

 
Fig.8 shows the dependence of condition number on orientations of LC transducers 

3 4,α α . 
 

α 4
, o  

α3, o  
Fig.8. Dependence of condition number on orientations of LC transducers 3 4,α α . 
 
After determination of actual range of phase shift changing for LC transducers 

(Δ3,4∈[30o,180o]), we corrected the conditions for optimal determination of Stokes parameters by 
polarimeter Fig.7. As a result the optimal set of values of phase shifts of LC transducers in 
comparison with previous estimations has changed. New (corrected) set is 
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  (77) 

 
At the same time, the optimum orientation of LC transducers remains the same as previous 

one Eq.(76) 
When the optimum set of parameters of transducers was established, we analyze how the 

imperfections of these transducers and other elements of polarimeter affect an accuracy of each 
of the four Stokes parameters. To estimate errors for each Stokes parameters we used the known 
relation for the errors of indirect measurements [31]: 
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where ),...,,( 21 NyyyF  designates some function of measured variables ny ; 0

ny  - mathematical 
expectation (averaged value). 

According to Eqs.(72) and (78) the expression for the estimations of Stokes parameter’s 
errors take the form: 
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To obtain quantitative estimations for expression (79) we set the next values of errors: 

∆α=0.2°, ∆∆=0.5° and ∆I=0.1% (taking the intensity as I = 1). As a result, basing on Eq.(79), we 
obtain the following dependences of errors for each of Stokes parameters iSΔ  on azimuth β  and 
ellipticity angle ε  of analysed polarization ellipse (Fig.9). 
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Fig.9. Dependences of Stokes parameter’s errors on polarization of analysed radiation (β - 

azimuth of polarization ellipse, ε - ellipticity angle). 
 

Mean SΔ  and peak ppSΔ  value of error for each Stokes parameter is: 
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As it is for Stokes-polarimeter the optimal polarizations R(1-4) of input radiation are 

generated for the next pairs of values of phase shifts of LC transducers 1 and 2: 
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This result was obtained by minimisation of condition number of the characteristic matrix 

G Eq.(70). The expressions for the Stokes parameters of input radiation are: 
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In accordance with scheme Fig.6 we have assembled the dummy of Mueller-polarimeter 
and have developed software modules to control of its operating. Improved software interface is 
shown below in Fig.10. 
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Panel for driving of mueller-polarimeter with 4 LC transducers 
P4 

Panel with 
results of 
application of 
Cloude 
decomposition 
and Generalized 
equivalence 
theorem 

P6

Panel for settings the parameters of rotating 
phase plate and ADC parameters 

P2

Panels for representation of the results of Stokes 
parameters and Mueller matrices measurements 

P1 

Panels for 
representation 
of controlled 
signals 

P3 

Panel for settings the LC transducers parameters 
P5  

Fig.10. Developed software for Mueller matrix polarimeter operation and control which realizes 
the time-sequential strategy with using four LC transducers. Modules with Cloude’s 

decomposition and generalized equivalence theorem are implemented as well (see panel P6). 
 
Measurement procedure with developed polarimeter consists of the next sequence of 

operations: 
1. First, we need to define polarizations of probing radiation. To do this we need to remove 

all objects from probing channel of polarimeter (measurement mode “without object”) and press 
the button “Calibrating vs LC” of developed software which placed on driving panel P4 (see 
Fig.10). Then, one has to follow to options of corresponding dialog menu. As a result input 
Stokes vectors are formed and represented on the right of panel P1. 

2. Second, to measure the Mueller matrix we insert an investigated object on the way of 
laser beam after PSG (see Fig.6) and press the button “Matrix vs LC” and follow to the options 
of corresponding dialog menu again. Measured matrix will be figured on panel P1 as M: 
(nonnormalized one is on the top and normalized by m11 on the bottom). 

3. If we want to determine the parameters of polarization (θ - azimuth, ε - ellipticity, I - 
intensity, P – polarization degree, S - Stokes parameters) which measured by PSA (Fig.6) we 
have just press the button “Stokes vs LC” and wait until required information will be figured on 
the corresponding panel P1 (see Fig.10). 

3. Results and Discussion 
Let verify the derived conditions of eigenpolarizations orthogonality for some simple 

cases. We will analyze the orthogonality conditions in terms of the Mueller matrix elements 
Eq.(31), Eq.(42) (condition Eq.(28) is omitted because it is a particular case of Eq.(42)). 

As it was pointed out previously, the media characterized by only one of the basic types of 
anisotropy possess always orthogonal eigenpolarizations. Mueller matrices of these types of 
anisotropy are given in Eq.(12). As can be directly seen, for all of them the condition Eq.(41) is 
always satisfied. Conditions Eq.(31) in these cases of anisotropy become an identity or have the 
uncertainty of the type 0/0. 
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Multiple numerical verifications show that if the model Eq.(10) consists all anisotropy 
parameters, conditions Eq.(31) and Eq.(42) are satisfied if values of circular and linear 
anisotropy satisfy Eq.(55), Eq.(56). For example: 

 

 0.2; 25 ; 0.7; 84 ; 9.38 ; 51.83 .o o o oP Rγ α ϕ= = = = ⇒ = Δ = −  (83) 
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It is easy to see that eigenpolarizations 2,1χ  of the Jones matrix Eq.(84) are orthogonal. 
Indeed: 
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Taking to account Eq.(83), in terms of Mueller matrix we obtain: 
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Eigenpolarizations of the Mueller matrix M  Eq.(86)  
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При этом Eq.(31) ⇒    0.034=0.034=0.034 
 
In order to check the orthogonality conditions in terms of anisotropy parameters Eq.(52)-

Eq.(54) let us consider some special cases. 

(i) In case of absence of amplitude anisotropy ( 1=P  and 0=R ) we have:  
 

 
0 0
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=
=
=

. (88) 

 

The Jones matrix for the case of 1=P  and 0=R  is a unitary [2] and, indeed, characterized 
by orthogonal eigenpolarizations. 

(ii) In the case of absence of phase anisotropy ( 0=Δ  and 0ϕ = ), Eq.(28) takes the form: 
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This proves again that simultaneous presence of both type of amplitude anisotropy results 
in non-orthogonality of eigenpolarizations [1]. 

It is important to note that relations Eq.(52)-Eq.(56) can be considered as a set of rules for 
synthesis of the polarization elements with orthogonal eigenpolarizations as well. 

Results obtained in section 2.1 show that Mueller matrix of the medium with orthogonal 
eigenpolarizations has characteristic symmetry, at least such as in Eq.(42). At the same time we 
show that such class of media can generally contain all types of anisotropy. 

Next important result is that the medium with orthogonal eigenpolarizations have no more 
than 4 degrees of freedom. Thus, we can claim that the knowledge of incomplete Mueller 
matrices Eq.(90) are sufficient for complete description of anisotropy of the medium with 
orthogonal eigenpolarizations: 
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Furthermore, taking into account the relations [34] the number of matrix elements that 

need to be measured may be further decreased. 
Fig.4 shows that LC transducers in addition to linear birefringence has an evident linear 

amplitude anisotropy depending on applied voltage as well. This needs to be taken into account 
during polarimeter adjustments. In particular it is reasonable to operate with applied voltage 
more then 3V. 

It was shown in [14] that minimum value for condition number of instrumental matrix with 
dimension 4x4 for time-sequential Stokes-polarimeter with rotating phase plate which can 
principally be obtained is 47.4min =V . For the case of Stokes-polarimeter with two fixed LC 
transducers we obtain value 50.4min =V  that is not far from principally obtainable minimum. 
This allows providing minimal errors in measurement of Stokes parameters. Note, these results 
concerns so-called integral errors of Stokes vector measurement Eqs.(74) and Eq.(75). 

Unfortunately, in practice an actual range of change of phase shift for LC transducers lies 
in region Δ∈[30o,180o] (smooth regions on dependencies presented in Fig.4). So, we have found 
new set of Δ1,2,3,4 Eq.(77). This results in some increasing of condition number Vmin (from 4.5 to 
4.6). However, under equal other conditions this increases the limits of relative error δS just up 
to 1.02 times. 

As it can be seen from Fig.9, the error of Stokes parameters determination by polarimeter 
Fig.7 depends on the polarization of input radiation. This dependence is symmetrical relative to 
sign of ellipticity of polarization ellipse for parameters 1s  and 3s , and is asymmetric for 
parameters 2s  and 4s . All dependences in Fig.9, except for parameter 3s , are asymmetric 
relative to zero value of azimuth β. From Eq.(80) it can also be concluded that in the scheme of 
polarimeter, which is considered, the Stokes parameters are generally measured with different 
accuracy. Meanwhile parameter 1s  is most precisely defined, 2s  a little worse, than 4S and 
parameter 3s  defined with lowest precision. For the parameter 3s  the magnitude of error is also 
highest. The positions of extremum of dependences Fig.9 are determined by LC transducers' axes 
orientation ( 1 22.5α = ° , 2 45α = ° ). 

Thus, in considered polarimeter scheme for arbitrary polarization of radiation, intensity 
will be determined with maximum accuracy. Polarization parameter - large axis of the 
polarization ellipse that oriented at 0o and 90o, will also be determined with the greatest accuracy 
for arbitrary ellipticity. Accuracy of analysis of the polarization ellipse orientation close to 45o is 
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the worst, and strongly depends on ellipticity of ellipse. Ellipticity angle of polarization ellipse in 
described scheme of polarimeter, taking into account comparability of values 4s�  and ,4pps�  is 
determined with greater error relative to azimuth determination and depends on the orientation of 
the polarization ellipse. 

The algorithms of Cloude decomposition and decomposition in accordance with 
generalised equivalence theorem described in section 2.2 are implemented in appropriate 
software module Fig.10. It provides additional information about studied objects. In particular, in 
the case shown in Fig.10, it can be seen that measurement of Mueller matrix was carried out in 
the mode “without object.” In this case the measured Mueller matrix is unitary diagonal within 
error range δM ≈1.9%. This do result in relatively large entropy H=0.11. Values of anisotropy 
parameters indicate that measured object (empty space) does not characterized by any type of 
anisotropy just as it had expected. Next figure demonstrates the part of interface Fig.10 when 
prism polarizer is measured: 

 

 
Fig.11. Part of interface Fig.10 demonstrating the case when measured object is a prism 

polarizer. 
 
Fig.11 represents the Mueller matrix with structure typical for linear amplitude anisotropy: 

entropy H is about 0.08; main anisotropy type (linear amplitude anisotropy with value “P”=0, 
and azimuth “Teta” = -37o.  

Analysis of the Muller matrix of structure Eq.(90) has shown that its elements can not be 
determined independently by means of time-sequential approach described above, see Eq.(70). 
Since the first row of the matrix is responsible for converting the intensity of the radiation by 
medium, they will be involved in the construction of relations Eq.(70) [37,38]. 

From the other hand, for determining of elements of the Mueller matrix there is no need to 
use the Stokes polarimeter in receiving channel of polarimeter. System of simultaneous 
equations relative to 13 matrix elements of the form Eq.(90) can be composed basing on 
relations Eq.(72) directly: 

 

 

( ) ( ) ( ) ( )
4 3 4 3 2 1 2 1

1 1 11 1 2 2 1 12 1 3 3 1 13 1 4 4 1 14

2 2 22 2 3 23 2 4 24

3 2 32 3 3 33 3 4 34

4 2 42 4 3 43 4 4 44

( , , , , ) ( , , , , )
( ) ( ) ( )

,

k k k k
k A PI
r s m r s r s m r s r s m r s r s m

r s m r s m r s m
r s m r s m r s m
r s m r s m r s m

θ α α α α θ= Δ Δ ⋅ ⋅ Δ Δ =
= + + + + + + +

+ + + +
+ + + +
+ + +

13R M S

 (91) 

 
where k=1-13, Ik – measured intensity in the case of k-th set of phase shifts of LC transducers 
and 

Distribution A:  Approved for public release; distribution is unlimited.



 30

  

1( ) ( ) ( ) ( )
4 3 4 3 4 4 4 3 3 3

( ) ( ) ( ) ( )
2 1 2 1 2 2 2 1 1 1

( , , , , ) ( ) ( , ) ( , ) ,

1
cos(2 )

( , , , , ) ( , ) ( , ) ,
sin(2 )

0

k k k k
A A A LCVR LCVR

Pk k k k
P LCVR LCVR

P

θ α α θ α α

θ
θ α α α α

θ

< >

− −

− −

⎡ ⎤Δ Δ = ⋅ Δ ⋅ Δ⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥Δ Δ = Δ ⋅ Δ ⋅
⎢ ⎥
⎢ ⎥
⎣ ⎦

R M M M

S M M
 (92) 

<1> - denotes first row of resulting matrix and M13 denotes the following Mueller matrix: 

 

 

11 12 13 14

12 22 23 24

13 32 33 34

14 42 43 44

m m m m
m m m m
m m m m
m m m m

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

13M . (93) 

From Eq.(91)- Eq.(93) we can form the system of equations: 

 

 [ ]
{

1 1 1 2 2 1 1 3 3 1 1 4 4 1

2 2 2 3 2 4 3 2 3 3

3 4 4 2 4 3 4 4

; 1 13.

k k k k k k k k k k k k k k

k k k k k k k k k k
k

k k k k k k k k

r s r s r s r s r s r s r s

I r s r s r s r s r s k

r s r s r s r s

⎡ ⎤+ + +
⎢ ⎥

= = −⎢ ⎥
⎢ ⎥
⎣ ⎦

13x13

13

I

B

M
uur

144444444444424444444444443

(94) 

 
where I – vector of intensities, B13x13 – characteristic matrix of dimension 13x13; 13M

uur
 - the 

Mueller vector of the form: 
 

 [ ]11 12 13 14 22 23 24 32 33 34 42 43 44
Tm m m m m m m m m m m m m=13M

uur
. (95) 

From Eq.(94) we have for i jm  : 

 
 ( ) 1−=13 13x13M B I

uur
. (96) 

 
As it was in the case of Stokes-polarimeter, see Eqs.(72)-(75), to minimize an error of 

Mueller matrix elements determination in Eq.(94) we have minimize the condition number 
13 13xBV of characteristic matrix B13x13. From Eq.(94) it can be seen that 

13 13xBV  is a function of 10 
parameters ( 1 4 1 4, , ,A Pθ θ α − −Δ ). It is obvious that we can set 0Pθ =  and other azimuths are 
determined relative to Pθ . Then 

13 13xBV  was numerically minimized taking into account that actual 
range of phase shift changing for LC transducers is Δ1-4∈[30o,180o]. As a result the minimum 
value 

13 13 ,min 20.23
xBV ≈  under next conditions:  

 
(1 13)
1
(1 13)
2
(1 13)
3
(1 13)
4

42.4 91.5 122.8 40.0 135.4 180 120.4 40.9 180 177.8 73.1 40.5 84.5
54.7 179.8 174.3 177.4 179.9 54.8 145.0 178.5 40.1 41.0 44.6 173.8 65.6
95.9 40.1 112.

−

−

−

−

° ° ° ° ° ° ° ° ° ° ° ° °⎡ ⎤Δ
⎢ ⎥ ° ° ° ° ° ° ° ° ° ° ° ° °Δ⎢ ⎥ =
⎢ ⎥ ° °Δ
⎢ ⎥
Δ⎢ ⎥⎣ ⎦

5 94.9 180 179.6 179.7 156.7 144.6 47.2 40.3 180 178.8
165 88.5 138.8 144.6 40.3 178.1 179.2 40.1 51.5 113.0 81.4 179.8 42.8

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥° ° ° ° ° ° ° ° ° ° °
⎢ ⎥° ° ° ° ° ° ° ° ° ° ° ° °⎣ ⎦

 

(97) 
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1

2

3

4

133.1
69.3

99.2
62.6

α
α
α
α

− °⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− °⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥°
⎢ ⎥ ⎢ ⎥°⎢ ⎥ ⎣ ⎦⎣ ⎦

, 0Aθ = ° . 

 
It is important to note that in the case of determination of all 16 elements of Mueller matrix 

by approach Eq.(91)- Eq.(96) (i.e., k=16), the absolute minimum of condition number is 

16 16

2
,min 20 4.47

xBV = ≈ .  It is reached for condition Eq.(76) rewritten in form: 
 

(1 16)
1
(1 16)
2
(1 16)
3
(1 16)
4

3.2 3.2 3.2 3.2 162.5 162.5 162.5 162.5 32.6 32.6 32.6 32.6 167.0 167.0 167.0 167.0
131.1 131.1 131.1 131.1 53.4 53.4 53.4 53.4 1.3 1.3 1.3 1.3 159.7 159

−

−

−

−

° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °⎡ ⎤Δ
⎢ ⎥ ° ° ° ° ° ° ° ° ° ° ° ° °Δ⎢ ⎥ =
⎢ ⎥Δ
⎢ ⎥
Δ⎢ ⎥⎣ ⎦

.7 159.7 159.7
131.1 162.5 32.6 167.0 131.1 162.5 32.6 167.0 131.1 162.5 32.6 167.0 131.1 162.5 32.6 167.0

3.2 53.4 1.3 159.7 3.2 53.4 1.3 159.7 3.2 53.4 1.3 159.7 3.2 53.4 1.3 159.7

⎡ ⎤
⎢ ⎥° ° °⎢ ⎥
⎢ ⎥° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °
⎢ ⎥° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °⎣ ⎦

, 

(98) 
1

2

3

4

22.5
45
45

22.5

α
α
α
α

°⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥°⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥°
⎢ ⎥ ⎢ ⎥°⎢ ⎥ ⎣ ⎦⎣ ⎦

 0Aθ = ° . 

Taking into account that for LC transducers Δ1-4∈[30o,180o] we get 
16 16

*
,min 20.62

xBV =  for 
conditions Eq.(77) and Eq.(81) rewritten in form Eq.(98). Thus, 13 elements of the Mueller 
matrix Eq.(93) with orthogonal eigenpolarizations can be determined from system of equations 
Eq.(94) more precisely than complete matrix in general case since 

16 16 13 13

*
,min ,minx xB BV V> . 

For time-sequential approach Eqs.(94) and (96) the developed software Fig.10 improves 
the measuring of complete Mueller matrix and incomplete Mueller matrix of the form Eq.(93) by 
breadboard of Mueller-polarimeter, Fig.6, with optimal parameters Eq.(97) and Eq.(98). 

Before testing the developed polarimeter, Fig.6, we performed a series of calibrating 
measurements by polarimeter Fig. 5 to determine of real parameters of LC transducers (their 
Mueller matrices) when driving voltage had been applied in accordance with Eq.(97) and 
Eq.(98). Then elements of vectors R, S and matrix Bnxn had been calculated in accordance with 
Eq.(92). Here n is equal to 16 for measurement of complete Mueller matrix and 13 for matrix of 
the structure Eq.(90), correspondingly. 

Finally, by calibrated polarimeter we had performed measurements of the Mueller matrices 
of linear polarizer (prism Glana) and polymer achromatic quarter wave plate with orientations 0o, 
45o, 90o. Measurements were carried out with 13 intensities in the case of incomplete matrix 
Eq.(93) and with 16 intensities in the case of complete Mueller matrix. Results of these 
measurements and error assessments are shown below in the tables 1 and 2. For comparison 
table 3 contains tabular Mueller matrices of 91o wave plate and linear polarizer with P=0 with 
orientations 0o, 45o, 90o. 

 
Table 1. Results of measurements of Mueller matrices of achromatic zero order quarter 

wave plate (Δ≈91o) and linear polarizer (P≈0) by 13 intensities approach. 
quarter wave plate 

α=0o (δM=1.4%) α=45o(δM=1.4%) α=90o(δM=1.4%) 
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1.0155

0.0008

0.0001

0.0014−

0.0008

1.0139

0.0003−

0.0002−

0.0001

0.0012

0.0177−

1.0138−

0.0014−

0.0001

1.0132

0.0174−

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠ 

1.0157

0.0010−

0.0005−

0.0000

0.0010−

0.0159−

0.0002

1.0140

0.0005−

0.0010

1.0121

0.0007

0.0000

1.0139−

0.0008−

0.0186−

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

1.0149

0.0011

0.0004

0.0001

0.0011

1.0141

0.0003

0.0015−

0.0004

0.0018

0.0180−

1.0131

0.0001

0.0011−

1.0138−

0.0196−

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠ 

linear polarizer 

γ=0o (δM=1.5%) γ=45o (δM=1.4%) γ=90o (δM=1.4%) 

1.0155

1.0145

0.0008−

0.0005−

1.0145

1.0155

0.0002

0.0006−

0.0008−

0.0013

0.0001

0.0004−

0.0005−

0.0028

0.0005

0.0015

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

 

1.0157

0.0003−

1.0146

0.0003

0.0003−

0.0015

0.0006−

0.0009

1.0146

0.0008

1.0127

0.0006−

0.0003

0.0018−

0.0009−

0.0001

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

1.0147

1.0140−

0.0003

0.0001

1.0140−

1.0131

0.0008

0.0006−

0.0003

0.0011−

0.0016

0.0010

0.0001

0.0001−

0.0009

0.0001

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

 
Table 2. Results of measurements of Mueller matrices of achromatic zero order quarter 

wave plate (Δ≈91o) and pure linear polarizer (P≈0) by 16 intensities approach. 
quarter wave plate 

α=0o (δM=1.4%) α=45o(δM=1.4%) α=90o(δM=1.4%) 

1.0154

0.0007

0.0001−

0.0001−

0.0006−

1.0144

0.0017−

0.0004

0.0007

0.0018

0.0181−

1.0145−

0.0004−

0.0004

1.0129

0.0175−

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

 

1.0162

0.0001−

0.0006

0.0004

0.0008

0.0188−

0.0008

1.0133

0.0000

0.0006

1.0112

0.0004

0.0005−

1.0133−

0.0007

0.0173−

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

 

1.0149

0.0010−

0.0007−

0.0002−

0.0003−

1.0153

0.0016

0.0005−

0.0003

0.0007−

0.0169−

1.0124

0.0007

0.0005

1.0134−

0.0177−

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

linear polarizer 

γ=0o (δM=1.5%) γ=45o (δM=1.4%) γ=90o (δM=1.4%) 

1.0151

1.0149

0.0016−

0.0010−

1.0145

1.0140

0.0015−

0.0004

0.0009−

0.0010−

0.0004

0.0049−

0.0018

0.0007

0.0021

0.0014−

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

 

1.0144

0.0001−

1.0141

0.0006−

0.0002

0.0005

0.0001−

0.0009

1.0142

0.0010−

1.0140

0.0013−

0.0003−

0.0002

0.0002

0.0005−

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

1.0154

1.0149−

0.0020

0.0007−

1.0129−

1.0117

0.0012

0.0000

0.0017

0.0007−

0.0038

0.0014−

0.0011−

0.0007−

0.0019−

0.0003−

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

 
Table 3. Tabular Mueller matrices of 91o wave plate and linear polarizer with P=0 with 

orientations 0o, 45o, 90o. 
wave plate 

α=0o  α=45o α=90o 

1

0

0

0

0

1

0

0

0

0

0.017−

1−

0

0

1

0.017−

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

 

1

0

0

0

0

0.017−

0

1

0

0

1

0

0

1−

0

0.017−

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

 

1

0

0

0

0

1

0

0

0

0

0.017−

1

0

0

1−

0.017−

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

 

linear polarizer 

γ=0o γ=45o γ=90o 

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0

0

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

 

1

0

1

0

0

0

0

0

1

0

1

0

0

0

0

0

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

 

1

1−

0

0

1−

1

0

0

0

0

0

0

0

0

0

0

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠
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Error of measurements described in the tables above was calculated as  
 

 tab exper

tab

100%δ
−

= ⋅
M M

M
M

, (99) 

 
where Mtab – tabular (exact) Mueller matrices calculated for studied objects with given 
orientations; Mexper – measured matrices.  - Euclidian norm. 

All matrices in tables 2 and 3 are nonnormalized and are results of 600 times averaging. 
The time of measurement is about 5 sec for complete Mueller matrix and about 4 sec for 
incomplete Mueller matrix Eq.(93). 

Taking into account the fact that the number of informative matrix elements can be less 
that 13, see for example [33,34], the increasing of the accuracy which is achieved by proposed 
method can potentially be higher (several times or even order). Indeed, let us consider the 
following cases. 

First: the Mueller matrix describing the objects characterized by elliptical phase anisotropy 
and possibly isotropic depolarization. These can be the media of biological nature, see, for 
example, [8] and references herein. The matrix has a form: 

                                

11

22 23 24

32 33 34

42 43 44

0 0 0
0
0
0

m
m m m
m m m
m m m

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

10M                                                       (100) 

 
The analysis shows that minimum value of condition number for matrix Eq.(100) is 13.2  

or by one and a half times lesser that one for complete Mueller matrix. It is reached for 
conditions

  
 

(1 10)
1
(1 10)
2
(1 10)
3
(1 10)
4

125.5 175.1 141.9 153.2 60.4 179.5 52 57.4 51.6 57.4
160.9 112.8 166.2 171.3 178.6 49.1 43.3 52.3 179.9 46.2
40.6 177.4 179.8 92.1 46 111.4 169.7 72.4 17

−

−

−

−

° ° ° ° ° ° ° ° ° °⎡ ⎤Δ
⎢ ⎥ ° ° ° ° ° ° ° ° ° °Δ⎢ ⎥ =
⎢ ⎥ ° ° ° ° ° ° ° °Δ
⎢ ⎥
Δ⎢ ⎥⎣ ⎦

5.3 63
50.8 174.3 51.2 120.9 150.4 78.9 65.6 161.1 90.1 71.9

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥° °
⎢ ⎥° ° ° ° ° ° ° ° ° °⎣ ⎦    

(101) 

              

 
and: 

 

                                               

1

2

3

4

37.1
98.7
90.6
53.1

α
α
α
α

°⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥°⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥°
⎢ ⎥ ⎢ ⎥− °⎣ ⎦⎣ ⎦ .                                                              (102) 

Second example is    
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⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

44

3332

2322

11

6

000
00
00
000

m
mm
mm

m

M                                       (103) 

     
This matrix describes the media characterized by circular phase anisotropy (optical 

activity) possibly with isotropic depolarization as well. The minimum value of condition number 
for matrix Eq.(103) is 7.5 and, thus, the error of measurement of the matrix Eq.(103) decreases 
up to 2.7 times comparing with the case of complete Mueller matrix measurements. 

The conditions for the measurements are follows : 
 

         

(1 6)
1
(1 6)
2
(1 6)
3
(1 6)
4

158.7 176 40.3 131.2 40 100.8
40 178.5 178 50.1 81.3 152.2

57.6 75.4 72.1 105.6 174.2 179.2
146.9 119.8 80.8 40.3 179.7 91.3

−

−

−

−

° ° ° ° ° °⎡ ⎤Δ ⎡ ⎤
⎢ ⎥ ⎢ ⎥° ° ° ° ° °Δ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥° ° ° ° ° °Δ
⎢ ⎥ ⎢ ⎥° ° ° ° ° °Δ⎢ ⎥ ⎣ ⎦⎣ ⎦                        (104) 

 
and: 

 

                                                      

1

2

3

4

58
91.8
81.4
45.1

α
α
α
α

°⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥°⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥°
⎢ ⎥ ⎢ ⎥°⎣ ⎦⎣ ⎦                                  (105) 

 

4. Conclusions 
Summarizing obtained above results we can formulate next conclusions. 
Anisotropy of homogeneous media with orthogonal eigenpolarizations has been 

determined. In particular, when we use for modeling such media an equivalence theorem in the 
form of Eq.(10), eigenpolarizations will always be orthogonal if linear Δ and circular 
birefringence ϕ  have the values Eq.(55) and Eq.(56), whereas, other four anisotropy parameters 
(R, P,γ,α) can take an arbitrary values. One particular case needs to be noted individually: when 
the medium has simultaneously two types of amplitude anisotropy (circular and linear) only, 
there no exist any conditions for such medium to have orthogonal eigenpolarizations. This 
conclusion follows directly from relations Eq.(52)- Eq.(54). 

Derived features of anisotropy of media with orthogonal eigenpolarizations leads to special 
symmetry in respective Jones and Mueller matrices (see Eqs, (14) and (42)) and to additional 
interrelations between matrix elements (see Eqs.(21), (23), (25), (29), (30), and (31)). These 
relations can be useful to simplify an analysis of properties of such media and can be utilized for 
optimization of measurement procedure. In present work we used an equality between elements 
of first column and row of the Mueller matrix Eq.(42) to reduce the measurement time with 
preservation of accuracy for polarimeter with four LC transducers. Optimum configurations for 
transducers are presented in Eq.(97). 

Finally, we have assembled and tested breadboard of 1D Mueller-polarimeter with four LC 
transducers (Fig.6). Developed software for control of the polarimeter operation allows 
measuring the Mueller matrices basing on 16, 13 and less intensities approaches and analyzing 
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the measured matrices to obtain depolarization (Cloude’s entropy [35, 36]) and anisotropy (in 
accordance with general equivalence theorem [33]) parameters. Thus, “operational flexibility” of 
proposed polarimeter which is achieved by using the polarization transducers with four LC and 
taking into account the exact informativity of the matrix elements, allows considerably 
increasing the measurement accuracy. 
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List of Symbols, Abbreviations, and Acronyms 
φmn – phase of Jones matrix elements tmn; 
φi(mn± kl) – phase of sum(difference) of Jones matrix elements i(tmn±tkl); 
χ - complex variable; 
LA – linear amplitude anisotropy; 
CA – circular amplitude anisotropy; 
LP – linear phase anisotropy; 
CP – circular phase anisotropy; 
P – value of linear amplitude anisotropy; 
γ – azimuth of linear amplitude anisotropy; 
R – value of circular amplitude anisotropy; 
Δ – value of phase amplitude anisotropy; 
α – azimuth of linear phase anisotropy; 
ϕ – value of circular phase anisotropy; 
a, b – real, imagine part of some sums/differences of Jones matrix elements; 
LCVR - Liquid Crystal Variable Retarder 
E - Jones vector of radiation; 
S, R – Stokes vectors; 
T, tmn – Jones matrix, Jones matrix elements; 
M, mmn - Mueller matrix, Mueller matrix elements; 
I – intensity of radiation; 
I – vector of intensities; 
S0 –an exact Stokes vector; 
δX – relative error of vector X; 
B – characteristic matrix of stokes-polarimeter; 
G – characteristic matrix of Mueller-polarimeter; 
V – condition number; 
C,cmn – coherency matrix; 
ψ - eigenvector of coherency matrix; 

DM  - nondepolarizing (deterministic) Muller matricx; 
μk – eigenvalues of coherence matrix 

S�  - mean value of error for each Stokes parameter 
ppS�  - peak value of error for each Stokes parameter 

H – entropy; 
θA,(P) = azimuth of analyzer, polarizer 
β - azimuth of polarization ellipse 
ε - ellipticity angle of polarization ellipse 
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