
Angles-Only Navigation: Position and Velocity 
Solution from Absolute Triangulation 

GEORGE H. KAPLAN 
U.S. Naval Observatory, Washington DC, 20392* 

Received July 2010; Revised January 2011 

ABSTRACT: Angles-only (or bearings-only) navigation involves determining position, velocity, or orientation in­
formation for an observer using the apparent directions or motions of objects at finite distances. Angles-only navi­
gation covers a broad range of applications, and is generally implemented through a Kalman filter that uses 
imaging and other information to differentially adjust the values of the navigation parameters (state vector) at 
each incremental step of the observer's computed motion. 

This paper presents an algorithm for angles-only navigation that is a closed-form solution for both position and 
velocity that does not require any prior estimate of the observer's position or motion. It is least-squares-based trian­
gulation generalized to a moving observer, involving only angular observations of objects with known coordinates. 

The algorithm can be applied to any situation where foreground objects are observed against background 
objects, so long as both foreground and background objects are identifiable and have known coordinates. It can 
be used for ship piloting using images of shore objects at various distances. It also has possible applications in 
robotics; for example, for determining the position and velocity of mobile landers on other solar system bodies, or 
for automated farming. A specific proposed application for open-sea ship navigation would use the angular posi­
tions of Earth satellites observed optically against a star background. Such a system could provide a supplement 
to ordinary GPS navigation, as well as supplying a precise absolute attitude reference. 

INTRODUCTION 

This paper outlines the geometry and correspond­
ing mathematics of a particular type of angles-only 
navigation. In angles-only navigation (also known as 
bearings-only navigation) position, velocity, or orien­
tation information for an observer is passively ob­
tained from measurements of the apparent angles, 
or angular rates, of objects at finite (but generally 
unknown) distances. Despite its name, angles-only 
navigation is often used to augment other means of 
navigation, such as dead reckoning, inertial, or GPS. 
As a simple example, a ship's navigator can deter­
mine a line of position from the measured bearing of 
an identifiable navigation aid or landmark. 'I\vo such 
lines of position will cross at the ship's position. In 
more sophisticated forms, it has been applied to 
spacecraft maneuvering [1, 2], aircraft navigation 
[3-6], and position determination for mobile robots 
[7-9]. Advances in electronic imaging and real-time 
image analysis capabilities over the last few decades 
have considerably expanded the scope of uses, and 
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the literature base has blossomed, with significant 
contributions from fields such as optics, computer 
vision, robotics, artificial intelligence, and even ani­
mal navigation. The topic is probably too broad for 
a review even to be possible, and the references 
cited above are just a tiny sample of the papers 
published. 

In the most common implementations of angles­
only navigation, measurements from a scene re­
corded by an imaging system serve as input, along 
with data from other sensors, to a navigational 
Kalman filter that continually updates the observ­
er's state vector (e.g, position, velocity, and atti­
tude); see, for example, [10]. For this purpose, the 
sensitivity of the scene elements and other sensor 
data to a change of state are linearized about an 
estimated state, which is a computational projec­
tion based on previous data. The differences be­
tween the measurements and their expected values, 
which are assumed small, provide information to 
correct the estimated state, and the cycle repeats. 
A somewhat different kind of predictive stepwise 
filter for angles-only measurements, yielding posi­
tion, velocity, attitude, and rotation, was published 
in [11]. 

In this paper, however, we consider how to deter­
mine, ab initio, both the position and velocity 
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vectors of an observer (e.g., an imaging system) 
using a sequence of angular measurements that are 
distributed over a period of time. The measure­
ments are of the apparent directions of identifiable 
objects with known coordinates. The scheme is 
"absolute" in the sense that the angular measure­
ments, rather than being relative to some unknown 
directions, are expressed in the reference system 
that is used for the object coordinates (and the navi­
gation solution). This considerably simplifies the 
problem by obviating the need for a simultaneous 
attitude solution or any kind of object-space/image­
space mapping. Although at first thought this situa­
tion may seem atypical, the development remains 
pertinent to many common applications. For exam­
ple, it is relevant to any system that captures 
scenes in which foreground features appear against 
background features, and geodetic coordinates can 
be obtained for both near and far objects. 

In contrast to the Kalman filter approach, the 
algorithm presented here does not require any pre­
vious estimate of position or motion, and is of closed 
form, not stepwise or iterative. It is a type of 3-D 
triangulation applied to a moving observer, with 
angular observations taken at various positions 
along the observer's track. The observations are 
assumed to be uncorrelated and to have normally 
distributed random errors but no significant sys­
tematic errors. The solution minimizes the effects 
of errors in both the observations and the assumed 
object coordinates in a least-squares sense. Since 
the algorithm requires only information related to 
the angular observations, it may be useful for 
startup situations or any other circumstances in 
which current position and velocity data are unreli­
able or not available. The scheme requires only 
that the objects observed can be identified and their 
coordinates retrieved. The algorithm can also pro­
vide a check on stepwise navigation filters. The de­
velopment is based on a straightforward geometric 
construction and the solutions are robust for rea­
sonable sets of observations. 
· What is presented here is not, of course, the first 

closed-form solution to an angles-only navigation 
problem. In fact, the solution for the fixed-observer 
case was published (in a different kind of notation) 
in an appendix to the classical text Geodesy by 
Bomford [12]. Two of the robotics papers mentioned 
above [7, 9] present closed-form solutions for a fixed 
observer using relative bearing measurements in a 
2-D environment. The main contribution of this pa­
per is in presenting a closed-form solution for both 
position and velocity in a 3-D environment. The de­
velopment includes a correction term for the curva­
ture of the Earth, so that observations can be col­
lected over extended tracks. 

The paper is organized by sections as follows. 
First, some possible applications of the method are 
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described. The following section explains the basic 
concepts of the observations and their representa­
tion as vectors. Next, two navigation solutions are 
presented, one for a fixed observer and the other for 
a moving observer. The term in the solution that 
corrects for the curvature of the Earth is then 
briefly discussed. The next two sections consider 
the propagation of random error and the effects of 
an unmodeled acceleration on the solution. The spe­
cific possibility of using Earth satellites observed 
optically (or in the near-infrared) against back­
ground stars as the source of observations for this 
method is described in some detail. The results of a 
numerical simulation of such an observing system 
are presented and, finally, the salient points of the 
paper are summarized. 

APPLICATIONS 

The method described in this paper was developed 
for a proposed shipboard automated celestial observ­
ing system that would augment GPS with absolute 
orientation information and serve as a standalone 
positioning system in case of GPS denial. The cho­
sen observing mode involved artificial Earth satel­
lites observed optically or in a near-infrared band 
against background stars. The algorithm described 
here was initially developed simply to provide quick 
estimates of the likely errors of such a system, 
under various conditions, even though the eventual 
navigation solution was to be obtained from a Kal­
man filter involving multiple sensor inputs. How­
ever, the method has value in itself by providing a 
standalone navigation solution from the satellite 
observations in the absence of any other informa­
tion. The obvious next question was whether the 
algorithm might be applied in other contexts. 

As it turns out, the mathematics provided here 
could be applied to any situation in which the direc­
tions to identifiable objects can be measured with 
respect to more distant objects, so long as the coor­
dinates of both foreground and background objects 
are known. When a foreground and a background 
object appear to line up from the point of view of 
the observer, the observed direction vector is simply 
the normalized difference of the position vectors 
of the two objects. Since the direction vector is com­
puted from absolute coordinates - that is, coordi­
nates relative to a well-defined reference system, 
such as WGS-84 - it, too, is absolute. Using that 
type of observation, the algorithm therefore has 
wide application to any kind of vehicle that has 
an imaging system, even if not of the highest qual­
ity. The accuracy depends only on the resolution 
of the image, not on any external angular calibra­
tion or the transformation of real space to image 
space. 
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Fig. 1-Images of aligned foreground and background objects viewed from the Patapsco River out· 
side Baltimore. Each image yields a direction vector (line of position) in the WGS·B4 system, based 
on the coordinates of the two objects. 

For objects seen near the horizontal plane, the 
apparent alignment of objects in the vertical direc­
tion suffices if the height of the observer is not of in­
terest (i.e., if the 3-D problem effectively collapses 
to 2-D). For example, as seen from a ship, a buoy 
may appear to pass underneath a distant water 
tower. A series of time-tagged images of aligned 
objects, for which the latitudes and longitudes are 
known, wonld allow for a solution for the surface 
track of the vehicle. The method could be applied to 
ordinary ship piloting, which was demonstrated by 
the author using images of shore objects taken dur­
ing a small-boat trip up the Chesapeake Bay and 
into Baltimore Harbor (see Figure 1 for examples). 
The images were talren with an inexpensive hand­
held camera and timed only to the nearest minute 
using the camera's internal clock. For each image, 
coordinates of the foreground and background 
objects were subsequently obtained from Google 
Earth or the USCG Light List [13], and the coordi­
nates converted to geocentric position vectors. Using 
two vectors derived from each such observation (see 

next section), a solution for a portion of the boat's 
track was then computed using the method de­
scribed in this paper. Despite the primitive nature 
of the experiment, the solution was close to that 
obtained from a straight-line fit of the recorded GPS 
positions of the boat, and the residual errors in both 
cases (748 and 629 m RMS, respectively) were 
largely the result of the boat's deviations from the 
modeled tracks- an important consideration in the 
practical applicability of the method that will be dis­
cussed later. This rudimentary exercise showed, 
however, that the method might be useful for pilot­
ing in areas that are well mapped, or for which good 
satellite imagery is available, but lack reliable navi­
gational aids. Practical use of the method would 
require an automated system of object identification 
that would permit the retrieval of their coordinates 
from a suitable database. 

The method would also apparently work well for 
navigating robotic landers across the surfaces of 
other solar system bodies using the on-board imaging 
system. All that is needed is a database of identifiable 
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Assumed position of object, P. 
based on predetermined 
coordinates 

Line of position X = P + rd is 
parallel to observed direction of 
object and passes through 
assumed position of object 

Observed direction, d, 
toward object -- - True direction 

Observer 

Computed position of 
observer obtained by 
minimizing sum of 52 
over all LOPs 

toward object 

Fig. 2-Geometry of a single observation. Both the observed direction of the object and the object's 
coordinates are assumed to have some error. 

terrain features and their coordinates. In fact, it 
could be applied to interplanetary space navigation 
(although not at high accuracy) if the apparent 
directions of several relatively nearby solar system 
objects were observed against the star background. 
Navigation of automated farming systems is another 
possibility. For example, a system of marked poles 
at a field's edge, at two dil'ferent perimeters, might 
be imaged by a rotating camera on top of a robotic 
tractor. 

OBSERVATIONS, VECTORS, COORDINATE 
SYSTEMS 

This paper uses the convention that vectors of ar­
bitrary length are written as boldface upper-case 
letters and unit vectors are written as boldface 
lower-case letters. For example, z would be the unit 
vector in the direction of Z. 

The algorithm in this paper is based on observa­
tions of the directions of identifiable objects, with 
known coordinates, from the point of view of an ob­
server whose own coordinates are to be determined. 
For each object observed, then, two kinds of infor­
mation are required: the predetermined coordinates 
of the object, represented by the position vector P; 
and the observation itself, represented by the direc­
tion (unit) vector d. In the absence of errors, the 
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observer must be somewhere on a line of position 
(LOP) in 3-D space given by the equation X= P + 
rd, where X is the position of an arbitrary point 
along the line and r is a scalar that can take on any 
real value. The components of the vectors X and P 
and the scalar r have units of length, while d is 
dimensionless. We assume that X, P, and d may be 
functions of time; for a moving target, the time se­
ries of vectors P(t) is referred to as its ephemeris. 
See Figure 2. 

We require that P and d are given in, or reduced 
to, a common coordinate system. For some kinds of 
observations, this will come about naturally. For 
example, if a target object is observed against a 
background object, and both have coordinates in 
the same database, then the direction vector is sim­
ply the dil'ference between the known position vec­
tors of the background object and the target, nor­
malized to unit length. The direction vector is 
thereby expressed in the coordinate system used for 
the positions of all the landmarks. A more compli­
cated case is that of artificial Earth satellites 
imaged against the star background, in which the 
observations and object coordinates are naturally 
expressed in dil'ferent kinds of coordinates and 
must be reduced to a common system. This is dis­
cussed more fully in the section on using satellites 
as target objects. 
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The navigation solution vectors will be expressed 
in the coordinate system used for the object coordi­
nates and observations. Effectively, the set of 
assumed coordinates for all the objects observed 
define the reference system for the solution. Since 
the solution is based on geometry, not dynamics, 
there is no requirement that the reference system 
be inertial. In the most common case, in fact, the 
reference system will be geodetic (Earth-fixed) and 
therefore not inertial. 

NAVIGATION SOLUTION 

We will start with an observer that is fixed with 
respect to the objects he is observing, at location X. 
Given an ensemble of n observations d; of objects at 
known positions P,, respectively, the least-squares 
estimate for X is given by 

-[d,A,J 
n- [d~] 
-[d;,d;,] 

([P. -(d· · P·)d ]) ~1 L L Ll 

[P;, - ( d; · P;)d;,] 
[p. - (d· · P·)d· ] ts t t ts 

(1) 

where Pi= (Pi
1

, Pi
2

, Pi), di = (di1, di2, di), X= (xb x2, 
x3), and the square brackets indicate a summation 

n 
over all n observations, i.e., [ ... ]represents Z .... 

i=l 
This is a system of three scalar equations in three 

unknowns, x1, x2, and x3, the components of the 
observer's position vector. These three equations 
are equivalent to Equation (C.29) in [12]. We have 
minimized the sum 1) = z, 6f, where each D; repre­
sents the distance of line of position i, defined by 
the observation i, from X, the computed position of 
the observer. We imagine all of the LOPs converg­
ing in a small volume of 3-D space; X is in the cen­
ter of this volume, with "center" precisely defined 
by the least-squares criterion. 

There is a brute-force solution to Equation (1) 
from substitution. If we re-cast (1) as 

(~ ~ i) (~~) = (~~) 
C E F xa Qa 

with A= n- [d2 ] B = -[d· d·l etc then the solu-
t1 ' t1 tz ' ., 

tion is 

(CD-BE)(CQ1 -AQa)- (BC-AE)(CQz -BQa) 
xa = (CD -BE)(CZ -AF)- (BC-AE)(CE-BF) 

CQz -BQa- (CE -BF)xa 
xz= CD-BE 

Q~-~-~ (2) 
X! A 

Because this development applies only to a fixed 
observer, or n simultaneous observations, it is of 
limited use for navigation. For simplicity, we have 
also not considered weighting the observations, 
although providing for that is straightforward, and 
is described at the end of this section. 

The more useful case is that of a moving observer 
and non-simultaneous observations. Let us repre­
sent the observer's trajectory by X(t) = X(t0) + 
V(t0)t + f{t)x0, where X(t0) and V(t0) are the observ­
er's position and velocity, respectively, at time t0 . In 
the third term, x 0 is the unit vector in the direction 
X(t0) and f{t) is a scalar function with units of dis­
tance. The time t is measured from the time origin 
t0 , which can be chosen for convenience; it is an ar­
bitrary time that is within or not far outside the 
span of observation times (t1 to tn) but it does not 
necessarily correspond to the time of a specific ob­
servation. The observations occur at discrete times 
t; (measured from t0), and for those times the trajec­
tory can be expressed as X; = Xo + Vol; + f;xo, 
using the shorthand X, = X(t;), Xo = X(to), Vo = 
VCto), and(; = f{t,). 

The third term represents any curvature in the 
observer's path in the direction x 0, which, if a geo­
centric coordinate system is used and f{t) < 0, is to­
ward the center of the Earth. Thus, the third term 
could represent the gravitational acceleration of an 
object in Earth orbit or, for an observer traveling on 
or near Earth's surface, the local curvature of the 
geoid. If the third term is written as {;Xo/X0 , where 
X 0 = IXol, then X; =Xo(1+fo) +Vot;. The curva­
ture term is assumed small compared to the other 
terms, i.e., that{;« X 0 and(;« IV0 1M, where 
M = I tn - t 1 1 is the span of time covered by the 
observations. It is also assumed that (;/X0 (which is 
small) can be considered known to sufficient accu­
racy. The calculation of{; can be done in a number 
of ways and is not essential to the method; see next 
section. 

The equation below represents a least-squaTes so­
lution to the navigation problem; specifically, it 
minimizes the sum 1J = z, 6f where each D; repre­
sents the distance of line of position i, defined by 
the observation taken at time t;, from X;, the com­
puted position of the observer at the same instant. 
The geometric interpretation of the solution is simi­
lar to that for the fixed-observer case, but less intui­
tive. The LOPs do not converge to define a small 
volume of space; rather, they converge around the 
observer's computed path in such a way that at the 
time of each observation, the observer is as close as 
possible to the LOP given the simple model we are 
adopting for his motion and the fact that the close­
ness criterion (square of the distance) is assessed in 
the aggregate for all the LOPs. 

The solution algorithm, derived elsewhere [14] 
is: 
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[(dr, -1)[3rJ [d;, d,,[Jf] 

[d,,d,,[Jf] [(1- dr,)fJrJ 

[d,,d,,[Jf] [d,, d,, PrJ 

[(dr, -1)t,[J;] [d" d,,t,[J;] 

[d,A,fJrJ 

[ d,, d,, Pfl 
[( dr, - 1)[3rJ 

[d,, d,,t,[J,] 

[( df, - 1)t,[J;] 

[d,,d,, t,[J;] 

[d,,d,, t,[J;] 

[( dr, - 1)tfJ 

[d;, d,,t,[J,] 

[( df, - 1)t,[J;] 

[d,,d,,t,[J;] 

[d,A,tfJ 

[d,, d,,t,[J;] 

[d,,d,,t,[J;] 

[d,, d,, t,[J;] [( dr, - 1)t,[J;] [d,,d,,t,[J,] [d,,d,, tf] [( df, - 1)tf] 

[d,,d,,tf] 

[( d~ - 1)t,[J;] 

[d,AAl 
[d,,d,,tf] 

[(d~- 1)t[] [d,,d,,t,[J;] [d,,d,,t,[J;] [( d~ - 1)t,[J;] [d,,d,/[] 

[-(P,,- (d1 · P 1)d1,){3;] 

[-(P,,- (d1 · P1)d;,)[J;] 

[-(P1,- (d1 · P1)d1,)[3;] 
= (3) 

[-(P1,- (d1 · P 1)d1Jti] 

[-(P,,- (d, · P 1)d1,)ti] 

[-(P,,- (d, · P 1)d1,)ti] 

where, again, the square brackets indicate a sum­

mation over all n observations, and {31 = ( 1 + !t,). 
The column vector on the left side represents the 
unknown navigation state, U, at time t0 : U = CXo, 
Vo) = (xl, x2, x3, v1, v2, v3). The remaining notation 
is the same as for Equation (1). Note that the time 
t, of each observation, measured from t0 , appears 
explicitly in some of the terms. The time t0 can be 
chosen to be at the end of the series of observations, 
so that Equation (3) can provide a near real-time 
estimate of position and velocity. 

Equation (3) is of the form AU = Q, where U and 
Q are column 6-vectors and A is a 6X6 matrix. The 
solution is U = A - 1Q, where A - 1 is the inverse of A 
and represents the unsealed covariance matrix of 
the solution. 

For straight-line motion (no curvature term), 
{31=1 for all i. Also, if the observer is stationary, 
then t1 can be considered to be 0 for all i since time 
is measured from when the observer was at Xo (the 
problem then is three-dimensional rather than six­
dimensional). In that case, (3) reduces to (1). If the 
observer is moving but the velocity vector is known, 
the position vector can be obtained from the first 
three rows on the left side of (3) (actually, any three 
rows) if the terms involving vh v2 , and v3 are 
moved to the right side. 

If the observations have different uncertainties, 
then the algorithm should minimize the weighted 
sum, D w = 2:;1 ( w1oi)2

, where w1 is the dimension­
less weight of observation i. The weight, w, = o-JCJ,, 
is the ratio of the average uncertainty of all the 
observations, CJ, to the uncertainty of the particular 
observation, CJ,. (Often it is desirable that 2:; wz = n, 
so that 1/ CJ2 = ~ 2:: (1/ CJf).) The uncertainty of an ob­
servation is usually dominated by the angular 
measures that define the vector d, for the observa­
tion (see section below on random errors). Including 

observational weights is accomplished simply by 
including the extra factor wf in each of the sums 
in (3). 

CURVATURE TERM 

The third term in our motion model X(t) = X(t0) + 
V 0t + /(t)x0 describes the curvature of the path in 
the direction x 0, which, for a geocentric coordinate 
system and /(t) < 0, will be toward the center of the 
Earth. The term's value at the time of observation i 

is fi = f(t1); the term can then be written (:fo)Xo and 

we have assumed that fi!X0 is a known (dimension­
less) quantity. For short tracks on the surface of the 
Earth, fi!Xo is small. For example, even for a 100-
lrm track, fi = -0.8 km, so fi!Xo :oe 10-4• 

In many cases, the curvature term may be 
unnecessary. It would be important for navigation 
applications on or near the surface of the Earth in 
which observations are collected over a track that 
may extend to some tens of kilometers or more and 
navigational accuracies of better than 100 m are 
expected. Generally these would be aircraft applica­
tions. It is used in place of an acceleration term 
in the solution, which would require three more 
unknowns (and at least two more observations) and 
which would, in many cases, be poorly determined 
because of its smallness compared to observational 
error. 

For most purposes the magnitude of the term can 
be well represented by the parabolic approximation 

fi = -~(ut,)2 or 
2 R 

=-H~~r 
'----v----' 

ifR=Xo 

(4) 
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where R is the radius of curvature of the path, v = 
I V 0 I is the speed of motion, and vt1 « R. The length 
vt1 is the distance traveled from the reference point 
(where t =0 and X= Xo) to the position of observation 
i, taken at time t,. For an observer in a circular Earth 
orbit, R = X 0 and v2 = GM/X0 , where GM is the geo­
centric gravitational constant, but we will not con­
sider the orbital case further here. For an observer 
on or near the surface of the Earth, a great-circle 
course is implied. For such an observer, if we con­
sider the Earth to be a sphere, R = X 0 = a + h, where 
a is the radius of the Earth and h is the height above 
sea level. Note that some pre-solution estimate of 
speed is necessary for the evaluation of the term. 

On the real, oblate Earth, things are a bit more 
complicated, because R # X 0 , that is, the local ra­
dius of curvature is not the same as the local geo­
centric distance, and both vary from place to place. 
Formulas for radius of curvature and distance to 
the geocenter are given in any elementary geodesy 
text, for example, [12, 15, 16]. However, in most 
cases, the spherical-Earth approximation will work 
sufficiently well. For high-accuracy applications, or 
those where the observation track is extended, only 
very crude estimates of the observer's position, 
direction, and speed are needed to evaluate the 
term. The curvature term is discussed more fully in 
[14], which provides estimates of its sensitivity to 
assumed location and speed. 

PROPAGATION OF RANDOM ERRORS 

As an application of least-squares, the algorithm 
represented by Equation (3) assumes that the 
observations are uncorrelated and that they have 
normally distributed random errors. Systematic 
errors are assumed to be insignificant. The effects 
of some common systematic errors are treated in 
the next section. This section discusses the origin 
and propagation of random errors of measurement. 

The algorithm given above differs from most 
least-squares applications in two important ways. 
First, the quantity that is minimized in a sum-of­
squares sense is a euclidean distance in 3-D space 
that is related to, but is not itself, a measured 
quantity for each observation. These distances (o;) 

will have a statistical scatter that reflects not just 
the errors of measurement but also the errors 
in the predetermined coordinates of the objects 
observed. Second, the method does not rely on a lin­
earization around an approximately known set of 
parameters. The solved-for parameters are the posi­
tion and velocity vector components, not corrections 
to the components of assumed vectors. Yet, despite 
the fact that no conditional (observation) equations 
have been defined, most aspects of least-squares 
analysis still apply. 

For example, as previously stated, the inverse 
of the 6X6 matrix in Equation (3), A - 1

, is the 
unsealed covariance matrix of the solution. We can 
use it in the conventional way to obtain the formal 
uncertainties of the six solved-for parameters, (x1, 

x2, x3, v1, v2, v3), and the parameter correlation 
matrix: 

If A'= (-D-)A-1, 
2n- 6 

where CJf is the formal variance of parameter i (i=1 
to 6), CJ& is the formal covariance of parameters i 

andj, and c1j is the correlation ( -1 to +1) between 
parameters i andj. We could, then, use the varian­
ces and covariances of x1 , x2, and x3 to form an 
error ellipsoid in 3-D space that represents the 
uncertainties in the solution for X0, or propagate 
the formal errors to any other position on the 
observer's track to see how the error ellipsoid 
changes with time. 

The factor D j (2n - 6) represents the variance of 
the least-squares fit, i.e., a measure of the scatter 
in the post-solution residuals. We have D = 2:;1 of, 
where each o, is the distance between the LOP of 
observation i and the computed position of the ob­
server at the same time. The quantity 2n - 6 repre­
sents the number of degrees of freedom in the solu­
tion and reflects the fact that each of the n observa­
tions is two-dimensional, i.e., it consists of two 
independent angular measurements. Each o1 in the 
sum can be calculated using 

o, = id;X(P, -X;)I (6) 

which is the minimum distance from point X1 to its 
associated LOP, P 1 + rd1• The symbols have the 
same meanings as in Equations (1) and (3), and 

X, = Xo ( 1 + fo) +Vat,, with X0 and V0 talren from 

the solution. (Equation (6) is adopted from [17].) 
The post-solution residuals can also be considered 

to be vector quantities: 

o1 = d1x(P1 -Xi)xd1 (7) 

with the vector o; extending from the point X1 to 
the nearest point on its associated LOP. The length 
of the vector is o1 (since I d; I = 1). Considered as a 
time series, the vectors o, contain all the informa­
tion on the influence of the observations on the so­
lution, with the effect of each observation propor­
tional to of (or, if weighted, (w,li;)2). 

Prior to a solution it is easy to obtain an estimate 
of its accuracy by considering, in general terms, the 
geometry of the LOPs. For this purpose, we assume 
that all the observations are of similar quality and 
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Fig. 3-Geometry of error propagation along a line of position. 
Statistically, the observer's position should lie within the LOP's 
volume of uncertainty. 

are well distributed in direction and time, that is, 
that there is little or no geometric dilution of preci­
sion. As shown in Figure 2, each LOP is defined by 
both its "anchor" in 3-D space, a point at the 
assumed coordinates of the object observed, and its 
direction, defined by the observation itself. Given 
that the equation of the LOP is X= P + rd (where 
r is a scalar of arbitrary value), the statistical 
uncertainties at a distance r from the object are 
related by 

(8) 

where each (J is the root-sum-square of the uncer­
tainties in the respective vector components. Since 
d is always a unit vector, (Jd represents an angular 
uncertainty in radians, which is developed below; 
we anticipate that it will be closely related to the 
centroiding error of the imaging system. Figure 3 
represents a geometric interpretation of (8). The 
first term on the right of the equation represents 
the average radius of an ellipsoid of uncertainty 
around the assumed position of the observed object 
due to the likely errors in its coordinates. The 
r-term represents a cone of expanding uncertainty 
with its axis along d, its apex at the assumed posi­
tion of the object (where r=O), and its apex angle 
equal to 2(Jd· The LOP could therefore plausibly be 
any line originating within the ellipsoid of uncer­
tainty with a direction parallel to any line within 
the cone of uncertainty. 

We expect the observer to be somewhere within, 
or not far outside of, each LOP's volume of uncer­
tainty. So for observation i, we have i\ "" axf..r,), for 
which we need at least a crude estimate of r,, the 
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distance of the object from the observer. If the val­
ues of the li/s computed this way are similar, which 
would generally be the case if the distances to the 
observed objects were not too different, then a typi­
cal li,, say 6, will be a predictor of the scatter in the 
post-fit residuals. That is, P. should approximately 
equal the variance of the fit. We therefore have a 
simple way to anticipate the accuracy that can be 
obtained by various observing schemes. 

The one remaining piece of unfinished business is 
determining the value of (Jd to use in Equation (8). 
If the measurement of angles were absolute, that 
is, obtained from the pointing of the imaging sys­
tem (say, from shaft encoders on the axes), then (Jd 

would simply be the larger of the mechanical point­
ing resolution or the image resolution. However, 
such a system would require a transformation of 
the angular measurements from an instrumental 
system to a geodetic system before Equation (3) 
could be applied. Generally, that transformation is 
unknown. The advantage of differential measure­
ments (i.e., nearby points measured with respect to 
more distant ones within a limited field of view) is 
that they avoid the problem of the unknown instru­
mental attitude. The orientation of the instrument 
need not even be measured. 

For differential measurements, the geometry of 
how the observation vector is formed is shown in 
Figure 4. The figure shows the effect of finite imag­
ing resolution, which creates an ambiguity in which 
vector to choose. That ambignity defines the angu­
lar uncertainty of the observation, (Jd, used in 
Equation (8). The figure is based on the assumption 
that that the finite imaging resolution is the pri­
mary source of uncertainty and that the errors in 
the object coordinates are not the limiting factor. 
The geometry yields the result that ad = 

llB(~+ ,.,':.r), where M is the imaging resolution, and 
r and r' are the distances to the near and far 
objects, respectively (we assume that the far objects 
have some typical, or at least minimum, distance). 
We see that as r' --> oo, ad --> llB/2, so that very dis­
tant background objects are preferred. Note that in 
any case we require that the background objects be 
significantly behind those in the foreground so that 
the term ,.,':.r does not blow up. If a moving observer 
waits for a pre-selected foreground object to appear 
to line up with a pre-selected background object, 
the situation is similar. The diagram for this case is 
somewhat different but the resulting expression for 
ad is the same. 

EFFECTS OF DEVIATIONS FROM THE 
IDEAL TRACK 

Equation (3) is based on an observer trajectory 
that curves only toward the center of the Earth, 
that is, the path over ground is a great circle. 
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Clearly, this ideal will seldom play out in practice, 
and it is important to evaluate the consequences of 
deviations from the modeled motion. 

First, both ships and aircraft often follow rhumb 
lines rather than great circle routes. Over long dis­
tances, a great circle route may be approximated 
by a series of rhumb lines. A rhumb line (loxo­
drome; a track of constant azimuth) is a straight 
line on a Mercator map, but it generally has curva­
tures in two directions when viewed in a 3·D coordi­
nate system. Curvature in the horizontal plane has 
not been accounted for in the development here. 
Rhumb lines diverge most rapidly from great circles 
for east-west tracks (except for latitudes within a 
few degrees of the equator, where the divergence is 
small in any case) with the effect being greater at 
higher latitudes. At 40 deg latitude, the maximum 
horizontal difference between a rhumb line and a 
great circle is 41 m over a 50 km track and 164 m 
over a 100 km track, if the end points are the same. 
Except for possible applications involving high­
speed aircraft, then, the systematic error of follow­
ing a constant heading rather than a great-circle 
route would not appear to be a major issue. Other 
systematic shifts in the vehicle's track are likely to 
be more important. 

For example, it is worthwhile investigating how 
the algorithm responds to low-grade accelerations 
that might result from a systematic change in wind 
or current during the time period covered by the 
observations. For these cases, the results of [18] 
provide some insight. The appendix of that paper 
develops the general case of a least-squares fit of a 
linear motion model to position observations when 
the actual motion involves a weak acceleration. The 
paper provides expressions for the systematic 
errors of the solved-for parameters as well as for 
the statistics of the residuals. Here, the residuals 
we are interested in are the distances between the 
solution track and the true (accelerated) track, 
evaluated at the times of the observations. Of 
course, these residuals are only available for nu­
merical test cases, and their statistical properties 
may differ from the observation residuals described 
by Equation (6). Although the type of observations 
and the form of the solution is different in [18] from 
that considered here, numerical tests verified that 
the geometry is similar enough to provide usable 
estimates of the magnitude of the effects. These 
tests indicated that Equation (3) generally produces 
smaller increases in the maximum residual than 
predicted by [18] but somewhat greater increases in 
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the RMS of the residuals, relative to a solution 
without acceleration included in the vehicle track. 

For reasonable cases the solution adjusts itself 
such that the residuals do not increase dramatically 
when an acceleration is introduced. The aforemen­
tioned paper predicts that the maximum residual 
will increase by about aM2/12, where a is the accel­
eration and !J.t = tn - t 1 is the span of observation 
times. For example, a ship traveling at 50 kmlh (27 
kn) will cover 8.3 km in 10 minutes; a 100 lanlh2 

acceleration will shift the track by 1.4 km over the 
same time. (This acceleration, approximately 1 X 

10-3 g, is equivalent to moving into a 9 kn current 
during that time.) Numerical simulations of this 
scenario (among others) were computed, both with 
and without acceleration, all with great-circle track 
solutions formed according to Equation (3) based on 
ten noisy artificial data points. In one typical case, 
the maximum residual increased by 0.20 km (from 
0.29 to 0.49 km) when the acceleration was intro­
duced. The above expression from [18] predicted an 
increase of 0.23 km. The RMS of the residuals 
increased by 36% (from 0.19 to 0.26 km); the pre­
dicted increase was 14%. 

Although the past positions computed from the 
accelerated solution were only moderately degraded, 
relative to those from an unaccelerated solution, 
the solved-for velocity does not provide an accurate 
prediction of the future track, whether it is acceler­
ated or not. For the above case, with acceleration 
included, the difference between the solved-for ve­
locity (essentially, the average velocity over the 10-
minute period of the observations) and the instanta­
neous velocity at either endpoint was 8.1 lan/h 
(the prediction was 8.3 ian/h), that is, a 17% error, 
with the error vector parallel to the direction of the 
acceleration. Overall, if the solution were used to 
extrapolate the observer's position 10 minutes 
beyond the span of observations, we should expect a 
systematic error of about 1.6 km if the future motion 
was unaccelerated and 3.0 km if the acceleration 
continued. On the other hand, if both the accelera­
tion and the observations continue, a set of rolling 
solutions (i.e., using observations within a moving 
window of time) could provide the acceleration from 
the continuous change in velocity from one solution 
to the next. 

We can construct approximate formulas for the 
applicability of the algorithm in the presence of 
acceleration, based on either of two criteria. We use 
the expressions in [18] that show that at the begin­
ning and end of the observation interval, which 
spans time !J.t, the solution's velocity will differ 
from the observer's instantaneous velocity by a!J.t/2 
and the systematic error in position there is a!J.t2/ 

12. The uncertainty of the solution projected to 

time tis a(t) = J a~+ (a,(t- to))2
, where ax and u, 

are the formal uncertainties in position and veloc­
ity, respectively (their covariance is ignored here), 
and t0 is the epoch chosen for the solution parame­
ters, which we assume to be at the end of the obser­
vations. Then the expected position errors, e, at 
times t0 and t0 + !J.t are, respectively, 

e(to) = 
1
1
2 

al'>.t2 + ux and 
(9) 

e(to + !J.t) = 
1
7
2 

a!J.t2 + J u'; + (avM) 2 

In the latter case, we have assumed that the accel­
eration does not continue beyond the end of the 
observations; if the acceleration continues, the frac­
tion rz would be replaced by g If emax is the maxi­
mum allowable navigation error, then using the 
above expressions, we find that as long as 

12 
(emax- <1x) 

a< f'>.t2 or 

(10) 
(emax- J a';+ (auM)

2
) 

a<m M2 

the solution will be acceptable. "Acceptable" means, 
in the first case, that the expected position error at 
the end of the observation interval (at t0) will be 
less than emruo and in the second case that the solu­
tion could be projected another interval M into the 
future (to to + !J.t) with error less than emax· In the 
latter expression, m = 12/13 if the acceleration con­
tinues and m = 12/7 if it does not. In the example 
referred to in the preceding paragraphs, ux = 0.25 
km and au = 2.24 kmlh for the solution with accel­
eration, and M = 1/6 h. If we assume that the accel­
eration continues after the observations (t > t0 ), so 
that m = 12/13, and we set emax = 1 km, then the 
acceleration a would have to be less than 18 km!h2 

(equivalent to moving into a 1.7 kn current over 10 
minutes) for the solution to be acceptable based on 
its predictive ability beyond the observations. But if 
only the positional accuracy at the end of the obser­
vation span were the criterion, the acceleration 
could be as high as 400 km/h2

, i.e., over 20 times 
greater, for the solution to be acceptable. 

Of course, the real world is more complicated. In 
most cases we would have little information on the 
magnitude of any such acceleration, and it is 
unlikely to be constant for extended periods of time 
anyway. The actual track of the vehicle will in gen­
eral be subject to both systematic and random-walk 
shifts due to changing wind or currents or steering 
or propulsion variations. The navigation solution 
described here, although computed for the specific 
instant to, really reflects a kind of average track of 
the vehicle during the observations. In that way it 
differs from near-instantaneous determinations of 
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position and velocity such as from GPS. The accu­
racy of dead-reckoning predictions based on a single 
navigation solution of either kind 'viii vary widely 
depending on conditions. Although the Equation (3) 
algorithm has limited predictive ability when a con­
stant acceleration is present, it would do well if the 
track variations were stochastic or nearly so and 
enough observations were used to provide an 
unbiased sample. Stochastic track variations have 
the same general effect on a solution as an increase 
in the random errors of observation. 

THE USE OF SATELLITE OBSERVATIONS 

As was mentioned in the second section of this 
paper, a specific proposed application would use op­
tical or near-infrared measurements of the angular 
positions of satellites observed against a star back­
ground. Such a system could provide a standalone 
backup against jamming of GPS signals, although 
likely of lesser accuracy. GPS satellites present 
point-like images (about 0.1 arcsecond across, less 
than the atmospheric "seeing" disk) in the visual 
magnitude range of 11-14, depending on the Sun­
satellite-observer angle [19]. The main challenge in 
obtaining such observations is the large difference 
in the angular motions of the GPS satellites and 
the background stars, which can exceed 30 arcsec/s 
(0.5 deg/min) as seen from the surface of the Earth. 
Nevertheless, the satellites are observable in small 
telescopes with modern electronic sensors. Because 
the observed satellites are at finite distances, with 
geocentric coordinates known to a meter or better 
(readily available on the Internet) a straightfor­
ward triangulation method, such as the one pre­
sented in this paper, is feasible. Other satellites 
with accurately known orbits, e.g., geosynchronous 
communications satellites, or low-Earth-orbit (LEO) 
geodetic satellites, might also serve as observational 
targets. 

Of course, the observer must know his position at 
least approximately to be able to plan observations. 
For GPS satellites, which are at a minimum height 
of about 20,000 km, the observer's position must be 
known only to within 175 km for a satellite to fall 
within a pre-pointed 1 deg field of view (angular 
error 0.5 deg). For LEO geodetic satellites, with 
typical heights of 1000 km, the observer's a priori 
position must be known to within 9 km. For cam­
eras with apertures of about 20 em, and charge­
coupled device (CCD) sensors in the focal plane, ex­
posure times would be less than a minute, often 
only a few seconds, depending on the satellite ge­
ometry. (The required exposure is thus less than 
the time needed for the satellite to cross a 1 deg 
star field.) The CCDs could work in either conven­
tional "stare" mode or time-delay integration (TDI) 

mode. In TDI mode, charge is moved across the sen­
sor chip at a controlled rate that matches the angu­
lar motion of the object of interest, so that the 
object's image accumulates charge as it moves 
across the chip. A camera designed to observe GPS 
satellites would probably use both types of CCDs in 
the focal plane, one type for the satellite, the other 
for the stars. Image timing accurate to about a 
millisecond in UTC is required. Generally, GPS sat­
ellites would be night objects, but some daylight 
observations might be possible with near-infrared 
sensors. Successful daytime experimental observa­
tions of LEO satellites have been carried out with 
such sensors. 

Each satellite observation would be expressed in 
some sort of "space fixed" celestial coordinate sys­
tem while the satellite ephemeris position would 
most lil<ely be expressed in a geodetic system that 
rotates with the Earth; a transformation of the 
observational data from the celestial to the terres­
trial system will be required. In practice, there are 
two fundamental coordinate systems that are most 
appropriate for this problem: the International Ter­
restrial Reference System (ITRS) and the Geocen­
tric Celestial Reference System (GCRS). The ITRS 
is a 3-D geocentric system that rotates with the 
Earth, so, loosely speal<ing, it is a "crust-fixed" sys­
tem; more precisely, its axes have no net rotation 
with respect to the ensemble of ITRS defining sta­
tions. Geodetic positions in the ITRS coincide (within 
several em) with positions measured with respect to 
the WGS-84 ellipsoid, e.g., from GPS. The ITRS is 
also referred to in GPS literature as the Earth-cen­
tered Earth-fixed (ECEF) system. The GCRS is the 
geocentric equivalent of the International Celestial 
Reference System (ICRS), which has its origin at 
the solar system barycenter and which is used for 
modern star catalogs and planetary ephemerides. 
The GCRS axes have no net rotation with respect to 
distant objects in the universe. The GCRS is a natu­
ral system for expressing the positions of stars as 
they would be seen by an observer on or near the 
Earth at a specific time. 

Since both the ITRS and GCRS are geocentric 
systems, the transformation between them consists 
of a series of rotation matrices: 

racRs = B P N S WriTRS (11) 

where rrTRS is a vector in the terrestrial system 
and racRs is the corresponding vector in the celes­
tial system. The matrices listed account for, from 
right to left, polar motion, sidereal time, nutation, 
precession, and a constant "frame bias." These coor­
dinate systems and the transformations that link 
them are described more fully in [20] and there are 
several software packages available on the web for 
carrying out this transformation or its inverse. This 
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transformation forms the link between each satel­
lite observation (right ascension and declination 
with respect to the GCRS) and the ephemeris posi­
tion of the satellite at the time of the observation 
(X,Y,Z with respect to the ITRS). Actually, the 
ephemeris position of the satellite should be ob­
tained for the time of observation minus the light­
time to the GPS satellite (""0.07 s). The light-time 
calculation can be fairly crude and could be based 
on the distance of the satellite from the geocenter 
(""26,600 km) and its observed zenith angle; alter­
natively, an approximate observer location and the 
satellite ephemeris could be used. (An error of 750 
km in the light travel distance results in only a 10 
m error in the satellite's position.) 

If the image centroiding errors are, say, 1-2 arc­
sec, then, using (Jd = !J.B/2 = 5 Jtrad, up = 1 m, and 
r"" 23,000 km, the expected scatter in the triangula­
tion residuals, using Equation (8), would be around 
115 m. However, tracking a satellite over just a few 
minutes could provide a large number of independ­
ent observations, and the uncertainty of the position 
solution could conceivably be reduced to a few tens 
of meters. An advantage of using GPS satellites is 
that the constellation is designed to provide good 
ranging geometry (i.e., to minimize GDOP), so usu­
ally the observational geometry would also be favor­
able for the kind of triangulation described in this 
paper. 

Unlike traditional celestial navigation where the 
observed stars are assumed to be infinitely distant, 
and triangulation is therefore not possible, the sat­
ellite scheme does not require any reference to the 
local vertical. This is important for moving observ­
ers, where a precise determination of the local ver­
tical cannot be made using direct onboard (''lab") 
measurements, since the gravity and acceleration 
vectors are inseparable. (Inertial navigation sys­
tems can provide a computed estimate of the local 
vertical.) The horizon, which ideally defines an 
external plane orthogonal to the local vertical, is of­
ten not visible or accurately measurable. Even 
when clearly visible and sharply defined, the hori­
zon is actually a warped circle, at the level of preci­
sion needed, due to direction-dependent low-level 
atmospheric refraction. The satellite scheme cir­
cumvents the local vertical or horizon problem; 
additionally, because it uses small-field measure­
ments from an electronic image, there is no need 
for precise large-angle calibration. Thus, for moving 
observers that require a supplement or backup to 
ordinary radio-based GPS navigation, angular 
measurements of GPS satellites with respect to the 
stars have several fundamental advantages over 
traditional celestial navigation, even if the latter is 
automated. 

Additionally, the satellites, like the stars, provide 
an absolute attitude reference. If the observations 
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used for the position and velocity solution can be 
expressed in instrumental coordinates, then we 
have two bases for each such vector: an external 
reference system (either the ITRS or the GCRS) 
and the instrumental reference system. That is the 
information needed to solve "Wahba's problem" 
[21], about which there is an extensive literature 
and software base, and determine the attitude of 
the instrument. 

NUMERICAL SIMULATIONS 

A software package was created to test the math­
ematics presented in this paper and to explore the 
properties of the solutions. The software computes 
the track of a hypothetical vehicle across the sur­
face of the Earth, given an initial date and time 
and values for latitude, longitude, course, and 
speed; either a great-circle or a rhumb-line track 
can be selected. This track is "truth." The user can 
specifY a time span within which a selected number 
of artificial observations will be created. For each 
observation, the software identifies a target object, 
obtains its coordinates, and computes an observa­
tion vector, with the target coordinates and "ob­
served" direction subject to random errors. The en­
semble of observation times, target coordinates, 
and observation vectors is then sent to the routine 
that sets up and solves Equation (3). The solution 
yields the vehicle's position (at a pre-selected time) 
and velocity in geocentric rectangular coordinates, 
which can be transformed into latitude, longitude, 
height, course, speed, and rate of change of height. 
This allows the computation of a "solution track," 
which is compared to the "true track" for the span 
of time covered by the observations; the differences 
are sampled at the times of the observations. For 
simplicity, a spherical Earth with a radius of 
6378.137 Ian was assumed for all the tests reported 
here. A computer script was written that allowed 
large numbers of solutions to be formed and com­
pared for a given test track, using a Monte-Carlo­
type scheme. Many different solution scenarios 
were tested this way. 

In computing the artificial observations, the soft­
ware attempts to spread the observation times 
more or less evenly across the specified time span 
(say, a half-hour), although the exact times chosen 
are random. For each time chosen, the software 
checks the elevation angle and azimuth of GPS sat­
ellites as they would appear from the vehicle at 
that time. Actual GPS positions are used, derived 
from NORAD two-line orbital elements propagated 
to the time of observation using SPACETRACK 
software [22]. Any satellite to be "observed" must 
be at least 30 deg above the horizon, and the soft­
ware attempts to select a satellite that significantly 
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Table 1-Hypothetical True Track and Artficial Observations 

Distance Latitude Longitude 
UTCTime km deg deg 

03:31:21 -23.9 +39.89 -50.24 
03:39:27 -17.1 +39.92 -50.17 
03:45:57 -11.7 +39.95 -50.12 
03:47:43 -10.2 +39.95 -50.10 
03:51:05 -7.4 +39.97 -50.08 
03:52:37 -6.2 +39.97 -50.06 
03:57:09 -2.4 +39.99 -50.02 
03:59:15 -0.6 +40.00 -50.01 
04:00:00 0.0 +40.00 -50.00 

differs in azimuth from those recently observed. (In 
a real-world application, satellite positions com­
puted by SPACETRACK, based on two-line orbital 
elements, would not be nearly accurate enough for 
this purpose. GPS positions with errors of a meter 
or less would have to be obtained from Interna­
tional GPS Service data sets distributed daily on 
the IGS web site.) 

Each observation vector - that is, the unit vector 
that defines the direction of the LOP - is computed 
from the difference between the GPS position and 
the vehicle position for the same instant, both 
expressed in an ITRF-like rectangular coordinate 
system that rotates with the Earth (i.e., an ECEF 
system). No attempt is made to simulate an actual 
observing system, such as a telescopic CCD camera, 
or to determine which stars the satellite would be 
seen against. Light-time is neglected, as are effects 
such as refraction and aberration that would be the 
same for the satellite and the background stars. 
However, each observation is modified by adding a 
random error in angle, in a random direction. The 
magnitudes of the angular errors are normally dis­
tributed with a standard deviation (in arcseconds) 
provided by the user. Weights are not assigned to 
the observations. 

The satellite positions are also subject to random 
position errors. Just as for the observation errors, 
the user provides a standard deviation (in kilo­
meters) for the satellite position errors, which are 
then normally distributed in each of three dimen­
sions. (Real satellite position errors are generally 
higher in the along-track than cross-track direc­
tions.) 

A few generalities about the solutions: When the 
user-selected observational errors (standard devia­
tions) are set to zero, the solutions are for practical 
purposes exact for great-circle tracks of a few tens 
of kilometers long, as expected. That is, the lati­
tude, longitude, course, and speed obtained from 
the solution's position and velocity vectors are 
essentially identical to those that describe the true 
track for the same instant. Along the solution track, 
the positional errors are less than 1 m compared to 

Obs Altitude Azimuth Range 
# Sat!D deg deg km 

1 PRN06 32.3 146.1 22635 
2 PRN01 84.9 264.9 20315 
3 PRN30 40.8 49.6 21678 
4 PRN14 54.1 150.6 21106 
5 PRN01 83.1 208.0 20315 
6 PRN31 67.0 334.5 20742 
7 PRN29 42.0 90.0 21913 
8 PRN01 79.6 191.8 20348 

the true track. As the time span, hence the dis­
tance, over which observations are obtained 
increases, the errors for such c'perfect observation" 
test cases also gradually increase, due to the small 
errors in the curvature term described in [14]. Most 
of these solutions used the correct vehicle speed v 
in the curvature term. However, even if v has a rel­
atively large error (say, 30%), it is only necessary to 
solve Equation (3) twice, using, the second time, 
the value of v obtained from the velocity vector 
from the first solution. Tests showed that the sec­
ond solution is essentially identical to a single solu­
tion with v known exactly. 

Example: A typical solution for a ship's rhumb­
line track is shown in Tables 1, 2, and 3. The ship 
was hypothesized to be moving at a constant speed 
of 50 km/h (27 kn) along a course 60 deg from true 
North. On 2008 February 19 at 04:00 UTC, the 
ship's position was 50 deg West longitude, 40 deg 
North latitude. Eight artificial observations of vari­
ous GPS satellites were computed for times distrib­
uted over the previous half-hour, corresponding to a 
25-km track at the ship's speed. The standard devi­
ation of the observational errors was set at 1 arcsec 
(5 ,urad) and the standard deviation of the GPS 
coordinates was set at 5 m. Equation (8) predicts a 
scatter in the residuals of just over 100 m for this 
case, most of which is from the angular uncertainty 
of the observations. The solution was computed for 
04:00 UTC. As with all solutions to (3), only three 
data elements were involved for each observation: 
the time, the observed satellite's direction vector, 
and the observed satellite's geocentric position vec­
tor. Both vectors were expressed in ITRF -like rec­
tangular coordinates that rotate with the Earth. (In 
Table 1, the range to each satellite is shown for in­
formation only and was not used in the solution.) 
Note that three observations of PRN 01 were 
selected as it passed nearly overhead; although the 
observing geometry is similar in each case, they 
sample the ship's position at different times. 

The solution parameters are given in Table 2. 
The top half of the table gives the position and ve­
locity vectors expressed in geocentric rectangular 
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Table 2-Solution for Ship's Position and Velocity at 04:00 UTC 

Solution 
Truth 
Difference 
Formal Mean Error 

Solution 
Truth 
Difference 

X 
km 

+ 3140.644 
+ 3140.619 

+0.025 
0.098 

Latitude 
deg 

+40.00026 
+40.00000 
+0.00026 

y z 
km km 

-3742.714 +4099.755 
-3742.844 +4099.787 

+0.131 -0.032 
0.078 0.082 

Longitude Height 
deg km 

-49.99879 -0.085 
-50.00000 0.000 
+0.00121 -0.085 

:X y i 
krn!h kmlh km!h 

+22.879 +40.496 +19.031 
+22.841 +40.144 +19.151 
+0.038 +0.352 -0.120 

0.436 0.311 0.273 

Course Speed h 
deg kmlh krn!h 

60.0814 50.254 -0.264 
60.0000 50.000 0.000 
+0.0814 +0.254 -0.264 

Table 3-Post-Solution Residuals 

Distance dRcr dNr dEr 
Obs il km km km km 

1 -23.9 0.051 -0.030 -0.003 
2 -17.1 0.025 -0.008 +0.024 
3 -11.7 0.053 +0.007 +0.047 
4 -10.2 0.063 +0.011 +0.054 
5 -7.4 0.082 +0.017 +0.066 
6 -6.2 0.092 +0.020 +0.073 
7 -2.4 0.119 +0.026 +0.091 
8 -0.6 0.132 +0.029 +0.100 
RMS 0.090 

coordinates, directly from the solution. The lower 
half of the table converts that data to geodetic coor­
dinates on the spherical Earth model used. The last 
column at lower right is the rate of change of 
height. 

Table 3 shows the post-solution residuals for each 
observation. The residuals on the left side of the ta­
ble indicate the distance between the solution track 
and the true track at the time of each observation; 
d~ is the total distance between tracks, while dN r, 
dEr, and dUr are the components of that distance in 
the topocentric directions North, East, and up. The 
run of ~ values indicates the overall position 
error of the solution. The residuals on the right 
side of the table are similar, but they indicate the 
distance between the solution track and the line 
of position defined by each observation. As expected, 
the line-of-position residuals, which are the basis 
for the solution, appear randomly distributed 
whereas the track residuals show systematic trends. 
It is the RMS of the line-of-position residuals that 
are predicted by (8). Note that the dUr track resid­
uals show the effect of small, non-zero values for the 
height and height-rate parameters; no attempt was 
made to constrain the solution's track to the surface 
of the Earth. The dNr and dErresiduals include the 
rhumb-line versus great-circle errors, although they 
are small (<10m) for this case. 

200 

dUr dRL dNL dEL dUL 
km Ian km km km 

+0.041 0.044 +0.025 -0.004 +0.036 
+0.006 0.132 -0.118 -0.057 -0.006 
-0.023 0.101 +0.088 -0.029 -0.041 
-0.031 0.182 +0.047 +0.172 -0.031 
-0.046 0.049 -0.017 +0.046 +0.001 
-0.052 0.093 +0.006 -0.091 -0.019 
-0.072 0.097 +0.025 -0.063 +0.069 
-0.082 0.061 -0.055 +0.024 -0.009 

0.111 

One hundred solutions for the same hypothetical 
rhumb-line track were computed, each with either 
6, 7, 8, or 9 observations spread over the same half­
hour (25 solutions each). The median position error 
(distance ~)was 70 m, and 74% of the position 
errors were less than 100 m. The distribution of the 
position errors appeared Poisson-like, with only one 
error out of 750 samples over 300 m (387 m) and 
just 25 (3%) over 200 m. In these tests, there was 
only a very slight hint that the solutions with the 
greater number of observations were better overall 
than those with fewer; generally the solution-to­
solution variations dominated the statistics. Other 
numerical tests indicated that significantly increas­
ing the number of observations does have a measur­
able effect in reducing the track errors. 

CONCLUSION 

A unique, closed-form algorithm has been pre­
sented that provides a 3-D navigational solution for 
position and velocity given a sequence of angles­
only· measurements. The algorithm includes a cor­
rection term for the curvature of the Earth, so that 
observations can be collected over extended tracks 
if necessary. The kind of measurements proposed 
for use with this algorithm are those in which the 
apparent positions of foreground objects are imaged 

Navigation Fall 2011 

and measured against background objects, and 
coordinates in some well-defined reference system 
(or systems) are !mown for both. This represents a 
large class of applications, which includes the ob­
servation of satellites with accurate ephemerides, 
such as GPS, observed against a star background. 

Numerical simulations have shown the algorithm 
to be mathematically correct and the solutions ro­
bust, even when the number of observations is small. 
The solutions provide timely navigation information 
at a useful level of accuracy for satellite-observing 
scenarios that are realistic and based on current 
instrumentation capabilities and data availability. 

The method described in this paper and one ver­
sion of a physical navigation system that imple­
ments it are the subject of U.S. patent applications 
12/552534 and 12/319651 (20090177398), respec­
tively. 
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