
NPS-CS-11-007

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

IMPLEMENTATION OF LIBEWFCS

by

Bruce Allen

September 26, 2011

Approved for Public Release; distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

iii

NAVAL POSTGRADUATE SCHOOL
Monterey, California 93943-5000

Daniel T. Oliver Leonard A. Ferrari
President Executive Vice President and
 Provost

This report was prepared for and funded by the Defense Intelligence Agency, Washington, DC.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Bruce Allen
Research Associate
Department of Computer Science

Reviewed by:

Peter Denning
Chairman
Department of Computer Science

Released by:

Karl A. van Bibber, Ph.D.
Vice President and Dean of Research

THIS PAGE INTENTIONALLY LEFT BLANK

iv

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty
for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE
ADDRESS.

1. REPORT DATE (DD–MM–YYYY)2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

NSN 7540-01-280-5500 Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

26–9–2011 Technical Report 2010-10-01—2011-09-30

Implementation of libewfcs

Bruce Allen

Naval Postgraduate School
Monterey, CA 93943 NPS-CS-11-007

DIA

Approved for Public Release; distribution is unlimited.

The views expressed in this report are those of the author and do not necessarily reflect the official policy or position of the
Department of Defense or the U.S. Government.

libewfcs is a a C# library that can read the Expert Witness Format (EWF) .E01 for computer forensic information
such as disk images. libewfcs provides portability and security that is not available in existing solutions and also
provides a means for cross-validation with existing EWF readers. In addition to providing basic EWF reading services,
libewfcs permits reading from custom EWF input streams, provides image streaming capability, and internally optimizes
performance using caching and aligned reading. This document describes the interfaces and internal operation of
libewfcs.

Unclassified Unclassified Unclassified UU 22

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Table of Contents

1 Introduction . 1

2 Overview of the EWF .E01 Segment File Format 1

3 Distribution . 4

4 Public Interfaces . 4

5 Implementation of libewfcs . 6

6 Available EWF .E01 Image Readers 11

7 Conclusion . 11

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

Abstract

libewfcs is a a C# library that can read the Expert Witness Format (EWF)
.E01 for computer forensic information such as disk images. libewfcs provides
portability and security that is not available in existing solutions and also provides
a means for cross-validation with existing EWF readers. In addition to providing
basic EWF reading services, libewfcs permits reading from custom EWF input
streams, provides image streaming capability, and internally optimizes performance
using caching and aligned reading. This document describes the interfaces and
internal operation of libewfcs.

1 Introduction
This document describes the libewfcs EWF .E01 image reader. Topics include:

• Overview of the EWF .E01 segment file format and how libewfcs reads it.
• How libewfcs is distributed.
• Public interfaces provided by libewfcs.
• Implementation of libewfcs.
• Available EWF .E01 image readers.

2 Overview of the EWF .E01 Segment File Format
EWF segment files contain media images encoded in the EWF format. libewfcs is a reader
library for reading image bytes from EWF segment files encoded in the .E01 segment file
format. Please refer to the EWF Specification [1] for a detailed description of the EWF format.

2.1 EWF .E01 Segment Files
EWF files formatted in the .E01 format have the following properties:

1. They are serial files, starting with suffix .E01, and are called segment files, see Figure 1.

EWF Segment Files

file.E01 file.E02 ...

Figure 1: A media image is contained within one or more .E01 segment files.

1

EWF Segment

Sections

Figure 2: A large segment file contains many sections.

Section Type

Header

Volume

Table

Provides Case number,
Examiner name

Provides Sectors per Chunk,
Bytes per Sector

Points to a Chunk Table

Information

Figure 3: libewfcs processes section types to obtain various EWF information.

2. Each segment file contains a magic number (.E01 file signature) identifying it as a valid
EWF file.

3. Data in each segment file is encapsulated in contiguous file divisions called sections.
There are many section types. Sections contain the media image and metadata. An ex-
ample segment file and its sections are depicted in Figure 2.

2.2 Sections
EWF .E01 segment files are composed of contiguous sections. There are 13 section types.
Section types significant to reading image media are shown in Figure 3. They include:

• The Header Section, which contains metadata about the series of EWF segment files such
as case number and examiner name.

• The Volume Section, which contains storage information about the segment files, most
importantly the sectors per chunk and the number of bytes per sector. These values are
used to determine the number of bytes per chunk. This is important because the image is
stored in chunks. When reading image data, the chunk size determines which chunk to
read from.

2

Chunk Table

Chunk
Pointers

Chunks

Image
bytes

Image
bytes

Image
bytes

Image
bytes

Image
bytes

Figure 4: Each Chunk Table points to a number of chunks of image bytes.

• The Table Sections, which define the location and size of Chunk Tables and the chunk
offset.

All sections start with the same Section Prefix. The Section Prefix is 72 bytes in size.

2.3 Chunk Tables
Chunk Tables point to chunks which contain image bytes, as shown in Figure 4. There are
many Chunk Tables because Chunk Tables and chunks are limited in size. Each entry in a
Chunk Table is an integer. The most significant bit (MSB) of the integer is used to indicate
whether the associated chunk is compressed, which they typically are. The remaining 31 bits of
the integer indicate the start offset in the segment file where the chunk resides. Since segment
files can be larger than 231 bytes in size, the chunk offset defined in the Table Section is added
to this value to determine the actual start offset in the segment file.

The size of a chunk is determined as follows: If there is another Chunk Table entry, the size is
the next entry minus one. If there are no more Chunk Table entries in the Chunk Table, the size
is the start of the next section after the chunk start offset minus one.

2.4 Chunks
Chunks contain image bytes. Chunks usually need decompressed, as indicated by the MSB
of their Chunk Table entry. All decompressed chunks are the same size except the last chunk,
which may be smaller. Since all decompressed chunks are the same size, the chunk index of
any image offset is calculated with the equation ChunkIndex = ImageO f f set/ChunkSize.

3

I I

~ I I

I I D ~ I I

I I

3 Distribution
A source code distribution of the libewfcs library is available. The libewfcs library re-
quires external code for inflating compressed zlib data. The requisite portion of this zlib code,
obtained from the public domain at Web address http://sourceforge.net/projects/
sharpdevelop/files/SharpZipLib/0.86/SharpZipLib_0860_SourceSamples.
zip/download, is included with the distribution. The libewfcs Makefile, included,
produces a Microsoft Intermediate Language (MSIL) library file of libewfcs in file libewfcs0.dll.
The Makefile also compiles the Zlib code required by libewfcs in file libz0.dll. Zlib
does not need to be compiled separately.

4 Public Interfaces
4.1 Image Reader Interfaces
libewfcs provides interfaces for creating an EWF image reader instance, reading the image,
determining the image size, and reading image properties.

• Constructor EWFImageReader(string filename) creates the EWF image reader
for reading EWF files formatted in the .E01 format from the local file system.

• Constructor EWFImageReader(IEWFSegmentStreamProvider
ewfSegmentStreamProvider, string segmentName) creates the EWF im-
age reader for reading EWF files formatted in the .E01 format using the custom EWF
segment stream provider specified.

• Interface MemoryStream ReadImageBytes (long imageAddress, byte[]
buffer, int offset, int count) reads image bytes from the image offset
into the buffer provided.

• Interface string GetImageProperties() returns image properties including header
information residing in the .E01 file.

• Property ImageSize provides the size, in bytes, of the image file.
• Property ChunkSize provides the size, in bytes, of image chunks.
• Property DisableAdler32Validation may be used to disable Adler32 validation,

improving performance at the cost of losing the ability to check data integrity.
• Interface Close() releases the internal file stream resource used by EWFImageReader.
• Constant VersionDate identifies the buld date of libewfcs.

4.2 Image Stream Interfaces
libewfcs provides EWFImageStream for managing the EWF image reader as a stream
service.

The following interfaces are supported in addition to the native stream interfaces that this class
extends:

• Constructor EWFImageStream (EWFImageReader ewfImageReader) creates
an EWF image stream object. It provides its EWF image streaming service by accessing

4

the EWF image reader specified.
• Please use interface void OptimizedCopyTo (Stream destinationStream)

to copy the stream rather than using native Stream interface void CopyTo(Stream
destination). Although functionally equivalent, the optimized copy is more effi-
cient because it copies EWF chunk-sized data on chunk boundaries. The library would
override the native CopyTo function, but Stream does not allow it.

4.3 Exception Interfaces
When exceptions occur while reading EWF segment files, an EWFIOException is thrown
which contains information about the requested EWF segment file read operation that failed.

EWFIOException contains the following interfaces:

• Read-only variable File identifies the EWF segment file where the attempt to read was
made.

• Read-only variable Address identifies the location within the EWF segment file where
the attempt to read was made.

• Read-only variable Bytes contains the bytes that were read, if any. This exception can be
thrown when bytes are read but processing is invalid, for example if an Adler32 checksum
fails.

• Static interface string DumpBytes (string message, byte[] bytes, int
maxCount) is provided as a convenience for obtaining a formatted view of up to maxCount
bytes.

4.4 EWF Segment Stream Provider Interfaces
Although libewf typically sources EWF segment file data from EWF segment files contained
in the local file system, libewf supports the ability to source EWF segment file data from
generic streams. To use this capability, instantiate EWFImageReader with your own segment
stream provider by implementing EWF segment stream provider interface
IEWFSegmentStreamProvider. Users of this capability must implement the following
functions:

• Interface Stream GetStream (string segmentName) returns the stream asso-
ciated with the EWF segment name.

• Interface bool IsValidFirstSegmentName (string segmentName) indi-
cates whether the specified segment name is a valid first EWF segment name.

• Interface string GetNextSegmentName (string previousSegmentName)
returns the next serial segment name in the EWF file naming sequence.

• Interface void Close () closes any resources that this segment stream provider may
have open.

5

5 Implementation of libewfcs
5.1 Data
5.1.1 Section Prefix Objects
The library instantiates and caches all Section Prefix objects, one for each Section Prefix defined
in the segment files. The library caches all Section Prefix objects, not just Section Prefix objects
associated with Volume Sections, because they are required in order to calculate the chunk end
pointer when the chunk entry is the last entry in the Chunk Table.

Each Section Prefix object includes the following information:

• The type of section that the section is. The library processes sections differently based on
their section type. Example section types are Volume Sections and Table Sections. The
library uses only a few of the 13 section types defined.

• The name of the segment file that the Section Prefix is associated with. The library uses
this name to identify which segment to open when reading a chunk.

• The chunk index values for the chunks that the section provides, if any. Only Table
Sections allocate chunk index values.

5.1.2 Chunks
Chunks are managed as follows: A Table Section defines the start and size of a Chunk Table
and also the table base offset used by entries in the Chunk Table. The Chunk Table consists of
a contiguous set of integers, where each integer is used to identify the start address of a chunk
within the associated segment file. For smaller files, the integer is the address of the chunk in
the segment file. For larger files (generated by EnCase v.6+), the chunk address is the integer
plus the table base offset defined in the Table Section. The most significant bit of each integer
indicates whether the chunk is compressed. Chunks are usually compressed.

5.2 Streams
There are two streams visible in libewfcs’s public interfaces:

• EWF Segment Streams provide segment data to the EWF image reader to locate and read
information from EWF segments. The IEWFSegmentStreamProvider interface
allows developers to define their own EWF Segment Streams when EWF segments are
not accessible as a file in the file system. libewfcs can accept EWF Segment Streams
from the file system or from a custom source, as shown in Figure 5.

• The image stream provides media image acces as a Stream.

5.3 Classes
5.3.1 EWFImageReader
This class initializes the EWFImageReader and provides public reading service interfaces.
Most significantly, the EWFImageReader provides a public interface for reading an arbitrary
amount of image bytes from an arbitrary byte offset. Internally, the EWFImageReader must

6

EWF Segments
File System

Stream

Custom Source
Stream

Figure 5: libewfcs can obtain EWF segment data from the file system or from a custom source by
implementing interface IEWFSegmentStreamProvider.

1: verify that the base .E01 segment file name provided is valid (for segment files the library validates
that the file name suffix is .E01)

2: while Section Prefix entries are available in the segment files do
3: read the Section Prefix
4: if the section type is a Table Section then
5: read the Table Section to determine how many chunk pointers the Chunk Table contains
6: end if
7: create a Section Prefix object containing 1) the filename associated with the Section Prefix, 2) the

location and size of the Section Prefix, and 3) the number of chunks that the Section Prefix Table
points to

8: cache the Section Prefix object in an array for referencing during runtime
9: end while

10: determine the chunk size, in bytes, from the Volume Section
11: determine the image size, in bytes, from (chunkCount −1)∗ chunkSize+ sizeO f LastChunk

Figure 6: The initialization process caches all Section Prefix information and determines the chunk size
and total media size.

read image bytes from chunks and possibly concatenate bytes from multiple chunks in order to
provide the image bytes actually requested.

The EWFImageReader initialization process is shown in Figure 6.

The process of reading a chunk of image bytes is shown in Figure 7.

5.3.2 EWFImageStream
This class provides EWFImageReader as a stream service by subclassing System.IO.Stream.
Stream method CopyTo cannot be overridden, so the library provides the equivalent function
as OptimizedCopyTo (Stream destinationStream). This copy function is opti-
mized for EWF by internally reading bytes in chunk sized increments, aligned on chunk size
boundaries.

5.3.3 EWFSegmentFileReader
This class provides internal accessors for reading content from .E01 segment files. The fol-
lowing internal interfaces are worth noting:

7

1: calculate the chunk index: chunkIndex = imageAddress/chunkSize
2: find the Section Prefix object containing the chunk index
3: open a file stream for reading the segment file associated with the Section Prefix
4: read the Table Section associated with the Section Prefix object containing the chunk index
5: read the Chunk Table identified by the Table Section
6: calculate the chunk start address within the segment file from the indexed chunk entry with the most

significant bit turned off and with the table base offset added, if used
7: if this is not the last integer entry in the Chunk Table then
8: calculate the chunk end address as the address of the next chunk minus one
9: else

10: this is the last integer entry in the Chunk Table, so calculate the chunk end address as the address
of the next Section Prefix in the segment file minus one

11: end if
12: if the chunk is compressed, indicated when the indexed chunk entry integer has its most significant

bit set then
13: read the chunk using Zlib decompression from the chunk start and end addresses just obtained
14: else
15: read the chunk using Adler32 validation from the chunk start and end addresses just obtained
16: end if
17: return the image bytes that were just read

Figure 7: The process of reading a chunk of image bytes consists of finding the location of the chunk in
its segment file, reading the chunk, and decompressing it.

• internal byte[] ReadAdler32(string segmentName, long fileOffset,
int numBytes) reads the requested bytes using an Adler32 checksum, checks the
checksum, and, if valid, strips out the four checksum bytes and returns the remaining
data. This internal interface is used when reading sections.

• internal byte[] ReadZlib(string segmentName, long fileOffset,
int numBytes, int chunkSize) uses Zlib to read the requested bytes, decom-
press it, and check its integrity. The chunk size parameter is required so that this interface
can pre-allocate output bytes before decompression. This internal interface is used when
reading image data that is compressed. When image data is not compressed, as indicated
by the most significant bit of the chunk offset not being set, the ReadAdler32 interface
is used instead.

• internal byte[] ReadRaw(string segmentName, long fileOffset,
int numBytes) provides a raw read with no integrity check. This interface is only
used in old .E01 segment files for reading the Chunk Table, for which the Table Section
size is too small to hold the four checksum bytes. When the Table Section size has room
to hold the four checksum bytes, Adler32 is used.

The EWFSegmentFileReader class also provides accessors for managing .E01 filenames
and for reading basic data types (integers and text) from .E01 files.

8

5.3.4 EWFSegmentFileStreamProvider
This class implements interface IEWFSegmentStreamProvider in order to provide Stream
access to segment files accessed from the local file system. It implements public interface
Stream GetStream(string filename) for returning a Stream from the specified file
in the user’s file system. The .E01 segment file’s magic number is validated when the stream
is opened. As a performance optimization, this provider keeps the stream open until another
stream is requested, at which time the previously open stream is closed and the new stream is
opened.

5.3.5 SectionPrefix
This class contains information specific to a given section including the section’s associated
segment file name and any chunk range covered by the section. During initialization, the asso-
ciated Section Prefix bytes are read from the segment file to determine the section’s type, the
start of the next section, and, if the section type is a Table Section, the chunks that this section
points to.

The constructor for this class takes the following inputs:

1. ewfSegmentFileReader: The segment reader to use for reading the EWF segments.
2. segmentName: The name of the EWF segment file associated with this Section Prefix.

This name is required for opening the correct section stream.
3. fileOffset: The offset into the EWF segment file where the Section Prefix resides.
4. previousChunkCount: The number of chunks identified so far. This value is pro-

vided to facilitate reading image bytes from chunks. Using it, the library can inspect
Section Prefix objects to determine which one contains the chunk number that the library
is looking for.

5.3.6 VolumeSection
This class instantiates volume information given a Stream and its associated sectionPrefix.
Most significantly, volume information includes bytes per sector and sectors per chunk values.
These values determine the number of image bytes that are in each chunk.

5.3.7 HeaderSection
This class instantiates header information given a Stream and its associated sectionPrefix.
The Header Section contains case information such as the case number and the examiner’s
name. This class does not facilitate reading image bytes. This class simply provides the ability
to read and export Header Section information.

5.3.8 TableSection
This class instantiates Table information given a Stream and its associated sectionPrefix.
The Table Section contains the size of the Chunk Table and the offset of chunk data. The Chunk
Table size is used during initialization to index Chunk Table entries. The chunk data offset is
used during runtime to calculate the actual chunk data address.

9

5.3.9 ChunkTable
This class reads and instantiates the Chunk Table of a Table Section given a Stream and its
associated sectionPrefix. The Chunk Table is used to obtain the address of the chunk in
the .E01 segment file before reading the actual chunk.

5.3.10 TableSectionOptimizer
This optimization caches the last Table Section read so that if the next table section read is the
same, the cached Table Section is returned without requesting a physical read.

5.3.11 ChunkTableOptimizer
This optimization caches the last Chunk Table read so that if the next Chunk Table read is the
same, the cached Chunk Table is returned without requesting a physical read.

5.3.12 OptimizedInflater
This class provides an optimization wrapper for the zlib Inflater service. The current optimiza-
tion implementation is to cache the last compressed and decompressed bytes read, and when
the next compressed data is read, if it matches the last compressed value, it returns the decom-
pressed bytes that are cached rather than decompressing again.

libewfcs uses Inflater from ICSharpCode.SharpZipLib.Zip.Compression rather than Inflater
from Microsoft’s DeflateStream in System.IO.Compression because it requires a zlib Inflater,
see RFC 1950. The Inflater from Microsoft implements GZip, see RFC 1951, which is incom-
patible.

5.3.13 EWFIOException
This class extends IOException by providing properties File, Address, and Bytes,
allowing public access to specific properties involved during the exception.

5.4 Interfaces
5.4.1 IEWFSegmentStreamProvider
This interface supports implementations of alternate EWF segment file readers. Alternate read-
ers must implement their own segment stream and their own serialized segment naming scheme.
For an example implementation of this interface, Please see class EWFSegmentFileReader
which contains a file system implementation of an EWF segment stream provider.

5.5 Optimizations
The library provides the following optimizations:

1. The last Table Section read is cached so that multiple reads to the same Table Section do
not require a physical read.

2. The last Chunk Table read is cached so that multiple reads to the same Chunk Table do
not require a physical read.

3. The last compressed and decompressed chunk read is cached so that multiple reads con-
taining the same compressed value do not require running the decompression algorithm.

10

4. The image stream provider performs its bulk stream copy function using buffered reads
of chunk size that are aligned on chunk boundaries.

6 Available EWF .E01 Image Readers
6.1 libewfcs
libewfcs provides the following features:

• Written in C#. As such, it is more portable to .NET platforms and is more secure because
it runs as managed code on .NET.

• Able to read EWF .E01 segments from any source, not just the file system. This capa-
bility is enabled by implementing EWF segment stream provider interface
IEWFSegmentStreamProvider.

• The EWF image may be accessed as a Stream. This capability is available via Stream
reader EWFImageReaderwhich wraps and accesses image reader EWFImageReader.

• May be used as a cross-validation tool for comparing with other EWF .E01 image read-
ers.

• Is expected to provide exceptional performance. Performance of libewfcs will be
evaluated in FY12.

6.2 libewf
libewf, created by Joachim Metz, is available at http://sourceforge.net/projects/
libewf. libewf provides the following features:

• Provides capabilities in addition to reading image bytes from EWF segment files, includ-
ing the ability to write EWF segment files.

• Written in C.
• Can be wrapped into .NET for extended portability.

6.3 jlibewf
jlibewf, created by Bruce Allen, is also available at http://sourceforge.net/projects/
libewf. jlibewf, provides the following features:

• Written in Java. As such, it is more secure because it contains protections provided by
running on a JVM.

• Although not measured,jlibewf provides respectable performance.

7 Conclusion
This report shows how libewfcs provides an effective usable open source library for reading
media images stored in the EWF .E01 file format. libewfcs is distributed in the form of
a libewfcs0.dll .net assembly file. libewfcs provides random access and streaming
access to media images. It optimizes performance by caching segment reads and decompressed

11

bytes. It also offers a custom segment stream reader interface, allowing the ability to read
segment data that is available in sources other than the file system.

12

References
[1] Joachim Metz. Expert witness compression format specification.

13

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Research and Sponsored Programs Office, Code 41
Naval Postgraduate School
Monterey, California

14

