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Abstract

The focus of this project is to develop and demonstrate the fusion methodologies to
enhance the ability to integrate multi-source information and to assess fusion
performance for numerous applications such as situational awareness, surveillance, and
tracking. The focus of the Year 1 effort was on developing a solid theoretical foundation
and on developing autonomous and efficient information fusion algorithms with
distributed sensors. The focus of Year 2 effort was to develop a set of fusion performance
modeling methodologies based on explicit links of spatial and temporal relationships
between target features and sensor observations. We have accomplished the goals.
Specifically, we developed a set of scalable fusion algorithms and the corresponding
theoretical performance analysis in a dynamic sensor network environment. We have also
developed a framework for quantifying the classification performance of a set of sensors
with varying qualities based on local confusion matrix and global confusion matrix using
Bayesian network model. In addition, we have developed a software tool based on
UnBBayes open source environment to test the performance modeling. The resulting
methodology has significant potential for applications in high level fusion and situational
assessment.

This report summarizes our research accomplishments during the performance period
from August 2008 to August. 2010.



1. Introduction

Distributed information and data fusion with a suite of sensor systems provide core capabilities to
numerous applications such as situational awareness, surveillance, navigation, and tracking. The
increasing capabilities and ubiquity of computing technologies and data networks continue to
advance information exploitation abilities for combining data from multiple remote sources to
produce increased value. In particular, information fusion is a key enabler under development for
the United States Department of Defense (US DoD) network-centric Command, Control,
Communications and Intelligence (C°1) capabilities.

To date, the advances in multi-sensor fusion systems have focused on algorithms for tracking and
fusion, building design architectures and rules for identifying information duplication (i.e., rumor
propagation or double counting), and operation, allocation, and self-calibration of programmed or
ad hoc sensor networks.

While researchers in the field of sensor data fusion have advanced significantly during the last
decade, these algorithms have been limited for the most part to relatively well-defined network
architectures. A unified fusion technique for general sensor networks is yet to be developed. The
goal of this effort is develop a solid theoretical foundation and a set of algorithms that can be
readily implemented. In particular, we proposed to develop and integrate the four components of
research described below:

e A theoretical foundation for networked sensor fusion with arbitrary connectivity and
message delays as well as random or non-synchronous local sensing and communication
rates while minimizing the amount of data exchanged between agents.

e A set of practical autonomous fusion algorithms and a new methodology for the design
and selection of fusion rules, communication architecture, and deployment configuration
of distributed sensor networks.

e A general framework for quantifying the operational characteristics of a sensor, a set of
metrics for evaluating the operational performance of a sensor network, and evaluating
the fusion performance of multiple, asynchronous sensors of varying quality.

e A test and simulation environment to validate and support design of distributed fusion
algorithms and performance modeling and to be available for integration into government
systems.

2. Project Tasks

The general research tasks for this research as proposed are summarized thus:

o Develop autonomous information fusion algorithms with distributed sensors. The focus
is on developing a solid theoretical foundation and a set of scalable and efficient
algorithms. We focus on level-1 and level-2 fusion as defined by the DFIG model.

o Develop a set of fusion performance modeling methodologies based on explicit links of
spatial and temporal relationships between target features and sensor observations. The
focus is on developing Bayesian network modeling and inference algorithms with high
level situational assessment.



o Develop test and simulation to validate and support design of distributed fusion
algorithms and performance modeling. A main task is to develop metrics for quantifying
the performance of the system then apply the metrics to evaluate and compare alternative
fusion strategies. The emphasis will be on testing algorithm scalability and real time
capability.

3. Project Schedule and Milestones

The original project schedule and milestones are given in Table 1. The original project
Work Plan Schedule is shown in Table 2.

Table 1. Project Schedule and Milestones

1. Develop fusion performance modeling methodologies based on explicit links of spatial and temporal relationships between target
features and sensor observations.

(a) Develop Bayesian netwark modeling for low and high level situational assessment

(b} Develop efficient BN inference algorithms for hybrid models

[c) Develop fusion perfarmance modeling and evaluation methodologies with a set of defined performance metrics

2. Develop methodalogy and software prototype to validate and evaluate the performance of the fusion system
(a) Develop adaptive model resolution and metrics for quantifying the performance of the system

(b} Develop MATLAB and Java based test environment to validate performance methodologies

[c] Initiate technalogy transfer to industry or government as specified by AFOSRE.

3. Support the technical exchanges and special studies as required by the AFOSR Program Manager.

(a) Attend and participate in technical interchange meetings to discuss technical issues related to the research tasks.
b) Lead and participate in special studies as required.

[c) Docurnent and distribute the technical findings and the simulation results as needed.

4. Management and Reporting.
(&) Frepare monthly financial reparts and annual technical progress reports.
b) Prepare semi-annual progress review and comprehensive annual technical reparts.

Project Tasks and Milestones

Table 2. Original Work Plan Schedule

Month Months | Months Months | Months | Months
1-6 7-12 13-18 19-24 25-30 31-36
Tasks
1.a Develop Bayesian network modeling tool for situation
assessment W

1.b Develop efficient hybrid BN inference algorithms I
1.c Develop fusion performance modeling and metrics %

2.ab Develop software prototype to evaluate performance h
2.c Support technology transfer as specified by AFOSR _*

3. Support ONR technical exchanges as required 4 4

* *
4. Prepare project progress review and technical reports ? ? + + ? ﬂ




4. Change in AFOSR Program Manager and Project Scope

The project was started in August 2008. Soon after the project was started, the program
manager was changed from Dr. David Luginbuhl to Dr. Doug Cochran in late 2008.
After a brief discussion with the PI in summer 2009, the new program manager, Dr. Doug
Cochran, felt that the project “is not sufficiently aligned with the scientific direction the
AFOSR Information Fusion program is moving to justify continued investment” and
decided to terminate the project in July 2009 before a formal annual review which took
place in Oct. 2009. The project option was not exercised but a no-cost extension of the
effort to August 2010 was subsequently granted by Dr. Cochran. The program manager
was changed from Dr. Doug Cochran to Dr. Robert Bonneau in 2010.

Because of the 50% funding reduction of the project due to early termination, we were
not able to complete all the tasks as planned in the original proposal. However, we did
try our best to accomplish as much technical tasks as we could. The details are described
in Section 6.

5. Project Management

This research project was directed by Dr. KC Chang of George Mason University, who
devoted 20% of his time during the academic year and six weeks during the summer to
this research. The research effort was performed by Dr. KC Chang (PI) together with a
research faculty and two graduate students. Specifically,

1. A part-time (25%) research faculty, Dr. Wei Sun, who worked on the
development of efficient hybrid inference algorithms and the development of
metrics to quantify the overall performance of the systems.

2. A part-time (50%) PhD student, Mr. Rommel Carvalho, who focused on the
development of a theoretical foundation and analytical methodology for
predicting fusion performance assessments as well as the software development
for the simulation environment.

3. A full-time MS student, Mr. Ashirvad Naik, who worked on developing a
modeling and simulation environment with MATLAB to support specification
and performance evaluations, and the validation of the proposed methodologies
with test cases and established benchmark problems.

6. Technical Accomplishments

During the two years effort of the project, we have been developing rigorous
mathematical foundation and a set of algorithms for distributed fusion in dynamic
networks. In particular, we have accomplished the following:

e A mathematical foundation based on information genealogy for networked sensor
fusion with arbitrary connectivity and message delays as well as a set of practical
autonomous information fusion and dissemination algorithms. We have
documented and published several papers on this area [1-2,8]. The papers were



well received. Specifically, an earlier of the paper [8] published in Fusion 2008
was the runner-up of the best paper award (top 1% of the 300+ papers).

e Complementary multi-level dynamic Bayesian network (DBN) modeling and
inference algorithms that provide the infrastructure to aggregate traditional and
non-traditional data from disparate sources at each fusion level. In particular,
scalable inference in distributed hybrid Bayesian networks is an important area
for research but remains a difficult task because of its potentially arbitrary
distributions and possible nonlinear dependence relationships between variables.
We proposed a unified computing scheme of messages propagating between
different types of variables. We have documented and published several papers
on this area [4-5,7].

e Performance analysis of a multisensor fusion system modeled by a Bayesian
network. Multi-Sensor Fusion is founded on the principle that combining
information from different sensors will enable a better understanding of the
surroundings. However, it would be desirable to evaluate how much one gains by
combining different sensors in a fusion system, even before implementing it. We
developed a state-of-the-art tool that allows a user to evaluate the classification
performance of a multisensor fusion system modeled by a Bayesian network.
Specifically, the results was documented in a paper published in Fusion 2009 [3]
which received one of the best student paper awards.

e Mixture distribution representation and metrics for scalable fusion - Mixture
distributions have been used in many applications for dynamic state estimation
including distributed tracking, and multisensor fusion. However, the recursive
processing of the mixture distributions incurs rapidly growing computational
requirements. In order to keep the computational complexity tractable and to
ensure scalability while trading-off performance, we developed a recursive
mixture reduction algorithm with a given error bound. We have documented and
published our work in [6,9].

7. Technology Transfer

We have been working with several small businesses to apply our technology to other
applications. For example, we have been working with Mr. Mark Frymire and Dr. Chris
Smith of Decisive Analytic Corporation to apply the scalable fusion technique we
developed in this effort for missile defense application [9]. We have also worked with Dr.
Craig Agate of Toyon corporation on applying our fusion techniques for ad hoc UAV
sensor networks [10].
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Message Passing for

Hybrid Bayesian Networks:
Representation, Propagation,
and Integration

WEI SUN

K. C. CHANG
George Mason University

The traditional message passing algorithm was originally
developed by Pearl in the 1980s for computing exact inference
solutions for discrete polytree Bayesian networks. When a loop
is present in the network, propagating messages are not exact,
but the loopy algorithm usually converges and provides good
approximate solutions. However, in general hybrid Bayesian
networks, the message representation and manipulation for
arbitrary continuous variable and message propagation between
different types of variables are still open problems. The novelty of
the work presented here is to propose a framework to compute,
propagate, and integrate messages for hybrid models. First, we
combine unscented transformation and Pearl’s message passing
algorithm to deal with the arbitrary functional relationships
between continuous variables in the network. For the general
hybrid model, we partition the network into separate network
segments by introducing the concept of interface node. We
then apply different algorithms for each subnetwork. Finally
we integrate the information through the channel of interface
nodes and then estimate the posterior distributions for all hidden
variables. The numerical experiments show that the algorithm

works well for nonlinear hybrid BNs.
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I.  INTRODUCTION

Bayesian network (BN), also known as probability
belief network, causal network, [7, 23, 24] is a
graphical model for knowledge representation under
uncertainty and a popular tool for probabilistic
inference. It models dependence relationships between
random variables involved in the problem domain by
conditional probability distributions (CPDs). In the
network, CPD is encoded in the directed arc linking
the associated random variables. The random variables
that have arcs pointing to other random variables
are called parent nodes and the random variables
that have incoming arcs are called children nodes.

The most important property of the BN is that it

fully specifies the joint distribution over all random
variables by a product of all CPDs. This is because
each random variable is conditional independent

of its nondescendant given its parents. Factoring
reduces the numbers of parameters representing

the joint distribution and so saves the computations
for reasoning. One of the important tasks after
constructing the BN model is to conduct probabilistic
inference. However, this task is NP-hard in general
[8]. This is true even for the seemingly easier task

of finding approximate solutions [10]. Nevertheless,
for some special classes such as discrete polytree

or linear Gaussian polytree networks, there exists

an exact inference algorithm using message passing
[24] that could be done in linear time. In the past
decades, researchers have proposed a great number of
inference algorithms for various BNs in the literature
[12]. They can be divided into two basic groups: exact
and approximate algorithms. Exact inference only
works for very limited types of networks with special
structure and CPDs in the model. For example, the
most popular exact inference algorithm—Clique tree
[20, 28], also known as junction tree or clustering
algorithm [13]—only works for a discrete network

or the simplest hybrid model called conditional linear
Gaussian (CLG) [18]. In general, the complexity

of the exact inference is exponential to the size of

the largest clique' of the triangulated moral graph

in the network. For networks with many loops or
general hybrid models that have mixed continuous and
discrete variables, the intractability rules out the use of
the exact inference algorithms.

For probabilistic inference with hybrid models,
relatively little has been developed so far. The simplest
hybrid model CLG is the only hybrid model for which
exact inference could be done. The state-of-the-art
algorithm for exact inference in CLG is Lauritzen’s
algorithm [17, 19]. It computes the exact answers in
the sense that the first two moments of the posterior
distributions are correct, while the true distribution
might be a mixture of Gaussians. In general, the

A fully connected subnetwork.
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hybrid model may involve arbitrary distributions and
arbitrary functional relationships between continuous
variables. It is well known that no exact inference is
possible in this case. However, approximate methods
have been proposed [6, 16] to handle different hybrid
models. In recent years, researchers also proposed
inference algorithms using mixture of truncated
exponentials (MTE) [9, 21] to approximate arbitrary
distributions in order to derive the close-form solution
for inference in hybrid models.

Generally, there are three main categories of
approximate inference methods for BNs: model
simplification, stochastic sampling, and loopy
belief propagation. Model simplification methods
simplify the model to make the inference algorithm
applicable. Some commonly applied simplification
methods include the removal of weak dependency,
discretization, and linearization. Stochastic sampling
is a popular framework including a number of
algorithms, such as likelihood weighting (LW)

[11, 27] and the state-of-the-art importance sampling
algorithm called adaptive importance sampling
(AIS-BN) for discrete BNs [5]. The major issue

for sampling methods is to find a good sampling
distribution. The sampling algorithm could be very
slow to converge or in some cases with unlikely
evidence, it may not converge even with a huge
sample size. In recent years, applying Pearl’s
message passing algorithm to the network with
loops, so-called “loopy belief propagation” (LBP)
[22, 29], has become very popular in the literature.
Although the propagating messages are not exact,
researchers found that LBP usually converges, and
when it converges it provides good approximate
results. Due to its simplicity of implementation

and good empirical performance, we propose to
extend LBP for approximate inference for hybrid
model. Unfortunately, because of the differences in
representation and manipulations of messages with
discrete and continuous variables, there is no simple
and efficient way to pass messages between them. In
[30], the authors use general nonparametric form to
represent messages and formulate their calculation by
numerical integrations for hybrid models. The method
requires extensive functional estimations, samplings,
and numerical integrations, and therefore is very
computational intensive.

Under the framework of a message passing
algorithm, first of all, we need to find a general way
to represent messages. Essentially, messages are
likelihoods or probabilities. In discrete case, messages
are represented and manipulated by probability
vectors and conditional probability tables (CPTs)
which is relatively straightforward. For continuous
variables, however, it is more complicated for
message representation and manipulation as they
may have arbitrary distributions. In this paper, we
propose to use the first two moments, mean and
variance, of a probability distribution to represent

1526

the continuous message regardless of its distribution.
This simplification makes message calculation and
propagation efficient between continuous variables
while keeping the key information of the original
distributions. Furthermore, to deal with the possible
arbitrary functional relationship between continuous
variables, a state estimation method is needed to
approximate the distribution of a random variable
that has gone through nonlinear transformation.
Several weighted sampling algorithms such as
particle filtering [1] and Bayesian bootstrapping

[2] for nonlinear state estimation were proposed in
the literature. However, we prefer to use unscented
transformation [14, 15] due to its computational
efficiency and accuracy. Unscented transformation
uses a deterministic sampling scheme and can
provide good estimates of the first two moments

for the continuous variable undergone nonlinear
transformation. For arbitrary continuous network,
this approach we called unscented message passing
(UMP) works very well [25]. But in the hybrid
model, message propagation between discrete and
continuous variables is not straightforward due to their
different formats. To deal with this issue, we propose
to apply conditioning. First we partition the original
hybrid BNs into separate, discrete, and continuous
network segments by conditioning on discrete parents
of continuous variables [26]. We can then process
message passing separately for each network segment
before final integration.

One of the benefits of partitioning networks is
to ensure that there is at least one efficient inference
method applicable to each network segment. In hybrid
networks, we assume that a continuous node is not
allowed to have any discrete child node. Therefore,
the original networks can be partitioned into separate
parts by the discrete parents of continuous variables.
We call these nodes the interface nodes. Each
network segment separated by the interface nodes
consists of purely discrete or continuous variables.
By conditioning on interface nodes, the variables in
different network segments are independent of each
other. We then conduct loopy propagation separately
in each subnetwork. Finally, messages computed in
different segments are integrated through the interface
nodes. We then estimate the posterior distribution of
every hidden variable given evidence in all network
segments.

The algorithm proposed in this paper aims to
tackle nonlinear hybrid models. We believe that the
proposed combination of known efficient methods
and the introduction of interface nodes for hybrid
network partition makes the new algorithm a good
alternative for inference in nonlinear hybrid models.
The remainder of this paper is organized as follows.
Section II first reviews Pearl’s message passing
formulae. We then discuss the message representation
and manipulation for continuous variable and how
to propagate messages between continuous variables

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 45, NO. 4 OCTOBER 2009



with nonlinear functional relationship. Section III
describes the methods of network partition and
message integration by introducing the concept of
interface nodes. We show how message passing can
be done separately and finally integrated together
via the channel of interface nodes. Section IV
presents the algorithm of hybrid message passing

by conditioning. Several numerical experiments are
presented in Section V. Finally, Section VI concludes
the research we have done in this paper and suggests
some potential future work.

II.  MESSAGE PASSING: REPRESENTATION AND
PROPAGATION

Pearl’s message passing algorithm [24] is the first
exact inference algorithm developed originally for
polytree discrete BNs. Applying Pearl’s algorithm in
the network with loops usually provides approximate
answers, and this method is called LBP. Recall that
in Pearl’s message passing algorithm, ey and ey
are defined as the evidence from the subnetwork
“above” a node X and the subnetwork “below” X,
respectively. In a polytree, any node X d-separates
the set of evidence e into {ej},ey }. In the algorithm,
each node in the network maintains two values called
A value and 7 value. A value of a node X, defined as

A(X) = P(ex | X) ey

is the likelihood of observations ey given X. 7 value
of a node X, defined as

7(X) = P(X | e}) ()

is the conditional probability of X given e}.

The belief of a node X given all evidence is
the normalized product of 7 value and X value.
Each node, after updating its own belief, sends new
A message to its parents and new m message to
its children. For a typical node X with m parents
T(T,.T,,...,T,) and n children Y(Y},Y,,....Y)) as
illustrated in Fig. 1, the conventional propagation
equations of Pear]’s message passing algorithm can
be expressed as the following [24]:

BEL(X) = ar(X)\(X) 3)
AX) = ]i[ij<X) )
j=1
T(X)=) P(X| T)]m'[wx(T,) (5)
T i=1

M@ =D 20> PXID][rx(T)  (6)

X T:k#i k#i
T, (X) = a !;[Ayk (X) | m(X) ()

J
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Fig. 1. Typical node X with m parents and n children.
where )\yj (X) is the A message node X receives from
its child Y;, Ay(T)) is the A message X sends to its
parent T;; my(T}) is the m message node X receives
from its parent 7;, Ty, (X) is the m message X sends
to its child Y] and « is a normalizing constant.

When this algorithm is applied to a polytree
network, the messages propagated are exact and so are
the beliefs of all nodes after receiving all messages.
For the network with loops, we can still apply this
algorithm as the “loopy propagation” mentioned
above. In general, loopy propagation will not provide
the exact solutions. But empirical investigations on its
performance have reported surprisingly good results.

For discrete variables, messages could be
represented by probability vectors, and the conditional
probability table of node X given its parent 7,

P(X | T), could be represented by a matrix. Therefore
the calculations in the above formulae are the
product of vectors and multiplication of vector and
matrices, which can be carried out easily. However,
for continuous variables, message representation

and the corresponding calculations are much more
complicated. First, an integral replaces summation in
the above equations. Furthermore, since continuous
variable could have arbitrary distribution over the
continuous space, in general it is very difficult to
obtain exact close-form analytical results when
combining multiple continuous distributions. In order
to make the computations feasible while keeping

the key information, we use the first two moments,
mean and variance, to represent continuous message
regardless of the original distribution. Then, the
product of different continuous distributions could
be approximated with a Gaussian distribution. Note
that for the continuous case, P(X | T) is a continuous
conditional distribution, and it may involve an
arbitrary function between continuous variables. To
integrate the product of continuous distributions as
shown in (5) and (6), it has to take into account the
functional transformation of continuous variables.
Fortunately, unscented transformation [14, 15]
provides good estimates of mean and variance for the
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continuous variables through nonlinear transformation.
In our algorithm, unscented transformation plays

a key role for computing continuous messages.
Specifically, we use it to formulate and compute the

m and A messages since both computations involve the
conditional probability distribution in which nonlinear
transformation may be required.

A. Unscented Transformation

Proposed in 1996 by Julier and Uhlmann [15],

unscented transformation is a deterministic sampling
method to estimate mean and variance of continuous
random variable that has undergone nonlinear
transformation. Consider the following problem:
a continuous random variable x with mean x and
covariance matrix P, undergoes an arbitrary nonlinear
transformation, written as y = g(x); the question is
how to compute the mean and covariance of y?

From probability theory, we have

py) = / Py | p(X)dx.

However, in general the above integral may be
difficult to compute analytically and may not always
have a close-form solution. Therefore, instead of
finding the distribution, we retreat to seek for its
mean and covariance. Based on the principle that it is
easier to approximate a probability distribution than an
arbitrary nonlinear function, unscented transformation
uses a minimal set of deterministically chosen sample
points called sigma points to capture the true mean
and covariance of the prior distribution. Those sigma
points are propagated through the original functional
transformation individually. According to its formulae,
posterior mean and covariance calculated from these
propagated sigma points are accurate to the 2nd order
for any nonlinearity. In the special case when the
transformation function is linear, the posterior mean
and variance are exact.

The original unscented transformation encounters
difficulties with high-dimensional variables, so the
scaled unscented transformation was developed
soon afterward [14]. The scaled unscented
transformation is a generalization of the original
unscented transformation. We will use the two terms
interchangeably, but both mean scaled unscented
transformation in the remainder of this paper.

Now let us describe the formulae of unscented
transformation. Assume x is L-dimensional
multivariate random variable. First, a set of 2L + 1
sigma points are specified by the following formulae:

A=a?(L+kr)—L

®)

X, =x '
X={ X=x+(\/L+MP,), i=1,.,L
X =x—(\/(L+MP,) i=L+1,.2L
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and the associated weights for these 2L + 1 sigma
points are

A
m _ _
AU W
© _ 2 _
Wy _L+/\+(1 a”+f3) i=0 9
wim = w® = _ i =1,...,2L
o =W =37

where a, 3, k are scaling parameters and the
superscripts “(m),” “(c)” indicate the weights
for computing posterior mean and covariance,
respectively. The values of scaling parameters could
be chosen by 0 <a <1, >0, and x > 0. It has been
shown empirically that the specific values chosen
for the parameters are not critical because unscented
transformation is not sensitive to those parameters.
We choose o = 0.8, 5 = 2 (optimal for Gaussian prior
[14]), and x = 0 in all of our experiments.

After the sigma points are selected, they are
propagated through the functional transformation:

y,‘ = g('X,)

Finally, the posterior mean and covariance are
estimated by combining the propagated sigma points
as follows:

i=0,...,2L. (10)

2L

v~y w"y, (11)
i=0
2L

P~ wO-nQ, -y (12)
i=0
2L

Py~ ZW?C)(% -, -y (13)

i=0

In short, we denote the unscented transformation
for X undergoing a functional transformation Y =
f(X) as the following:

f(X)
(Y.mu,Y.cov) = UT (x —>Y> . (14)
We demonstrate the unscented transformation

by a simple two-dimension Gaussian example. Let
X = [x; x,] with mean and covariance matrix given as

=Lomel L]

In order to show the robustness of unscented
transformation, we choose a set of functions with
severe nonlinearity shown below:

Y, = v/exp(x,) sin(x;x,).

The true posterior statistics are approximated very
closely by brute force Monte Carlo simulation

y; = log(x7)cos(x,),
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Fig. 2. Demonstration of unscented transformation. (a) Prior distribution. (b) After nonlinear transformation.

using 100,000 sample points drawn from the
prior distribution and then propagated through the
nonlinear mapping. We compare them with the
estimates calculated by unscented transformation
using only 5 sigma points. Fig. 2 shows that the
mean calculated by transformed sigma points is
very close to the true mean and that the posterior
covariance seems consistent and efficient because
the sigma-point covariance ellipse is larger but
still tight around the true posterior covariance
ellipse.

B. Unscented Message Passing

Now let us take a closer look at Pearl’s general
message propagation formulae shown in (3)—(7). In
recursive Bayesian inference, m message represents
prior information and A message represents evidential
support in the form of a likelihood function. Equations
(3), (4), and (7) are essentially the combination of
different messages by multiplication. They are similar
to the data fusion concept where estimates received
from multiple sources are combined.

Under the assumption of Gaussian distribution,
the fusion formula is relatively straightforward [3].
Specifically, (3), (4), and (7) can be rewritten in
terms of the first two moments of the probability
distributions as the following:

1 1 > !
cov = +

BEL(X) (w(X).cov AX).cov (15)

U = cov 7(X)mu A(X).mu

m(X).cov  A(X).cov

~1
cov = Zl Ay, (X).cov
AX) " (16)
Ay (X) mu

mu = cov Z Xy, (X).cov
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1
COV=1 T cov Z <N (X) cov
e A ()
_ m(X).mu Y% -mu
mu= oV 7% cov Z X\, (X).cov
k#j W

(17)
where mu, cov stand for corresponding mean and
covariance, respectively.

Equation (5) computes the 7 value for node
X. Analytically, this is equivalent to treating X as
a functional transformation of T and the function
is the one defined in CPD of X denoted as h(X).
Technically, we take T as a multivariate random
variable with a mean vector and a covariance matrix;
then by using unscented transformation, we obtain
an estimate of mean and variance of X to serve
as the 7 value for node X. In (5), ¢ (7}) is the =
messages sending to X from its parent 7;, which
is also represented by mean and covariance. By
combining all the incoming 7 (7;) messages, we can
estimate the mean vector and covariance matrix of
T. Obviously, the simplest way is to view all parents
as independent variables; then combine their means
into a mean vector, and place their variances at the
diagonal positions to form a diagonal covariance
matrix.”> With that, we can compute the 7 value of
node X by

h(X)
(n(X).mu, 7(X).cov) = UT (T —>X> . 38)

Similarly but a bit more complicated, (6) computes
the A\ message sending to its parent (7;) from node
X. Note here that we integrate out X and all of its
parents except the one (7;) we are sending A message
to. Theoretically, this is equivalent to regarding 7;
as the functional transformation of X and T\T,. It

2This is actually how the original loopy algorithm works and why
it is not exact. To improve the algorithm, we can estimate the
correlations between all parents and include them in the covariance
matrix of T.
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is necessary to mention that the function used for
transformation is the inverse function of the original
one specified in P(X | T) with 7; as the independent
variable. We denote this inverse function as v(X,T\T,).
Note that in practical problems, the original function
may not be invertible, or its inverse function may not
be unique. In such a case, we need additional steps

to apply the method. In this paper, we assume the
inverse function is unique and always available. To
compute the message, we first augment X with T\T; to
obtain a new multivariate random variable called TX;
then the mean vector and covariance matrix of TX are
estimated by combining A(X) and 7y (T})(k # i). After
applying unscented transformation to TX with the
new inverse function v(X,T\T.), we obtain an estimate
of the mean and variance for 7; serving as the Ay (T})
message as below:

v(X, T\T)
—

(A (T).mu, A\ (T;).cov) =UT <TX Ti> . (19)

With (15)—(19), we can now compute all messages
for continuous variables. As one may notice,
unscented transformation plays a key role here. This
is why we call it UMP for continuous BNs.

So far, we have summarized message
representation and propagation for discrete and
continuous variables, respectively. However, for the
hybrid model, we have to deal with the messages
passing between both types of variables. Since they
are in different formats, messages cannot be integrated
directly. As mentioned in Section I, our approach is
to partition the original network before propagating
messages between them.

. NETWORK PARTITION AND MESSAGE
INTEGRATION FOR HYBRID MODEL

First of all, as mentioned earlier, we assume that
a discrete node can only have discrete parents in the
hybrid models, which implies continuous variable
cannot have any discrete child node.

DEFINITION 1 In a hybrid BN, a discrete variable is
called a discrete parent if and only if it has at least
one continuous child node.

It is well known that BN has an important property
that every node is independent of its nondescendant
nodes given its parents. Therefore the following
theorem follows.

THEOREM 1 All discrete parents in the hybrid BN
model can partition the network into independent
network segments, each having either purely discrete

or purely continuous variables. We call the set of all
discrete parents in the hybrid network the interface
nodes. In other words, the interface nodes “d-separate”
the network into different network segments.
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Fig. 3. Demonstration of interface nodes and network partition.

It is obvious that the variables in different
segments of the network are independent of each
other given the interface nodes. An example is
shown in Fig. 3 where a 13-node hybrid model is
presented. Following the convention, we use a square
or rectangle to depict the discrete variable and a circle
or ellipse to depict the continuous variable. As can
be seen, K, A, and C are the interface nodes in this
example. By representing the arcs between discrete
parents and their continuous children as dot lines, four
independent network segments are formulated—two
discrete parts (H, B, F, K, G and J, A, C) and two
continuous parts (7, R, S and X, Y).

After partitioning the network with the interface
nodes, we choose the most appropriate inference
algorithm for each network segment. In fact, we can
also combine some segments together if the same
algorithm works for all of them. The purpose of
introducing the interface nodes is to facilitate the
network partition so that at least one algorithm could
be applicable to each segment. In general, separate
message passing in either discrete or continuous
network segment is always doable. Typically, the
continuous network segment with nonlinear and/or
non-Gaussian CPDs is the most difficult one to deal
with. In such case, we apply UMP presented in
Section IIB for approximate solutions.

Finally, we need to summarize the prior and
evidence information for each network segment and
encode it as messages to be passed between network
segments through the interface nodes. This is similar
to general message passing but requires message
integrations between different network segments.

A. Message Integration for Hybrid Model

For a hybrid model, without loss of generality,
let us assume that the network is partitioned into
two parts denoted as D and C. Part D is a discrete
network and it is solvable by appropriate algorithms
such as junction tree or discrete loopy propagation.
Part C is an arbitrary continuous network. Let us
denote the observable evidence in part D as E,,
and the evidence from C as E,. Therefore the entire
evidence set E consists of E; and E,.. As mentioned
before, given interface nodes, variables from the two
network segments are conditional independent of each
other. The evidence from part D affects the posterior
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Fig. 4. Synthetic hybrid Bayesian networks-1.

probability of hidden nodes in part C and vice versa
only through the channel of the interface nodes.

We therefore summarize the prior and evidence
information of each network segment and encode
them as either 7 or A value at the interface nodes.
Assuming that the set of interface nodes between two
network segments is I, then the two messages are:
AI) =P(E,|I) and 7(I) = P(I| E,;). These values are
to be passed between network segments to facilitate
information integration. As in Pearl’s algorithm, this
approach can be easily integrated with the UMP-BN
loopy algorithm mentioned above in a unified manner.

We use the following concrete example to illustrate
how to integrate messages from different network
segments. As can be seen in Fig. 4, synthetic hybrid
model-1 has K as the interface node dividing the
network into a discrete part consisting of H, B, F,

K, G and a continuous part consisting of T, R, S, M,
Y. For the purpose of illustration, let us assume all
discrete nodes are binary and all continuous nodes are
scalar Gaussian variables.

Suppose the leaf nodes G, M, Y are observable
evidence. We first focus on the continuous segment.
In this step, we compute the A message sending to
the interface node K from continuous evidence. And
conditioning on each possible state of K, we estimate
the posterior distributions for all hidden continuous
variables given continuous evidence. Under Gaussian
assumption, these posterior distributions are
represented by means and variances and they are
intermediate results that will be combined after we
obtain the a posterior probability distribution of the
interface node K given all evidence. Probabilities
of all possible states of K are served as the mixing
weights, similar to computing the mean and variance
of a Gaussian mixture.

Given K, it is straightforward to compute the
likelihood of continuous evidence M =m, Y =y
because we can easily estimate the conditional
probability distribution of evidence node given
interface nodes and other observations. For example,
let

PM=mY=y|K=1)=a
PM=mY=y|K=2)=b.

Then to incorporate the evidence likelihood is
equivalent to adding a binary discrete dummy node as
the child of the interface node K with the conditional
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Fig. 5. Transformed model with dummy node.

probability table shown as the following:

Dummy

K 1 2

1 | aa l-aa | where « is a normalizing constant.

2 | ab 1-ab

By setting “Dummy” to be observed as state 1, the
entire continuous segment could be replaced by the
node Dummy. Then the original hybrid BN can be
transformed into a purely discrete model shown in
Fig. 5 in which Dummy integrates all of the
continuous evidence information.

The second step is to compute the posterior
distributions for all hidden discrete nodes given
G = g, Dummy = 1. We have several algorithms to
choose for inference depending on the complexity of
the transformed model. In general, we can always
apply discrete loopy propagation algorithm to
obtain approximate results regardless of network
topology. Note that the posterior distributions of the
discrete nodes have taken into account all evidence
including the ones from continuous segment via the
Dummy node. However, we need to send the updated
information back to the continuous subnetwork via
the set of interface nodes. This is done by computing
the joint posterior probability distribution of the
interface nodes denoted as P(I | E). Essentially, it is
the m messages to be sent to the continuous network
segment.

With the messages encoded in the interface nodes,
the last step is to go back to the continuous segment
to compute the a posterior probability distributions for
all hidden continuous variables. Recall that in the first
step, for any hidden continuous variable X, we already
have P(X |LE,) computed and saved. The following
derivation shows how to compute P(X | E):

P(X |E) = P(X | E..E,)

=> P(X.I|E,E,)
I

=Y P(X|LE,E)P(|E,_E,)
I

=> P(X|LE)P(|E). (20)
I
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Fig. 6. GHM-2.

The fourth equality is due to the fact that the set of
interface node d-separate the node X with E,.

Assuming given an instantiation of the set of
interface nodes I =i, P(X |1 =i,E,) is a Gaussian
distribution with mean ¥; and variance o7. Then (20)
is equivalent to computing the probability density
function of a Gaussian mixture with P(I =i | E) as
the weighting factors. Denoting P(I =i | E) as p,,
the mean x and the variance af of P(X | E) can be
computed as the following [3, p. 56]:

X = Zpi;‘i
i
oy = Zpigiz + Zpi)_‘iz -
i i

Through the above three steps, we successfully
integrate messages from different subnetworks to
obtain the approximate posterior marginal distribution
for both continuous and discrete hidden variables
given all evidence. There are two approximations in
the algorithm. One is from loopy propagation method
itself. Another one is that we approximate continuous
variable as Gaussian distributed as we only use the
first two moments to represent continuous messages.
However, it provides promising performance as seen
in the numerical experiment results.

2D

(22)

IV.  HYBRID MESSAGE PASSING ALGORITHM

We have presented separate message passing in
either discrete or continuous network segment and
message integration in hybrid model via interface
nodes. In this section, we summarize the general
algorithm of message passing for hybrid BNs as
shown in Table I.

In order to incorporate evidence information, we
allow a node to send a A\ message to itself. For a
discrete network, we initialize the messages by letting
all evidence nodes send to themselves a vector of a
“1” for observed state and Os for other states. All
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TABLE I
Hybrid Message Passing Algorithm for General Mixed BN

Algorithm: Hybrid Message Passing for General Mixed BN
(HMP-BN).

Input: General hybrid BN given a set of evidence.

Output: Posterior marginal distributions of all hidden nodes.

1. Determine the interface nodes and partition the network
into independent segments with interface nodes. Choose the
appropriate inference algorithm for each network segment.

2. Continuous network segment: compute the A message
sending to the interface nodes and the intermediate
posterior distribution of the hidden continuous variables
given the interface nodes and the local evidence.

3. Transform the original network into an equivalent discrete
model with a dummy node added as a child of the
interface nodes. This dummy discrete node carries the A
message from continuous evidence to the interface nodes.

4. Compute the posterior distribution for every hidden discrete
variable using the transformed discrete model. The joint
posterior probability table of the interface nodes is saved as
the 7 message to be sent back to the continuous network
segment.

5. Compute the posterior distribution for every hidden
continuous variable given all evidence by integrating the 7
message using (20).

other messages are initialized as vectors of 1s. For
continuous network, a message is represented by
mean and variance. We initialize the messages for

all continuous evidence nodes, sending themselves

as the one with the mean equal to the observed value
and the variance equal to zero. All other messages

in continuous network are initialized as uniform,
specifically, zero-mean and infinity variance (the
so-called “diffusion prior”). Then in each iteration,
every node computes its own belief and outgoing
messages based on the incoming messages from its
neighbors. We assess the convergence by checking if
any belief change is less than a prespecified threshold
(for example, 10~#). We use parallel updating for each
node until the messages are converged.

V. NUMERICAL EVALUATION

A. Experiment Method

We use two synthetic hybrid models for
experiments. One is shown in Fig. 4 as mentioned in
Section IITA called GHM-1. GHM-1 has one loop in
each network segment, respectively, (partitioned by
the interface node K). Another experiment model is
shown in Fig. 6 called GHM-2. GHM-2 has multiple
loops in the continuous segment.

For GHM-1, we assume that the leaf nodes G,M,Y
are observable evidence. We model its continuous
segment as a linear Gaussian network given the
interface node K. Therefore the original network is a
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CLG so that the exact inference algorithm (junction
tree) can be used to provide the true answer as a
golden standard for performance comparison. The
CPTs and CPDs for nodes in GHM-1 are randomly
specified.

Note that our algorithm can handle general
arbitrary hybrid model, not just CLG. GHM-2 is
designed specifically to test the algorithm under the
situation where nonlinear CPDs are involved in the
model. The structure of the continuous segment in
GHM-2 is borrowed from [17] in which the author
proposed junction tree algorithm for CLG. The
discrete nodes in the GHM-2 are binary, and we
randomly specify the CPTs for them similar to the one
in GHM-1. But the CPDs for the continuous nodes are
deliberately specified using severe nonlinear functions
shown below to test the robustness of the algorithm:

F ~ N(—10,3)
W ~ N(100,10)

B|K =1~ N(50,5)

B |K =2~ N(60,5)
E~NW +2F,1)
C~N(E,3)
D ~ N(VW x log(E) — B,5)

Min ~ N (VW +6,3)
Mout ~ N(0.5 x D x Min, 5)

L ~N(=5xD,5).

We assume that the evidence set in the GHM-2 is
{H,C,Mout,L}. Since no exact algorithm is available
for such model, for comparison purposes, we use the
brute force sampling method, likelihood weighting,
to obtain an approximate true solution with a large
number of samples (20 million samples).

In our experiments, we first randomly sample
the network and clamp the evidence nodes by their
sampled value. Then we run HMP-BN to compute
the posterior distributions for the hidden nodes.

It is important to mention that in both discrete

and continuous network segments, we implement
HMP-BN using loopy algorithms to make it general,
although junction tree could be used in network
segment whenever it is applicable. In addition, we
run LW using as many samples as it can generate
within roughly the same amount of time HMP-BN
consumes. There are 10 random runs for GHM-1 and
5 random runs for GHM-2. We compare the average
Kullback-Leibler (KL) divergences of the posterior
distributions obtained by different algorithms.

Given unlikely evidence, it is well known that
the sampling methods converge very slowly even
with a large sample size. We use GHM-1 to test
the robustness of our algorithm in this case because

SUN & CHANG: MESSAGE PASSING FOR HYBRID BNS: REPRESENTATION, PROPAGATION, AND INTEGRATION

Fig. 7. Posterior probability of hidden discrete variables in two
typical runs.

junction tree can provide the ground true for GHM-1
regardless of the evidence likelihood. We generate
10 random cases with evidence likelihood between
1073 ~ 10~ and run both HMP-BN and LW to
compare the performances.

B. Experiment Results

For model GHM-1, there are 4 hidden discrete
nodes and 3 hidden continuous nodes. Fig. 7
illustrates the posterior probabilities of hidden discrete
nodes computed by junction tree, HMP-BN, and LW
in two typical runs. Since GHM-1 is a simple model
and we did not use unlikely evidence, both HMP-BN
and LW perform well.

For continuous variables in GHM-1, Fig. 8 shows
the performance comparisons in means and variances
of the posterior distributions for the hidden continuous
nodes in all of the 10 runs. The normalized error is
defined as the ratio of the absolute error over the
corresponding true value. From the figure, it is evident
that HMP-BN provides accurate estimates of means,
while the estimated variances deviate from the true
somewhat but HMP-BN is still better than LW in most
cases.

We then demonstrate the robustness of HMP-BN
by testing its performance given unlikely evidence
shown in Fig. 9. In this experiment, 10 random sets
of evidence are chosen with likelihood between
107 and 10713, As can be seen, HMP-BN performs
significantly better than LW in this case. The average
KL divergences are consistently small with the
maximum value less than 0.05. This is not surprising
because LW uses the prior to generate samples so that
it hardly hits the area close to the observations.

We summarize the performance results with
GHM-1 in Table II. Note that given unlikely evidence,
the average KL divergence by HMP-BN is more than
one order of magnitude better than LW.

In GHM-2, due to the nonlinear nature of
the model, no exact method exists to provide the
benchmark. We use LW with 20 million samples
to obtain an approximation of the true value. We
implemented five simulation runs with randomly
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Fig. 8. GHM-1 Performance comparison for 10 random runs (ground true is provided by junction tree). (a) Mean comparison.
(b) Variance comparison.

Fig. 9. GHM-1: Performance comparison given unlikely
evidence.

sampled evidence. In this experiment, we adopt our
newly developed algorithm UMP-BN for inference in
continuous network segment [25]. Fig. 10 shows the
performance comparison in means and variances of
the posterior distribution for the hidden continuous
variables. Also, Table III summarizes the average

KL divergences in testing GHM-2. From the data,
we see that HMP-BN combining with UMP-BN
applied in the continuous subnetwork produces very
good results. In this nonlinear model with the normal
evidence, the new algorithm performs much better
than LW despite its advantages of being a model-free
algorithm. However, since there is only one interface
node in these models, implementing HMP-BN is
relatively simple.

C. Complexity of HMP-BN

In general, when there are multiple interface
nodes, HMP-BN computes the posterior distributions
of hidden continuous variables given continuous
evidence, conditioned on every combination of

TABLE II
Average KL-Divergence Comparison in Testing GHM-1

Average Normal Evidence Unlikely Evidence
KL divergence > 107 1075-10-15
HMP-BN 0.0011 0.0108
LW 0.0052 0.67
TABLE III

Average KL-Divergence Comparison in Testing GHM-2

Average KL Divergence

HMP-BN 0.0056
LW 0.0639

instantiations of all interface nodes. So the complexity
of the algorithm is highly dependent on the size

of interface nodes. To assess the complexity of
HMP-BN, we conducted a random experiment using
network structure borrowed from the ALARM model
[4] as shown in Fig. 11 in which there are 37 nodes.
We randomly selected each node to be discrete or
continuous with only a requirement that continuous
variable cannot have any discrete child node. In this
experiment, the average number of interface nodes
was about 12. HMP-BN still provided good estimates
of the posterior distributions but it took a much longer
time than the one with only one interface node. If we
have n interface nodes K,,K,,...,K, with number of
states n,,n,,...,n;, respectively, the computational
complexity of HMP-BN is proportional to O(n; x

n, X ng--- x n;). This implies that our algorithm is

not scalable for a large number of interface nodes.
However, our goal is not to propose an algorithm for
all models (NP-hard in general) and we suspect that

it is rare to have a large number of interface nodes in
most practical models. Even with the considerable size
of interface nodes, HMP-BN provides good results
within a reasonable time while the stochastic sampling
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Fig. 10. GHM-2: Performance comparison for 5 random runs (the reference base is provided by LW with 20 millions samples).
(a) Mean comparison. (b) Variance comparison.

Fig. 11. ALARM: network constructed by medical expert for monitoring patients in intensive care.

methods can perform very poorly using the same
amount of time. In addition, there are several ways
to reduce the computational burden such as assuming
that some interface nodes with small correlations

are independent of each other. Nevertheless, this

is beyond the scope of the paper and could be an
interesting topic for future research.

VI. CONCLUSION

In this paper, we develop a hybrid propagation
algorithm for general BNs with mixed discrete and

continuous variables. In the algorithm, we first
partition the network into discrete and continuous
segments by introducing the interface nodes. We then
apply message passing for each network segment
and encode the updated information as messages to
be exchanged between segments through the set of
interface nodes. Finally we integrate the separate
messages from different network segments and
compute the a posterior distributions for all hidden
nodes. The preliminary simulation results show that
the algorithm works well for hybrid BN models.
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The main contribution of this paper is to provide
a general framework for inference in hybrid model.
Based on the principle of decomposition and
conditioning, we introduce the set of interface nodes
to partition the network. Therefore it is possible to
apply exact inference algorithms such as junction
tree to some applicable network segments which
enables the integration of different efficient algorithms
from multiple subnetworks. For complicated network
segment such as the one with nonlinear and/or
non-Gaussian variables, we provide options to use a
loopy-type message passing algorithm.

Although the bottleneck of our algorithm is the
size of interface nodes, we believe that HMP-BN is a
good alternative for nonlinear and/or non-Gaussian
hybrid models since no efficient algorithm exists
for this case (as far as we know from the literature),
especially given unlikely evidence. We are currently
exploring another idea of propagating messages
directly between different types of nodes without
network partition or interface nodes. However, it is
beyond the scope of the current paper.

Note that the focus of this paper is on developing
a unified message passing algorithm for general
hybrid networks. While the algorithm works well
to estimate the means and variances for the hidden
continuous variables, the true posterior distributions
may have multiple modes. In practice, it might be
more important to know where the probability mass
is than just knowing mean and variance. One idea for
future research is to utilize the messages computed in
HMP-BN to obtain a good importance function and
apply importance sampling to estimate the probability
distributions. Another future research direction is to
extend the hybrid algorithm to the general BN models
without restriction of node ordering, such as to allow
continuous parents for discrete variables. If successful,
it would be a significant step forward.
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I.  INTRODUCTION

A distributed data fusion system consists of
a network of sensors and processors that may be
colocated with the sensors. Sensors generate data
by observing the environment. Processors process
local sensor data and fuse data from other sensors or
processors. The performance of a distributed fusion
system over a network depends on three factors: the
network architecture, the reliability of communication
links within the network, and applicable fusion
algorithms. Even though the network architecture
may be fixed and known, adaptive communication
strategies and possible communication link failures
will result in a dynamically changing communication
structure among the fusion nodes. Thus, a distributed
fusion algorithm is not really practical unless it can
handle a dynamic communication structure.

There has been a great deal of work in developing
distributed fusion algorithms applicable to a
network centric architecture [1-5]. However, most
of these algorithms have been designed for fixed
communication structures and may not be practical for
distributed systems such as ad hoc sensor networks
where the communication architecture changes
dynamically [6]. In particular, the distributed fusion
algorithm based on the information graph approach
[7] was developed to optimally combine information
from multiple nodes by maintaining information
pedigree and using it to avoid any double counting
of information. However, when the communication
structure changes in real time, this algorithm may
not scale because of its requirements to carry long
pedigree information for decorrelation.

In this paper, we focus on several scalable fusion
algorithms and analytically compare their performance
through steady-state estimate error prediction. To
demonstrate our performance analysis approach, we
use a nominal three-node fusion processing scenario
with cyclic communications as shown in Fig. 1.

We conduct extensive simulations to validate the
theoretical predictions. We have chosen this network
structure because of its complexity due to multiple
paths for information propagation, and the availability
of the optimal analytical solution that can be derived
and used as a performance baseline.

Specifically, we consider the fusion algorithms
listed below and compare their performance against
the optimal information fusion solution.

Channel filter

Naive fusion
Chernoff fusion
Shannon fusion
Bhattacharyya fusion

Our goal is to investigate how these different
fusion algorithms perform for a specific scenario
under limited communication bandwidth. This is

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 46, NO. 4 OCTOBER 2010



Fig. 1.

part of a wider objective to understand the system
trades involved in a general decentralized ad hoc
sensor network. The rest of this paper is organized

as follows. Section II briefly describes the set of
scalable distributed fusion algorithms to be considered
in this paper. Section III derives the analytical fusion
performance evaluation in terms of steady-state mean
square error. Section IV summarizes the technical
findings of the study, and Section V presents some
future research directions.

II.  SCALABLE FUSION ALGORITHMS

The theoretic fundamentals of distributed
information fusion are well documented and have
been studied in depth [7-11]. It is noted, however,
that practical applications of these theoretical results
to nondeterministic information flow have remained a
challenge. The main difficulty is the need to identify
and remove common information from the data sets
to be fused, while minimizing the amount of data
exchanged between agents.

The basic fusion process, as described in [7],
follows from set theory, where the combination of n
event probabilities (- | [;) given the information /; can
be represented as

¢(.

where §; represents the combination of i event
probabilities such that, S, = [[_, ®(- | [,), S, =
[T et @C LT, S, = @C [ NN,
The alternating multiplication and division of
joint probabilities from (1) removes conditional
dependencies from the data sets in the form of shared
information.

While the removal of duplicate information
is straightforward in the theoretical formulation,
identification of duplicate information for distributed
estimation systems can be difficult in practical
implementations. The difficulty is due to the need
to recognize correlated information resulting from
past fusion events and know the values of their data
sets. The information graph (IG) technique presented

W)t o
i=1

i=1
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Three sensor cyclic communication scenario.

in [7-9] provides an analytical tool for identifying
duplicate information in distributed estimation
systems. The approach is a symbolic representation of
the collection, propagation, and fusing of data among
a set of fusion agents. An example of an IG is shown
in Fig. 1, where a simple cyclical communications
pattern is demonstrated. Each numbered row of
symbols represents the events of a given agent.
Within each time step, each agent may perform time
updates of estimates, receive sensor data, perform
measurement updates, transmit the local estimate to
other agents, and fuse estimates received from other
agents.

The difficulty with the IG approach is that it
is communication pattern dependent—it needs to
consider all relevant common priors and to remove
the common information at these nodes from the
current track update. Determining these nodal
connections over a varying network can be difficult
and time-consuming. For example, in the simple three
sensor cyclic communication network shown in Fig. 1,
the resulting formula for the fusion between the first
two sensors at time k is [7]

_ l PP (0P 4 3(xX)

p(x) ¢ Prx20)pyp (%)

@

where c is the normalization constant, p(x) is the
conditional probability at node s1 after fusion, and
Pix(x) is the conditional probability at node si and
time k before fusion. In the case when all probability
densities are Gaussian, the fusion formula becomes
(see Fig. 1)

B =R+ By =R =Bl + B
P % = 1)1}1)%1,1( + Pz]cl;‘z,k - E}tzil,kfz
— Bl Fogor + B (3)
In general, to construct the “optimal”! fusion formula

may require carrying long pedigree information® that

The IG approach is optimal when the underlying system is
deterministic.

2Information includes communication and fusion events history as
well as past fusion data.
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might not be practical in an environment with limited
communication bandwidth [12].

To address the scalability issue, we have developed
each of the fusion algorithms described in the
following sections for autonomous sensors in
arbitrary network conditions. All of these approaches
are suboptimal in general but provide adequate
performance when basic assumptions are met.

A. Channel Filter

The channel filter approach [13-16] is simpler
than IG fusion in that only the first order redundant
information is considered. Each channel is defined
by a pair of agents—a transmitting agent and a
receiving agent. The transmitting agent for a particular
channel is responsible for removing redundant
information; as such, it needs only keep track of the
previous transmission from itself to the receiving
node.

However, in a dynamic ad hoc network, the
transmitting data may never reach the receiving end
because of link uncertainty. Therefore, another idea is
to have the receiving agent of a particular channel be
responsible for removing the redundant information.
In this way, the receiving agent only needs to keep
track of the previous data transmitted to or received
from the channel at the previous communication
time and remove it when combining the current
estimates. There is no need to maintain long histories
of previous activity. In a sense, this can be considered
as a first order approximation to the optimal IG
approach.

Specifically, the channel filter fusion equation is
given as

o) = —PLOPA/ PO
JIp1 ()P, (x)/p(x)]dx

where p,(x) and p,(x) are the two probability
density functions to be fused (one local and the
other received from a particular channel) and p(x)
is the density function received from the same
channel at the previous communication time and is
the common “prior information” to be removed in
the fusion formula. When both p,(x) and p,(x) are
Gaussian density with mean and covariance x,, P,
and )Acz,Pz, respectively, the fused state estimate and
corresponding covariance error can be written as

“)

P71 — 1)171 +I)271 _1_)71
Q)

71»\_ 71/\ 71/\ _71_
P x=PF "X +B 'x,—P 'x

While simpler, it is obvious that dependent
information is more likely to be lost in the channel
filter when compared with the IG approach. On the
other hand, if the time between when that redundancy
occurred and the current processing time is relatively
long, the impact could be minimal.

2024

B. Naive Fusion

Naive fusion is the simplest fusion approach,
where it is assumed that the dependency between the
density functions is negligible. This fusion approach is
the simplest type, but it can be unreliable. The naive
fusion formula can be written as

P (0)p,(x)

() = 2P ©)
P T @pydx
For the Gaussian case, the fused state estimate and
corresponding error covariance are shown as
Pl=p+p!
)

_lA_ —1A 1A
P x=PF "X +PB Xx,.

Note that the fused track covariance is the inverse of
the sum of the inverses of the local track covariance
matrices. Thus, because of the lack of common prior
information, the fused covariance could be much
smaller, which can lead to overconfidence. Also when
the common prior has very large covariance, (7) is
equivalent to (5).

C. Chernoff Fusion

When the dependency between two distributions is
unknown, one idea is to use the Chernoff information
[17]. The fusion formula is based on the following:

PP, ()
S Py py ™ (x)dx

where w € [0 1] is an appropriate parameter that
minimizes a chosen criteria. When the criterion to be
minimized is the Chernoff information as defined in
the denominator of (8), we call it Chernoff fusion.
It can be shown that the resulting fused density
function that minimizes the Chernoff information

is the one “halfway” between the two original
densities in terms of the Kullback Leibler distance
[17, p. 312]. In the case when both p,(x) and

p,(x) are Gaussian, the resulting fused density is
also Gaussian with mean and covariance obtained
as

px) = ®)

Pl=wh'+(1-wpr"!
©)

P'x=wP '% + (1 —w)PB'x,.

This formula is identical to the covariance intersection
(CI) fusion technique [14—15]. Therefore, the CI
technique can be considered as a special case of (8).
In theory, Chernoff fusion can be used to combine any
two arbitrary density functions in a log-linear fashion.
However, the resulting fused density may not preserve
the same form as the original ones. Also in general,
obtaining the proper weighting parameter to satisfy

a certain criterion may involve extensive search or
computation [18].
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D. Shannon Fusion

A special case of (8) is when the parameter w
is chosen to minimize the determinant of the fused
covariance [18, 19]. In the Gaussian case, it is
equivalent to minimizing the Shannon information
of the fused density. This is because the Shannon
information defined as I, = — fx p(x)In p(x)dx can be
shown to be equal to [, = %1n((27r)”|P|1/2) +n/2 when
p(x) is Gaussian with covariance P [18]. We call this
special case the Shannon fusion. Note that with (9),
the Shannon information is a convex function of the
parameter w, and therefore the maximum is located at
the extreme points (either w = 0 or w = 1). Moreover,
in scalar case where both P, and P, are scalar, the
minimum of Shannon information is also located at
the extremes [18].

E. Bhattacharyya Fusion

Another special case of (8) is when the parameter
w 1is set to be 0.5. In this case, the denominator of

(8) becomes B = [ /p,(x)p,(x)dx, which is the

Bhattacharyya bound. We call the resulting fusion
formula, p(x) = (1/B)+/p,(x)p,(x), the Bhattacharyya
fusion. When both p,(x) and p,(x) are Gaussian, the
fusion equation can be written as

EEGRREN

P'x=13P "% + B '%y) (10)

=x=E"+ )P + B,

Therefore, in the Gaussian case, Bhattacharyya
fusion is similar to naive fusion; the resulting fused
covariance is merely twice as big as that of naive
fusion. Note that the fusion equation can be rewritten
as

Pl=a@® +B =R +B D3R +A D
(1D

-1 1p-12 —17
Px =3P X + B xy)
—1x ~1z 1 p-12 ~14
=(F X+ P X)) — 5P X + B xy).

This formula replaces the common prior
information of (5) for the channel filter by the average
of the two sets of information to be fused. Namely,
pl—i@ '+ HYand P'x — (A% + P 7'%). In
other words, instead of removing the common prior
information from the previous communication, as
in the channel filter case, the common information
of Bhattacharyya fusion is approximated by the
“average” of the two locally available information
sets.

In the next section, we derive the analytical
performance of channel filter, naive fusion, and
Bhattacharyya fusion in terms of true steady-state
mean square error. We will derive the results based on
the specific cyclic communication scenario as given in
Fig. 1. We will also conduct extensive simulation to
evaluate other alternative fusion algorithms.
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IlI.  ANALYTICAL PERFORMANCE PREDICTION

As shown in Fig. 1, where at time k we define
Di=kuRh=Rpad =%, sP=H_j;_ as
the fused state estimates and the associated filter
covariances at time k and k — 15 2) X; =X, 3B = Py
as the local updated state estimates and the associated
filter covariances; and 3) x; = %i,kfl\k—l;Pi =F ) i1 as
the local updated state estimates and the associated
filter covariances at the previous time instance
k—1.

Our goal is to find the steady-state mean square
error covariance of the fused estimate, namely, 2 =
limy_,  E[Go — 6 )Xy — X1 = E[G = x0)(x — x)'].

In the following, we assume that the dynamic system
follows a scalar random walk model, namely, x,, =
X; + v, where v, is a zero mean Gaussian process
noise with variance Q. We further assume that the
observation model is similar for the three sensors
and is linear Gaussian, i.e., z;; = x, +w;;, where w;
is a zero-mean Gaussian measurement noise with
variance R; for sensor i. In the following, we assume
that the sensors have the same quality, i.e., R =R, =
R; = R. Therefore, in steady state, let P = P, then
BE=F a1 =By =H=P.

A. Channel Filter

With a channel filter, as shown in (5), the fusion
equations are written as

R =R R =Py (12)
Bl'i=R "5+ B - Byl T (13)
Equation (13) can be rewritten as,
A EPoil(’% —X) = Pfl(;ﬁ —Xx)+ szl(;cz —X)
_é}}k—l(iz,k\kﬂ —x)

=P 'G -0+P G- -P+Q) '(x,—x)

=X—-x)=RA

=RP '3, —x)+BP ' (X, —x)

~B((P+0) ' ). (14)
Therefore,
Q=E[(x —x)*] = BE(AA)P). (15)
In the scalar case,
. P . R . R
G—x)?= P—Oz(x1 —x) + p_oz(x2 —x)* + m(x2 —x)?

+ 2RIE — DG, —x) 2Ry — 00 —X)

P2 P(P+0Q)
2P2(%, — X)(X, — X)
- P(P+0Q) (16)
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Fig. 2. Steady-state filter variances P and F, for various Q and R.

2P? , R} easily shown that
:>52 = F(B+E)+W(B+Q)
opo P} +(20)P* + 20*)P —(20)R=0.  (24)
0

PP+ Q)(Cl +C) a7 A closed form real solution of the preceding cubic
h polynomial can be solved and the resulting £ as a
where function of various Q and R is shown in Fig. 2.
E[, - )] = E[()_Cz,k\k—l -~ xk)z] Note that the filter variance is not the same as the
true mean square error. To obtain the true mean square
= E[(x, ko1~ X1 — vk_l)z] error as given in (17), we will need to derive each of
the three terms listed in (19)—(21). It can be shown
=B+Q (18)  that (the details are omitted),
_ ra 29 _ s a2
B=Elx =0T =Eln=071 (9 p_ 1 _kpos(1-KPQ+KR=)\2+a  (25)
E'=E[(x; —x)(X, —x)] 20) -, -,
(Al N d ( E'= (1 - K{E[G] —x_ D) —x_ ] + 0}
C, =E[(x, —x)(x, —x)] an
S @y =(-KVIE,+Q] 26)
C, =E[(x; —x)(x, —x)]. P2 » 5
— 0 ! 0 /
Note that in (17), Ry and P are the steady-state “filter” E,= (F) GE +B) + <p + Q> (E"+0Q)
variances. They can be obtained by solving the P2
following two equations: _ 0 2D 9
1 1 o 1 1 <P(P+Q))(C1+C2+ ) (27)
=R B B =2 (P 0y n. B
(1-K) (—B + —E + Q)
=Rk =PP+Q)/(P+20) (22) C.=C. = P P
1 =6 = P
(B + Q) 1+(1-K)52
— _ r_ __MoT¥)
P=B+Q-KSK' =B+ Q- 60 h P+Q
(1-K)P+0) ., (1 -K)(P +20)
= 0 TN E 4B+t X
_ _(BR+OR (23) 2P+0 kP L T30 —kp 2
(Bh+0+R)
=nE +B)+7 (28)
where K = (R + Q)/(R) + Q + R) is the steady-state
Kalman gain and S = Ry + O + R is the steady state and
innovation variance. From (22) and (23), it can be D =nQ2E" +7. (29)
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Fig. 3. Comparison of channel filter analytical MSE with simulated MSE (1000 MC trials).

Using relations (25)-(29), (17) can be rewritten as

2B} P2 2P?
Q= FrBHEN+ 5l Q)Q(B+Q) e Q)(ZC)

207 B SR P
( T®P+07 PP+ Q)n>
2R} 4R} £
* ( P2 PP+ )
P? 4P?
*Frorl PO
=B+ LE +1; =, +Lf))B+1L,f, +1;

/

=mB+my,=m (A2 +a)+m,
mya +m,

Q= .
= I —mA

(30)
Fig. 3 compares the analytical mean square errors
(MSE) based on (30) with the average MSE based
on 1000 Monte Carlo simulation trials. It is clear that
they are in perfect agreement. Fig. 3 also shows that
the filter variance F, is very close to the true MSE,
which indicates that the algorithm behaves well and is
reasonably consistent [9].

B. Naive Fusion

With the notations defined earlier, the naive fusion
equations can be written as

B=@"'+pH =P 31)
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X=RB X+ PR = (] +X,)/2.

—x)]1/2; therefore,

(32)
From (31), (x —x) = [(X; —x) + (X,

Q=E[(x—x)]
= 1[E[(&, —0)’] + E[(x, — x)*] + 2E[(X, — x)(X, — x)]]

=1B+E) (33)
where, as defined before, B = E[(X; —x)*] =
E[(x, —x)*] and E' = E[(X, — x)(X, — x)].
From (25), B = A\{Q2 + a, and from (26),
E' = E[(x; — x)(X; — x)]
=(1 _K)Q{E[(J_f& — X D& —x D1+ 0}
= 1(1-K)*(B +3E' +40)
,_ (1-K) _
(34)

Therefore, from (25), (33), and (34), we have,
Q=3B+E)=3(1+pB+2u0

(1 +p)a/2 +2p0
I—(1+mA/2
(35)
Note that in (31), Ry and P are the steady-state “filter”

variances, which are not the same as the true MSEs.
They can be obtained by solving the following two

=11+ A2 +a)+2p0 = Q =
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Fig. 4. Comparison of naive fusion analytical MSE with simulated MSE (1000 MC trials).

equations:
R'=P"'+P'=2P 'R =P)2 (36)
_ B ' _ (B+OY
P=(+Q)-KSK'=(h+0)- 56 5
_ (P/2+O)R
T (P/2+Q+R)’ 37)
From (36) and (37), it can be easily shown that
P2+(2Q+RP—-20R=0
_p.VQO+R? +§QRf(2Q +R)
(38)

Fig. 4 compares the analytical MSEs based on (35)
with the average MSE based on 1000 Monte Carlo
simulation trials. It is clear that they are very close
to each other when the process noise is not very
small. However, when the process noise is extremely
small (< 107%), the simulation results are slightly
lower than the analytical prediction. This could be
due to numerical round off error caused by the small
magnitude of the noise. Fig. 4 also shows that the
steady-state filter variances R, are significantly smaller
than the true MSE, especially when the process noise
is not very large. This implies that naive fusion

is too optimistic and has poor filter consistency

[11].
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C. Bhattacharyya Fusion

As in the naive fusion case, the Bhattacharyya
fusion equations can be written as

p=2p"'+p =P (39
Y=iRP TR + PR = (G +5,)/2. (40)
As in (33)

Q=E[G-x)]

= H{E[(x, =)’ + E[(X, —0)°] + 2E[(X, —0)(X, — )]}

= %(B +E) 41)
where, as defined before, B = A\ + o« and E’ =
[(1 =K)?/4—3(1 —K)*1(B +4Q) = (B + 4Q).
Therefore, as in (35)
Qo (l+u)a/2+2/~LQ. 42)

1—(1+ )2

Note that the only difference between naive and
Bhattacharyya fusion is in (38), where R, and P
are the steady-state “filter” variances, which can be
obtained by solving the following equation:

- - _B+0”
P=(F+0)-KSK _(PO+Q)_(PO+Q+R)

_ (P+O)R

“Pr0+R) )
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Fig. 5.

From (43), it can be easily shown that

P +PQ-QR=0=p= YL TIOR-0Q
S .

(44)

Fig. 5 compares the analytical MSEs based on (41)
with the average MSE based on 1000 Monte Carlo
simulation trials. Again, they are in perfect agreement.
However, as can be seen in the figure, a critical

issue with this approach is that the steady-state

filter variances are almost twice as large as the

true MSE. This indicates that the Bhattacharyya
fusion algorithm is too pessimistic and is severely
inconsistent.

IV.  SIMULATION RESULTS AND DISCUSSION

In addition to the theoretical analysis for channel
filter, naive fusion, and Bhattacharyya fusion, we
conducted extensive simulation for Chernoff fusion
and Shannon fusion to compare their performances
against optimal centralized fusion. The results are
shown in Fig. 6. As can be seen, in addition to naive
fusion, Shannon fusion also performs poorly. This is
because in the scalar case, Shannon fusion essentially
picks the density with smaller variance. Therefore
the fusion performance converges to single sensor
performance when the sensor qualities are identical.

As shown in Fig. 6, the remaining three algorithms
have very similar performance. A closer look (Fig. 7)
reveals that channel filter performs close to optimal

CHANG ET AL.: ANALYTICAL AND COMPUTATIONAL EVALUATION

Comparison of Bhattacharyya fusion analytical and simulated MSE (1000 MC trials).

while Chernoff fusion and Bhattacharyya fusion
perform slightly worse. Note that when all sensors
have the same quality, Chernoff fusion converges to
Bhattacharyya fusion.

We then evaluate the fusion algorithms with
different sensor qualities. Instead of homogeneous
quality as in the previous case, the sensor
measurement error variances are set as 0.5, 1.0,
and 2.0 for the three sensors, respectively. The
results are shown in Fig. 8, which compares the
performance of channel filter, Chernoff fusion, and
Bhattacharyya fusion versus optimal fusion. From the
figure, it is clear that channel filter performs the best,
Bhattacharyya fusion performs slightly worse, while
Chernoff fusion performs the worst among the three,
particularly when the process noise is large.

To simulate the stochastic nature of the
communication link, we model the reliability of each
link with a probabilistic measure. For example, a
link with 0.5 reliability means that the information
will pass through the channel only 50% of the time.
We then test the three fusion algorithms and their
robustness under various link reliabilities. Because
all algorithms under consideration are scalable and
autonomous, no additional changes are necessary in
the algorithms for the test. The results in Fig. 9 show
that the performances are in general proportional to
the communication quality, which is quite intuitive.
The results also show that all three algorithms
are quite stable and they perform according to
expectation.
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Fig. 6. Comparison of alternative fusion algorithms with optimal fusion algorithm (R, = R, = R; = 1).

Fig. 7. Comparison of channel filter, Chernoff fusion, and Bhattacharyya fusion (R, =R, = R; = 1).

It should be noted that channel filter, while
requiring a one-step memory to retrieve and remove
the common prior information in each channel, has a
rather simple implementation. On the other hand, the
Chernoff fusion algorithm, in addition to its poor filter
consistency, needs significantly more computation
to search for the optimal weighting factor. Our
preliminary experiments show that channel filter is at
least one order of magnitude faster than the Chernoff
fusion. Further investigation is needed to compare the
trade-offs between these promising algorithms in a
more reliable manner.
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V. SUMMARY

In this paper, we focus on the analysis and
comparison of several scalable algorithms for
distributed fusion in a cyclic communication sensor
network. Specifically, we evaluate the performance
of channel filter fusion, naive fusion, Chernoff
fusion, Shannon fusion, and Bhattacharyya fusion
algorithms. We also compare their performance to
“optimal” centralized fusion algorithms under a
specific communication pattern.

The results show that naive fusion and Shannon
fusion perform poorly while several other scalable
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Fig. 8. Channel filter, Chernoff fusion, and Bhatacharyya fusion versus optimal fusion with sensors of different qualities
(R, =05, R, =10, Ry =2.0).

Fig. 9. Channel filter versus Bhattacharyya fusion with various communication link qualities (R} = R, = Ry = 1).

algorithms including channel filter, Chernoff fusion algorithm. In particular the channel filter
fusion, and Bhattacharyya fusion, require minimum fusion, representing a first-order approximation to IG
communication and perform fairly well. Their fusion, works surprisingly well and has been shown to
performance is comparable with that of the optimal be the only “consistent” fusion algorithm.
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One of the future research directions is to extend
and validate the results to more general network
scenarios. In particular, to address the real world
network-centric tracking and fusion problems. It is
important to consider heterogeneous sensors with
different sampling interval and error characteristics
under dynamic communication topology and
constraints. It is also useful to develop theoretical
analysis for specific algorithms whenever possible for
a given network scenario.
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