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1. Mosaic Generation 
 

In this quarter we improve upon the algorithms developed in the last quarter to make them 

more robust and reliable. The software was improved for ease of operation and future 

extensibility. The initial estimation of homographies over the image overlap graph – a 

crucial step determining the accuracy of the final result – was improved. Up till now, a 

simple greedy algorithm traversing over the strongest connections in the graph was being 

used. This was replaced with a more robust global shortest path algorithm. The ‘length’ of 

an edge on the graph was defined to be 1 – strength where strength is the number of tied 

points linking the two images. This method gives better initial estimates for the 

homographies. 

 

The datasets we are dealing with are typically large. The test dataset provided has about 

1500 x 6 = 6000 high resolution images. To apply our algorithm, point matches need to be 

found between all pairs of images. It is easy to see that total number of matches to be 

evaluated grows rapidly. 

 

We devised a user controllable scheme to deal with this data complexity. The user chooses 

a frame interval at which they wish to view the generated mosaic. Point matches are then 

evaluated only within that interval. The user can then ‘flip’ through the mosaics. 

Additionally, a small scale panorama over a large number of frames may also be generated. 

Since the data processing takes a lot of time, it is important that the data generation and 

caching be robust. We provide for a multi-stage processing of data which can be started 

and stopped at any stage. We also provide for a smart caching system such that data cached 

in one system can be used at any later stage at another system. 
 

 
 

Figure 1. Mosaic of camera 0 over 200 frames. Potential occluders overlayed in red. 
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2. 3D Recovery from Images 
 

The objective of this work is generating DSM (Digital Surface Model) from the aerial 

multi-head camera system. We have developed two software that generate synthetic 

mosaic images from raw images acquired from the multi-head camera system and 3D point 

cloud from the synthetic mosaic images. In this report, brief underlining principles and 

modification since final report are introduced.  

 

2.1 Mosaic image generation 

 

2.1.1 The synthetic camera model  

 

To generate accurate 3D DSM, synthetic images should be generated very accurately. The 

synthetic perspective center and the synthetic focal length are precisely selected to 

minimize errors due to positional displacement of real perspective centers and under and 

over sampling. Figure 2 shows the generated synthetic camera (red) and given six physical 

cameras (blue). 

 

 
 

Figure 2. Six physical cameras (blue) and  

the synthetic camera for the mosaic image (red) 

 

2.1.2 Mosaic image generation 

 

Mosaic image can be generated by the approximation model that re-projects images from 

physical cameras via the reference plane (Figure 3). The error due to surface undulation is 

ignorable when ratio between surface undulation and flying height (∆h/hg) is less than 0.2. 

The rigorous model needs true surface model of target area which is not always available.  
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Figure 3. Conceptual diagram of mosaic image generation 

 

The edges of mosaic images have poor geometric properties due to radial lens distortion as 

well as obliqueness of images. Previously, we generated mosaic images which include all 

pixels from raw images. As a result, mosaic image had null area (Figure 4; left) which is 

not included in raw images. We eliminate these null areas, which ill-affect image matching 

for 3D point generation and have poor geometric properties, by limiting the size of the 

mosaic image. Consequently, the size of the mosaic image is changed from (9742 by 

10058) to (9400 by 9400). 

 

 
 

Figure 4. A mosaic image with null areas (left) and  

a mosaic image without null area (right)  
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2.1.3 Radiometric correction 

 

The mean-standard deviation method is used for the radiometric correction. The method 

uses mean and standard deviation of pixels in overlapping areas between images. The 

method can be expressed as followings. 

 

 
 

Exact overlapping areas between images are calculated from given CAHVOR model 

(previously, rough overlapping areas were used) for the radiometric correction. Figure 5 

illustrates the result of the radiometric correction. 

 

 
Figure 5. Mosaic images without radiometric correction (left)  

and with radiometric correction (right) 

Let m1, m2 are means and s1, s2 are standard deviations of pixel values in 

overlapping area of the image 1 and 2, respectively. Then, radiometrically 

corrected pixel values of image 2 can be calculated by following equation. 

 

          
 

   
  

  
           

 

 where, y is new pixel value; x is old pixel value of image 2. 
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2.2 DSM generation 

 

2.2.1 Image matching 

 

We use correlation matching that calculates correlation coefficient between moving 

template (from image A) and search space (from image B). Figure 6 illustrates concept of 

the correlation matching in image space. We generate epipolar image pair of which rows of 

the images have same information.  
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Figure 6. Concept of the correlation matching in image space 

 

2.2.2 Epipolar line constraint 

 

We use the epipolar line constraint that a point is correspond to a line in a stereo pair to 

reduce search space in row direction. Figure 7 shows concept of the epipolar line constraint 

in image space and Figure 9 (left) illustrates geometry of the epipolar constraint. 
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Figure 7. Concept of the epipolar line constraint in image space 

 

2.2.3 Vertical line locus constraint 

 

If the maximum and the minimum heights of target area are known, epipolar lines can be 

reduced. Therefore, search space is reduced in column direction. Figure 8 shows concept of 

the vertical line locus constraint in image space and Figure 9 (right) illustrates geometry of 

the vertical line locus constraint. 
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Figure 8. Concept of the vertical line locus constraint in image space 
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Figure 9. Conceptual diagram of epipolar line constraint (left) 

and vertical line locus constraint (right) 

 

2.2.4 Space intersection 
 

The space intersection calculates 3D coordinates of points that lie in the stereo overlap 

area. Figure 10 shows geometry of the space intersection. 
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Figure 10. Geometry of the space intersection 
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2.2.5 Problems 
 

Some objects (such as cylindrical roofs of the Air Force Museum buildings) show totally 

different textures when looking angles are different (Figure 11). Image matching 

performance is dramatically degraded in these areas. 

 

 
 

Figure 11. Cylindrical roofs of the Air Force Museum buildings 

 

Lawn areas around airstrips (Figure 12) show low contrast and repetitive patterns which 

also degrade image matching performance. 

 

 
 

Figure 12. Lawn area around airstrips 
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2.3 Results 

 

The result of image matching is 3D point cloud. Horizontal coordinates of the point cloud 

are in the UTM coordinate system; while heights are WGS84 ellipsoidal height. However, 

we can provide the results in any coordinate system. We generate surface using a set of 

MATLAB functions. Regular grid interpolation is needed to generate DSM (Digital 

Surface Model). This work will be done soon. 

 

2.3.1 Wright-Patterson AFB 
 

Figure 13 illustrates surface model of Wright-Patterson AFB generated from resulting 3D 

point cloud. In these surface models, red color represents highest surface while blue color 

represents lowest surface. 

 

 
 

Figure 13. Surface model of the Wright-Patterson AFB 

 

2.3.2 Five hangers 
 

Figure 14 shows five hangers in south-west side of airstrips. Left figure shows surface 

model. Right figure shows point cloud projected on image.  
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Figure 14. Surface model (left) and 3D point cloud  

projected on image (right) of five hangers 

 

2.3.3 Air force museum 
 
Figure 15 shows surface model and point cloud of the Air Force Museum. Problem in 

image matching of the cylindrical roofs is mentioned in 0. 

 

 
 

Figure 15. Surface model (left) and 3D point cloud  

projected on image (right) of Air Force Museum 
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2.3.4 Software 
 

We developed Mosaic Image Generator and DSM Generator. Programs are developed in 

the Microsoft Visual C++ 6.0 environment. Current version of the Mosaic Image 

Generator is 1.31 and that of the DSM Generator is 1.11. We keep upgrading these 

programs. Figure 16 illustrates GUIs of these programs. 

 

 
 

Figure 16. GUIs of developed programs 
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3. Evolving Point-Cloud Features For Gender Classification 
 

Advances in sensor technology are driving demand for the development of new techniques 

for classifying 3D shapes. The key problem is finding salient features that can be quickly 

extracted from a sample of 3D point cloud data to form a signature suitable for use in a 

gender classification algorithm. Finding solutions to realistic classification problems (such 

as with 3D LIDAR) is often complicated by point cloud resolution and limited fields of 

view. Often sensors have fewer than a thousand points covering a restricted field of view. 

In this investigation, we utilize point clouds which cover the entire body (wrap around and 

head to toe). In order to establish a base line for more advanced research efforts, we bypass 

complications due to limited coverage and focused exclusively on achievable accuracy for 

point resolutions varying over three orders of magnitude with a minimum resolution of 100 

points. Another major complication is the infinite number of possible articulations and 

orientations of the human body. Our data set is restricted to a finite number of standard 

poses, all of which have a definable vertical axis. Because we use full body coverage, the 

vertical axis is easily established using PCA for direction and the center of mass for 

location. Therefore, shape histograms based on point counts in concentric cylinders and/or 

cylindrical slices provide a natural basis for feature space representations. In this paper we 

derive these histograms from a finite number of concentric cylinders which are further 

divided with horizontal slices. Multilayer cylinders with slices and wedges are used to 

generate shape histograms for gesture recognition. Similar shape histograms generated 

with concentric spherical shells about a center of mass and additional sector models are 

used for shape similarity searches of 3D solids, for 3D shape matching and for human pose 

recognition. 

 

A concentric cylinder is defined by three parameters specifying a radius and two positions 

on the vertical axis. Cylindrical histograms, which are conveniently defined by a set of 

parameter triplets, provide a very flexible ensemble for assembling effective feature 

vectors for gender classification. One can manually explore a small number of cylindrical 

histograms or employ soft evolutionary computing to automatically search for more 

optimal histograms. In this paper we explore the degree of improvement obtained with a 

conventional genetic algorithm using binary chromosomes that selects a subset of cylinders 

from a large predefined and fixed set of cylinders. Not investigated here, is the more 

general class of genetic algorithms which employs real valued chromosomes capable of 

representing parameter triplets and thereby capable of searching the entire space of 

possible histograms. However, the results of our preliminary investigation using binary 

selection chromosomes demonstrates that evolutionary computing is effective and 

necessary for the design of advanced point cloud classifiers. 
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Figure 17: CAESAR Data. The leftmost image is a color polygon rendering of a subject 

using 316,691 polygon faces and 161,951 points. The small white dots on the surface of 

the subject are landmark points. The middle image is a grayscale rendering of the 

polygons. The rightmost image is the point cloud. 

 

To test our system, we used data drawn from the CAESAR anthropometric database 

provided by the Air Force Research Laboratory (AFRL) Human Effectiveness Directorate 

and SAE International. A sample of the data available in the CAESAR database is shown 

in Figure 17. The database contains point clouds, mesh models and two types of 

measurements taken on approximately 4,400 human subjects. One group of measurements 

was taken by human experts using tape measures, calipers and scales while a second group 

of measurements was extracted from high resolution 3D LIDAR whole body scans of 

subjects wearing carefully placed physical markers that facilitate the automated extraction 

of important landmark locations. Both of these sets of measurements are carefully chosen 

based on extensive research in the area of anthropometric analysis and would be difficult to 

obtain using a sensor system in an uncontrolled environment. The traditional 

measurements require physical contact with the human subject while measurements 

dependent on landmark locations require the development of techniques for locating 

landmarks without the aid of physical markers on the human subject. Although the 

algorithmic identification of landmark locations is feasible, it is dependent on a relatively 

high resolution sensor scan and the ability to accurately locate specific points on a human 

subject many of which may be occluded in real world applications. Several techniques 

have been applied to solve the gender recognition using the traditional and extracted 

anthropometric measures. These techniques produce gender recognition accuracies above 

98%. 

 

 

 
 

 

 A concentric cylinder is defined by three parameters specifying a radius and two positions on the vertical axis.  

Cylindrical histograms, which are conveniently defined by a set of parameter triplets, provide a very flexible ensemble 

for assembling effective feature vectors for gender classification. One can manually explore a small number of 

cylindrical histograms or employ soft evolutionary computing to automatically search for more optimal histograms.  In 

this paper we explore the degree of improvement obtained with a conventional genetic algorithm using binary 

chromosomes that selects a subset of cylinders from a large predefined and fixed set of cylinders. Not investigated here, 

is the more general class of genetic algorithms which employs real valued chromosomes capable of representing 

parameter triplets and thereby capable of searching the entire space of possible histograms. However, the results of our 

preliminary investigation using binary selection chromosomes demonstrates that evolutionary computing is effective and  

necessary for the design of advanced point cloud classifiers. 

 

To test our system, we used data drawn from the CAESAR anthropometric database provided by the Air Force Research 

Laboratory (AFRL) Human Effectiveness Directorate and SAE International
5
. A sample of the data available in the 

CAESAR database is shown in Figure 1. The database contains point clouds, mesh models and two types of 

measurements taken on approximately 4,400 human subjects. One group of measurements was taken by human experts 

using tape measures, calipers and scales while a second group of measurements was extracted from high resolution 3D 

LIDAR whole body scans of subjects wearing carefully placed physical markers that facilitate the automated extraction 

of important landmark locations. Both of these sets of measurements are carefully chosen based on extensive research in 

the area of anthropometric analysis and would be difficult to obtain using a sensor system in an uncontrolled 

environment. The traditional measurements require physical contact with the human subject while measurements 

dependent on landmark locations require the development of techniques for locating landmarks without the aid of 

physical markers on the human subject. Although the algorithmic identification of landmark locations is feasible, it is 

dependent on a relatively high resolution sensor scan and the ability to accurately locate specific points on a human 

subject many of which may be occluded in real world applications. Several techniques have been applied to solve the 

gender recognition using the traditional and extracted anthropometric measures
6,7

. These techniques produce gender 

recognition accuracies above 98%. 

 

 
 

 

 

 

Figure 1. CAESAR Data.  The leftmost image is a color polygon rendering of a subject using 316,691 polygon 

faces and 161,951 points. The small white dots on the surface of the subject are landmark points. The middle 

image is a grayscale rendering of the polygons. The rightmost image is the point cloud. 
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Figure 18: Point cloud resolution. 

 

In this work, we use the raw 3D point clouds. The full resolution point clouds typically 

consist of 100,000 – 200,000 points. This resolution is ideal for developing meshes and 

analyzing various surface properties, but our focus is on the effect of taking point clouds 

from the CAESAR database and reducing the point density as much as three orders of 

magnitude as shown in Figure 18. Clearly the reduction from greater than 100,000 points 

to 1,000 points leaves sufficient structure to identify the cloud as a human shape. Even 

further reduction to 100 points maintains enough information to suggest a human form, but 

the question is can we discriminate gender using a low resolution point cloud and can we 

compensate for the loss of resolution by adapting the parameters controlling the shape 

histogram features? 

 

3.1 Approach 
 
Gender classification is performed using a traditional pattern recognition system 
consisting of a feature extraction module and a classifier module. The recognition system 
is embedded in a closed-loop evolutionary learning system that uses classification 
accuracy to evaluate the performance of different combinations of features. The 
evolutionary learning system varies the parameters of the feature extraction module to 
optimize the recognition accuracy. An overview of this system is shown in Figure 19. 
 

3.1.1 Feature Extraction 
 

To begin feature extraction, each point cloud is translated so the center of mass of the 

cloud is positioned at the origin of a 3D Cartesian coordinate system (X,Y,Z) with axes 

ranging from -1 to +1. The principal components of the cloud are computed and used to 

rotate the cloud so the largest principal component is aligned with the Z axis, the second 

largest component is aligned with the X axis and third largest component aligns with the Y 

 

 
 

 

In this work, we use the raw 3D point clouds. The full resolution point clouds typically consist of 100,000 – 200,000 

points. This resolution is ideal for developing meshes and analyzing various surface properties, but our focus is on the 

effect of taking point clouds from the CAESAR database and reducing the point density as much as three orders of  

magnitude as shown in Figure 2. Clearly the reduction from greater than 100,000 points to 1,000 points leaves sufficient 

structure to identify the cloud as a human shape. Even further reduction to 100 points maintains enough information to 

suggest a human form, but the question is can we discriminate gender using a low resolution point cloud and can we 

compensate for the loss of resolution by adapting the parameters controlling the shape histogram features? 

 

2. APPROACH 

 
Gender classification is performed using a traditional pattern recognition system consisting of a feature extraction 

module and a classifier module. The recognition system is embedded in a closed-loop evolutionary learning system that 

uses classification accuracy to evaluate the performance of different combinations of features. The evolutionary learning 

system varies the parameters of the feature extraction module to optimize the recognition accuracy. An overview of this 

system is shown in Figure 3. The feature extraction module is described in section 2.1, the classifier is explained in 

section 2.2 and the evolutionary learning module is discussed in section 2.3.   

Figure 2. Point Cloud Resolution 

Downloaded from SPIE Digital Library on 20 Jun 2011 to 130.108.15.66. Terms of Use:  http://spiedl.org/terms
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axis. The effect of applying these operations to a point cloud is shown to the left in Figure 

20. A series of nested cylinders are superimposed over the aligned cloud such that long 

axis of the cylinder coincides with the Z-axis as shown to the right in Figure 4. Each 

cylinder is further subdivided into a series of slices. The total number of points in each 

cylinder slice is computed and serves as a rotationally invariant numeric feature with 

respect to the X-Y axes. 
 

 
Figure 19: Closed loop evolutionary learning system. 

 

 
Figure 20: Cylindrical features. 

 

The set of all numeric values derived from one cylinder forms a profile histogram as 

shown in Figure 21. The values for a set of cylinders define a set of profile histograms that 

captures a simplified view of a subject. To compensate for variations in the number of 

points in each histogram, each profile is normalized by the total number of points in the 

corresponding cylinder, converting the profiles into probability density functions. The 

concatenation of normalized components of density functions form a signature or feature 

vector that is passed to a classifier for labeling. 

 

The sample histogram profiles shown in Figure 21 capture the essence of human subjects. 

Cylinders with small radii are sensitive to smaller physical features such as the head as 

seen in the rightmost portion of the topmost profile in the figure. The zero values in the 

topmost profile occur because the subject’s torso exceeds the radius of the cylinder. Each 

histogram shows variations in different areas based on the subject’s physique. Roughly, the 

small cylinders capture the features related to the head, midsize cylinders contain torso 

features and the largest cylinders hold everything else including outstretched limbs. We 

 

 
 

 

 
 

 

 

2.1 Feature Extraction 

To begin feature extraction, each point cloud is translated so the center of mass of the cloud is positioned at the origin of 

a 3D Cartesian coordinate system (X,Y,Z) with axes ranging from -1 to +1. The principal components of the cloud are 

computed and used to rotate the cloud so the largest principal component is aligned with the Z axis, the second largest 

component is aligned with the X axis and third largest component aligns with the Y axis. The effect of applying these 

operations to a point cloud is shown to the left in Figure 4. A series of nested cylinders are superimposed over the 

aligned cloud such that long axis of the cylinder coincides with the Z-axis as shown to the right in Figure 4. Each 

cylinder is further subdivided into a series of slices. The total number of points in each cylinder slice is computed and 

serves as a rotationally invariant numeric feature with respect to the X-Y axes. 

 

 

 

The set of all numeric values derived from one cylinder forms a profile histogram as shown in Figure 5. The values for a 

set of cylinders define a set of profile histograms that captures a simplified view of a subject. To compensate for 

variations in the number of points in each histogram, each profile is normalized by the total number of points in the 

corresponding cylinder, converting the profiles into probability density functions.  The concatenation of normalized 

components of density functions form a signature or feature vector that is passed to a classifier for labeling. 

The sample histogram profiles shown in Figure 5 capture the essence of human subjects. Cylinders with small radii are 

sensitive to smaller physical features such as the head as seen in the rightmost portion of the topmost profile in the 

figure. The zero values in the topmost profile occur because the subject’s torso exceeds the radius of the cylinder.  Each 

histogram shows variations in different areas based on the subject’s physique. Roughly, the small cylinders capture the 

features related to the head, midsize cylinders contain torso features and the largest cylinders hold everything else 

Y 

Z 

X 

Feature Extraction 

Evolutionary 

Learning 

System 

Classifier 
Assigned 

Label 

Training Label 

(MALE) 

Error 

Signal 

Figure 3. Closed-loop Evolutionary Learning System 

Figure 4. Cylindrical Features 

Downloaded from SPIE Digital Library on 20 Jun 2011 to 130.108.15.66. Terms of Use:  http://spiedl.org/terms

 

 
 

 

 
 

 

 

2.1 Feature Extraction 

To begin feature extraction, each point cloud is translated so the center of mass of the cloud is positioned at the origin of 

a 3D Cartesian coordinate system (X,Y,Z) with axes ranging from -1 to +1. The principal components of the cloud are 

computed and used to rotate the cloud so the largest principal component is aligned with the Z axis, the second largest 

component is aligned with the X axis and third largest component aligns with the Y axis. The effect of applying these 

operations to a point cloud is shown to the left in Figure 4. A series of nested cylinders are superimposed over the 

aligned cloud such that long axis of the cylinder coincides with the Z-axis as shown to the right in Figure 4. Each 

cylinder is further subdivided into a series of slices. The total number of points in each cylinder slice is computed and 

serves as a rotationally invariant numeric feature with respect to the X-Y axes. 

 

 

 

The set of all numeric values derived from one cylinder forms a profile histogram as shown in Figure 5. The values for a 

set of cylinders define a set of profile histograms that captures a simplified view of a subject. To compensate for 

variations in the number of points in each histogram, each profile is normalized by the total number of points in the 

corresponding cylinder, converting the profiles into probability density functions.  The concatenation of normalized 

components of density functions form a signature or feature vector that is passed to a classifier for labeling. 

The sample histogram profiles shown in Figure 5 capture the essence of human subjects. Cylinders with small radii are 

sensitive to smaller physical features such as the head as seen in the rightmost portion of the topmost profile in the 

figure. The zero values in the topmost profile occur because the subject’s torso exceeds the radius of the cylinder.  Each 

histogram shows variations in different areas based on the subject’s physique. Roughly, the small cylinders capture the 

features related to the head, midsize cylinders contain torso features and the largest cylinders hold everything else 

Y 

Z 

X 

Feature Extraction 

Evolutionary 

Learning 

System 

Classifier 
Assigned 

Label 

Training Label 

(MALE) 

Error 

Signal 

Figure 3. Closed-loop Evolutionary Learning System 

Figure 4. Cylindrical Features 

Downloaded from SPIE Digital Library on 20 Jun 2011 to 130.108.15.66. Terms of Use:  http://spiedl.org/terms



15 
Approved for public release; distribution unlimited. 

should note that this representation is designed to measure human subjects in a normal 

urban environment where people are walking or standing in an upright position. 

 

 
Figure 21: Histogram derived from cylindrical features. 

 

Our choice of representation has several interesting properties. Once the point cloud is 

properly oriented, the features are rotationally invariant with respect to the X-Y plane. In 

addition, the cylinders are nested and the point counts of inner and outer cylinders are not 

mutually exclusive. For example, points contained in a cylinder of radius R are also 

counted in all other cylinders with radii greater than R. The use of nested cylinders creates 

an inherent redundancy in the representation that reduces the need to find a highly tuned 

set of cylinders with specific radii for a given data set. 
 

3.1.2 Classifier 
 

The classifier is implemented using a support vector machine (SVM) available in the 

WEKA machine learning software. The SVM is a classification technique suitable for 

solving two-class classification problems. There are many variations of support SVM each 

having attributes that allow the user to customize the SVM to the specific characteristics of 

a given classification problem. In general a SVM forms a model of a labeled input data set 

and fits a maximum- margin hyper plane between the two classes of data. The WEKA 

software uses a sequential minimal optimization technique to accelerate the process of 

training the classifier. 
 

3.1.3 Evalutionary Learning System 
 

We use a traditional genetic algorithm11 to optimize the set of cylinder radii and evaluate 

the performance of a given set of cylinders by extracting features from sample point cloud 

data to determine the gender classification accuracy. To apply a genetic algorithm, we need 

 

 
 

 

including outstretched limbs. We should note that this representation is designed to measure human subjects in a normal 

urban environment where people are walking or standing in an upright position. 

Our choice of representation has several interesting properties. Once the point cloud is properly oriented, the features are 
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representation that reduces the need to find a highly tuned set of cylinders with specific radii for a given data set.  

 

Figure 5. Histograms Derived From Cylindrical Features 

2.2 Classifier 

The classifier is implemented using a support vector machine (SVM)
8
 available in the WEKA

9
 machine learning 

software. The SVM is a classification technique suitable for solving two-class classification problems. There are many 

variations of support SVM each having attributes that allow the user to customize the SVM to the specific characteristics 

of a given classification problem. In general a SVM forms a model of a labeled input data set and fits a maximum-

margin hyper plane between the two classes of data. The WEKA software uses a sequential minimal optimization 

technique
10

 to accelerate the process of training the classifier. 

 

2.3 Evolutionary Learning System 

We use a traditional genetic algorithm
11

 to optimize the set of cylinder radii and evaluate the performance of a given set 

of cylinders by extracting features from sample point cloud data to determine the gender classification accuracy. To 

apply a genetic algorithm, we need to determine a representation of our search space, choose a performance evaluation 

function, select specific parameters of the evolutionary algorithm and choose a termination condition.  

We chose to represent a potential solution as a chromosome composed of 20 bits as shown in Table 1. Each bit 

represents whether or not a cylinder of a specific radius is included in the solution. For our experiments we allowed for 

20 cylinders of radii ranging from 0.05 to 1.0 in increments of 0.05. We chose to always include the cylinder of radius 

1.0 in the solution to ensure that all data points were measured in some feature. This representation defines a search 

space of 2
19

 possible configurations of cylinders. 

To begin the evolutionary search, a population of 100 chromosomes was generated. Each bit was initialized to 0 or 1 at 

random. Each chromosome contained on average 10 cylinders of varying radii. The performance of a set of cylinders 
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to determine a representation of our search space, choose a performance evaluation 

function, select specific parameters of the evolutionary algorithm and choose a termination 

condition. 

 

 
 

Figure 22: Chromosome representation and sample population. 

 

We chose to represent a potential solution as a chromosome composed of 20 bits as shown 

in Figure 22. Each bit represents whether or not a cylinder of a specific radius is included 

in the solution. For our experiments we allowed for 20 cylinders of radii ranging from 0.05 

to 1.0 in increments of 0.05. We chose to always include the cylinder of radius 1.0 in the 

solution to ensure that all data points were measured in some feature. This representation 

defines a search space of 219 possible configurations of cylinders. 
 

 
Figure 23: Evolutionary learning cycle. 

 
To begin the evolutionary search, a population of 100 chromosomes was generated. Each 
bit was initialized to 0 or 1 at random. Each chromosome contained on average 10 
cylinders of varying radii. The performance of a set of cylinders was evaluated by 
extracting the features from a sample of point cloud data and measuring the gender 
classification accuracy. This accuracy was used to score the fitness of the cylinder 
configuration. This process was repeated for each member of the population and the 
chromosomes were rank ordered by accuracy. 
 
The evolutionary cycle is shown in Figure 23. Pairs of parental chromosomes are selected 
at random for mating. A new offspring is formed using uniform crossover12. Uniform 
crossover selects the value for each bit position in the offspring by randomly choosing the 
value of one of the parental bits in the corresponding position. Once the basic structure of 
the offspring is formed some bits are randomly mutated (0 to 1 or 1 to 0) to introduce 

 

 
 

 

was evaluated by extracting the features from a sample of point cloud data and measuring the gender classification 

accuracy. This accuracy was used to score the fitness of the cylinder configuration. This process was repeated for each 

member of the population and the chromosomes were rank ordered by accuracy. 

The evolutionary cycle is shown in Figure 6. Pairs of parental chromosomes are selected at random for mating. A new 

offspring is formed using uniform crossover
12

. Uniform crossover selects the value for each bit position in the offspring 

by randomly choosing the value of one of the parental bits in the corresponding position. Once the basic structure of the 

offspring is formed some bits are randomly mutated (0 1 or 1 0) to introduce further variation into the offspring. Each 

offspring is evaluated by scoring the fitness of the cylinder configuration for gender classification accuracy. A steady-

state genetic algorithm is used with a ( ) elite selection strategy with  = 100 and  = 20. There is a penalty function 

incorporated in the selection process because solutions with equal accuracy are rank ordered by the number of cylinders. 

This induces a small selective pressure to evolve solutions with fewer features. To summarize, the population expands 

from 100 parental chromosomes to 120 chromosomes (parent + offspring) and is culled back to 100 individuals using 

elite selection with a complexity penalty before the next generation of the evolutionary cycle begins. This process is 

repeated for 100 generations. 

In terms of the search space, we begin with an initial sample of 100 configurations and generate 2000 new 

configurations (100 generations x 20 offspring). This represents a total of 2100 sample configurations drawn from a 

search space of 2
19

=524,288. Thus, the genetic algorithm explores approximately 0.4% of the total search space in an 

effort to find an improved cylinder configuration.  

 

Table 1: Chromosome Representation and Sample Population 

Cylinder Radius 0.05 0.10 0.15 0.20  0.85 0.90 0.95 1.00 

Chromosome 1 (Best) 0 1 0 1 … 1 0 0 1 

Chromosome 2 1 0 0 1 … 0 1 0 1 

Chromosome 3 0 1 1 0 … 1 0 1 1 

… 

Chromosome 99  1 0 0 0  0 1 0 1 

Chromosome 100 0 1 0 1  1 0 1 1 

 

Select Parents for 
Reproduction

(random mating)

Reproduce with 
Variation

(uniform crossover and 
random mutation)

Evaluate Offspring 
(discrimination accuracy)

Select Survivors
(elite selection)

Figure 6. Evolutionary Learning Cycle 
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further variation into the offspring. Each offspring is evaluated by scoring the fitness of 
the cylinder configuration for gender classification accuracy. A steady- state genetic 

algorithm is used with a (μ+λ) elite selection strategy with μ = 100 and λ = 20. There is a 

penalty function incorporated in the selection process because solutions with equal 
accuracy are rank ordered by the number of cylinders. This induces a small selective 
pressure to evolve solutions with fewer features. To summarize, the population expands 
from 100 parental chromosomes to 120 chromosomes (parent + offspring) and is culled 
back to 100 individuals using elite selection with a complexity penalty before the next 
generation of the evolutionary cycle begins. This process is repeated for 100 generations. 
 
In terms of the search space, we begin with an initial sample of 100 configurations and 
generate 2000 new configurations (100 generations x 20 offspring). This represents a total 
of 2100 sample configurations drawn from a search space of 219=524,288. Thus, the 
genetic algorithm explores approximately 0.4% of the total search space in an effort to find 
an improved cylinder configuration. 
 

3.2 Results 
 
To establish a baseline level of performance, we defined a fixed set of cylinders with 
specific radii based on a human expert’s estimate of the scale of the most salient regions of 
the point clouds. Five cylinders of radii 0.1, 0.2, 0.3, 0.5 and 1.0 were selected to capture 
physical attributes of the head, torso and whole body shape. We then proceeded to 
explore the efficacy of using a variable number of cylinder features and the impact on 
classification accuracy as a function of data density. The data samples were divided 
evenly into a training set and a validation set. The training data was used to optimize the 
choice of sets of cylinder sizes at each point cloud density level while the validation set 
was sequestered for use at the end of the evolutionary process to test the accuracy of the 
final evolved solution. 
 

 
 

Figure 24: Classification Accuracy Using All Data For Training. 
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The results of this experiment are shown in Figure 24. The numerical classification 
accuracy is shown in the table below the figure. The fixed cylinder set refers to a set of 
cylinders of radius 0.1, 0.2, 0.3, 0.5 and 1.0 while the evolved set is the set of cylinders in 
the most accurate solution after 100 generations of the genetic algorithm. Each experiment 
was replicated three times to make sure the results were consistent, but only the results 
for a single replicate are reported in the figure. The chromosome corresponding to the 
best evolved solution for each point cloud density is shown in Figure 26. The recognition 
accuracy results are very good for both the fixed radii and the evolved radii cylinder sets, 
but clearly the evolved set is consistently superior. The classifier performance increase 
ranges from 0.5% to 3% with larger performance increases for cloud densities less than or 
equal to 1000 points. The maximum difference occurs for the 250-point density 
experiment where the evolved solution achieved a four percentage point increase in 
overall accuracy compared to the fixed radii cylinder solution. This represents 
approximately 175 additional samples being correctly classified. These results clearly 
suggest that even when a specific type of feature has been selected for a given problem 
(e.g., cylinder / histogram point counts), specific operating conditions present when the 
data is collected (e.g., sensor system characteristics), might be used to parameterize the 
feature extraction system to improve overall performance. 
 

 
 

Figure 25: Best evolved chromosomes. 

 
A more detailed examination of the results shown in Figure 25 supports a conjecture that 
cylinders with large radii are not as useful for gender classification as cylinders with 
relatively small radii. Recall that the cylinder of size 1.0 is forced on, but no other larger 
radii are selected. All solutions contain cylinders of radii 0.15, 0.20 and 0.35. These sizes 
roughly correspond to the fixed size cylinders of radii 0.1, 0.2 and 0.3 that capture head 
and torso features. The results suggest that the evolutionary algorithm is able to fine tune 
these radii to produce a more accurate result. One additional observation is there is a 
tendency to favor cylinders with small radii when the resolution of the point cloud is 
high. For example, the average radius of all cylinders used for the 100 point density cloud 
is 0.30 while the average cylinder size for the 10,000 point density cloud is 0.19. This may 
indicate that when point densities are high, the quality of the smaller features found in the 
head region are more reliable, but additional experiments are needed to confirm this 
observation. 
 
Figure 26 provides insight into the evolutionary process and the ultimate choice of radii 
for a dataset of a given resolution for a given resolution of data set. Each plot in this figure 
measures the probability of 0 or 1 in the population as a function of generation. The color 
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in this figure represents the probability of a 1 in a specific bit position. A dark blue color 
indicates a near zero probability of a 1 in the given bit position while a dark red color 
indicates the probability of a 1 in a bit position is approaching 1.0. The range of colors and 
their associated probabilities are shown in the small bar to the right of each plot. The first 
couple of lines in each plot are a mid-range color because the distribution of bits in the 
population are random so the probability of a 1 bit is approximately 0.5. As the 
evolutionary process cycles through generations the distribution change, but the rate at 
which certain bit positions converge is quite different. The bit positions associated with 
smaller radii tend to converge most quickly. The bit corresponding to the cylinder with 
radius 2.0 appears to converge to 1 within 5 generations regardless of the resolution of the 
data. Similarly the cylinder with radius 0.15 converges within 10 generations. Cylinders 
with these two radii These two radii contain the head of the subjects. Bit 6 that represents 
a cylinder of radius 3.0 also is present in all resolutions of data. A cylinder of radius 3.0 
would capture the torso. Recall that the cylinder of radius of 1.0 is intentionally included 
so it is not part of the search. We can also see an interesting behavior in the first bit 
position. It appears that this small cylinder size is useful solutions with point cloud 
resolutions of 250, 500, 1000 and 10000 points, but not useful for resolutions of either 100 
or ALL (>100,000 points). This seems like an anomaly, but in fact it is entirely consistent 
with the strong selective pressure induced by elite selection for survival. We would expect 
every bit position in the population to eventually become homogeneous (e.g., every 
individual in the population has 0 in the position or every individual has a 1 in the 
position). Bit positions that quickly converge to 1 regardless of the resolution of the data 
may indicate high discriminatory value. Bit positions that slowly converge to zero are 
being explored and rejected. The same pattern that was observed as depicted in Figure 9 
is visible in this series of plots. There appears to be a subtle tendency to use a mixture of 
smaller radii cylinders for high resolution samples and a more diverse range of slightly 
larger cylinder sizes for low resolution samples. 
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Figure 26: distribution of cylinder radii in evolved populations. 

3.3 Discussion 
 
We present a preliminary program to investigate the application of evolutionary 
computing to the design of gender classification classifiers using point cloud data. This 
investigation used the CAESAR point cloud database which ideally provides complete 
body coverage with high point density. The full coverage allows one to identify a vertical 
body axis so that concentric cylindrical regions are definable and useable for generating 
feature vectors from cylindrical histograms. Surprisingly, this type of feature vector was 
found to be effective as well as efficient for gender classification using point clouds. 
Therefore the full coverage feature was maintained while the number of points per 
sample was varied over three orders of magnitude. While for most applications the 
availability of such ideal coverage is not realistic, our results provide an important 
baseline for further development. 
 
Combining cylindrical histograms with SVM-based discriminators yields impressive 
gender recognition results. With high resolution point clouds the evolved recognition 
system achieved 99.6% accuracy with approximately 4400 samples. Figure 26 summarizes 
the dependency of classification accuracy on the number of points. When point cloud 
density is reduced by one order of magnitude (100K to 10K) the algorithm’s accuracy in 
distinguishing between genders remains at 99.3%. When the density is reduced by two 
orders of magnitude (100K to 1K) accuracy is still preserved at 97%. Significant 

 

 
 

 

 
Figure 8. Distribution of Cylinder Radii in Evolved Populations 

 

4. DISCUSSION 

In this paper we present a preliminary program to investigate the application of evolutionary computing to the design of 

gender classification classifiers using point cloud data. This investigation used the CAESAR point cloud database which 

ideally provides complete body coverage with high point density. The full coverage allows one to identify a vertical 

body axis so that concentric cylindrical regions are definable and useable for generating feature vectors from cylindrical 

histograms. Surprisingly, this type of feature vector was found to be effective as well as efficient for gender 

classification using point clouds. Therefore the full coverage feature was maintained while the number of points per 

sample was varied over three orders of magnitude.  While for most applications the availability of such ideal coverage is 

not realistic, our results provide an important baseline for further development.    

 

Combining cylindrical histograms with SVM-based discriminators yields impressive gender recognition results.  With 

high resolution point clouds the evolved recognition system achieved 99.6% accuracy with approximately 4400 samples. 

Figure 10 summarizes the dependency of classification accuracy on the number of points.  When point cloud density is 

reduced by one order of magnitude (100K  10K) the algorithm’s accuracy in distinguishing between genders remains 

at 99.3%. When the density is reduced by two orders of magnitude (100K  1K) accuracy is still preserved at 97%. 

Significant degradation in performance does occur when the density is reduced by three orders of magnitude, but an 

accuracy of 86% is still observed. At this resolution, a human expert would have difficulty consistently distinguishing 

gender.   
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degradation in performance does occur when the density is reduced by three orders of 
magnitude, but an accuracy of 86% is still observed. At this resolution, a human expert 
would have difficulty consistently distinguishing gender. 
 
As discussed above, the cylindrical histograms are well suited to an evolutionary search 
process. A simple genetic algorithm with binary chromosomes for selecting optimal 
subsets of cylinders demonstrated significant improvements over all data cloud point 
densities. As depicted in Figure 26, the improvement over the fixed cylinder set increased 
from one percentage point at the highest density to four percentage points at the lowest 
densities. The final recognition rates rivaled those achieved using hand-measured 
anthropometric features even when the density of points on target was relatively low. An 
interesting observation is that the choice of features varied with the density of the point 
cloud. As seen in Figure 11, coarse feature measurements (larger radii) are more effective 
for gender classification using low resolution point clouds while fine grained features 
were more effective for high resolution point clouds. This result suggests that even when 
a specific type of feature is used for a given application, adapting some aspect of the 
features to compensate for variations in sensor measurements, can produce a significant 
increase in performance. Such properties are critical to the development of the next 
generation of robust security systems. 
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4. Future works  
 

4.1 Regular grid interpolation of resulting 3D point cloud 
 

Eventually, 3D point clouds should be interpolated to generate regular grid DSM (Digital 

Surface Model). Several interpolation methods can be applied. This work will be done 

soon. 

 

4.2 Compensating imperfect time synchronization of imaging  
 

Imperfect time synchronization makes synthetic images inaccurate. For example, if a 

camera takes image 1/1000 second later than intended timing, the position of the 

perspective center will show 3 inches difference, which is huge, from intended position 

when airspeed is 180 mph. Also, there should be platform deformation that slightly 

changes positions and angles between camera heads due to highly dynamic environment of 

the flight mission. All commercial multi-head camera system provider use image matching 

and bundle adjustment using images acquired from same time epoch to minimize errors 

due to imperfect time synchronization as well as platform deformation.  

 

4.3 Estimating lens distortion parameters 
 

Lens distortion parameters are very important to generate accurate 3D models. However, 

given CAHVOR model does not have lens distortion parameters. We can calculate rough 

lens distortion parameters with given images. However, lack of ground control points and 

obliqueness of images only allow calculating rough lens distortion parameters. We can 

calculate more accurate lens distortion parameters with several new images of our 

calibration panel. 

 

4.4 Direct geo-referencing 
 

Given navigation solution (pos files) cannot be used directly; because, there are boresight 

misalignment angles (unknown angles between navigation system and camera system) as 

well as offset vector (positional displacements between navigation system and camera 

system). We estimated only boresight misalignment angles by using bundle adjustment 

with a number of GCPs (Ground Control Point). The exterior orientation parameters 

directly calculated from pos files and the boresight angles are not acceptable for surface 

modeling (very close, but not acceptable; there are less than two meters gaps on the ground 

between estimated values from bundle adjustment and calculated values from pos files). At 

this time, we are not sure whether given navigation solutions provide acceptable accuracy 

or not. Also, there could be unknown offset vector. We will estimate the vector first; then 

we will determine acceptability of the given navigation solution. However, unknown 

quantities such as lens distortion parameters could disturb accurate estimation of 

parameters. It will be helpful if the specification of the navigation system is given. 
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4.5 Adaptive template matching 

Enhancing matching performance (an area for future work). 
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5. Remarks for further flight missions 
 

5.1 Overlaps between images 

 

Overlapping areas between images are important for radiometric correction and 

compensating imperfect time synchronization. Given raw images show that brightness and 

contrast are different even images are acquired at same time. To generate seamless mosaic 

image, images should have overlapping areas. Compensating imperfect time 

synchronization is mentioned in 4.2. 

 

5.2 Lens distortion parameters 
 

The importance of the lens distortion parameter is described in 4.3. 

 

5.3 Focal length 
 

The focal lengths of the all six physical cameras should be fixed and precisely measured 

before and after mission for further photogrammetric process. For the aerial camera, 

focusing mode does not need to be auto-focusing; because, object distance is extremely 

larger than image distance (distance from lens center to image plane); if focal length is 

same with image distance, any object on ground is always clearly focused. 
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