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ABSTRACT

Advanced mechanical surface enhancement techniques (SET) have been used successfully to
increase the fatigue life of metallic components. These techniques impart deep compressive
residual stresses into the component to counter potentially damage-inducing tensile stresses
generated under service loading. Laser peening (LP) is an advanced mechanical SET used
predominantly in the aircraft industry. To reduce costs and make the technique available on a
large-scale basis for industrial applications, simulation of the LP process is required. Accurate
simulation of the LP process is a challenging task, because the process has many parameters such
as laser spot size, pressure profile, and material model that must be precisely determined. In the
LP process material is subjected to strain rates up to 106s−1, which is very high compared to
conventional strain rates. The importance of an accurate material model increases because the
material behaves significantly different at such high strain rates. One of the objectives of this
research is to make advancements in the simulation of residual stresses induced by LP. Validation
of various material models under investigation that could be used in simulation and design is
performed. Inverse optimization-based methodology is developed for simulation of residual
stresses for materials such as Inconel®718. The procedure involves optimizing the model
constants for one load case and using the same constants for other load cases. The second aspect
of this research is to develop a framework for uncertainty quantification of the residual stress field
induced by the LP process by propagation of regression uncertainty. Development methodology
includes identification of regression uncertainty as a source of input uncertainty and using the
bootstrap method to verify the multivariate normality assumption of the model constant estimates.
The propagation of the input uncertainty is performed using Taylor series expansion and
sensitivity analysis. A confidence band for the entire residual stress field is obtained and validated
using the Monte Carlo analysis.
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PREFACE

This is the final volume of technical reports produced for the project Laser Peening for reliable
fatigue life, Contract No.FA8650-04-D-3446-25. This volume covers the inverse optimization of
high strain rate properties from experimental material data, material model validation, and
development of a framework for uncertainty quantification of residual stress fields.

The first volume included the 3D simulation of LP, showing the important process parameters, an
optimization of the residual stress field from these key parameters, an outline of the optimization
strategies applied, and finally finding multiple optima using a modified particle swarm
optimization method.
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1.0 SUMMARY

Laser Peening (LP) has been advancing as an able substitute for conventional treatments in the
process of improving fatigue, corrosion, and wearing resistance of metals. The favorable
compressive residual stresses developed by LP can extend further below the surface than the
residual stresses from shot peening. Also, it is well suited for precisely controlled treatments of
localized fatigue, and critical areas such as holes, notches, and small fillets which might be
inaccessible through shot peening. The applicability of LP on complicated geometries provides a
unique advantage when compared with other surface enhancement techniques (SET) because
laser beams can easily reach intricate locations.

While the processing cost of LP is high compared to its counterparts, advances in simulation
accuracy and capabilities will decrease the simulation costs considerably translating to reduction
in processing costs through decreased design times. An ideal simulation model will incorporate
the laser beam parameters, spatial profiles, overlay conditions, and material properties to increase
comparability between simulated and experimental results. The basic effect of process parameters
has been extensively investigated and discussed in Volume 1. This report details the effect of
material behavior and the uncertainties associated with it when obtaining realistic results from the
simulations.

Material models help effectively characterize the material behavior in Finite Element Analysis
(FEA). Three material models have been considered to validate the simulation results of
experimental results found in literature. The models considered are the Elastic Perfectly Plastic
(EPP), Johnson-Cook (JC), and Zerilli-Armstrong (ZA) material models. It was found that for the
various conditions the JC model performed best of the three models investigated.

In most cases, there is little experimental data available to compare to simulated results. Using a
technique based on inverse optimization, the material behavior was obtained by optimizing the
material model constants and reducing the error in predicting residual stresses. Two different
materials were tested to validate this approach. The advantage of inverse optimization is that
testing for material model constants at strain rates consistent with those experienced in the
simulations is that further material model constant testing is not necessary.

This research also develops a framework to determine the uncertainty in the resultant residual
stresses from the LP simulation. Material model constants are considered to be uncertain. The
uncertainty represents the variability of the material model when characterizing the material
behavior. The ’Bootstrapping Method’ employed in statistics is used for this process. Two case
studies were used to validate this method. Finally, the method was applied to an LP simulation,
cementing the suitability of the JC model for LP simulations.

1
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2.0 INTRODUCTION

This chapter introduces the fatigue life issues of the aircraft lug component and the motivation for
the development of SET. An introduction to SET is presented. The mechanism of the SET is
described, which generates favorable compressive residual stresses in the surface regions. Several
techniques such as shot peening, Low Plasticity Burnishing (LPB), waterjet peening, and LP are
discussed.

2.1 Motivation

The F-22 Raptor is a fighter aircraft that uses stealth technology. It is primarily an air superiority
fighter. The United States Air Force considers the F-22 a critical component of the fleet [1].
Figure 1 shows a picture of two F-22 raptors in column flight formation [2] .

Figure 1: Two F-22 Raptors in Column Flight Formation [2]

To demonstrate the capability of the design, the F-22 aircraft design was subjected to a full-scale
fatigue test by Cayton and his co-workers [3]. The main goal of this full-scale testing was to
identify any anomalies that remained undiscovered. One such structural problem was found in the
form of a crack on one of the lugs of the wing attachments. Figure 2 shows the location of the
crack on the aircraft [4]. The lower lugs are important for durability and damage tolerance [3].
The summary of the analysis was that the crack was a result of ForceMateT M expansion levels for
the applied load levels. The detailed report is available in the work of Cayton et al. [3]. A
configuration change was made in the design of the aircraft and the change was implemented in
the manufacturing process for subsequent aircraft. Since there were aircraft already manufactured
with the old design, a program has been proposed to increase the fatigue life. This program
suggests to use techniques to increase the fatigue life without replacing the component. SET are
one possible option that can address the issue.
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Figure 2: Location of Crack on Lug of an Aircraft Lug [4]

2.2 SET

Highly stressed components such as aircraft lugs, turbine blades from aerospace applications,
connecting rods from automobiles, and knee implants from medical applications demand an
optimal judgment of material, loading conditions, design, and production processes in the
conceptual stages (Figure 3).

Figure 3: Attributes Considered During Conceptual Stage of a Component
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The surface of the component plays an important role under fatigue loading because cracks are
initiated from the surface discontinuities such as notches, holes, and voids, ultimately leading to
failure. With respect to this, various SET are being used in the industry to mitigate or delay
failure. These techniques can be broadly classified [5] as:

1. Mechanical surface treatments
2. Surface diffusion treatments
3. Surface overlay coatings

The basic idea of mechanical treatments is to induce compressive residual stresses on the surface
regions. Residual stresses are defined as stresses which exist in the bulk of the material without
application of external load. These compressive stresses negate the tensile stresses acting on the
surface leading to increased life of the component. Figure 4 shows the basic mechanism for the
production of residual stresses in mechanical SET.

Figure 4: Basic Mechanism to Generate Residual Stresses

Before any pressure is applied to the surface, the length of surface and core are the same. When a
high pressure is applied on the surface, shock waves are generated and progress through the
depth. This causes plastic deformation in the top region. Since the magnitude of the shock wave
decreases as it moves down to the core, it does not produce plastic deformation in the core. To
keep cohesion between the stretched surface and the core, the layers in the surface are set to
compressive stresses. To maintain equilibrium, compensatory tensile stresses are induced in the
core. In this section several of the techniques used in the industry, such as shot peening, LP, LPB,
and waterjet peening are discussed.

2.2.1 Shot Peening

Shot peening is one of the traditional techniques used to induce compressive residual stresses.
The discovery of improvement in fatigue properties is seen from efforts in 1928 and 1929 by
Buick Motor Division [6]. Shot peening is a cold working process in which the surface of the
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component is bombarded with small spherical media called shot [7]. Each piece of shot striking
the surface acts as a tiny peening hammer, imparting to the surface a small indentation or dimple.
A schematic of the process is shown in figure 5.

Figure 5: Schematic of the Shot Peening Process

Steel balls are the popular material used for the shot. The most commonly used ball size is 0.05 to
1 mm in diameter. Shot peening has the advantage of low cost and has a successful track record of
application to compressor blades [8]. A three dimensional finite element simulation was
performed by Meguid et al. using ANSYS [9]. Three main issues addressed in this work were: (i)
effect of shot velocity, size, and shape upon the plastic zone development, (ii) effect of the
separation distance between two shots on the unloading residual stresses, and (iii) effect of
strain-hardening rate of the target upon the spread of the plastic zone. Shot peening has been used
in the industry during the past decade. The other advantage of using shot peening is that the cost
involved is less compared to other techniques. The process also has disadvantages. The surface
finish is damaged due to roughening by the balls. The depth of compressive residual stresses
generated by shot peening is relatively low compared to other techniques. This is considered to be
one of the major disadvantages of the method [10].

2.2.2 LPB

LPB is a SET developed to induce compressive stresses with higher depth compared to shot
peening and minimal cold work [11]. In this process, a smooth, free rolling ball makes a single
pass over the material under a normal force just sufficient to plastically deform it. This creates
compressive residual stresses on the surface region. The process is shown schematically in Figure
6.

5
Approved for public release; distribution unlimited.



Figure 6: Schematic of the LPB Process

The ball is supported in a fluid bearing with sufficient pressure to lift the ball off of the surface of
the retaining spherical socket. The ball is in solid contact only when the surface needs to be
burnished. It is free to roll otherwise. The force is applied from top and the tool position is
generally computer controlled [12]. LPB has been used in medical field for hip stems [13]. The
LPB process was developed and applied to the modular neck taper junction of total hip prosthesis.
The advantages of LPB are its low cost and minimal cold work. The disadvantage of this
technique is that it cannot be applied to complicated geometries such as a mechanical gear.

2.2.3 Waterjet Peening

Waterjet peening is very similar to shot peening, but instead of using balls, water with high
velocity is impinged upon the target [14]. A schematic of the process is shown in Figure 7.
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Figure 7: Schematic of the Waterjet Peening Process

The waterjet generates a pressure distribution, creating localized plastic deformation. This
deformation is restrained by surrounding material, leading to compressive residual stress in the
surface regions. The advantages of waterjet peening compared to shot peening are a better surface
finish and increased coverage capabilities. The disadvantage is that the magnitude of residual
stress is lower than other treatments and low controllability. There are various parameters such as
water pressure, nozzle feed speed, peening duration, nozzle and peening angle that control the
magnitude of residual stresses [15]. Various approaches [16, 17] are available for mathematical
modeling of the process that vary from closed form differential equations to finite element
method.

2.2.4 LP

LP is a very high powered process with a short interactive time. It requires a laser power density
on the order of 109Wcm−2 with pulse duration in nano seconds. Figure 8 shows a schematic of
the process.
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Figure 8: Schematic of the LP Process

In the LP , a laser beam is fired at an opaque overlay (example: black paint) applied to the surface
of the component to be laser peened. The opaque overlay is covered in turn with a transparent
overlay such as water. This water overlay can either be running or still water. The vaporization of
the opaque overlay produces a plasma confined between the two overlays. The pressure exerted
on the material surface by the expanding, confined plasma generates shock waves that propagate
into the target. Depending on the laser parameters, if the magnitude of shock waves is high
enough, the material plastically yields, resulting in compressive residual stresses in the surface
regions. The formation of plastic strain by shock waves continues until the peak stress wave
decreases below the dynamic yield strength. Compensatory tensile stresses are also created inside
the target. Details about the process can be found in the review papers of Peyre and Fabbro [18]
and Mantross et al. [19]. The advantage of the LP process is that it can be performed on complex
geometries and involves no contact with the component. Compared to the shot peening process,
LP achieves higher depth of compressive residual stress.

2.3 Section Summary

Fatigue life issues in engineering structures are introduced with focus on aircraft component. A
basic mechanism of SET is introduced. Various SET are briefly described including advantages
and disadvantages.
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3.0 BACKGROUND

This chapter provides the background details on the LP process. Evolution of the LP process in a
historical perspective is described. A review of LP experiments performed on different materials
is provided. The parameters involved in the LP process for a successful implementation are
discussed. A review of the simulation of the LP process is discussed and the advantages and
limitations of the work are provided. Also, a review of uncertainty quantification methodologies
relevant to spatial structural response such as residual stresses is detailed. The limitations of the
review leads to the definition of research need.

3.1 Historical Perspective

The history and evolution of the LP process has been described in detail by Clauer [20]. Clauer
divided the time between the discovery of the phenomenon in 1960, to the phase into production
in the 1990 into stages. The first experimental generation of shock waves in a laboratory was
performed by White [21] in 1962. The shock waves were generated by electron bombardment and
electromagnetic wave absorption. The experiments were conducted in a vacuum chamber and
peak power densities of 44W/cm2 were achieved. Gregg and Thomas [22] and Skeen and York
[23] were a few of the researchers who extended the investigations on characterizing the
momentum transfer phenomena for the laser induced plasma. The enhanced pressure was
achieved by the use of the transparent overlay was discovered by Anderholm in the 1970 [24].
Stress measurements were made using quartz gauze. Aluminum foil and quartz disk were used as
overlays. Although the experiment was performed in a vacuum chamber, the pressure
enhancement can also be achieved in air. The benefits of laser-induced shock waves in material
properties were identified by Malozzi and Fairand, who were awarded the patent in 1974 [25].
There were additional patents awarded until the present date in various applications of LP.

During the 1970 and early 1980 efforts were made to model laser material interaction using LILA
and TOODY codes. Many of the efforts were made towards understanding the effects of laser
processing parameters on fretting fatigue, hardening, galling, and wear of metals. Clauer and
Fairand demonstrated that compressive residual stresses were a contributing factor to the increase
in fatigue life of metallic components [26]. The first step into production was made in early
1990’s, when LP was used on several F101 fan blades to reduce the foreign object damage. The
goal at the current stage is to lower the processing cost and to engineer the process parameters for
new applications.

3.2 Experimental Attribute of LP

The LP process has three major ingredients for a successful application. They are (i) laser system,
(ii) opaque overlay, and (iii) transparent overlay. This section gives a brief description about each
of the three.

3.2.1 Laser Systems

The laser system for the LP process is not one of the standard laser systems available in the
industry. These system have to be custom built because the minimum energy required is 20
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Joules/pulse, whereas the standard in the industry is 3 Joules/pulse. The wavelength of the system
is very important because it controls the interaction with the target to generate the shock waves.
The wavelength should be about 1µm. These constraints reduce the large variety of laser systems
available to two or three viable possibilities. Pulsed CO2 laser systems are proven to be efficient
and durable, but they have a characteristic wavelength of 10.6µm that makes them infeasible for
the LP process. Currently, neodymium-glass laser is the most suitable candidate. Detailed
description of the selection of laser systems is provided by Shepard [27] and Fairand and Clauer
[28]. The experiments performed by Fairand and Clauer [29] used a Q-switched
neodymium-glass laser that consisted of an oscillator followed by six amplifier stages. The
system was capable of emitting up to 500 J of laser energy in a pulse with a full width at half
maximum (FWHM) of 20-40 ns. Peyre et al. [30] used a Nd-glass prototype laser operating at a
wavelength of 1.06µm followed by four amplifier stages. This system is capable of emitting up to
80 J in a pulse that is semi-gaussian and short rise time (SRT) in shape with a FWHM of 15-30 ns.

3.2.2 Opaque Overlay

The opaque overlay in the LP process serves two purposes. First, vaporization of the opaque
overlay forms plasma that generates the shock waves inside the target, creating favorable
compressive residual stresses. Second, it acts as a protective layer for the target. Various materials
such as Al, Zn,Pb, and black paint have been used as opaque overlays. It has been shown by
Fairand and Clauer [29] that all opaque overlays produce nearly the same shock wave pressures
after crossing certain laser power density. The thickness of the black paint is typically 8−10µm.
Self-adhesive foils were proven to be better in certain conditions compared to protective coatings
[31] The practical advantage of black paint compared to others has made it attractive in the
commercial LP process.

3.2.3 Transparent Overlay

The presence of transparent overlay is known as confined regime, compared to direct regime,
which does not have any confining overlay. The earlier experiments that induced shock waves by
laser systems did not include transparent overlays. Transparent overlay was first used by
Anderholm [32, 24]. The intensity of shock waves due to confinement by transparent overlays is
up to two orders of magnitude higher than plasmas generated in vacuum [33, 34, 35]. According
to Peyre et al. [36], the pressure of shock waves is five to ten times higher in magnitude and two
to three times longer in duration than direct regime. Fused quartz, glass, polymeric material and
distilled water have been used successfully as a transparent overlay. Water is the most widely
used in the commercial LP process. This water can be either running water or stagnant water.

3.3 Review of Simulation of the LP Process

One of the major disadvantage of the LP process is the cost involved. The fixed cost to set up the
laser system is high, and the variable operating costs for particular applications are also high. One
reason for higher operating costs can be attributed to the current industry practice of performing
LP experiments and then obtaining the optimum process parameters for each application.
Simulation of the LP process not only reduces the requirements for expensive trial-and-error
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experiments, it also helps in engineering the process parameters. The review of the simulation of
the LP process is described here in chronological order.

The first finite element simulation to predict residual stresses from the LP process was reported in
1999 by Braisted and Brockman [37]. The methodology of sequential switch from explicit to
implicit algorithms for efficient computation was developed. They also introduced finer and
infinite elements to take advantage of the localized effect of the LP process. Constitutive behavior
of elastic perfectly plastic material behavior was assumed. Nam and co-workers from The Ohio
State University developed their own finite element code called SHOCKWAVE to model the
residual stresses induced by the LP process [38]. The JC material model was used for the
constitutive behavior. Single-side and double-side LP were modeled. The shock wave profile was
measured by using streak cameras and quartz gages by LSP Technologies, LLC. The shock wave
has temporal and spatial profile. Experimental results were provided by LSP Technologies.
Research efforts to model the LP phenomenon were carried out independently in Saudi Arabia,
France, and Australia in 2003. Researchers in Saudi Arabia worked on two aspects of modeling
the LP process. The first one included developing analytical equations for temperature during
plasma generation, recoil pressure calculations, and wave analysis for plastic deformation [39].
The second work focused on numerical prediction of the depth of plastic deformation and
compressive residual stresses [40]. Finite difference scheme was used to simulate the propagation
of stress waves coupled with finite element models. Peyre et. al from France used ABAQUS for
the prediction of residual stresses. The JC model with Equation of State (EOS) was used as the
procedure for material behavior. Axisymmetric mesh with infinite elements was used to represent
the structure. Velocity Interferometer System for Any Reflector technique was used to predict the
loading conditions. Ding and Ye developed the first 3D simulations for prediction of residual
stresses [41]. They also developed the two-sided LP process [42]. EPP constitutive model was
assumed for the material behavior. History of energies was used as a stopping criteria for
ABAQUS/Explicit. The 3D simulations were also modeled by Ocana and his co-workers [43].
Multiple overlapping shots, which were neglected in the previous work were modeled using
ABAQUS. Wu and Shin from Purdue University developed a complete model for simulating the
residual stresses induced by the LP process. Their first work was published in 2004 [44], and their
work continued until recently in 2007 [45]. Most of the work involved developing analytical
equations for converting the laser pulse to pressure pulse. According to them the plasma
generated from the LP process is divided into breakdown and confined plasma. Only the confined
plasma is able to produce the shock waves. There is no need for any measurement of shock wave
pressure magnitudes. Inputs are needed for the laser equipment such as power density, laser
wavelength. The modeling procedure predicts the residual stresses. The JC model was used as
constitutive model. The recent work in modeling the residual stresses include Peyre et al. and
Warren et al. in 2007 [46] and 2008 [47] respectively. The main goal of Peyre and his co-workers
was to investigate the influence of protective coatings, and precise simulation of
thermo-mechanical uncoated LP process. Shock propagation and attenuation was modeled in
ABAQUS/Explicit, and thermal modeling of plasma heating was modeled in ABAQUS/Standard.
Thermo-mechanical residual stresses were predicted by combining the results of
ABAQUS/Explicit and ABAQUS/Standard. Warren et al. performed 3D simulations of single and
multiple shots. A user subroutine, VDLOAD, was developed in ABAQUS to include spatial and
temporal variation. Spot size effect, spacing effect, and intensity effect on residual stresses were
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investigated. Srinivasan [48] developed simulation work for the spallation response, caused by the
LP process through strain rate and temperature dependent material models. The JC and modified
ZA models were used as material models. The constants were obtained from other references.
The most recent work [49] involves 3D simulations on curved surfaces for geometric effects on
residual stress predictions. This is the first effort to simulate a three dimensional curved geometry.
There were no experimental comparisons in their work.

3.4 Review of Relevant Uncertainty Quantification Research

Uncertainty quantification provides an alternative to conventional deterministic analysis. The
uncertainty is taken into consideration in deterministic analysis by employing the safety factor
approach. This safety factor accounts for the uncertainties in the design, manufacturing, and other
factors in making the final product. While deterministic approach with safety factor have been
used with success in the past, they tend to be over conservative. Today’s increased demand for
higher efficiency, better performance and lower cost makes it necessary to consider developing
techniques to quantify these uncertainties. Probability theory has been widely used to quantify the
response caused by uncertainties in inputs. Non-probability based methods exist, such as fuzzy
set theory [50, 51], evidence theory [52], and information-gap theory [53]. Uncertainties can be
broadly categorized as model uncertainty and parametric uncertainty. Model uncertainty is caused
when there are different models to represent the same physical situation. Choosing one model
over other is refered as model uncertainty. Parametric uncertainty is caused within a model. It is
caused due to variations in the input parameters for a simulation model. The uncertainties can
also be classified into two categories: aleatory and epistemic. Aleatory uncertainty is irreducible
or inherent uncertainty. Epistemic uncertainty is a result of lack of knowledge or data, and
therefore is a reducible uncertainty. There are many ways to characterize the uncertainty in the
inputs and propagation of the input uncertainty through a physics-based simulation or analytical
equation. The final goal is to predict the uncertainties in the response of the systems caused by the
uncertainties in the inputs.

Sampling methods are the most common method to quantify uncertainty in system response. New
methods that are developed are often compared with a sampling method for verification. The
computational cost of sampling methods makes it impractical for implementation. Monte Carlo
Simulation (MCS) technique with Latin Hypercube Sampling (LHS) is a popular sampling
method [54]. The drawback of the LHS is its inefficiency to sample for correlated input random
variables. This limitation has been recently addressed and an extension to the existing LHS
technique is developed to incorporate correlation between the variables [55].

Techniques based on limit state function were developed. These include First Order Reliability
Method (FORM) and Second Order Reliability Method (SORM). In FORM, the limit state is
approximated by linear approximation at the Most Probable Point (MPP). The accuracy of the
FORM depends on failure surface. FORM is most accurate when the limit state is nearly linear in
the vicinity of MPP. FORM predicts inaccurate results when the failure surface is nonlinear. If the
failure surface is approached by second order approximation at the MPP it is SORM. The
addition of second order term increases the efficiency, but also increases the computational cost.
The MPP-based methods can be based on high quality function approximations [56]. This is
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based on standard normalized system. Performance measure approach [57] is developed that is
shown to be more stable and efficient than reliability index.

Approximate integration methods have been developed to estimate the statistical moments of the
response. Univariate dimension reduction method was developed by Rahman and Xu [58] for
numerical integration of multi-dimensional integration. It converts a multidimensional integration
into multiple one dimension integration. Recently this method has been extended by Youn et al.
by including eigenvector sampling technique among other developments [59]. Penmetsa and
Grandhi have adapted the fast fourier transformation (FFT) technique to estimate the structural
failure probability [60]. Convolution integral is converted into multiplication by use of FFT. Two
point adaptive nonlinear approximation is used at the MPP.

Spatial variability is another form of uncertainty that quantifies variability in the structural
response. Choi et al developed framework by considering random field variations [61]. The effect
of spatial variation in Young’s modulus on the responses such as displacement is shown in the
work. The framework developed involved use of Karhunen-Loeve transformation for reducing the
number of input random variables. Polynomial chaos expansion is used to construct
approximation. Analysis of variance is performed for significance test. Probabilistic analysis of
residual stress (spatial structural response) is performed by Millwater and his co-workers [62, 63].
In the first work, the residual stress is modeled as probabilistic in nature by a random scaling
factor. The main objective was to identify the effect of residual stress on probability of fracture
for a compressor disk. Other random variables that were considered in the design process were
initial crack size distribution, crack propagation scatter, and stress scatter. An extension to the
work is performed by assuming random residual stress field. Two analytical models were fit to the
experimental data using nonlinear regression analysis. The randomness in the estimates obtained
were utilized further to obtain confidence bounds on the residual stress field. Khaled and Noor
[64] examined the effect of uncertainty in the material properties of steel associated with
martensitic transformations on the residual stress field induced by the welding process. They used
a fuzzy-set approach to quantify the uncertainty in material properties. The main conclusion was
that the variation in material properties has a significant effect on welding residual stress field.
Grujiccic et. al. [65] quantified the effect of material and processing parameters on the magnitude
and distribution of the axial residual stress on gun barrels. Advanced mean value method, which
is based on limit state concept. was adapted to determine the cumulative distribution of residual
stress. Sobczyk and Trebicki [66] proposed one to three parameters to model the random residual
stress on fatigue crack growth. The probabilistic model of residual stress was included in their
evaluation of stress intensity factor and calculations of crack growth life. The Forman fatigue
crack growth equation was used to obtain the cycles to failure. Park and his co-workers [67] have
developed an approach based on bayesian statistics to quantify the model uncertainty by using the
measured differences between the experimental data and simulation predictions. Model
probability, that is defined as the degree of belief that a model is the best approximating model
among a model set is estimated using the experimental data. The methodology is applied to
obtain a confidence band on the residual stress field induced by the simulation of the LP process.

3.4.1 Sources of Uncertainty in LP Simulation

Different sources of uncertainty exist during the simulation of the LP residual stresses. Figure 9
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shows an overview of these different sources. The uncertainties can be categorized as:

1.Model Uncertainty
2.Parametric Uncertainty
3.Shape Uncertainty
4.Regression Uncertainty

Figure 9: Sources of Uncertainty During LP Simulation

Model uncertainty is defined as the uncertainty involved in selecting the best model from the
possible models to represent the physical scenario. Details regarding model uncertainty can be
found in the work of Park [67]. An example of model uncertainty would be selecting the best
material model from among the JC model, ZA model, and EPP model to predict the material
behavior based on limited experimental data.

Parametric uncertainty arises due to uncertainty in the input process parameters. Parametric
uncertainty can be categorized as aleatory or epistemic, based on the availability of experimental
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data. Examples of parametric uncertainty are: i) peak pressure of the shock wave, ii) laser spot
radius, iii) geometric dimensions, and iv) material properties.

Shape uncertainty is defined as the uncertainty in shape of the input profiles that are essential for
the LP simulation. Examples of shape uncertainty include temporal and spatial profiles of the
shock wave. The shape of the laser spot acts as a shape uncertainty for 3D models.

Regression uncertainty is defined as the uncertainty in the model constant estimates obtained
from the fit of the constitutive material model to the experimental data. Regression uncertainty
represents the uncertainty in the material model used to predict the material behavior.

3.5 Definition of Research Need

The review of the research in simulation of the LP process and uncertainty quantification leads to
three major research needs. These three research needs are separated into two groups. The first
group is advancements in finite element simulation of residual stresses induced by the LP process,
and the second group is development of uncertainty quantification framework for spatial
structural response such as residual stress.

Due to the complexity of the process, development of reliable and accurate simulation that can be
used in process design is a challenging task. There have been disagreements between
experimental and simulated results in previous work. The LP process has many parameters that
need to be precisely determined for an accurate finite element simulation. Among them are
pressure profile, laser spot, and material model. The first two parameters depend on the laser
system being used in experiments. During the LP process the component experiences strain rates
of 106/s. This work emphasizes the need for an accurate material model because the material
behaves significantly different at such high strain rates. There has been no work reported on
validation of material model for the simulation of the LP process.

Secondly, most of the materials used for simulation in the previous work had little experimental
data of the material behavior. This insufficient or little experiment data was used to predict the
model constants. The material model was extrapolated for higher strain rates, where there was no
experimental data available. In this work, LP experiments on Inconel®718 were performed in
collaboration with LSP Technologies. For Inconel®718 material, no experimental data of the
material behavior for room temperatures at high strain rates were found. The simulation of the LP
process for materials which don’t have any experimental data is non trivial.

Thirdly, uncertainty quantification of spatial structural response, such as residual stress from the
LP process is needed. No framework has been developed in the literature. A methodology needs
to be developed to obtain confidence bounds on the residual stress. Robust design is an important
aspect that must be addressed, because small difference in estimation of compressive residual
stresses leads to an order of magnitude in the fatigue life estimates.

3.6 Project Scope and Organization

This section describes the scope of the project. Figure 10 provides the overview of the project.
The main goal of the research is to develop a method to quantify uncertainty in the LP residual
stresses due to regression uncertainty.
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Figure 10: Project Scope

The framework is comprised of three components: (i) regression uncertainty quantification for
material model, (ii) uncertainty propagation to LP residual stress, and (iii) confidence band on LP
residual stresses. Regression uncertainty represents the variability in the model constant estimates
from the non-linear regression analysis. A statistical technique known as bootsrap for regression
is adapted to validate the normality assumption of the model constant estimates. For the
uncertainty propagation, a Taylor series expansion is used as an approximation to propagate the
regression uncertainty through the FEA. The final confidence band of the LP residual stress is
obtained for the entire depth.

LP has many process parameters that must be precisely determined for an accurate finite element
simulation. Among them are pressure profile, laser spot, and material model. This research
investigates different material models and validates them with experimental results. An
optimization-based methodology is implemented for identifying material models to simulate the
LP residual stresses when very little experimental data of material behavior is available. The
project is organized as follows.

Chapter 4 describes the details of the finite element simulation procedure. Figure 11 shows the
four major components of an LP simulation. In this work, research is conducted in the material
behavior component. Material model validation for the simulation of the LP residual stress is
described.
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Figure 11: Simulation Overview

Three different constitutive material models are used for validation purposes: the EPP model, the
JC model and the ZA model. The analysis procedure and geometric modeling are also described.

In Chapter 5, simulation of the LP process for Inconel®718 material is described. An
optimization-based methodology is implemented to predict the LP residual stresses. This inverse
optimization approach obtains the model constants from the experimental data at one peak
pressure and predicts the residual stress at other peak pressures. The advantage of this approach is
that the results obtained from the simulation will be consistent with the experimental results. The
power of the approach can be seen when there is very little or no stress-strain data available at
different strain rates.

In Chapter 6, the framework to obtain the confidence bounds on the residual stress is described. A
generic definition of the bootstrapping technique is described and an example is provided. The
technique of bootstrapping for regression is also described. The two categories of bootstrapping
for regression are defined, and an example for each method is provided. Two demonstration
examples are provided to validate the uncertainty framework. The developed framework is
implemented for the JC model and the confidence band for the LP residual stresses is obtained.
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4.0 MATERIAL MODEL VALIDATION FOR LASER PEENED RESIDUAL STRESSES

This chapter provides brief details of the Laser Peening (LP) process with reference to the
simulation procedure. Constitutive material model advantages and disadvantages. The simulation
procedure is described followed by results and discussion.

4.1 Laser Peening Description With Reference to Simulation

The LP process is comprised of two parts. The first part is the quick process of laser firing and the
second part is the slow recovery of the component to equilibrium. The laser firing part is a highly
intense process. A high powered laser with intensity of the order of 109W/cm2 is focused on an
opaque overlay. The laser is in contact with the opaque overlay for a few nano seconds. Firing the
laser on the component creates shock waves that travel inside the component to create
compressive residual stresses on the surface regions. The relaxation of the material to achieve
equilibrium is a relatively slow process compared to laser firing. During the simulation of the LP
process, this mismatch of time is modeled using ABAQUS/Explicit and ABAQUS/Standard for
efficient computation.

4.1.1 Thick and Thin Geometries

This section describes the overview of the simulation models that can be developed for the LP
simulation. Figure 12 shows the overview.
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Figure 12: Overview of Simulation Models

The simulation models can be divided into two categories, i) thick specimen models ii) thin
specimen models. Thick specimen models are defined as the models where the shock waves that
are reflected from the bottom surface are not significant. There is no standard way of defining the
exact thickness that differentiates the specimen. It depends on the material being used and also on
the process parameters. Infinite elements are used for the thick specimens that represent the
boundary condition of shock waves not reflecting back. Isotropic hardening works well for the
thick specimens. For modeling the thin specimens, infinite elements cannot be used since the
shock waves that reflect back are significant in prediction of the residual stresses. A combined
hardening model must be used since isotropic hardening does not capture the effect of shock
waves from both the direction. All the models developed in this work are for thick geometries.

4.2 Material Model Details

The plastic deformation during the LP process is caused by laser-induced shock waves. The
waves that causes stresses beyond the yield limit is generally referred to as plastic waves. These
plastic waves are known as shock waves when the wave front is steep. LP is a very high strain rate
process. The component can experience strain rates up to 106/s, which is very high compared to
conventional strain rates. At low strain rates the material behavior is independent of strain rates.
The material response to impact loading may be significantly different from static or quasi-static
loading [68]. Accurate material modeling is needed to simulate the material behavior. Various
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constitutive models have been suggested by researchers such as Bodner [69], Miller [70],
Bommann et al [71], Johnson and Cook [72] and Zerilli and Armstrong [73]for different
applications. The later two models are investigated in this work along with the EPP model
because of their popularity in literature.

4.2.1 The EPP Model

In the EPP model, no strain hardening and/or strain rate dependence of flow stress is considered.
Once the plastic regime is reached, the stress remains constant. The yield stress is derived based
on Hugoniot elastic limit (HEL) because LP is a shock wave phenomenon. HEL is defined as the
axial stress required for plastic deformation under uniaxial strain conditions. It is assumed that
yielding occurs when the stress in the direction of shock wave reaches the HEL. The relationship
between HEL and yield strength (σy) is shown in Equation 1:

σy = HEL
(1−2ν)
(1−ν)

(1)

where ν is Poisson’s ratio. The advantage of this model is that only a small amount of data is
required to estimate the yield stress. The disadvantage is that it does not account for strain
hardening and/or strain rate dependence.

4.2.2 The JC Model

The JC model is one of the most frequently used models for impact studies [72]. The JC model
describes the flow stress of the material as a product of three terms: a strain hardening term, a
strain rate dependent term, and a temperature term. It is described in Equation 2:

σ = [A+Bε
n]
[

1+Cln
ε̇

ε̇0

][
1−T

′m
]

(2)

where A, B, n, C, ε̇0, and m are experimentally determined constants. ε and ε̇ are strain and strain
rate, respectively. T

′
is a non-dimensionalized temperature:

T
′
=

T −Tr

T −Tm
(3)

Tr and Tm are room temperature and melting temperature, respectively. Parameter A is the initial
yield strength at room temperature. Parameters B and n take strain hardening into account, while
parameter m models the thermal softening. Parameter C represents strain rate sensitivity. The
main advantage of the JC model is that the estimation of the parameters is simple and easy
because it allows for isolation of the three effects.
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4.2.3 The ZA Model

The ZA constitutive model is based on dislocation mechanics and the crystal structure of the
material [73]. There are several generations of the model. Initially, the model addressed Face
Centered Cubic (FCC) and Body Centered Cubic (BCC) structures. The flow stress relationship is
shown in Equations 4 and 5 for FCC and BCC structures, respectively:

σ = C1 +C5ε
nexp(−C3T +C4T lnε̇) (4)

σ = C1 +C2exp(−C3T +C4T lnε̇)+C5ε
n (5)

C1, C2, C3, C4, C5, and n are material constants that need to be determined. C1, C5, and n are
similar to A, B, and n, respectively, of the JC model. The work has been extended to include strain
recovery for Hexagonal Closely Packed (HCP) metals [74]. Equation 6 shows the constitutive
model

σ = σa +Be−(β0−β1lnε̇)T +B0

√
εr
(
1− e−ε/εr

)
e−(α0−α1lnε̇)T (6)

where σa, B, β0, β1, B0, εr, α0, and α1are the constants that need to be estimated. The term in the
square root is the strain recovery term. This addresses the shear instability, an important
consideration for HCP structures (Ti–6Al–4V). The ZA model considers the interaction effect
between strain rate and temperature. The disadvantage of the ZA model is that it has a high
number of constants that must be determined.

4.2.4 Parameter Estimation

Ti–6Al–4V material is used in this work. The material properties are listed in Table 1 [38].

Table 1: Material Properties of Ti-6Al-4V

Property Value
Young’s Modulus (GPa) 113.8

Poisson’s Ratio 0.342
Density (kgm−3) 4500

HEL (MPa) 2800

The material constants for the JC and ZA models are estimated by fitting the experimental data of
stress–strain curves for different strain rates [75]. Although more recent experimental data is
available in the literature [76], these results are not used because the experiments were conducted
on low grade Ti–6Al–4V, which is not used for aerospace applications. Higher strain rate
experiment data [77] was found and will be used for the simulation in the next chapter. Equation
6, which considers the strain recovery term, is used as the ZA material model. Temperature
effects are not considered in this work because LP is a mechanical process [78]. MATLAB’s
lsqcurvefit [79] function is used for fitting the experiment data. lsqcurvefit is a nonlinear curve
fitting function in a least square sense. Figures 13 and 14 show the fit to the experimental data for
the JC and ZA models respectively.

21
Approved for public release; distribution unlimited.



0 0.01 0.02 0.03 0.04 0.05 0.06
1100

1150

1200

1250

1300

1350

1400

1450

1500

1550

1600

Plastic Strain

F
lo

w
 S

tr
es

s[
M

P
a]

 

 

experiment@20/s
JC @20/s
experiment@1.5/s
JC @1.5/s
experiment@0.08/s
JC @0.08/s
experiment@0.004/s
JC @0.004/s

Figure 13: The JC Model Fit to Experimental Data [75] of Multiple Strain Rates
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Figure 14: The ZA Model Fit to Experimental Data [75] of Multiple Strain Rates

The constants obtained for the JC model and the ZA model are shown in tabular format in Tables
2 and 3.

Table 2: Model Constants for the JC Model

Parameter Value
A 950.228 MPa
B 603.3825 MPa
n 0.1992
C 0.0198
ε̇0 0.0009/s
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Table 3: Model constants for the ZA Model

Parameter Value
σa 945.1961MPa
B 246.6467MPa
β0 1.1636×10−6

β1 0.1065
B0 1481.249 MPa
εr 0.0538
α0 10−6

α1 3.1564×10−4

Figures 15 and 16 show the strain rate dependence curves at different strains for the JC and ZA
models.
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Figure 15: Strain Rate Dependence Curve for the JC Model
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Figure 16: Strain Rate Dependence Curve for the ZA Model

These figures indicate that for the JC model, the stress varies linearly with strain rate and the
curves are approximately parallel for different strains. Nonlinear variation is observed for the ZA
model. In the ZA model, more strain rate hardening is observed for higher strain. This model
could be closer to the real behavior because the material hardens at a faster rate at higher strains.

4.3 Simulation Procedure

In this work, FEA is used to simulate the LP process. ABAQUS [80] software is used to perform
FEA. Figure 17 shows the two-dimensional representative mesh. It is an axi-symmetric model
made up of finer and infinite elements. CAX4R (continuum axi-symmetric 4 noded reduced
integration) elements are used for finer elements and CINAX4 (continuum infinite axi-symmetric
4 noded) elements are used for the infinite part. LP is a highly localized process.
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Figure 17: Representative Axi-symmetric FE Mesh

The size of the region treated with the shot is very small relative to the component size. Finer
elements are modeled for the treated region and infinite elements represent the rest of the
component. The dimension of the finer mesh region depends on the size of the laser spot.
Researchers [37, 41] have used 2 times and 3.5 times the laser spot size for the finer mesh. In this
work, the radius of the laser spot is 2.8mm, and the dimensions of the fine mesh region are 6mm ×
6mm, with symmetric boundary conditions as shown in Figure 17. The results with higher
dimensions for finer mesh are very similar to the current mesh of 6mm x 6mm. To achieve
computational efficiency, the dimensions of 6 mm × 6 mm were used. A refined mesh is required
to accurately capture the shock wave imparted by the laser. A mesh size of 241 × 241 nodes is
used for finer elements after performing the convergence study. The element size is 0.025 mm x
0.025 mm for the mesh size used for the finer mesh.

4.3.1 Pressure Loads

Pressure loading is applied on the top surface of the model as shown in Figure 17. The shock
wave generated during the LP process is applied as a pressure pulse in FEA. There are different
forms of pulse shapes used in the literature. The shape of the pressure pulse depends on the laser
system. Ding and Ye [78] used a Gaussian shape and Braisted and Brockman [37] used a
triangular shape. The pressure pulse applied in this work is shown in Figures 18 and 19 and is
similar to the one used by Nam [38]. It has both time and spatial variation. A plot of peak
pressure vs. power density was developed using quartz gages and this plot was used to estimate
the average peak pressure profile. The pressure rises for the first few nanoseconds (ns) and
gradually decreases after that.
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Figure 18: Temporal Pressure Profile of Shock Wave
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Figure 19: Spatial Pressure Profile of Shock Wave

4.3.2 Material Models

For all the FEA performed in this work, finer elements are assumed to be elastic–plastic in nature,
while the infinite elements are assumed to be elastic only because the shock wave affects a small
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portion of the component. These distinctions help to achieve efficient computation. As mentioned
previously, the EPP, JC and ZA material models are investigated.

4.3.3 Analysis Procedure

The analysis can be categorized into two stages: dynamic loading analysis and static equilibrium
analysis. During the first stage, the high speed, intense pressure transient loading is modeled until
all plastic deformation has taken place. The second stage is the static equilibrium analysis that is
performed to obtain the residual stress field. The data from the end of the dynamic analysis, such
as nodal stresses, strains, and displacements are transferred to the equilibrium analysis using a
restart file in ABAQUS. After the static equilibrium analysis is completed, there are two options:
(i) one more LP shot or (ii) no further LP shots. If no further LP shots are required, residual stress
data is obtained. If further LP shots are required, the residual stress data obtained from
equilibrium analysis act as a starting point for the new LP shot. The procedure is shown
schematically in Figure 20.
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Figure 20: Schematic Representation of Analysis Procedure

4.3.3.1 Dynamic Loading Analysis

ABAQUS/Explicit is used for the loading part of the analysis. Two of the important parameters to
be determined for the analysis are (i) time increment and (ii) final time to complete the analysis.
Time increment (∆t) plays an important role in the convergence and accuracy of the analysis. If
the time increment is greater than the critical limit (∆tcrit), it may lead to an unbounded solution
[80]. There are different ways to estimate the critical limit [78]. A simple estimate is based on
element length and wave speed of the material (Cd). The critical limit is calculated as ∆tcrit = L

Cd
,

where L is the length of the smallest element and Cd =
√

E/ρ, where E and ρ are
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Young’modulus and density, respectively. The time steps for each model are optimized from
convergence studies. The loading analysis is performed until all the plastic deformation has taken
place. This is shown in Figure 21, the history plot of kinetic energy. This plot indicates that the
final time of 4000 ns is suitable for LP.
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Figure 21: History of Kinetic Energy

4.3.3.2 Static Equilibrium Analysis

ABAQUS/Standard is used for the equilibrium analysis. The state of the deformed component
from the end of dynamic loading analysis is transferred using a restart file to achieve static
equilibrium. This step is used to calculate the residual stress profile.

4.3.3.3 Comparison between Explicit and Implicit Algorithms

ABAQUS/Explicit and ABAQUS/Standard are the two solvers used by ABAQUS in the FEA
procedure. ABAQUS/Explicit uses an explicit algorithm and ABAQUS/Standard uses implicit
algorithm for the numerical analysis. This section describes a brief comparison between the two
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algorithms. Explicit and implicit are direct integration methods for solving the equation of motion
(Equation 7)

[M]
{

D̈
}

+[C]
{

Ḋ
}

+[K]{D}=
{

Rext} (7)

where [M], [C], and [K] are mass, damping, and stiffness matrices respectively. {D} is the
displacement vector. {Rext} corresponds to external loads. These loads are in general a function
of time. The direct integration methods are alternative to modal analysis methods [81]. In direct
integration methods, displacement vector is associated with subscript n to denote the time step.
The solution methodology for explicit algorithm have the form shown in Equation 8:

{D}n+1 = f
(
{D}n ,

{
Ḋ
}

n ,
{

D̈
}

n ,{D}n−1 , ...
)

(8)

This displacement {D}n+1 is determined in terms of completely historical information of
displacements and its time derivatives. The displacement at the current step is a function f of
displacements and their time derivatives of previous steps. Implicit methods have the form shown
in Equation 9:

{D}n+1 = f
({

Ḋ
}

n+1 ,
{

D̈
}

n+1 ,{D}n , ...
)

(9)

The computation of {D}n+1 requires knowledge of the time derivatives of {D}n+1. The implicit
algorithm determines the solution with iterations, but the explicit algorithm determines the
solution by advancing the kinematic state from the previous state. Central difference scheme is
popularly used for the explicit algorithm. In comparison, the explicit algorithm is a clear choice
for wave propagation analysis, especially for short duration. The implicit algorithm is better
suited for long duration to achieve equilibrium.

4.4 Results and Discussion

Three peak pressures of 5.5, 6.1, and 8.3GPa are considered in this work. These three peak
pressures are selected based on the availability of experimental data [38]. Three LP shots are used
for a peak pressure of 6.1GPa, and one LP shot is used for the other two peak pressures. The
in-depth experimental results of radial residual stresses at a distance of 1mm from the center for
all three peak pressures are shown in Figures 22, 23, and 24 for the EPP model, the JC model, and
the ZA model respectively.
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Figure 22: Residual Stress Comparison Between Simulation and Experiment for the EPP
model
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Figure 23: Residual Stress Comparison Between Simulation and Experiment for the JC
model
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Figure 24: Residual Stress Comparison Between Simulation and Experiment for the ZA
model

The x-ray diffraction technique was used to measure the residual stresses [38]. This is a
destructive technique used to measure residual stresses along depth. First, the measurement is
made on the surface. A thin layer is removed using electropolishing and the procedure is repeated
for each depth measurement. This technique averages the residual stress over a square area. To
compare the results of FEA and experiments, the same kind of averaging is performed for stresses
resulting from FEA. A 1mm × 1mm area is considered, and the x and y coordinates of the
locations are converted into cylindrical coordinates as r =

√
x2 + y2and θ = Tan−1 [y/x] . The

transformation of the stress components from cylindrical to rectangular is
σx = σrcos2θ +σθ sin2θ −2τrθ sinθcosθ . The shear component (τrθ ) is zero (definition of
axi-symmetric). The results comparison is discussed for each model separately.

4.4.1 EPP Model

Figure 25 shows the equivalent plastic strain variation versus depth for different peak pressures.
The plastic strain data is obtained at a distance of 1mm from the center of the spot. The strains are
higher on the surface and decrease with depth. The higher the magnitude of peak pressure, the
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greater is the magnitude of plastic strain. This shows that the model is predicting the general
trends with respect to strain.
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Figure 25: Equivalent Plastic Strain Variation with Depth for the EPP Model

Figure 22 shows the radial residual stress variation with depth, for different peak pressures. It
includes both simulation and experimental results. A comparison between the simulation results
for different peak pressures indicates that a higher magnitude of compressive residual stresses are
generated for greater peak pressures only after a certain depth. For surface and near-surface
regions, the model is not able to predict the experimentally observed trends. A higher magnitude
of stress is obtained for lower peak pressure, and for all three peak pressures, there is a decrease
in the magnitude of residual stress on the surface and near-surface region. The propagation of
stress waves into the material for peak pressures of 5.5 GPa for the EPP model is shown in Figure
26 and for the 8.3GPa is shown in Figure 27. Figures 28 and 29 show the stress wave propagation
of peak pressures of 5.5 GPa and 8.3 GPa for the JC model respectively.
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Figure 26: Propagation of Stress Waves for the EPP model at 5.5 GPa Peak Pressure
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Figure 27: Propagation of Stress Waves for the EPP model at 8.3 GPa Peak Pressure
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Figure 28: Propagation of Stress Waves for the JC Model at 5.5 GPa Peak Pressure
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Figure 29: Propagation of Stress Waves for the JC model at 8.3 GPa Peak Pressure

During the first 200 ns the compressive wave declines steeply at the surface for both peak
pressures for the EPP model. This decline is predominant for a peak pressure of 8.3GPa. There is
no decline observed in the stress wave propagation for the JC model for either of the peak
pressures. This initial stress wave has a significant effect on the residual stress, due to the
magnitude of the wave. A comparison between the simulation and the experimental data for three
peak pressures of 5.5, 6.1 and 8.3GPa can be seen in Figure 30.
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Figure 30: Residual Stress Comparison Between Simulation and Experiment for the EPP Model

For a peak pressure of 5.5GPa, the EPP model overestimates the residual stresses relative to the
experimental data for the entire depth of 2mm. The EPP model overestimates the stresses after a
certain depth for peak pressures of 6.1 and 8.3GPa. The EPP model is generally considered to be
a conservative model for prediction of internal stresses. However, for residual stress
determination, the EPP model always overestimates compared to experimental data since the EPP
model does not take strain hardening into consideration. In the LP process, strain rate plays an
important role, and the current EPP model does not consider strain rate dependence.

4.4.2 JC Model

Figure 31 shows the equivalent plastic strain variation with depth, for different peak pressures.
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Figure 31: Equivalent Plastic Strain Variation with Depth for the JC Model

The same trends as observed in the EPP model can be seen here. There is a higher magnitude of
plastic strain obtained for greater peak pressure. However, the magnitude of plastic strain is much
lower than the EPP model for the three peak pressures. For the peak pressure of 8.3 GPa, a steep
decrease in the strain can be seen up to a depth of 0.5mm, then a gradual decrease is observed. A
comparison between radial residual stresses for three peak pressures is shown in Figure 32.
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Figure 32: Residual Stress Comparison Between Simulation and Experiment for the JC Model

Figure 32 indicates that the JC model is able to predict the trends for the entire depth of 2 mm,
unlike the EPP model. A higher magnitude of stress is obtained for greater peak pressure. The
magnitudes of stress at the surface for peak pressures of 6.1 and 8.3 GPa are nearly equal. This
can be attributed to the number of shots. For the peak pressure of 6.1GPa, the number of shots is
three, while for the peak pressure of 8.3 GPa, it is only one. A comparison between the simulation
and the experimental data at all three peak pressures for the JC model can be seen in Figure 32.
The JC model is in better agreement with experimental results for the three peak pressures,
indicating the consistency of the model. However, the JC model overestimates the residual stress
on the surface compared with the experimental data for peak pressures of 5.5 and 6.1 GPa. The
JC model maintains the trend of overestimating the residual stress compared with experimental
data for the three peak pressures (except from two data points for peak pressure of 6.1GPa). In the
next section, the results for the ZA model are discussed. Unlike the JC model, the ZA model
overestimates on the surface and underestimates at higher depth.
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4.4.3 ZA Model

Figure 33 shows the equivalent plastic strain variation with depth for the three peak pressures.
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Figure 33: Equivalent Plastic Strain Variation with Depth for the ZA Model

The ZA model is able to predict the general trend of higher magnitude of plastic strain for greater
peak pressure. The magnitude of strain predicted by the ZA model at the near-surface region is in
between the predictions of the EPP and JC models. However, at higher depth, the ZA model has
the lowest strain, followed by the EPP model, and the JC model as the highest magnitude of
strain. There is also a steep decrease in strain at the near-surface region as seen in the other two
models. The plastic strain curves at peak pressures of 5.5 and 6.1GPa are relatively close to each
other compared with the other two models. Radial residual stress variation with depth for
different peak pressures is shown in Figure 34.
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Figure 34: Residual Stress Comparison Between Simulation and Experiment for the ZA Model

The ZA model is also able to predict the trend for the entire depth. A higher magnitude of stress is
obtained for greater peak pressures. The magnitude of stress at the surface for peak pressures of
6.1 and 8.3 GPa are nearly equal, as seen in the JC model. The magnitude of stress at the surface
and near-surface regions is high compared to the JC model. A comparison between the simulation
results and the experimental data shows that the ZA model overestimates the residual stress on the
surface and near-surface regions for all three peak pressures. On the surface it overestimates not
only with respect to the experimental data, but also with respect to the JC and EPP models. At
higher depths, even though the ZA model underestimates relative to the experimental data, there
seems to be a better agreement with experimental results of residual stress results on the surface.

4.4.4 Additional performance metrics

For further comparison between the models, four performance metrics are developed: (a)
maximum compressive stress, (b) maximum tensile stress, (c) area of compressive stress and (d)
depth of compressive stress. The area of compressive stress is a normalized area. It is calculated
as the ratio of the number of nodes with compressive stress to the total number of nodes. The
depth of the compressive stress is considered at a distance of 1mm from the center. A region with
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a depth of 2 mm is considered, and a distance of 0.5mm from both ends is left out for the above
mentioned metrics. Tables 4, 5, and 6 show the performance metrics for peak pressures of 5.5
GPa, 6.1 GPa, and 8.3 GPa respectively.

Table 4: Performance Metrics Comparison Between the Models for Peak Pressure of 5.5 GPa

Performance Metrics Peak Pressure of 5.5 GPa
EPP JC ZA

Depth of Compressive Stress [mm] 0.9959 1.4938 0.6473
Area of Compressive Stress [normalized] 0.5891 0.8624 0.5778

Maximum Compressive Stress [MPa] −669.84 −600.60 −778.38
Maximum Tensile Stress [MPa] 90.24 24.53 27.8

Table 5: Performance Metrics Comparison Between the Models for Peak Pressure of 6.1 GPa

Performance Metrics Peak Pressure of 6.1 GPa
EPP JC ZA

Depth of Compressive Stress [mm] 1.2448 1.668 0.7967
Area of Compressive Stress [normalized] 0.6528 0.9222 0.6113

Maximum Compressive Stress [MPa] −745.84 −738.48 −968.62
Maximum Tensile Stress [MPa] 112.40 23.23 37.53

Table 6: Performance Metrics Comparison Between the Models for Peak Pressure of 8.3 GPa

Performance Metrics Peak Pressure of 8.3 GPa
EPP JC ZA

Depth of Compressive Stress [mm] 1.8174 1.9917 1.4689
Area of Compressive Stress [normalized] 0.6528 0.9925 0.763

Maximum Compressive Stress [MPa] −642.20 −778.12 −963.21
Maximum Tensile Stress [MPa] 57.05 39.49 63.51

Compared to both the EPP and ZA models, the JC model predicts a higher depth of compression
for all three peak pressures. The ZA model predicts the highest compressive stress for all three
peak pressures, while the JC model predicts the lowest compressive stress for peak pressures of
5.5 and 6.1GPa. The JC model predicts the highest area of compressive stress for all three peak
pressures, which shows consistency in the results.
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4.5 Section Summary

Numerical simulation of the LP process is addressed in this chapter. FEA is shown to be a useful
method to simulate the process. The strain rates involved in the LP process are on the order of
106s−1, and experimental results of material behavior are typically not available at such high
strain rates. Accurate material models help in providing a benchmark simulation. The nonlinear
regression method is used to fit the experimental data to obtain the parameters for the
corresponding models. The EPP model, which is most often used in the literature, is shown to
produce inconsistent results. The ZA model, which is based on dislocation mechanics, produces
consistent trends but overestimates the results compared to experimental data. The JC model is
shown to produce consistent results matching the trends and better agreement with experimental
results.
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5.0 INVERSE OPTIMIZATION OF MATERIAL MODELS FOR SIMULATION OF
LASER PEENED RESIDUAL STRESSES

The limitation of the existing simulation methodology is described in this chapter. This leads to
the development of a new optimization-based approach for simulation of residual stresses induced
by LP. Brief description of the experimental residual stress results is provided.

5.1 Limitation of Existing Simulation Methodology

The existing simulation methodology of residual stresses induced from LP is based on
experimental data about the material behavior. Figure 35 shows a flow chart of the simulation
process. The JC model is used as an illustration.

Figure 35: Traditional Approach for Simulation of Laser Peened Residual Stresses

Stress-Strain data at lower strain rates of a material is used to curve fit the material model under
investigation. The material behavior is extrapolated at higher strain rates where no experimental
data is available. Stress-strain data at different strain rates is typically not available for many
materials. Inconel®718 is one such material. The limitation of the existing simulation
methodology demands a new approach to simulate the residual stresses induced by LP.
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5.2 Optimization-based Approach

The proposed optimization-based approach is shown in Figure 36.

Figure 36: Optimization-Based Approach for Simulation of Laser Peened Residual Stresses

Material model constants are the design variables during the optimization procedure. An initial
guess is provided for the material model constants. These initial values are obtained from the user
experience or knowledge about the material. In this work, the initial guess for Inconel®718 is
based on user experience and the initial guess for Ti-6Al-4V material is based on results from
traditional approach. The drawback of the optimization-based approach is that the optimum
model constants obtained are dependent on the initial guess. LP simulation is performed and the
compressive residual stress is computed at locations for which the experimental data is available.
The simulated compressive residual stress is compared with the experimental residual stress and
the error between them is quantified. This error is considered as the objective function. An
unconstrained optimization formulation is solved to obtain the optimum model constants as
shown in Equation 10:
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Min Error (10)
Lower Bounds 6 ModelConstants≤ U pper Bounds (11)

The error is minimized and the model constants are iteratively solved until convergence. The
convergence criterion to stop the iterations is that the difference between the objective function
from the previous iteration should be less than a threshold value. The objective function used in
this work is weighted least squares as shown in Equation 12:

e = w1×

√
RegionI

∑ RSexp−RSsim

2

+w2×

√
RegionII

∑ RSexp−RSsim

2

+w3×

√
RegionIII

∑ RSexp−RSsim

2

(12)

The experimental data is divided into three regions based on the location. w1, w2, and w3 in
Equation 12 act as weights for regions I, II, and III respectively. Details of each region are
provided in the results section. The terms RSexp and RSsim are experimental residual stress and the
residual stress predicted by the simulation respectively. In this work the regions are weighted
equally, but the weights can be changed based on the agreement between simulation and
experimental results. MATLAB’s optimization toolbox [79], that uses a gradient-based approach,
is used to perform optimization. Side bounds are placed considering the practicality of the model
constants. The above-mentioned approach is performed for one set of LP conditions and optimum
model constants are obtained. The same model constants are used for other operating conditions
and the residual stress predictions are compared with the experimental data to demonstrate the
consistency of the approach. The advantage of this approach is that the results obtained from the
simulation will be consistent with the experimental results. The power of the approach can be
seen when there is very little or no stress-strain data available at different strain rates. Using this
inverse optimization approach, a material model can be employed to simulate the residual stresses
induced by the LP process.

5.3 Material Model Details

Three material models are investigated for the validation of the optimization-based method. Two
of the models are the JC and the ZA models that were previously used. Description of these two
models are provided in the previous chapter. The Khan-Huang-Liang (KHL) [77] model is the
third material model under investigation. The JC and KHL models are considered
phenomenological models, while the ZA model is a physics-based model.

5.3.1 KHL Model

The KHL model is based on the JC model. The flow stress equation is shown in Equation 13

σ =
[

A+B
(

1− lnε̇

lnDp
0

)n1
][

ε̇

ε̇∗

]C

(13)

A major feature of this model, compared to the JC model, is that it can accommodate decreasing
work-hardening with an increasing strain rate through the constant n1. ε and ε̇ are the plastic
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strain and strain rate, respectively. Model constants A and B are similar to the constants in the JC
model. A represents initial yield strength at room temperature. B and n represent strain sensitive
parameters. Dp

0 is an arbitrarily chosen upper bound on the strain rate. In this work, Dp
0 is

assumed to be 108. ε̇∗ is the reference strain rate at which the model constants are determined. In
most cases, ε̇∗is assumed to be equal to 1s−1.

5.4 Simulation Procedure

The simulation procedure described in the previous chapter is used. The addition of KHL model
is implemented and the material properties [82] for Inconel®718 are shown in Table 7.

Table 7: Material Properties for Inconel®718

Property Value
Young’s Modulus (GPa) 199.95

Poisson’s Ratio 0.29
Density(kgm−3) 8193.25

5.5 Results and Discussion

For Inconel®718, the residual stress predictions through depth are compared with experimental
data at the center of the laser spot, while the comparison is performed at a distance of 1mm from
the center of the spot for Ti-6Al-4V. The averaging procedure described in the previous chapter is
implemented. For Ti-6Al-4V material, residual stress results using the traditional approach are
available [83]. A comparison is made between two approaches to demonstrate the consistency of
the optimization-based approach. The residual stress results for Inconel®718 material are
presented first, followed by Ti-6Al-4V material.

5.5.1 Validation of Optimization-Based Approach for Inconel®718

Inconel®718 is a nickel-based super alloy used in several gas turbine components that operate at
high temperatures such as 1000oC. The experimental procedure to perform LP experiments is
discussed followed by comparison with simulation predictions.

5.5.1.1 LP Experimental Procedure

LP experiments were performed at LSP Technologies, Dublin, OH. Four coupons were laser
peened to provide experimental residual stress profiles to compare with the simulation results.
The coupons were 25 mm × 25 mm square with a thickness of 12.7 mm. They were laser peened
with one laser spot with a diameter of 5.6 mm in the center of one face. The surface to be laser
peened was electropolished to remove machining stresses before LP. The LP was performed with
an Nd-glass laser using black paint as the opaque overlay and water as the transparent overlay.
The LP conditions are shown in Table 8.
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Table 8: LP Conditions Used for Inconel®718

Energy Density [J/cm2] Laser Pulse Length [ns] Power Density [GW/cm2]
105 25 4.2
132 21 6.3
181 28 7.2
146 18 8.1

X-ray diffraction method was used for the measurement of residual stress profiles from the laser
peened surface. With this technique, the measurements were made using a 2 mm square x-ray
diffraction spot on the coupon surface, centered within the laser spot. After taking a surface
measurement, the material was incrementally removed from surface by electropolishing and
another measurement was taken on the exposed surface. This was done for each depth in the
residual stress profile. The x-ray diffraction result provides a measurement of the elastic strain.
The elastic modulus is then used to derive the residual stress at each depth. Corrections are
applied to account for the x-ray penetration depth and the stress relaxation accompanying the
removal of material from the surface. The residual stress data at different depths and peak
pressures shown in Table 9 are measured at LSP Technologies Inc, provided Dr. Alan H. Clauer.

5.5.1.2 Residual Stress Comparison Between Simulations and Experiments

The regions are divided based on the location of the experimental data. Region I is considered up
to a depth of 0.5 mm from the surface, Region II is from 0.5 mm to 1.5 mm and Region III is from
1.5 mm onwards. The optimization-based approach is adapted to the JC model and the KHL
model. A peak pressure of 6.6 GPa is arbitrarily chosen to perform the optimization. The
constants obtained for the JC model are shown in Table 10.The model constants obtained for the
KHL model are shown in Table 16. The same model constants are used for other peak pressures
of 5.3, 7.1, and 7.6 GPa to demonstrate the consistency of the inverse optimization approach.
Figures 37, 38, 39, and 40 show the residual stress comparison between simulations and
experimental results for peak pressures of 5.3, 6.6, 7.1, and 7.6 GPa respectively.
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Table 10: Model Constants Using Optimization-Based Approach for the JC Model for Inconel®718

Parameter Value
A 506.44MPa
B 1578.86MPa
n 7.94×10−4

C 2.03×10−3

ε̇0 6.45×10−4/s
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Figure 37: Residual Stress Comparison for Inconel®718 with 5.3 GPa Peak Pressure
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Figure 38: Residual Stress Comparison for Inconel®718 with 6.6 GPa Peak Pressure
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Figure 39: Residual Stress Comparison for Inconel®718 with 7.1 GPa Peak Pressure
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Figure 40: Residual Stress Comparison for Inconel®718 with 7.6 GPa Peak Pressure

Simulation results follow the trends of the experimental results for all peak pressures in both the
JC and the KHL models. The results predicted by the JC model and the KHL model are similar to
each other. The reason for this could be attributed to the fact that the KHL model is based on the
JC model. The simulation results show a consistent trend of underestimating the experimental
results for all peak pressures. For peak pressures of 5.3 and 6.6 GPa, the simulation prediction
performs consistently for the entire depth. For peak pressures of 7.1 and 7.6 GPa, the simulation
results are in relatively poor agreement with the experimental data as compared to the previous
two peak pressures. The simulation predictions tend to overestimate at near surface regions and
underestimate at lower depths. The error between the experimental data and simulation results is
quantified. Table 11 shows the least square error between the experimental data and simulation
results for different models. The error is computed using all nine experimental data locations and
the corresponding simulation predictions. Equation 10 is used to obtain the least square error. In
Table 11, the lowest error is for peak pressure of 6.6 GPa for both the JC and the KHL models.
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Table 11: Least Square Error Comparison for Inconel®718

Inconel®718
JC Model KHL Model

Peak Pressure (GPa) 5.3 6.6 7.1 7.6 5.5 6.6 7.1 7.6
Optimized (MPa) 261.76 241.19 547.94 634.95 288.82 241.19 553.04 638.66

Normalized 1.08 1.0 2.27 2.63 1.19 1.0 2.29 2.64

The error is normalized to the least error value (set = 1.0) since the relative error is a more
important factor than the absolute value. The normalized error values from Table 11 demonstrates
that both models perform very similarly at all peak pressures. Table 11 indicates the error
between the experimental data and simulation result at a peak pressure of 7.6GPa is 2.64 times the
error at the peak pressures of 5.3 GPa for the KHL model.

5.5.2 Validation of Optimization-based Approach and Comparison with Traditional
Approach for Ti-6Al-4V

Three different peak pressures of 5.5, 6.6, and 8.3 GPa were selected for the simulation of the
residual stresses based on the availability of the experimental data [38]. Region I is considered up
to a depth of 0.2 mm from the surface, Region II is from 0.2 mm to 0.6 mm and Region III is from
0.6 mm onwards. The optimization-based approach was implemented for the peak pressure of 5.5
GPa for all three material models (the JC, the ZA, and the KHL models). The same model
constants are used for the other two peak pressures to evaluate the consistency of the approach.
The constants obtained for the JC model using the optimization-based approach are shown in
Table 12:

Table 12: Material Model Constants Using Optimization-Based Approach for the JC Model

Parameter Value
A 1092.68MPa
B 1266.94MPa
n 0.0851
C 9.39×10−3

ε̇0 9.0×10−4/s

By comparison, the model constants obtained from the traditional approach [83] are shown in
Table 13
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Table 13: Material Model Constants Using Traditional Approach for the JC Model [83]

Parameter Value
A 950.23MPa
B 603.28MPa
n 0.19921
C 0.0198
ε̇0 9.32×10−4/s

The constants obtained for the ZA model using the optimization-based approach are shown in
Table 14

Table 14: Material Model Constants Using Optimization-Based Approach for the ZA Model

Parameter Value
σa 472.89MPa
B 247.13MPa
β0 1.16×10−6

β1 0.01598
B0 2221.87MPa
εr 0.0308
α0 10−6

α1 1.85×10−4

By comparison, the model constants obtained from the traditional approach are:

Table 15: Material Model Constants Using Traditional Approach for the ZA Model [83]

Parameter Value
σa 945.19MPa
B 246.65MPa
β0 1.16×10−6

β1 0.1065
B0 1481.25MPa
εr 0.0538
α0 10−6

α1 3.16×10−4

The constants obtained for the KHL model using the optimization-based approach are shown in
Table 16
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Table 16: Model Constants Using Optimization-Based Approach for the KHL Model

Parameter Value
A 677.71MPa
B 917.761MPa
n1 0.1526
n0 0.0931
C 0.0415

The constants obtained for the KHL model using the traditional approach are:

Table 17: Material Model Constants Using Traditional Approach for the KHL Model

Parameter Value
A 1170.10MPa
B 812.511MPa
n1 0.4481
n0 0.3301
C 0.0212

Figure 41, 42, and 43 shows the residual stress results at peak pressures of 5.5, 6.1, and 8.3 GPa
respectively for the JC model. For the peak pressure of 5.5 GPa, the results predicted by the
optimization-based approach are closer to the experimental results than the traditional approach.
Compared to the traditional approach, the new approach performs well, especially at the surface.
The consistency of the new approach can be seen in Figures 42 and 43, where the results predicted
by simulations follow the trends with the experimental results. However for the peak pressure of
6.1 GPa, the new approach underestimates at the surface. This could be attributed to the number
of shots. The number of shots for peak pressures of 5.5 and 8.3 GPa is only one, while the number
of shots for 6.1 GPa is three. The constitutive material model is not optimized for multiple shots.

59
Approved for public release; distribution unlimited.



0 0.5 1 1.5 2
−500

−400

−300

−200

−100

0

100

Depth [mm] at a distance of 1mm from center

R
es

id
ua

l S
tr

es
s 

[M
P

a]

 

 

Experiment at 5.5 GPa
JC Model: Non Optimized at 5.5 GPa
JC Model: Optimized at 5.5GPa

Figure 41: Residual Stress Comparison for Ti-6Al-4V for the JC Model with 5.5 Peak Pressures
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Figure 42: Residual Stress Comparison for Ti-6Al-4V for the JC Model with 6.1 Peak Pressures
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Figure 43: Residual Stress Comparison for Ti-6Al-4V for the JC Model with 8.3 Peak Pressures

The common feature of all three peak pressures in the new approach is underestimation of the
residual stresses predictions compared to the experimental results. This approach could be
considered as a conservative design. The results of the residual stress using the ZA model for the
three peak pressures of 5.5, 6.1, and 8.3 GPa are shown in Figures 44, 45, and 46 respectively.
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Experiment at 5.5 GPa
ZA Model: Non Optimized at 5.5 GPa
ZA Model: Optimized at 5.5GPa

Figure 44: Residual Stress Comparison for Ti-6Al-4V for the ZA Model with 5.5 Peak Pressures
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Experiment at 6.1 GPa
ZA Model: Non Optimized at 6.1 GPa
ZA Model: Optimized at 6.1GPa

Figure 45: Residual Stress Comparison for Ti-6Al-4V for the ZA Model with 6.1 Peak Pressures
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Experiment at 8.3 GPa
ZA Model: Non Optimized at 8.3 GPa
ZA Model: Optimized at 8.3GPa

Figure 46: Residual Stress Comparison for Ti-6Al-4V for the ZA Model with 8.3 Peak Pressures

The consistency of the approach is evident in these figures compared to experimental results. The
new approach performs well at the surface for peak pressure of 5.5 GPa and 6.1 GPa, while it
overestimates at the surface for the peak pressure of 8.3 GPa. On the other hand, the traditional
approach overestimates for all the peak pressures compared to the experimental results. Figures
47, 48, and 49 show the residual stress comparison between the experiment and simulations for
the KHL model at peak pressures of 5.5, 6.1, and 8.3 GPa respectively. As seen in the previous
two models, the KHL model performs well compared to the experimental results for three
different peak pressures including the surface. The same model using the traditional approach
over predicts at the surface for peak pressures of 5.5 and 6.1 GPa. This shows that the
optimization-based approach is consistent in predicting the residual stresses using three different
models. In most cases in this work, it performs better than the traditional approach. However, we
cannot include this for every case because the residual stress prediction based on the traditional
approach is dependent on the amount and quality of the experimental data available.
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Experiment at 5.5 GPa
KHL Model: Non Optimized at 5.5 GPa
KHL Model: Optimized at 5.5GPa

Figure 47: Residual Stress Comparison for Ti-6Al-4V for the KHL Model with 5.5 Peak Pressures
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Experiment at 6.1 GPa
KHL Model: Non Optimized at 6.1 GPa
KHL Model: Optimized at 6.1GPa

Figure 48: Residual Stress Comparison for Ti-6Al-4V for the KHL Model with 6.1 Peak Pressures
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Experiment at 8.3 GPa
KHL Model: Non Optimized at 8.3 GPa
KHL Model: Optimized at 8.3GPa

Figure 49: Residual Stress Comparison for Ti-6Al-4V for the KHL Model with 8.3 Peak Pressures

Table 18 shows the least square error using Equation 12 and the normalized error between the
experimental data and the simulation results for all models. The simulation predictions include
the traditional approach (non-optimized) and the optimization-based approach.

68
Approved for public release; distribution unlimited.



Ta
bl

e
18

:L
ea

st
Sq

ua
re

E
rr

or
C

om
pa

ri
so

n
fo

r
Ti

-6
A

l-4
V

Ti
-6

A
l-

4V
JC

M
od

el
K

H
L

M
od

el
Z

A
M

od
el

Pe
ak

Pr
es

su
re

(G
Pa

)
5.

5
6.

1
8.

3
5.

5
6.

1
8.

3
5.

5
6.

1
8.

3
N

on
-O

pt
im

iz
ed

(M
Pa

)
44

6.
46

35
8.

14
30

0.
74

41
0.

84
36

5.
99

27
8.

33
75

9.
47

78
0.

87
55

9.
04

O
pt

im
iz

ed
(M

Pa
)

46
.4

3
23

1.
15

17
8.

13
51

.8
0

90
.0

8
22

8.
08

16
4.

39
26

9.
08

40
4.

89
N

or
m

al
iz

ed
(N

on
-O

pt
im

iz
ed

)
9.

62
7.

71
6.

47
8.

84
7.

88
5.

99
17

.4
8

16
.8

0
12

.0
4

N
or

m
al

iz
ed

(O
pt

im
iz

ed
)

1.
0

4.
98

3.
83

1.
12

1.
94

4.
91

3.
54

5.
79

8.
72

69
Approved for public release; distribution unlimited.



This table provides a quantitative comparison between the two approaches. In Table 18, the least
squared error is normalized to the least value that occurs for the JC model using the optimized
approach at the peak pressure of 5.5 GPa. The JC and the KHL models perform very well
compared to the ZA model for all the peak pressures for both approaches. It can be seen that the
maximum error for the optimization-based approach is 8.72 times the least error value while it is
12.04 times the least error value for the traditional approach.

5.6 Section Summary and Conclusions

In this chapter, an inverse optimization-based approach is used to obtain model constants when
very little or no experimental data of stress-strain curves is available. The optimization-based
approach is shown to predict residual stresses that are consistent with experimental results. The
consistency of the approach is shown by validating for two materials of Inconel®718 and
Ti-6Al-4V. LP experiments were performed with a Nd-glass laser for Inconel®718 at four
different energy densities and the residual stress measurements were made using an x-ray
diffraction method. For the Inconel®718, the JC and the KHL models predicted the trends and
the simulation results are in agreement with the experimental results for the lower two peak
pressures. The JC and the KHL models are shown to perform better than the ZA model in
prediction of residual stresses compared to experimental data for Ti-6Al-4V.
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6.0 PROBABILISTIC FRAMEWORK FOR LASER PEENED RESIDUAL STRESS
FIELD BY PROPAGATION OF REGRESSION UNCERTAINTY

This chapter develops a methodology to quantify the uncertainty in residual stress field, i.e.,
residual stress value along the depth induced by the LP process simulation. The LP process
simulation is described in the context of uncertainty quantification. The cause of uncertainty in
simulation of LP is discussed. The input uncertainty is the regression estimates obtained from the
non-linear regression analysis. The effect of these uncertainties on the residual stress field is
presented.

6.1 Deterministic LP Simulation Procedure

The simulation procedure to predict residual stress field induced by the LP process has been
discussed in the previous chapters. The simulation procedure is described in this section with the
purpose of making distinctions between deterministic simulation procedure with stochastic
simulation procedure. A schematic of the simulation procedure is shown in Figure 50.

Figure 50: Deterministic Simulation Procedure of the LP Process

The deterministic simulation procedure can be divided into three components:

1. Obtain the estimates of material model constants from a non-linear regression analysis based
on limited experimental data

2. Input the model constant estimators and other process parameters such as peak pressure, spatial
and temporal pressure profile, and spot size into FEA

3. Compare the predicted residual stress field at different depths with the experimental data
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The material model constant estimates act as one set of inputs to the FEA and residual stress field
is obtained as the response from the FEA.

6.2 Cause and Effect of Uncertainty in LP Simulation

During the simulation process, a material model is required which acts as one of the inputs to
FEA. The residual stress field obtained is considered as the response. A material model is an
equation relating stresses to strains at different strain rates and predicts the behavior of the
material under different loading conditions. Each material model has certain parameters or model
constants that must be estimated. These model constants are determined using non-linear
regression and least squares approach is typically used to estimate the model constants. An error
term in the non-linear model is assumed to be random and therefore estimates of the model
constants obtained are also random. This randomness in the model constant estimates causes
uncertainty in the input and is termed as regression uncertainty. This uncertainty represents the
variability of the material model to predict the material behavior. The uncertainty in the input is
propagated through the system (FEA) or black box to obtain the uncertainty in the response
(residual stress field). The uncertainty in the response is expressed as confidence band on the
residual stress field.

6.3 Probabilistic Framework for LP Simulation

In this research, a framework is developed to address the uncertainty in the model constant
estimates that leads to variability in the residual stress field. The schematic representation of the
framework is shown in Figure 51.
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Figure 51: Probabilistic Framework for LP Simulation

The framework is divided into three components:

1. Regression (Input) Uncertainty Quantification

2. Uncertainty Propagation

3. Residual Stress Field Confidence Band

6.3.1 Regression (Input) Uncertainty

Regression analysis is a technique from statistics that can be used to investigate the relationship
between a dependent variable and one or more independent variables. Applications of the
regression technique are found in many fields including engineering, physical sciences,
economics, management, and biological sciences. According to Montgomery and Peck [84],
regression analysis is the most widely used statistical technique. Regression analysis can be used
for purposes such as data description, parameter estimation, prediction and estimation, and
control. Regression analysis can be categorized into two divisions:

1. Linear Regression Analysis

2. Non-linear Regression Analysis
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The simplest linear regression model is shown in Equation 14.

y = β0 +β1x+ ε (14)

where x is the independent variable, β0 and β1 are the regression coefficients that need to be
estimated, y is the dependent variable, and ε is a random error. Equation 14 is considered a linear
regression model because the equation is linear in coefficients. The least squares method is
typically used to estimate the regression coefficients. The error term is assumed to be NID(0,σ2),
normal and independently distributed with zero mean and constant variance of σ2. The
assumption of zero mean in the error is primarily used for simplifying the number of unknown
regression coefficients. A non-zero mean is absorbed in the intercept (β0) of the model. The
assumption of constant variance of value σ2 simply states that the observed experimental data
values obtained are equally unreliable. Further analysis can be performed to test this assumption
and variance-stabilization transformation can also be implemented [85]. The least squares
estimator of vector β is shown in Equation 15:

β̂ =
(
XT X

)−1
XT y (15)

where X is a matrix of levels of the independent variables and a column of ones for the intercept
and y is the vector of observations. The size of y is n×1, where n is the number of observations.
The size of X is n×k, where k represents the number of regression coefficients which includes the
intercept term β0. The size of the vector β̂ is k×1. The fitted regression model is shown in
Equation 16:

ŷ = X β̂ (16)

where ŷ is known as fitted values or predicted values. The difference between actual observation
yi and fitted value ŷi is the residual, ei = yi− ŷi. The vector of residuals n×1 is e = y− ŷ. The
formula for estimating the error variance

(
σ2) is shown in Equation 17:

σ̂
2 =

yT y− β̂
T

XT y

n− k
(17)

The variance property of β̂ is expressed as a covariance matrix obtained by

Cov(β̂ ) = σ2 (XT X
)−1[86]. Error variance estimated in Equation 17 is used for the error variance

term to obtain the estimate of the covariance matrix. The size of the covariance matrix is k× k.
The covariance matrix is a symmetric matrix whose ith diagonal element is the variance of the
individual regression coefficient estimate β̂i and i jth element is the covariance between estimates
β̂i and β̂ j. Assuming a normal error, the regression coefficient estimators β̂ will have multivariate
normality distribution. Confidence intervals for individual regression coefficients can be found in
Montgomery’s work [86].

Engineers experience non-linear regression models in day to day life. The common notation for a
non-linear regression model is shown in Equation 18:

y = g(x;β0,β1, . . . ,βk)+ ε (18)
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where x is the vector of independent variables and βi i = 1,2, . . . ,k are the regression coefficients
that need to be estimated. The term ’non-linear’ is used because the function g is non-linear in the
coefficients (βi). Unlike linear regression models, there is no closed form solution available to
estimate the regression coefficients in a non-linear model. Instead, iterative optimization
techniques such as Gauss-Newton algorithm is used. The basic idea of the Gauss-Newton
algorithm is approximating the function g by a first order Taylor series expansion. This linear
approximation is used in least squares approach. A Jacobian matrix, which is composed of partial
differential of function g with respect to each parameter βi,

∂g
∂βi

is obtained. An initial value is
proposed for the regression coefficients and the coefficients are updated until convergence is
reached. The details of the algorithm can be found in the work of Ratkowsky [87].

The covariance matrix [ψ] between the regression coefficient estimates can be estimated from the
linearized approximation of the function g. The partial differential of function g with respect to
each regression estimate β j for an independent variable xi is denoted by Equation 19:

ci j =
∂g
(

β̂ ,xi

)
∂ β̂ j

(19)

and [C] =
{

ci j
}

. Compared to the linear regression analysis, matrix [C] is analogous to matrix
[X ]. The size of the matrix [C] is n× k, where n is number of observations and k represents the
number of regression coefficients. The equation for the estimated covariance between the
regression estimates is shown in Equation 20:

[ψ] = σ̂
2 [CTC

]−1
(20)

where σ̂2 is the estimated error variance as shown in Equation 17.

The estimates of the regression coefficients are approximately normal. The approximate normal
distribution gets closer to the asymptotic limit as the sample size gets larger based on law of large
numbers and central limit theorem. For a limited sample size, which is mostly the case in
engineering, it is desirable to validate the normality assumption. In this research an approach
from statistics known as “bootstrap for regression” is used to verify the normality assumptions of
the regression coefficient estimates [88]. The following section details bootstrapping.

6.3.2 What is Bootstrapping?

Bootstrapping is a modern, computer-intensive statistical technique. It has been initiated by Efron
and the first monograph was published in 1993 [89]. Bootstrapping can be used to estimate the
standard errors of means, variances as well as more complicated statistics. It can also be used to
construct hypothesis tests. Bootstrapping falls into the category of sampling with replacement
(except few exceptions). Bootstrapping provides additional details than a simple statistic from a
sample. Figure 52 shows a generic flow chart of the bootstrapping method. The figure can be
easily understood with an example. Suppose the initial sample data of an observed quantity is 10,
13, 15, 18, and 20. ’Mean’ of the data can be obtained and represents the sample statistic. The
mean of the above data is 15.2. Bootstrapping can provide us additional information such as the
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Figure 52: Schematic Representation of Bootstrap Method

distribution of the mean. It can be assumed that there are five balls in a basket numbered 10, 13,
15, 18, and 20. A ball is randomly sampled and then placed back in the basket. This is known as
sampling with replacement. There are again all five balls in the basket when the next ball is
randomly sampled. The procedure is repeated five times to obtain the first bootstrap sample. The
first bootstrap sample obtained using MATLAB [90] is 18, 13, 20, 13, and 18 and the mean of the
bootstrap sample is 16.4. As it can be seen from the first bootstrap sample, the numbers 13 and 18
appears twice, the numbers 10 and 15 does not appear at all. Another possible bootstrap sample
can be that all five samples can be the same number. In this manner p bootstrap samples are
generated from the initial sample. The typical values of p range from 500 to 5000. Figure 53
shows the histogram of the 3000 bootstrap samples. The number of bootstrap samples (3000) is
chosen large enough so that the results are invariant of the number of bootstrap samples. The
variation of the mean that is centered around the sample mean can be seen from the histogram
data. The power of the method lies in the fact that additional samples are being generated from
the initial sample. This indicates that no new experiments are conducted to obtain the additional
information. In the above example, the sample statistic was the mean of the data, but the
technique can also be used for other sample statistics. Bootstrap method has been used by
Picheny et. al. to conservatively estimate the reliability of engineering structures. Probability of
failure of a composite panel is estimated using different methods and the results are compared
with the bootstrap method [91].

6.3.2.1 Bootstrapping for Regression

Bootstrapping can also be used for regression. There are three ways to bootstrap a regression
analysis [92], which are divided into two categories: (i) parametric bootstrap and (ii)
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Figure 53: Histogram of Mean of the Sample Data

non-parametric bootstrap. Example 10-1 from Montgomery’s book [86] in Chapter 10 is used to
demonstrate the bootstrap methods. Sixteen observations of an experiment on the viscosity of a
polymer (y) and two process variables, reaction temperature (x1) and catalyst feed rate (x2), are
shown in Table 19. A linear regression model as shown in Equation 21 is used to fit the
experimental data.

y = β0 +β1x1 +β2x2 + ε (21)
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Table 19: Viscosity Data of Demonstration Example [86]

Observation Temperature (x1) Catalyst Feed Rate (x2) Viscosity (y)
1 80 8 2256
2 93 9 2340
3 100 10 2426
4 82 12 2293
5 90 11 2330
6 99 8 2368
7 81 8 2250
8 96 10 2409
9 94 12 2364

10 93 11 2379
11 97 13 2440
12 95 11 2364
13 100 8 2404
14 85 12 2317
15 86 9 2309
16 87 12 2328

The least squares estimates of β obtained using Equation 15 are shown in Table 20:

Table 20: Regression Coefficients for Linear Regression Model

Parameter Value

β̂0 1566.08
β̂1 7.62
β̂2 8.58

The variance estimated for the error
(
σ2) using the Equation 17 is 16.36. Table 21 shows the

observations, the predicted values, and the corresponding residuals or errors. The predicted values
are calculated using Equation 16.
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Table 21: Observations, Predicted Values, and Residuals for Demonstration Example [86]

# Observation (yi) Predicted value (ŷi) Residual (ei = yi− ŷi)
1 2256 2244.5 11.5
2 2340 2352.1 -12.1
3 2426 2414.1 11.9
4 2293 2294.0 -1.0
5 2330 2346.4 -16.4
6 2368 2389.3 -21.3
7 2250 2252.1 -2.1
8 2409 2383.6 25.4
9 2364 2385.5 -21.5

10 2379 2369.3 9.7
11 2440 2416.9 23.1
12 2364 2384.5 -20.5
13 2404 2396.9 7.1
14 2317 2316.9 0.1
15 2309 2298.8 10.2
16 2328 2332.1 -4.1

Parametric Bootstrap

The parametric bootstrap is based on the belief that the error term in the regression analysis
shown in Equation 14 or 18 is NID(0,σ2), normal and independently distributed with zero mean
and constant variance. The estimates of the regression coefficients

(
β̂

)
are obtained from the

regression analysis as shown in Table 20. The variance of the error is estimated using Equation 17
and the value obtained is 16.36 for the above demonstration example. It is termed as σ̂2. Samples
of the error are generated based on normal distribution ε∗ ∼ N

(
0, σ̂2). The method is termed as

’parametric’ because the bootstrap samples are generated from a distribution (e.g. normal) instead
of resampling from the original data. The number of samples generated is equal to the number of
observations. In the above example, since 16 observations are available, the number of normal
random samples of error is also 16. New observation is generated by adding the sampled error to
the predicted values, y∗i = ŷi + ε∗i , i = 1,2, . . . ,n, where n is the number of observations. In this
way a new set of data (xi,y∗i ) is generated. Using the newly generated data, regression analysis is
performed to obtain the estimates of regression coefficients. The procedure is repeated p times,
where p is the number of bootstraps. The method is not valid if the error is not normal and this
can be a disadvantage of the parametric bootstrap approach. Step by step procedure of the method
for the viscosity of polymer example discussed in the previous section is shown in the following.

Random samples of a normal distribution for the error with a mean of zero and variance of 16.36
(estimated variance) is generated. The size of the sample is equal to number of observations,
which is 16. The errors are added to the fit or predicted values to generate a new observation.
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Table 22 shows one example of the first randomly sampled error, the fit, and the generated
observation.

Table 22: Randomly Sampled Error, Predicted Values, and Generated Observations

# Random sample of error (ε∗i ) Predicted value (ŷi) Generated observation (y∗i = ŷi + ε∗i )
1 2.0667 2244.5 2246.57
2 -43.5123 2352.1 2308.59
3 5.3382 2414.1 2419.44
4 -8.8267 2294.0 2285.17
5 20.0801 2346.4 2366.48
6 14.4624 2389.3 2403.93
7 8.7680 2252.1 2260.87
8 12.9395 2383.6 2396.54
9 24.0032 2385.5 2409.50
10 -21.8989 2369.3 2347.40
11 1.5361 2416.9 2418.44
12 -7.9748 2384.5 2376.53
13 -23.4989 2396.9 2373.40
14 -15.8406 2316.9 2301.06
15 19.0240 2298.8 2317.82
16 14.7254 2332.1 2346.83

The first bootstrap estimates of β obtained for the newly generated observation using Equation 15
are β̂ ∗0 = 1579.12, β̂ ∗1 = 7.37, and β̂ ∗2 = 9.56. The procedure of generating normal random
samples of error is repeated, and for every sample a bootstrap estimate of the regression
coefficients is obtained. Figures 54, 55, and 56 show the histogram of 3000 bootstrap estimates of
β̂ ∗0 , β̂ ∗1 , and β̂ ∗2 respectively. The number of bootstrap samples (3000) is chosen large enough so
that the results are invariant of the number of bootstrap samples. Additional information about the
estimates is obtained at no further cost of performing an actual experiment.

Non-parametric Bootstrap

There are two methods in non-parametric bootstrap. They are termed as (i) observation
resampling or random-x resampling and (ii) residual resampling or fixed-x resampling. Each
method is described and comparison between the two are made later. The method is called as
’non-parametric’ because the bootstrap samples are not generated from a known distribution,
which is the case for a parametric bootstrap. Instead, the samples are generated by resampling the
original data.

Random-x Bootstrap: Demonstration example discussed in the previous section is used to
explain the method. The viscosity data of a polymer is a vector of observations

(
y
)

and the
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Figure 54: Parametric bootstrap histogram of β̂ ∗0 for the demonstration example

Figure 55: Parametric bootstrap histogram of β̂ ∗1 for the Demonstration Example
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Figure 56: Parametric Bootstrap Histogram of β̂ ∗2 for the Demonstration Example

model-matrix (X) can be written as shown in Equation 22:

X =



1 80 8
1 93 9
1 100 10
1 82 12
1 90 11
1 99 8
1 81 8
1 96 10
1 94 12
1 93 11
1 97 13
1 95 11
1 100 8
1 85 12
1 86 9
1 87 12


16×3

y =



2256
2340
2426
2293
2330
2368
2250
2409
2364
2379
2440
2364
2404
2317
2309
2328


16×1

(22)

A matrix Z is created by combining the model-matrix X and vector of observations y. The first
column of the Z matrix is the vector of observations and the remaining columns are from the
model-matrix X . The Z matrix obtained for the demonstration example from the Equation 22 is
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shown in Equation 23:

Z =



2256 1 80 8
2340 1 93 9
2426 1 100 10
2293 1 82 12
2330 1 90 11
2368 1 99 8
2250 1 81 8
2409 1 96 10
2364 1 94 12
2379 1 93 11
2440 1 97 13
2364 1 95 11
2404 1 100 8
2317 1 85 12
2309 1 86 9
2328 1 87 12


16×4

(23)

Each row of the Z matrix is considered as a sample data. Bootstrap samples from the rows of the
Z matrix are generated and is termed as Z∗. Equation 24 shows an example of a Z∗ matrix.

Z∗ =



2340 1 93 9
2250 1 81 8
2250 1 81 8
2309 1 86 9
2440 1 97 13
2317 1 85 12
2330 1 90 11
2404 1 100 8
2426 1 100 10
2309 1 86 9
2379 1 93 11
2328 1 87 12
2364 1 95 11
2340 1 93 9
2250 1 81 8
2330 1 90 11


16×4

(24)

The first row the Z∗ matrix is obtained from randomly sampling from one of the rows of the Z
matrix. It can be seen from Equation 24, the first row of the Z∗ matrix is the second row of the Z
matrix. The sampled row from the Z matrix is replaced back so that all the rows of the Z matrix
are available to randomly sample for the second row for the Z∗ matrix. In this manner all the
sixteen rows of the Z∗ matrix are generated. It can be seen from the comparison between
Equations 23 and 24 that rows 1, 4, 6, 8, and 9 of Z matrix don’t appear in the Z∗ matrix at all,
where as row 7 appears thrice, rows 5 and 15 appears twice, and the remaining rows appear once.
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The matrix Z∗ can be decomposed into bootstrap model matrix X∗ and bootstrap observation
vector y∗ as shown in Equation 25:

X∗ =



1 93 9
1 81 8
1 81 8
1 86 9
1 97 13
1 85 12
1 90 11
1 100 8
1 100 10
1 86 9
1 93 11
1 87 12
1 95 11
1 93 9
1 81 8
1 90 11


16×3

y∗ =



2340
2250
2250
2309
2440
2317
2330
2404
2426
2309
2379
2328
2364
2340
2250
2330


16×1

(25)

Bootstrap estimates of the coefficients obtained using Equation 15 are β ∗0 = 1536.85, β ∗1 = 7.926,
and β ∗2 = 8.671. The procedure is repeated 3000 times and each time the bootstrap estimates are
saved. The number of bootstrap samples (3000) is chosen large enough so that the results are
invariant of the number of bootstrap samples. Figures 57, 58, and 59 show the histograms of the
bootstrap estimates of β̂ ∗0 , β̂ ∗1 , and β̂ ∗2 respectively.

Fixed-x Bootstrap: Regression analysis is performed using Equation 15 for a linear model to
obtain the estimates. Table 20 shows the obtained estimates for the demonstration example. Table
21 shows the observations (yi) , i = 1,2, . . .n, the predicted values or the fit (ŷi) , i = 1,2, . . .n, and
the errors (ei) , i = 1,2, . . .n. n is the number of observations. A bootstrap sample from the
obtained errors (ei) is generated and is termed as e∗i , i = 1,2, . . . ,n. The number of bootstrap
errors is equal to the number of observations. New observations are generated by adding the fit to
the bootstrap errors, y∗i = ŷi + e∗i , i = 1,2, . . .n. In this way a new data set is generated. Using the
newly generated data set, regression analysis is performed to obtain bootstrap estimates of the
coefficients. The procedure of bootstrapping the errors is repeated and regression analysis is
performed to obtain the bootstrap estimates. The bootstrap estimates are stored for each
regression analysis to obtain a distribution of the regression estimates. The difference between the
parametric bootstrap and the fixed-x bootstrap is that, for a parametric bootstrap, the errors are
sampled from a normal distribution of zero mean and σ̂2 variance, while the errors are sampled
with replacement from the original regression for the fixed-x bootstrap. Figure 60 shows the flow
chart of the fixed-x resampling procedure. Step by step procedure of the method for the
demonstration example is shown in the following.

Table 21 shows the observations, predicted values, and the errors of the 16 data points from the
original regression analysis. The errors from the original regression analysis are sampled with
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Figure 57: Random-x Bootstrap Histogram of β̂ ∗0 for the Demonstration Example

Figure 58: Random-x Bootstrap Histogram of β̂ ∗1 for the Demonstration Example
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Figure 59: Random-x Bootstrap Histogram of β̂ ∗2 for the Demonstration Example

Figure 60: Fixed-x Bootstrap Procedure Flowchart
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replacement. The size of the error vector is same as the number of observation, which is 16 in the
demonstration example Table 23 shows an example of the bootstrap errors, fit from the original
regression analysis, and the generated observation. The generated observation is obtained by
adding the fit to the bootstrap errors. Comparing the bootstrap error column in Table 23 to the
error column in Table 21, it can be seen that the errors 11.9, -2.1, 7.1, 0.1, and 10.2 from Table 21
did not appear in the bootstrap errors, while the errors, -1.0 and -21.5 appeared three times and
the error 23.1 appeared twice.

Table 23: Bootstrap Error, Predicted Values, and Generated Observations for Fixed-x Bootstrap
Method

# Bootstrap error (ε∗i ) Predicted value (ŷi) Generated observation (y∗i = ŷi + ε∗i )
1 -12.1 2244.5 2232.4
2 -1.0 2352.1 2351.1
3 11.5 2414.1 2425.6
4 -20.5 2294.0 2273.5
5 25.4 2346.4 2371.8
6 -4.1 2389.3 2385.2
7 23.1 2252.1 2275.2
8 -21.3 2383.6 2362.3
9 -1.0 2385.5 2384.5

10 -16.4 2369.3 2352.9
11 -21.5 2416.9 2395.4
12 -1.0 2384.5 2383.5
13 -21.5 2396.9 2375.4
14 23.1 2316.9 2340
15 9.7 2298.8 2308.5
16 -21.5 2332.1 2310.6

The bootstrap estimates obtained from the newly generated data set using Equation 15 are
β̂ ∗0 = 1633.34, β̂ ∗1 = 7.0056, and β̂ ∗2 = 7.19. The procedure of generating bootstrap errors is
repeated, and for every sample of the bootstrap estimate of the regression coefficients is obtained
and saved. The procedure is repeated 3000 times to obtain the histograms of the bootstrap
estimates. Figures 61, 62, and 63 show the bootstrap histograms of β̂ ∗0 , β̂ ∗1 , and β̂ ∗2 respectively.

The fixed-x resampling technique is used when the model-matrix [X ] is fixed. Efron [89] claims
that the two approaches are asymptotically equivalent. The random-x method is less sensitive to
assumptions concerning independence or error term. In this work, the fixed-x method is suitable
because the model-matrix [X ] is fixed.

At the end of the input uncertainty quantification step, the covariance matrix [ψ] between the
regression estimates which represents the input uncertainty is obtained along with the estimates
itself. The size of the covariance matrix is k× k, where k is the number of regression estimates.
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Figure 61: Fixed-x Bootstrap Histogram of β̂ ∗0 for the Demonstration Example

Figure 62: Fixed-x Bootstrap Histogram of β̂ ∗1 for the Demonstration Example
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Figure 63: Fixed-x Bootstrap Histogram of β̂ ∗2 for the Demonstration Example

6.3.3 Uncertainty Propagation

Propagation of the uncertainty is needed to account its effect on the response. In a
simulation-based environment such as FEA, polynomial chaos expansion or Taylor series
expansion are used to approximate the response. This is performed to reduce the computational
cost because there is no explicit relationship between the input and the response. A closed form
equation is used to demonstrate the derivation procedure for the input uncertainty propagation
before the black box (FEA) propagation is presented.

Closed Form Propagation

Consider a simple function f , that is a function of two parameters β0 and β1. Assume
y = f

(
t; β̂

)
= β̂0 + β̂1t, where t is the independent variable and β̂0 and β̂1 are unbiased estimates

of true values. In analogy with the LP simulation, y can be considered as residual stress, β̂0 and
β̂1 are model constant estimates and t is depth. The covariance function of response at two
different depths t1 and t2 is derived:

Cov [y(t1) ,y(t2)] = Cov
[(

β̂0 + β̂1t1
)

,
(

β̂0 + β̂1t2
)]

= E
{[(

β̂0 + β̂1t1
)
− (β0 +β1t1)

][(
β̂0 + β̂1t2

)
− (β0 +β1t2)

]}
, assuming E

{
β̂0

}
= β0 and

E
{

β̂1

}
= β1
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= E
{[(

β̂0−β0

)
−
(

β̂1−β1

)
t1
][(

β̂0−β0

)
−
(

β̂1−β1

)
t2
]}

= E
[(

β̂0−β0

)2
]
+E

[(
β̂0−β0

)(
β̂1−β1

)]
(t1 + t2)+E

[(
β̂1−β1

)2
]
(t1t2)

= σ̂00 + σ̂01 (t1 + t2)+ σ̂11 (t1t2)

where σ̂00 is the estimate of variance of β̂0, σ̂11 is the estimate of variance of β̂1 and σ̂01 is the
estimate of covariance between β̂0 and β̂1. E (•) stands for expected value. The above equation
can be written in matrix form:

Cov
[

y(t1)
y(t2)

]
=
[

Var [y(t1)] Cov [y(t1) ,y(t2)]
Cov [y(t2) ,y(t1)] Var [y(t2)]

]
where Var stands for variance of a variable and Cov stands for covariance of a variable.
Substituting for the covariance as derived above and using the property of variance as self
covariance:

Cov
[

y(t1)
y(t2)

]
=
[

σ̂00 +2t1σ̂01 + t2
1 σ̂11 σ̂00 + σ̂01 (t1 + t2)+ σ̂11 (t1t2)

σ̂00 + σ̂01 (t1 + t2)+ σ̂11 (t1t2) σ̂00 +2t2σ̂01 + t2
2 σ̂11

]
(26)

The matrix shown in Equation 26 is decomposed into three matrices as: gradient matrix, input
covariance matrix, and transpose of gradient matrix as follows:

Cov
[

y(t1)
y(t2)

]
=
[

σ̂00 + t1σ̂01 σ̂01 + t1σ̂11
σ̂01 + t2σ̂11 σ̂01 + t2σ̂11

][
1 1
t1 t2

]
(27)

Cov
[

y(t1)
y(t2)

]
=
[

1 t1
1 t2

][
σ̂00 σ̂01
σ̂01 σ̂11

][
1 1
t1 t2

]
(28)

The matrix shown in Equation 28 can be written as a gradient matrix, input covariance matrix,
and transpose of the gradient matrix as shown in Equation 29:

Cov
[

y(t1)
y(t2)

]
=

 ∂ f (t1)
∂ β̂0

∂ f (t1)
∂ β̂1

∂ f (t2)
∂ β̂0

∂ f (t2)
∂ β̂1

[ σ̂00 σ̂01
σ̂01 σ̂11

] ∂ f (t1)
∂ β̂0

∂ f (t2)
∂ β̂0

∂ f (t1)
∂ β̂1

∂ f (t2)
∂ β̂1

 (29)

Cov
[

y(t1)
y(t2)

]
= [F ] [ψ]

[
FT ] (30)

where [F ] is a matrix of partial derivatives of parameter estimates at two different depths t1 and t2,
and [ψ] is the covariance matrix of the estimates of regression coefficients obtained from the
non-linear regression analysis. The term

[
∂ f (t1)

∂ β̂0

]
is the gradient of f with respect to β̂0 at a depth

t1. The covariance matrix of the response is obtained by propagating the input uncertainty. The
derivation shown in this section is valid for a linear relationship between input and output.
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Black Box Propagation

In the above demonstration example, the relationship between random input parameters β̂ and the
response y is known. In a simulation-based environment, such as FEA, the function f is a black
box. First order Taylor series expansion is used to approximate the response. At any depth t, the
residual stress can be approximated as shown in Equation 31:

f
(

t; β̂

)
u f

(
t;β

)
+

[
∂ f (t)
∂β

]T

β=β̂

(
β̂ −β

)
(31)

where β̂ represents the estimates of material model constants β .
[

∂ f (t)
∂β

]T

β=β̂

is a vector

representing the gradient of residual stress w. r. t. all the regression coefficients at any depth t
evaluated at the regression estimates obtained. The definition of covariance of residual stresses
between two different depths t1 and t2 is shown in Equation 32:

Cov
[

f
(

t1, β̂
)

, f
(

t2, β̂
)]

= E
{[

f
(

t1, β̂
)
− f

(
t1,β

)][
f
(

t2, β̂
)
− f

(
t2,β

)]}
(32)

Substituting the Taylor series approximation assumed in Equation 31 in the Equation 32, we
obtain:

u E


[∂ f (t1)

∂β

]T

β=β̂

(
β̂ −β

)[∂ f (t2)
∂β

]T

β=β̂

(
β̂ −β

)T (33)

Rearranging the terms in Equation 33, we obtain:

u E


[∂ f (t1)

∂β

]T

β=β̂

(
β̂ −β

)(
β̂ −β

)T
[

∂ f (t2)
∂β

]
β=β̂

 (34)

The gradient matrix and its transpose shown in Equation 34 are not random but fixed numbers.
Therefore Equation 34 is simplified as shown in Equation 35:

u

[
∂ f (t1)

∂β

]T

β=β̂

E
{[(

β̂ − β̂

)(
β̂ − β̂

)T
]}[

∂ f (t2)
∂β

]
β=β̂

(35)

The expected value of the random term shown in Equation 35 is by definition the covariance
matrix of the regression estimates that is obtained from the regression analysis. It is defined as
shown in 30 as [ψ]. Substituting [ψ] in Equation 35, we obtain:

u

[
∂ f (t1)

∂β

]T

β=β̂

[ψ]

[
∂ f (t1)

∂β

]
β=β̂

(36)
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[
∂ f (t1)

∂β

]T

β=β̂

is the partial derivative of residual stress at depth t1 with respect to estimates of

model constants. For the sake of simplicity the subscript β = β̂ is not included in rest of the
document. [ψ] is a symmetric matrix with variance on diagonal terms and covariance on off
diagonal terms. The number of discrete depths that are considered depends on the finite element
(FE) model mesh. Let m be the number of nodes in the FE model. The covariance of residual
stress field at each depth is obtained as follows:

Cov


f
(

t1; β̂

)
f
(

t2; β̂

)
· · ·

f
(

tm; β̂

)

=


V
[

f
(

t1, β̂
)]

C
[

f
(

t1, β̂
)

,
(

t2, β̂
)]

· · · C
[

f
(

t1, β̂
)

,
(

tm, β̂
)]

C
[

f
(

t2, β̂
)

,
(

t1, β̂
)]

V
[

f
(

t2, β̂
)]

· · · C
[

f
(

t2, β̂
)

,
(

tm, β̂
)]

...
...

. . .
...

C
[

f
(

tm, β̂
)

,
(

t1, β̂
)]

C
[

f
(

tm, β̂
)

,
(

t2, β̂
)]
· · · V

[
f
(

tm, β̂
)]


where V [•] and C [•] represent the variance and covariance of a variable respectively. The size of
the matrix is m×m, with variance of residual stress at each depth on diagonal terms and
covariance between depths on the off diagonal terms. Substituting the covariance between
between two depths that has been derived before, we obtain:

u



[
∂ f (t1)

∂β

]T
ψ

[
∂ f (t1)

∂β

] [
∂ f (t1)

∂β

]T
ψ

[
∂ f (t2)

∂β

]
· · ·

[
∂ f (t1)

∂β

]T
ψ

[
∂ f (tm)

∂β

]
[

∂ f (t2)
∂β

]T
ψ

[
∂ f (t1)

∂β

] [
∂ f (t2)

∂β

]T
ψ

[
∂ f (t2)

∂β

]
· · ·

[
∂ f (t2)

∂β

]T
ψ

[
∂ f (tm)

∂β

]
...

... . . . ...[
∂ f (tm)

∂β

]T
ψ

[
∂ f (t1)

∂β

] [
∂ f (tm)

∂β

]T
ψ

[
∂ f (t2)

∂β

]
· · ·

[
∂ f (tm)

∂β

]T
ψ

[
∂ f (tm)

∂β

]


m×m

(37)

The above matrix can be simplified by separating the common terms and the resultant matrices
obtained are:

=



[
∂ f (t1)

∂β

]T

1×k[
∂ f (t2)

∂β

]T

1×k
...[

∂ f (tm)
∂β

]T

1×k


m×k

[ψ]k×k

[ [
∂ f (t1)

∂β

]
k×1

[
∂ f (t2)

∂β

]
k×1

· · ·
[

∂ f (tm)
∂β

]
k×1

]
k×m

=
[
FT ] [ψ] [F ]

where [F ] is the sensitivity matrix of the residual stress with respect to estimates of material
model constants. Each column of [F ] is the gradient of residual stress with respect to a material
model constant estimate along the depth. The obtained covariance matrix of residual stress
represents the uncertainty in the residual stress field due to uncertainty in the model constant
estimator. Central difference scheme is used to determine the gradients of residual stress at each
depth with respect to estimates of regression coefficients or model constants. The step size for
each gradient is obtained after a convergence study. The number of additional FE simulations
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Figure 64: Confidence Band Validation Procedure

needed using the central difference scheme depends on the number of regression coefficient
estimates. For k estimates, 2k additional FE simulations are required.

6.3.4 Residual Stress Field Confidence Band

The diagonal elements of the covariance matrix obtained in the previous section contain the
variance of the residual stress at each depth. Approximate 95% lower and upper bound of residual
stress at each depth can be obtained from Equation 38

U pper Bound = RSi +1.96σi

Lower Bound = RSi−1.96σi (38)

where RSi is the residual stress obtained from the deterministic analysis at a depth i and σi is the
standard deviation at a depth i. The index i ranges from 0 (surface) to a depth of interest. The
number 1.96 represents the 95% bounds for normal distribution. The upper and lower confidence
band for the entire depth is obtained by interpolating the upper and lower confidence bounds
respectively. The confidence band implies that the true residual stress field will be between the
confidence band 95% of the times.

Validation of Confidence Band

A Monte Carlo analysis is performed to demonstrate the validation of the confidence band
developed. Figure 64 shows the flow chart of the validation procedure. Random samples of error
are generated from a normal distribution with a zero mean and a variance of mean squared error
obtained from the non-linear regression analysis. The deterministic fit is added to the random
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Figure 65: JC Model Fit to the Experimental Data

error. New estimates of model constants are obtained from non-linear regression analysis. The
developed methodology is used to obtain the confidence band for the entire depth of interest for
the new simulated experimental data. The deterministic residual stress is verified at each depth
and if the stress lies in between the confidence bounds, a counter is prepared. This procedure is
repeated several times and the counter is updated each time the deterministic residual stress is in
between the confidence bounds. The counter at each depth can be used to approximate the true
confidence level. A plot of obtained confidence level vs. depth is prepared to compare with the
target level.

6.4 Regression (Input) Uncertainty Quantification Results

Experimental data [75] of material behavior for Ti-6Al-4V at four different strain rates are shown
in Figure 65. This figure shows the plot of flow stress vs. plastic strain. The experiments have
been performed using the Hopkinson bar test, details can be found in the cited reference. The JC
model is used to curve fit the available experimental data and will later be used to predict the
material behavior at higher strain rates. The JC model details are provided in Chapter 3 and is
shown in Equation 39 for continuity. Figure 65 shows that the JC model was able to match the
experimental data at three strain rates of 20s−1, 1.5s−1, and 0.04s−1 relatively well compared to
strain rate of 1.5s−1. Model constants A, B, n, and C are estimated using non-linear regression
analysis. ε̇0 is assumed to be equal to 1s−1.

σ = [A+Bε
n]
[

1+Cln
ε̇

ε̇0

]
(39)

Figure 66 shows another representation of the fit to the experimental data. Comparison between
actual values vs. predicted values are plotted at different actual values. A plot of straight line with
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Figure 66: JC Model Fit vs Actual Experimental Data

45o angle represents a good fit with the experimental data at all predicted values. Figure 66 shows
a straight line with better fit to the experimental data at lower predicted values compared to
higher. Two assumptions of random errors: (i) constant variance and (ii) zero mean can be
checked at the same time using the residual plot. A residual plot is a plot of residuals against the
fitted values. If both the assumptions are satisfied the scatter is expected to vary randomly around
zero for all predicted values. Figure 67 shows the residual plot for the JC model from the
non-linear regression analysis. The figure shows that both the assumptions were satisfied for all
predicted values.

The model constant estimates obtained are shown in Table 24.

Table 24: Material Model Constant Estimates

Model Constant Estimates Value
A 1170.07 MPa
B 837.34 MPa
n 0.3409
C 0.017

An estimate of the covariance matrix for the model constant estimates is obtained from the
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Figure 67: JC Model Fit vs Residuals

non-linear regression analysis using Equation 20 and is shown in Equation 40:

[ψ] =


Â B̂ n̂ Ĉ

Â 5.72×102 1.51×103 1.18 −8.82×10−4

B̂ 7.10×103 4.08 −4.83×10−3

n̂ 2.75×10−3 −3.58×10−6

Ĉ Sym 4.29×10−7

 (40)

The variance of the model constant estimates are along the diagonals. The off-diagonal terms
represent the covariance between model constant estimates. A correlation coefficient matrix is
obtained to provide a better interpretation of the covariance matrix because the model constants
are on different scales. Equation 41 shows the formula to obtain the correlation coefficient
between two random variables, X and Y :

corr [X ,Y ] =
cov [X ,Y ]√

Var [X ]
√

Var [Y ]
(41)

where cov [X ,Y ] is the covariance between X and Y and Var [•] represents variance of a variable.
Equation 42 shows the calculated correlation coefficient matrix:

[corr] =


Â B̂ n̂ Ĉ

Â 1 0.75 0.94 −0.06
B̂ 1 0.92 −0.09
n̂ 1 −0.1
Ĉ Sym 1

 (42)
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Figure 68: Bootstrap Histogram of Â

Equation 42 indicates that the estimate of model constant Ĉ is negatively correlated with other
estimates and also these correlations are low. Model constant estimate n̂ is highly correlated with
estimates Â and B̂.

Fixed-x bootstrap sampling technique is performed to evaluate the multivariate normality
assumption of the model constant estimates. Figures 68, 69, 70, and 71 show the bootstrap
histograms of the estimates Â, B̂, Ĉ, and n̂. 5000 bootstrap estimates are obtained. It can be
seen from these figures that the model constant estimates n̂ and Ĉ are approximately normal while
the estimates Â and B̂ are skewed. The bootstrap method provides a qualitative validation on the
multi-variate normality assumption that the model constant estimates closely resemble the
assumed distribution.

6.5 Demonstration Examples and LP Application

The input uncertainty quantified in the previous section is propagated through closed-form
demonstration examples and the LP application to obtain the confidence band. Two demonstration
examples are investigated. For these demonstration examples, an explicit relationship between the
residual stress and the model constant estimate is assumed such that the residual stress field
obtained is similar to the residual stress field generated by the LP application. Monte Carlo
analysis is performed for the demonstration examples to validate the confidence band.

6.5.1 Demonstration Example 1

The relationship between the residual stress field and the model constant estimates is shown in
Equation 43.
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Figure 69: Bootstrap Histogram of B̂
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Figure 70: Bootstrap Histogram of n̂
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Figure 71: Bootstrap Histogram of Ĉ

RS =−1000+1000log
(
A+20Bd +nd2 +Cd3) (43)

where RS is the residual stress value, d is the depth in mm, and A, B, n, and C are the model
constants. Equation 43 indicates a logarithmic relationship between the residual stress field at any
depth d and the model constants. The estimates obtained in Table 24 are used to obtain the
deterministic residual stress field. A depth of 2 mm is considered and 80 equal divisions are
assumed representing the discretization (FEA mesh) of the depth. Figure 72 shows the
deterministic residual stress field. As we can see from the figure, the residual stress field is
compressive at the surface and progressively leads to tensile at sub surface which is similar to the
laser peened residual stress field. The closed form equation is a representative of the residual
stress field obtained from the LP simulation.

A central difference scheme is used to obtain the numerical gradient of the residual stress field
with respect to each model constant estimate. A comparison is made with the analytical gradients
because the explicit relationship between the residual stress field and the model constants is
known. Figures 73, 74, 75, and 76 show the comparison between analytical and numerical
gradient of residual stress field for model constant estimates Â, B̂, n̂, and Ĉ respectively.
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Figure 72: Deterministic Residual Stress Field for Demonstration Problem 1

Figure 73: Gradient of Residual Stress Field with respect to Model Constant Estimate Â for
Demonstration Problem 1
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Figure 74: Gradient of Residual Stress Field with respect to Model Constant Estimate B̂ for
Demonstration Problem 1

Figure 75: Gradient of Residual Stress Field with respect to Model Constant Estimate n̂ for
Demonstration Problem 1
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Figure 76: Gradient of Residual Stress Field with respect to Model Constant Estimate Ĉ for
Demonstration Problem 1

A good agreement between the numerical and analytical gradient is evident from the figures.
Increasing trend can be seen for the model constant estimates B̂, Ĉ, and n̂, while decreasing trend
is evident for Â. The covariance matrix of the residual stress is obtained from the procedure
described in Section . Figure 77 shows the 95% confidence band on the residual stress field along
with the deterministic residual stress field.
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Figure 77: 95% Confidence Band on the Residual Stress Field for Demonstration Problem 1

The confidence band indicates that the true residual stress field is in between the band 95% of the
times. A plot of standard deviation of the residual stress along the depth is shown in Figure 78.

Figure 78: Standard Deviation of Residual Stress Field for Demonstration Problem 1
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A lower value of standard deviation can be seen at the surface and progressively increases along
the depth. The smallest variability of 2 MPa is observed at the surface while a maximum
variability of 10 MPa can be seen at a depth of 2 mm.

A MCS on Equation 43 is performed to validate the developed residual stress band. Figure 79
shows the comparison between the target and achieved confidence level for the million Monte
Carlo samples along the entire depth.

Figure 79: Confidence Level Comparison to Target Confidence Level for Demonstration
Problem 1

A lowest confidence level of ≈ 92% is achieved at the sub surface and a highest confidence of
≈ 95% at near surface. Figure 79 indicates that the developed confidence bands are able to
capture the target confidence levels with reasonable accuracy.

6.5.2 Demonstration Example 2

A response surface fit is chosen as the second demonstration example. The response surface is
shown in Equation 44

RS = α1 +α2Adα3 +α4Bdα5 +α6ndα7 +α8Cdα9 (44)

where αi, i = 1,2, . . .9 need to be determined. The second demonstration example represents a
polynomial relationship between the residual stress field and the model constant estimates as
opposed to logarithmic relationship in the demonstration example 1. Also, the response surface is
a representative of the residual stress field induced by the LP process. 21 latin hypercube samples
are generated using JUMP software and the design matrix is shown in Table 25. Upper and lower
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bounds for each model constant estimate is provided. The design matrix is generated such that the
samples are generated from the entire design space. FEA is performed at all the 21 design points
and the residual stress values are obtained. The first 20 samples are used to obtain the coefficients
and the 21st design point is used to compare the response surface fit and the FEA result.

Table 25: Latin Hypercube Samples Design Matrix

# A B n C d
1 1168.3 862.59 0.3881 0.0174 0.3
2 1180.2 921.58 0.3723 0.0178 1.4
3 1189.8 803.6 0.3776 0.0168 0.6
4 1173.1 837.31 0.3933 0.0173 1.7
5 1185.0 904.73 0.2989 0.0177 0.8
6 1177.8 786.74 0.3199 0.0178 1.1
7 1151.5 761.46 0.3304 0.0172 1.3
8 1175.4 795.17 0.2884 0.0171 1.6
9 1187.4 913.15 0.3566 0.0169 1.5

10 1161.1 769.89 0.3618 0.0169 0.2
11 1163.4 845.73 0.3356 0.0167 2.0
12 1170.7 753.03 0.3828 0.0177 0.5
13 1156.3 871.02 0.2936 0.0174 1.9
14 1192.2 879.44 0.3409 0.0171 0.0
15 1165.9 887.87 0.3146 0.017 0.7
16 1153.9 812.02 0.3461 0.0179 1.8
17 1158.7 820.45 0.3251 0.0176 0.1
18 1194.6 854.16 0.3041 0.0168 1.0
19 1182.6 778.31 0.3094 0.0172 0.4
20 1149.1 896.3 0.3513 0.0175 1.2
21 1197.0 828.88 0.3671 0.0175 0.9

Figure 80 shows the comparison between the FEA result and response surface at the 21st design
point up to a depth of 2 mm.
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Figure 80: Response Surface Fit Comparison with FEA

It is evident from Figure 80 that the response surface is in good agreement with the FEA result
along the entire depth except at the surface. The response surface over predicts at the surface, but
for the purpose of validation of the framework the above obtained response surface is sufficient.
The coefficients obtained from the response surface fit are shown in Table 26.

Table 26: Response Surface Coefficients

Parameter Value
α1 -54.70
α2 -0.02
α3 3.45
α4 0.2304
α5 0.6984
α6 -345.64
α7 -0.5499
α8 155.3663
α9 5.6861

A depth of 2 mm is considered and 80 equal divisions are assumed representing the discretization
(FEA mesh) of the depth. Figure 81 shows the deterministic residual stress field.
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Figure 81: Deterministic Residual Stress Field for Demonstration Example 2

As we can see from the figure, the same trend observed in demonstration example 1 is also seen
here. The residual stress field consists of compressive stresses at the surface and progressively
leads to tensile stresses at subsurface which is similar to the LP residual stress field. A higher
compressive residual stress of 1000 MPa is obtained at the surface compared to the previous
example which had a compressive residual stress of 250 MPa at the surface. A central difference
scheme is used again to obtain the numerical gradients of the residual stress field with respect to
each model constant estimate. A comparison is made with the analytical gradients because the
explicit relationship between the residual stress field and the model constants is known. Figures
82, 83, 84, and 85 show the comparison between analytical and numerical gradient of residual
stress field for model constant estimates Â, B̂, n̂, and Ĉ respectively.
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Figure 82: Gradient of Residual Stress Field with respect to Model Constant Estimate Â for
Demonstration Problem 2

Figure 83: Gradient of Residual Stress Field with respect to Model Constant Estimate B̂ for
Demonstration Problem 2
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Figure 84: Gradient of Residual Stress Field with respect to Model Constant Estimate n̂ for
Demonstration Problem 2
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Figure 85: Gradient of Residual Stress Field with respect to Model Constant Estimate Ĉ for
Demonstration Problem 2

A good agreement between the numerical and analytical gradient is evident from these figures.
Increasing trend can be seen for the model constant estimates B̂, Ĉ, and n̂, while decreasing trend
is evident for Â. The covariance matrix of the residual stress is obtained from the sensitivity
matrix of the residual stress field with respect to each model constant estimate. Figure 86 shows
the 95% confidence band on the residual stress field along with the deterministic residual stress
field.
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Figure 86: 95% Confidence Band on the Residual Stress Field for Demonstration Problem 2

The confidence band indicates that the true residual stress field is in between the band 95% of the
times. A plot of the variability of the residual stress field along the depth can be see in Figure 87
that show standard deviation against depth.

Figure 87: Standard Deviation Variation along the Depth for Demonstration Problem 2

111
Approved for public release; distribution unlimited.



A higher variability of residual stress can be seen at the surface and progressively decreases along
the depth. A maximum variability of ≈ 160MPa is obtained at the surface while least variability
of ≈15MPa can be seen at a depth of ≈ 1mm.

A Monte Carlo analysis is performed to validate the developed residual stress band. Figure 88
shows the comparison between the target and achieved confidence level for the million Monte
Carlo samples along the entire depth. It can be seen from Figure 88 that the achieved confidence
level is lower than the target confidence level at the surface regions while a higher confidence
level is achieved sub surface.

Figure 88: Confidence Level Comparison to Target Confidence Level for Demonstration
Problem 2

A lowest confidence level of ≈ 93% is achieved at a depth of ≈ 0.6mm and a highest confidence
of ≈ 96.5% at a depth of ≈ 1.4mm. The obtained confidence level differs from the target value of
95% could be due to Taylor series approximation and/or lack of normality in regression estimates.

6.5.3 LP Application

For the LP application, no explicit relationship between residual stress and material model
constants is available. FEA is used to simulate the residual stress fields generated by the LP
process. The estimates obtained in Table 24 are used to obtain the deterministic residual stress
field. Figure 89 shows the deterministic residual stress field with a peak pressure of 5.5 GPa.
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Figure 89: Deterministic Residual Stress Field for the LP Process Simulation

A comparison is also shown with the experimental data [38]. It is evident from the Figure 89 that
compressive residual stresses are generated at the surface and compensated by tensile stresses in
the sub-surface. Figures 90, 91, 92, and 93 show the gradients of residual stress field with respect
to model constant estimates Â, B̂, n̂, and Ĉ and respectively.
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Figure 90: Gradient of Residual Stress Field with respect to Model Constant Estimate Â for
the LP Simulation

Figure 91: Gradient of Residual Stress Field with respect to Model Constant Estimate B̂ for
the LP Simulation
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Figure 92: Gradient of Residual Stress Field with respect to Model Constant Estimate n̂ for
the LP Simulation
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Figure 93: Gradient of Residual Stress Field with respect to Model Constant Estimate Ĉ for
the LP Simulation

Central difference scheme is used to obtain the gradients. Assuming the true gradients are smooth
function, the numerical gradients generated by central difference scheme are smoothed. It can be
seen from these figures that the gradients are on different scales. Decreasing trend can be seen for
the model constant estimates Â, B̂, and Ĉ, while an increasing trend is evident for estimate n̂. 95%
confidence band for the residual stress field at each depth is shown in Figure 94.
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Figure 94: 95% Confidence Band on the Residual Stress Field for the LP Simulation

A higher variance of residual stress is obtained at the surface and decreases along the depth. A
plot of the variability along the depth can be seen in Figure 95 that shows the standard deviation
against depth.

Figure 95: Standard Deviation of Residual Stress Field for the LP Simulation
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A maximum deviation of 7MPa is obtained at the surface. This indicates that the JC model is
robust in prediction of residual stress field for the LP process. The variation of residual stress
depends on the material model, experimental data, and relationship between residual stress field
and model constants.

6.6 Section Summary

In this chapter, a framework is developed to quantify the uncertainty in residual stress field
induced by the LP simulation. Input uncertainty is quantified from a non-linear regression
analysis that is used to fit the constitutive material model to the experimental data of stress-strain
at different strain rates. A bootstrapping technique is used to evaluate the multivariate normality
assumption of the material model constant estimates. Taylor series expansion in combination with
sensitivity analysis is used to propagate the input uncertainty. Two demonstration examples are
shown to validate the methodology by comparing the obtained confidence level with target
confidence level using Monte Carlo analysis. The JC material model is shown to be a robust
model to simulate the LP process with a maximum residual stress standard deviation of 7 MPa is
obtained at the surface.
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7.0 SUMMARY AND FUTURE DIRECTIONS

This chapter provides a brief summary of the research work performed and possible future
directions for the research that can be extended. In this work, the simulation of the LP process is
performed and the residual stress field generated by the LP simulation is quantified by the
propagation of regression uncertainty.

Material model validation for the simulation of the LP process is presented. FEA is shown to be a
useful method to simulate the LP process. Three different material models, the EPP, the JC
model, and the ZA model, are used for the validation purposes. Efficient modeling of the LP
process is performed by incorporating infinite elements to represent the non-reflecting boundary
conditions. An integration framework is implemented for efficient data management between
ABAQUS/Explicit and ABAQUS/Standard. The EPP model, which is most often used in the
literature, is shown to produce inconsistent results. The simulation results are compared with the
experimental data for three different peak pressures including multiple shots. The ZA model,
which is based on dislocation mechanics, produces consistent trends but overestimates the results
compared to experimental data. The JC model is shown to produce consistent results matching
the trends and better agreement with experimental results.

Inverse optimization-based approach is designed to obtain the material behavior when very little
or no experimental data of stress-strain curves is available. The optimization-based approach is
shown to predict residual stresses that are consistent with experimental results. The consistency
of the approach is shown by validating for two materials including Inconel®718 and Ti-6Al-4V.
LP experiments were performed in collaboration with LSP Technologies Inc, Dublin, OH with a
Nd-glass laser for Inconel®718 at four different energy densities and the residual stress
measurements were made using an x-ray diffraction method. For the Inconel®718, the JC and the
KHL models predicted the trends and the simulation results are in agreement with the
experimental results for the lower two peak pressures. The JC and the KHL models are shown to
perform better than the ZA model in prediction of residual stresses compared to experimental data
for Ti-6Al-4V.

A framework is developed to quantify the uncertainty in residual stress field induced by the LP
simulation. The input uncertainty is quantified from a non-linear regression analysis that is used
to fit the constitutive material model to the experimental data of stress-strain at different strain
rates. A technique from statistics known as ’bootstrap for regression’ is used to evaluate the
multivariate normality assumption of the material model constant estimates. Taylor series
expansion in combination with sensitivity analysis is used to propagate the input uncertainty. Two
demonstration examples are shown to validate the methodology by comparing the obtained
confidence level with target confidence level using Monte Carlo analysis. The first example is a
logarithmic relationship between the residual stress field and the model constant estimates while
the second example is a response surface fit of the FEA. The LP application results show that the
JC material model is a robust model to simulate the residual stresses induced by the LP process.
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7.1 Future Directions

The presented research work of finite element simulations of the residual stresses induced by the
LP process can be extended to modeling of thin specimens, two side LP simulation, geometric
effects of LP, and integrated framework for LP design.

7.1.1 Modeling of Thin Specimens

In the current work, LP simulations are performed on thick specimens. Future work can be
extending the research work to thin specimens. In this aspect, accurate tracking of shock waves
reflecting from the surface and appropriate material behavior changes can be investigated.

7.1.2 Two Sided LP Simulation

Very little work has been performed in the literature on two sided LP simulation. Simulating the
two sided LP process can be a challenge not only in understanding the physics of the material but
also in computational cost. Efficient techniques need to be developed to address the computing
cost.

7.1.3 Geometric Effects of the LP Process

In the current work and most of the literature focuses the work on simulating flat surfaces.
Geometric effects of component that need to be laser peened can be investigated. Efforts must be
made to model the real scale component instead of coupon level scale, that will allow curvature
effects to be investigated.

7.1.4 Bootstrapping Method for Parametric Uncertainty

In this work, the bootstrapping method was used to validate normality assumption of the model
constant estimates for the non-linear regression analysis. For the future work, the bootstrapping
method can be adapted to define the distribution of a parametric uncertainty including peak
pressure, spot radius, material properties, and geometric dimensions . Figure 96 shows the
schematic representation of application of bootstrapping technique for regression uncertainty.
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Figure 96: Bootstrapping for Parametric Uncertainty

The peak pressure of the shock wave can be considered as an example for demonstration. The
bootstrapping method can be used to obtain a histogram of the peak pressure with limited
experimental data. The mean of the experimental data is considered as the sample statistic to
obtain the histogram. The obtained histogram is matched with the known distributions to obtain
not only the nature of the distribution but also the parameters of the distribution. Other sample
statistics such as variance could also be used to obtain further analysis of the parameters of the
distribution.

Other types of uncertainties including model uncertainty and shape uncertainty can be integrated
with the bootstrapping method based on the availability of the experimental data. For the model
uncertainty, bootstrapping method can be used to obtain the confidence interval of the LP residual
stresses and then integrated with the model uncertainty quantification method. Bootstrapping
method can be used with multiple statistics including mean and standard deviation to define the
shape uncertainty.

7.1.5 Integration Framework for LP Design

An integrated framework can be investigated for the implementation of LP design as shown in the
Figure 97. Different tools can be integrated to obtain maximum benefit from the LP process.
Given a structural component, this framework would consider both its geometric configuration
and constituent material(s) to determine an optimal LP configuration. The existing database of
experimental work based on geometry, LP parameters, and materials would be used to obtain LP
process parameters. High fidelity simulations combined with semi-empirical relations have to be
developed and validated for new structures to update this database. The fatigue life estimation
methodology including stress relaxation mechanisms have to be implemented simultaneously to
obtain a realistic life estimate of the structural component. Vibration characteristics can also be
investigated to avoid resonant frequencies. Risk-based analysis and optimization of the LP
process would be performed based on experimental and simulated data to obtain risk quantified
optimum design. This procedure would then be iterated for a specific design until a user input
criterion was met. Examples include a percentage increase in fatigue life or failure at a given
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location. Eight disciplines are represented in the figure, while other disciplines can be added to
the framework.

Figure 97: Integration Framework for LP Design
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ε  Strain    

έ  Strain Rate 

έ0  Initial Strain Rate 

σ  Flow Stress 

σy  Yield Strength 

υ  Poissons Ratio 

A  Material Constant for the Johnson-Cook Material Model 

AFRL   Air Force Research Laboratory 

B  Material Constant for the Johnson-Cook Material Model 

BCC  Body Centered Cubic 

C  Material Constant for the Johnson-Cook Material Model 

Ci  Material Constants for Zerilli Armstrong Model, i=1,2,3,4,5. 

EOS  Equation of State 

EPP  Elastic Perfectly Plastic 

FCC  Face Centered Cubic 

FEA  Finite Element Analysis 

FFT   Fast Fourier Transformation 

FORM  First Order Reliability Method 

FWHM  Full Width at Half Maximum 

HCP  Hexagonal Closely Packed 

HEL  Hugoniot Elastic Limit 

JC  Johnson-Cook 

KHL  Khan-Huang-Liang 

LHS  Latin Hypercube Sampling 

LP  Laser Peening 

LPB  Low Plasticity Burnishing 

m  Material Constant for the Johnson-Cook Material Model 
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MCS  Monte Carlo Simulation 

MPP  Most Probable Point 

n  Material Constant for the Johnson-Cook, Zerilli-Armstrong Material Model 

Nd  Neodymium 

ns  nano seconds 

RS  Residual Stress 

SORM  Second Order Reliability Method 

SRT  Short Rise Time 

T  Test Temperature 

T’  Non-Dimensionalized Temperature 

Tm  Melting Temperature 

Tγ  Room Temperature 

ZA                     Zerilli Armstrong 
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