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Determining Asset Criticality for Cyber Defense 

 

1. Introduction 

Consider two missiles targeting two cities simultaneously. You are responsible for the safety of 
these cities but have the time and resources to defend only one. Which city would you defend? 
With no additional information, deciding which missile to respond to becomes a difficult 
problem. Knowledge about the missiles – e.g., one has a bigger payload – may help you decide. 
But information about the missiles alone is not sufficient to understand the consequences of your 
decision. Information about the target cities, such as one is a densely populated metropolis while 
the other is a sparsely populated desert area – may be required to understand the impact of the 
decision. This may tell you that the effects of the smaller missile targeting the largely populated 
city would lead to devastating catastrophic results on the people and wildlife with the effects 
lasting for many years, while the larger missile would lead to minimal loss of lives in the desert. 
While every life is precious, the decision here may seem obvious. Then again, further 
information about the target cities such as the G-20 summit is being held at the sparsely 
populated city may result in the importance of the cities being reversed. Regardless of the choice 
you ultimately make, it is obvious that the more information you have about the cities, the better 
off you will be because you will make more informed decisions.  

Such is the argument for asset criticality in the cyber domain where ‘missiles’ are analogous to 
cyber attacks, and the ‘cities’ are the hosts/assets that are potential targets for cyber attacks. In 
cyber defense, there are various tools that can tell us about the ‘missiles’ – e.g., the trajectory and 
strength, but little is known about the relative importance of the ‘target cities’. Some tools can 
provide pieces of information about the assets. However, there is no standard way to combine 
this information to get a “standardized” asset criticality (AC) metric that indicates the relative 
importance of assets. Information about the assets – i.e. factors – needs to be combined with 
cyber event data to get a true understanding of the priority of the incident and to determine 
proper course of actions.  Figure 1 shows how factors are combined to obtain an asset criticality 
metric, and how this value can be used to prioritize events. The decision-making process takes 
into consideration asset criticality, event priority, state of the asset (e.g., patches up-to-date) and 
target space to recommend a course of action that is based on the whole picture.  

 

________________
Manuscript approved June 21, 2011. 
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Figure 1. An Event Prioritization Process  

The military (or any organization for that matter) has many assets that provide mission support. 
Missions are composed of other missions. Some missions are more important than others. Also 
some assets are more critical to a mission than others. Which assets are more critical and to what 
degree depends on many factors such as the definition of criticality in terms of mission support, 
how an asset contributes to mission success, and the nature of the mission-related applications 
running on the asset. These are all potential candidates to aid in determining asset criticality. 
These factors determine the criticality of an asset in different ways: some may change the 
definition of what it means to be critical, some contribute directly, others indirectly, some factors 
may have values that change frequently (e.g., login information), providing a dynamic and 
challenging environment in which to determine asset criticality. The objective of this paper is to 
take these factors and combine them in a way that enables scoring and ranking of assets based on 
their criticality to the overall mission. Cyber warriors can use these scores and rankings to 
efficiently prioritize their responses based on both the severity of the incoming attacks and the 
criticality of the target assets. 

The rest of the paper is organized as follows. Section 2 describes the environment for which we 
are providing asset criticality metrics1 and the conditions/limitations that must be met within the 
scope of that environment. A high level overview of our approach is provided in section 3. 
Section 4 examines potential methods that can be applied to develop an asset criticality metric. 
Section 5 describes our approach in detail, applying methods from section 4 as relevant. A 
detailed example of our method is provided in section 6. We conclude the paper in section 7. 

2. Background 

The current operational process for handling cyber threats within the DoD involves a handful of 
personnel dealing with a large number of cyber events spread across hundreds of locations 
including ships, medical clinics, headquarters, and research laboratories [1].  These cyber 
warriors assume different roles (e.g., watch stander, incident handler) using a suite of security 
tools to monitor, report and thwart malicious network activity. The tools provide a 
                                                           
1
 Throughout this paper we use the terms AC metric, AC score and AC value interchangeably. 
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comprehensive and holistic view of security events so that the monitoring team can immediately 
act on the most critical events [2]. While the tools and expertise of the team enable these cyber 
warriors to obtain information about the events (such as attack paths, likelihood of successful 
compromise, the nature and severity of the event, etc.), information about the potential risk to an 
asset is not readily available using any tools or software. Some prioritization including assets is 
performed, but uses the human decision-maker’s internal knowledge that is different for each 
decision-maker. This requires proficient domain knowledge and substantial time. With a handful 
of cyber warriors defending the DoD’s computer networks against hundreds of thousands of 
network events on a daily basis, determining which events to handle first, and what proper 
course of action should be taken can be a challenging task. The cyber warrior needs an 
autonomous way to determine course of actions. The event prioritization process should combine 
the severity of the events with the criticality of the asset that is being targeted. A crucial piece of 
the puzzle that is missing for autonomous decision making and event prioritization is an asset 
criticality metric that provides information about the criticality of an asset. For example, if two 
similar events are detected, targeting two different host machines, the cyber warrior needs to 
determine which event to address first. If he is able to determine that one target is a weapons 
system and the other is a generic desktop, proper course of actions can be easily prioritized and 
determined. This will ultimately lead to a more precise, tailored, and faster response. 

The need for an asset criticality metric is particularly strong in the DoD as opposed to 
commercial networks because the military must constantly protect itself against structured and 
advanced persistent threats. These threats are directly targeted at DoD leadership, infrastructure 
and/or processes. Unlike the commercial sector, loss of critical assets directly leads to loss of 
lives.  

3. Basic Approach 

While determining asset criticality is an important problem, particularly for the DoD, it is far 
from trivial. The DoD is composed of four military branches (Army, Navy, Air Force, Marine 
Corps) and various non-combat agencies (such as NSA, DIA, etc.) each with its own military 
mission and organizational structure to accomplish that mission. Within each service, various 
commands conduct operations related to logistics, intelligence gathering, operational combat, 
infrastructure support, etc. These missions support and complement each other to ultimately 
achieve the higher-level DoD mission [3]. For these purposes, the command structure of the DoD 
is hierarchically organized with units, battalions, divisions and brigades composing smaller units 
that work jointly.  

The structure of the DoD computing environment is similar to that of the DoD itself – each 
command has computer assets that perform various duties. The duties range from mundane tasks, 
such as web hosting, to highly critical tasks, such as weapons systems, to support the various 
missions in varying degrees. These assets are commonly known as the Global Information Grid 
(GIG) [4]. For cyber network defense, sensor data collected from myriad sources are brought up 
to the higher level system that aggregates, correlates and processes the data to present an 
integrated picture. In short, the organization, chain-of-command, etc. in the DoD are structured 
to ensure successful mission completion and continuation of operations. Since the DoD is a very 
mission-oriented organization, asset criticality must be defined in terms of how crucial the asset 
is to the success of the mission, where missions themselves can be composed of hierarchies. 
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Obviously, an asset running or taking part in a critical mission is itself a critical asset. 
Unfortunately, an asset’s contribution level to a mission is not directly observable. Thus, asset 
criticality needs to be estimated from other attributes of the assets that we call factors or criteria. 
For example, the purpose of a host machine (e.g., is it a personal desktop computer, or a database 
server), the operating system it is running (e.g., mission-critical software generally runs on 
Linux-based machines), or the types of mission-level applications running on the asset are 
factors that can be used to determine/estimate the criticality level of an asset. The fact that an 
asset is located within a specific command, or is located in a certain geographic region may also 
contribute to its criticality. For example, two identical assets, one located in a peaceful area and 
one in a wartime region may differ in mission support. Furthermore, in the military, the fact that 
a particular person is using the asset immediately elevates the criticality level of the asset despite 
what it’s being used for. This is analogous to the Air Force One call sign. Typically, the term 
refers to those aircraft whose primary mission is to transport the President of the United States – 
however, any (U.S. Air Force) aircraft carrying the President can use the call sign of Air Force 
One while he is on board [5].  

Factors also have differing degrees of importance when measuring asset criticality. For example, 
while the type of applications running on an asset and the type of operating system being used 
may both contribute to the criticality of the asset, one may contribute more to the criticality of 
the asset than the other. This degree of importance also needs to be determined. The degree of 
importance (i.e. level of contribution) of each factor is called its weight. 

Identifying the factors that contribute to the criticality of an asset and determining how to 
combine them in a meaningful way are the first step in determining asset criticality. While being 
able to rank the assets from most critical to least critical is useful, we need to have a score for 
each asset in order to determine the level of criticality for each asset. Whatever approach we use, 
the calculated scores need to reflect the relative criticality of the asset (i.e. its importance to the 
overall mission) instead of just providing a ranking of the assets. 

For our purposes, we have categorized the factors into external, static, and value-sensitive factors 
based on the way they affect different aspects of criticality and how to measure them. External 

factors are those that may determine the definition of criticality and the underlying criteria used 
to judge the criticality of an asset. For example, triage of wounded soldiers is handled differently 
between wartime and peacetime [6]. In times of peace, the most critical soldiers are given 
priority treatment first, similar to civilian triage techniques. However, in wartime, lightly 
wounded soldiers receive priority treatment, so they can be quickly sent back out to the 
battlefield [7]. This concept can apply to asset criticality; a tactical asset may have priority over a 
strategic asset in some cases, and vice versa in other situations. External factors are those that 
reflect these situations. 

Static factors are factors with values that do not change over long periods of time and can be 
used to indirectly assess the criticality of an asset with respect to its mission. Examples of static 
assets are the types of application on the asset, its purpose, underlying operating system, etc. 
These factors can be combined and pre-calculated to obtain initial AC metric values that can be 
adjusted later by applying external and value-sensitive factors. 

Value-sensitive factors are those that change the criticality of an asset only when they have a 
certain value. When value-sensitive factors possess this specific value, they raise the criticality of 
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an asset regardless of what other values in other factors the asset possesses. For example, who is 
currently logged onto the machine is a factor that changes the criticality of an asset depending on 
the value. In most instances, who is logged on may not matter to the criticality level of the asset. 
However, if a highly ranked person such as an admiral or the President of the United States is 
using the machine then the criticality of the machine is elevated to the utmost importance 
regardless of all other factors. In other words, even if the machine is not being used for mission-
critical tasks, the high rank of the user (i.e. his role) makes the asset rank highly on the critical 
list. These value-sensitive factors can be further categorized as dynamic value-sensitive and 
static value-sensitive. Who’s logged on is an example of a dynamic value-sensitive factor with 
frequently changing values. Who owns the machine is an example of a static value-sensitive 
factor whose value remains relatively constant. This should not be confused with static factors 
described above. Value-sensitive factors are categorized this way because they are handled 
differently. Static value-sensitive factors can be calculated at the earliest stage. Assets that 
possess specific values for these factors immediately obtain a high AC metric value and further 
processing of additional factors need not be performed. Dynamic value-sensitive factors need to 
be assessed at run-time, because the value of the factors may change and therefore have to be 
reassessed every time the criticality of an asset is evaluated.  

One may think that determining asset criticality is a trivial problem: just take the factors, 
multiply them by their weights and add them up to obtain a score. However, examining these 
different factors shows us that they need to be processed in different manners. Furthermore, with 
several hundred thousands of assets spread across land, sea, and ships, we cannot expect one or 
two people to possess all the domain knowledge required to rate these assets. We cannot even 
expect to use a standard set of factors to evaluate asset criticality. For example, a research lab’s 
primary mission may be developing tools and techniques for strategic warfare, while the U.S. 
Fifth Fleet’s primary mission may be engaging in tactical warfare. Therefore, the importance of 
assets in a research lab may be evaluated differently than that in the 5th Fleet unit. Each 
command needs to rate its assets based on the importance to their own mission. 

Ultimately, people (or systems) that are most knowledgeable about a set of assets will need to 
score and rank these assets. That means that different entities will be assessing different groups 
of assets. This implies that while decision-making and asset criticality assessment may be an 
autonomous system, the criteria/factors used to judge the assets, the importance of the criteria 
(i.e. weights), and the decision-making process employed may differ from command to 
command. 

When different users assess different sets of assets, and thus subjective evaluations are involved, 
comparing two different assets’ AC scores from two different commands may not be accurate. 
For example, the decision maker in each command may feel that all his assets are critical and 
give them all high values. Therefore, after each asset is rated individually, the importance of the 
command they belong to must also be incorporated into the measurement to obtain a more 
accurate representation of the criticality of an asset with respect to the entire organization. The 
importance of a command is not a constant value. External factors can change how important 
commands are in relation to one another. Taking the 5th Fleet example from earlier, the missions 
themselves can change depending on whether it is wartime or peace time (i.e. external factors). 
For example, the 5th Fleet in wartime primarily engages in tactical combat, while during peace 
time it may protect commercial ships from pirates. This in turn may make the 5th Fleet more 
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mission critical during wartime than peace time, with the effect trickling down to its assets. As in 
the case of measuring asset criticality, there is no one entity that can possess knowledge of all the 
other commands. Commands report up to other commands, following the chain-of-command 
structure. Hence, a commander has knowledge of its own mission, as well as the mission of the 
commands immediately under it. 

While the military structure is very hierarchical in nature, there are some cross-communications. 
Similar to the way that various organizations within the military form Communities of Interest 
(COI), various assets can have dependency relationships in which assets depend on input from 
other systems. These systems may belong to the same command, or they may span across 
different commands. Figure 2 depicts a hypothetical description of a hierarchical command 
structure with each command possessing its own set of assets (represented as squares). The 
colored assets represent groups of dependencies in which one or more asset may rely on input 
from other assets with the same color. These ‘islands’ of dependencies may make a non-critical 
asset highly critical if several critical assets depend on it for input: if a dependent host is 100% 
dependent on input from another host, and cannot complete its mission without the information 
from this other host, then the provider machine should be as critical as the dependent machine. 
Therefore, we need to examine dependency relationships so that criticality based on dependency 
can also be captured.   

 

 

Figure 2. Hypothetical rendering of islands of assets and islands of dependencies  

In summary, asset criticality cannot be measured in one step by one entity. Groups of assets 
sharing a common mission must be measured together using factors and weights that are 
significant to the specific mission of that group. However, to make these individual 
measurements scale and be proportional across commands, the importance of the commands also 
need to be taken into account. Furthermore, there must be a way to capture dependency 
relationships. 
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We are trying to model islands of assets where islands are arranged hierarchically, with islands 
of dependencies interspersed throughout. There is no one model that can be taken from the 
literature to fit our model and incorporate all its characteristics to obtain asset criticality 
measurements. Therefore, we take a divide-and-conquer approach where assets are rated in 
several steps using different methods, and the results are glued together in a cohesive, 
compatible, and comparable manner. 

The method to calculate the asset criticality metric should also meet the following criteria: 

 The criticality scores of the assets should reflect the relative criticality of the assets: The 
criticality rank of an asset is useful for determining, for example, which 100 assets are the 
most critical. However, the rankings alone do not provide sufficient information. The AC 
metric should not be just a ranking of the assets but a normalized value that tells us how 
critical an asset is with respect to other assets. With this AC metric we can determine 
how much more critical an asset is over another.  

 The criticality scores need to be compatible with each other despite the fact that they are 
calculated by separate commands: Even if different criteria and weights are used to assess 
different groups of assets, the normalized results should provide a consistent 
measurement and relative scoring of assets within the same command.  This enables asset 
criticality scores from different commands to be comparable to each other after 
command-level decisions have been applied. 

 The criticality scores should provide near real-time (NRT) calculations: The algorithm 
should minimize calculation time to provide near-real time posturing of asset criticality.  
In other words, we should not have to recalculate the scores of the entire set of assets 
when there are changes in the criticality scores of a few assets due to changes in the 
values of their factors. 

The following is an overview of our algorithm to score and rank assets considering our model of 
hierarchical islands of assets and the islands of dependencies, while satisfying the constraints 
mentioned above.  

1. Rate each asset individually for each group/command 
a. Use the information available from each command to determine factors and 

weights that best measures the criticality of its assets in relation to its own 
missions. 

b. While it is best to use the same criteria and weights across all the commands, this 
may not always be possible. However, the final measurements need to be 
compatible across different commands. By compatibility we mean that the units 
of measurements are the same, even if different factors and weights are used. 

2. Rate the commands 
a. Different external situations may affect the importance of different commands. 

We need to rate commands according to their level of importance, but still make 
sure that lower level commands are not unfairly penalized by a trickle-down 
effect. 

b. No one person has information about all the commands. Each upper level 
command is expected to know its own mission and the mission of those 
commands directly under it. 
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c. The command-level values obtained here are used as weights to level out the 
importance of different assets in different commands. This enables assets from 
different commands to be comparable across the commands. 

3. Adjust the criticality scores based on the islands of dependencies 
a. Factor in the islands of dependencies to allow input-related dependencies to be 

captured and reflected in the AC metric. 
b. The adjusted asset criticality score should be a function of the initial AC metric of 

the asset, obtained from the previous steps, the dependent assets’ scores, the 
weight of the dependencies and the number of dependent assets. 

4. Rate the assets based on value-sensitive factors for those assets that possess critical values in 
these factors 

a. Static value-sensitive factors can actually be measured and assessed at the very 
beginning, enabling NRT computational results. 

b. We can incorporate the dynamic value-sensitive factors into our formula at a later 
time because they do not play a role in the criticality of an asset unless they have 
specific values, and their values change frequently. We also want to make the 
calculations as NRT as possible. In fact, for more time-effective results, we may 
want to only check the assets that are being targeted for specific values. 

This approach enables: 

 Individual commands that know their assets best to score and rank them according to 
their own criteria providing accurate ranking within a command. 

 Comparison of a highly critical asset in one command to a highly critical asset in another 
command. Since assets are rated by the decision maker in each command, two assets in 
different commands that have the same AC value cannot necessarily be considered to 
have the same criticality level despite having the same score. The weighting of the 
commands enables these two assets to be compared in proportion to their contribution to 
the upper level mission. 

 Dependencies among assets within the same command or in different commands to be 
captured and factored into the AC metric.  

 The different steps to be pre-calculated and done in parallel to provide NRT results. 
When non-subjective factors are used, the computation of asset criticality scores can be 
done with limited human interaction as well. 

We have mentioned that the decision-maker at the level most knowledgeable about a set of assets 
would score these assets, and that command-level decision-makers would rate the appropriate 
commands. This will be achieved through a survey-type mechanism that would include questions 
about various aspects (i.e. factors) of the assets and/or commands. The responses to the survey 
would be used to identify relevant factors and their weights for each asset and command, as well 
as information about the dependency relationships. Then the proper value range and unit of 
measurement for each factor would be determined, and the results normalized before entered into 
a decision matrix. These steps are outside the scope of this paper. The techniques in this paper 
assume that input from decision-makers has somehow been received, if necessary, converted into 
a numerical format, and are ready to be used in the AC metric computation. 
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4. Potential Methods to Compute Asset Criticality 

Some work has been done to determine cyber asset criticality [8] [9] [10]. These approaches 
either view asset criticality from the prospective of the attacker or only focus on the dependency 
aspect of asset criticality. Camus [8] is a system that provides the context to support automated 
mission impact assessment. It uses an ontology-based approach to integrate and fuse data from 
disparate locations and formats. While it provides in interesting approach, it still requires human 
decision makers to make a determination regarding the criticality of an asset, using the 
information presented to them. Sawilla et al. focus on the criticality of an asset from an attacker’s 
point of view using dependency attack graphs [10] rather than focus on the impact of the asset 
itself. Their approach uses a generalization of Google’s PageRank algorithm [11] to calculate the 
importance of an asset to an attacker. Beaudoin et al. also suggest the need for appropriate asset 
ranking [9]. Their approach is to model user services with systemic dependencies to assess the 
value of network assets as well as determine which user services depend on them. These 
approaches do not provide a comprehensive view of an asset’s criticality and do not take into 
consideration the unique organizational structure of the DoD. As mentioned earlier, we 
determine asset criticality in terms of its importance to the mission, particularly in the DoD 
environment. We believe that the other approaches provide a complimentary method to ours. 

There are numerous methods in the literature for ranking/scoring/rating items. These methods 
stem from various branches of science such as decision making, preference ranking, artificial 
intelligence, and web search algorithms. While these methods may be suitable in particular 
domains, the applicability of these methods to our purposes and environment need to be 
examined. Applicability can only be determined once we understand the environment and 
characteristics in which these methods are being used. In this section we briefly review some of 
the interesting approaches. 

4.1 Various Ranking/Scoring Methods 

1) Decision Making 

Decision-making can be defined as the process of selecting the best alternative (or course of 
action), out of a set of possible alternatives to achieve a specific goal. In our daily life we make 
decisions on a regular basis – selecting what clothes to wear, what to eat for lunch, buying a car, 
etc. Each decision is made (subconsciously or not) by analyzing a finite set of alternatives 
against a set of criteria. In the decision making process, the final goal is to rank all the 
alternatives against the goal, pick the best alternative, or to determine the relative total priority of 
each alternative. Multiple-Attribute Decision Making (MADM) is a well-known branch of 
operations research models that deals with decision problems under the presence of a number of 
decision criteria [12]. The MADM approach requires that the selection be made among decision 
alternatives described by their attributes/criteria. For example, buying a car may require looking 
at different models (i.e. alternatives) with respect to the various attributes/criteria they would be 
compared against (e.g., price, gas mileage, color). In MADM, the decision space is discrete, 
meaning that a finite number of alternatives and attributes need to be assessed. In particular, 
MADM examines a set of problems where the goal is to find the best solution among all feasible 
alternatives according to the assessment of multiple quantitative and qualitative attributes.   
 



10 
 

These techniques need not be limited to decision making. When the goal is not just to rank the 
alternatives or pick the best one but to determine relative priority, these concepts can be applied 
to the problem of determining criticality of the assets for cyber network defense. Instead of 
deciding which alternative is the best out of all the candidates, the process would be used to 
facilitate determination of the most critical assets. For our purpose, alternatives are the assets that 
are being protected/monitored by cyber warriors and attributes are the factors/criteria we use to 
determine how important the asset is to the criticality of the overall mission. The result is an 
asset criticality (AC) metric and ranking for each asset. 

Most decision making methods are interested in selecting the optimal choice, so their focus is 
more on the ranking of each alternative than the scores that the alternatives receive from the 
decision making process. However, in determining the criticality level of an asset, we need not 
only the ranking but also the scores that represent the level of criticality for each asset. The 
calculated scores should reflect the relative importance to the goal, or in our case, the relative 
importance of the asset to the overall mission. In addition, the dynamic nature of the military 
requires that attribute values of the assets may change frequently or that assets may be added to 
or removed from a network. When these situations occur, asset scores should not have to be 
recalculated across the board. Otherwise, it will be too time-consuming and labor intensive. 
Therefore, if this approach is used, we need to find algorithms that fit our criteria or adapt them 
in a manner that enables us to use them. 

2) Recommender Systems 

Companies such as Netflix and Amazon use recommendation algorithms to predict and 
recommend items of interest (books, digital media, etc.) to the user [13]. In general, 
recommender systems compare a user profile to some reference characteristics and attempt to 
predict the ‘rating’ that a user would give to an item. These characteristics may come from the 
information item (content-based approach) or the user’s social environment (collaborative 
filtering approach) [14]. Used in combination with a case-based reasoning approach, it seems 
that a recommender system could be used to ‘predict’ the rating of an asset by looking at similar 
assets (case-based reasoning) and ratings of previously scored assets (recommendation systems). 
However, in our case, we do not have any historical data to use as a test case to base the 
predictions on. Also, the dynamic nature of DoD computer systems prohibits such a static 
approach. Furthermore, it is an ongoing process in which the predictions become more accurate 
as more items are rated. In our environment, we cannot constantly have user’s rate assets and 
continually ‘tweak’ our ratings based on continued input from the user, particularly since one of 
our objectives is to offload decision making from the human. Furthermore, recommendation 
systems are based on user profiles. Either predictions based on ratings from similar users (e.g. k-
nearest neighbor) or users that like X also like Y-type predictions are made to suggest ratings of 
items. This does not fit well with an asset criticality model since asset ratings should not be 
based on the preference or rating history of the decision-maker. 

3) Various AI-related techniques 

Neural networks, learning algorithms and various factor analysis techniques (Q factor, R-factor, 
Principal component analysis, etc.) fall into this category. While they provide interesting 
approaches, and may be useful in a small section of the approach, in general, they do not fit our 
model of hierarchical islands of assets and islands of dependencies. 
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Factor analyses are statistical methods used to describe variability among observed variables in 
terms of a potentially lower number of unobserved variables called factors [15]. In particular, 
factor analysis estimates how much of the variability of a variable is due to common factors 
while principal component analysis (PCA) takes into account all the variability in the variables. 
While there is some limited value in these approaches for determining which variables (i.e. 
factors) may affect asset criticality the most, they require some historical data to compare to. 
Neural networks are generally used for non-linear statistical data modeling to model complex 
relationships between inputs and outputs or to find patterns in data [16]. One requirement of 
autonomous systems is that they be able to provide justification as to the decisions made, so that 
human decision-makers can determine how the system reached a certain conclusion. Neural 
networks are generally too complex to provide supporting evidence that can be presented in a 
meaningful way to a human decision-maker. 

4) Risk Management Approaches 

By definition, a risk is a potential problem that the system or user may experience. Risk analysis 
techniques are frequently used to compare the value of an asset against the likelihood of a 
realized threat and potential losses, to determine whether or not to protect an asset [17] [18]. This 
type of approach is more suitable for the commercial sector where the risk does not lead to loss 
of lives and so a cost-benefit analysis can be performed. We are more interested in creating a 
standard framework for determining the value of the assets. Risk management techniques 
generally view risk in terms of consequences. We want to determine the criticality of assets 
independent of the potential risks or threats to it, and because of its value (direct or not) in the 
organization. Furthermore, risk analysis techniques are generally too simplified and one-
dimensional for determining asset criticality in cyber network defense. Many risk analysis 
procedures tend to identify the vulnerabilities and risks first, and determine potential losses from 
these issues based on probabilities. Identification of critical assets is performed after this cost-
benefit analysis. For proper course of action determination, identification of critical assets is the 
basic, first thing to be done. And by identification, we mean not only naming them but assessing 
their value in the overall scheme – in other words, how critical are they. Only after we know 
which assets are critical and how critical they are, can we understand the consequences of losing 
these assets, and produce a risk management strategy in which actions to deter threats or mitigate 
vulnerabilities can be correctly applied. 

There has also been (slightly) similar work done from the US national critical infrastructure 
protection act of 1996 [19]. They ‘identify’ various critical sectors and assets within these 
sectors. However, the methodology used to determine the criticality of an asset is not 
standardized or methodical. The DoD requires decision networks and decision support tools that 
provide an explanation of the decision making process so that human decision-makers can 
understand the logical process that enabled the autonomous decision tool to reach its conclusion. 

5) Hierarchical Decision Making Algorithms 

Judgments/decision making with respect to asset criticality for the DoD must be hierarchical in 
nature. That is because there is no one person who has knowledge of all the assets. Eventually, 
there may be software that can be used across the DoD that collects parameters for each 
machine. The data from this software may be used to determine the criticality of an asset. Even 
then, there may be qualitative criteria whose value can only be determined by various decision-
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makers in the respective commands. Therefore, hierarchical decision-making needs to be 
factored into the asset criticality algorithm. The literature presents some hierarchical decision-
making in the decision sciences area that may be applied to our situation. In particular, Analytic 
Hierarchy Process (AHP) [20] and Hierarchical TOPSIS [21] [22] are some examples. However, 
these approaches generally assume one methodology is used throughout the hierarchy and that 
the alternatives (i.e. in our case the assets) are all located at the bottom of the hierarchy. This is 
not suitable for our environment, since in a DoD command structure, assets are located 
throughout the hierarchy, and not just at the bottom level. If a hierarchical decision making 
approach is used for the hierarchical aspect of our algorithm, we will need to adapt it to fit our 
environment. 

We have briefly discussed the pros and cons of different possible approaches to calculating asset 
criticality. The followings are additional potentially useful methods, but focusing on the 
dependency aspect of asset criticality. 

6) Google’s PageRank algorithm  

Search engines deliver relevant search results to the user using a variety of (proprietary) 
algorithms that measure the relative importance of a page. Google’s PageRank algorithm sorts 
the results of a query by the most relevant/important that match a given search string so that 
indexed pages can be listed in order of importance, making it easier for the user to find pages 
relevant to their search parameters [23]. PageRank assesses the importance of a web page by the 
number of pages linking to it as well as the importance of these pages. The straightforward and 
intuitiveness of the algorithm has made it popular to apply in other areas such as attack paths 
[10] and measuring species’ importance of co-extinction [24]. Very simply stated, the algorithm 
recursively calculates a page rank value in which for each page that links to it, the page rank 
value of that page is divided by the number of outgoing links from that page, and then these 
values are summed up [11]. At first glance, the algorithm to assess the importance of web pages 
seems quite applicable to assessing the criticality of assets. In particular, the PageRank method 
of associating importance with the number of important pages pointing to it seems an interesting 
way to rank the dependencies of assets as a way of determining asset criticality. After all, it 
seems intuitive that if many (critical) assets depend on one asset, it follows that the provider 
asset should also be critical. However, PageRank and other similar algorithms all model 
resources that have different characteristics than ours. Theirs are a group of web pages and ours 
are a group of computers. Web pages can be reached even without links to them as long as the 
URL is entered into the browser. Computer assets that have no links to them are not connected to 
other assets2, resulting in isolated islands of dependencies which cannot be modeled with a 
PageRank-type algorithm. For example, while the dependency aspect of criticality should reflect 
the number of assets depending on it, as well as the criticality value of the dependent assets, 
dependency cannot be modeled as a ‘sum’ of these values as page rank is. In fact, the strength of 
the dependencies also needs to be factored into the model. Furthermore, unlike the PageRank 
algorithm, just because node A has two outbound links to two separate nodes B and C (i.e. 
dependent on B and C for input), the criticality value of A is not ‘split’ between B and C. In 
short, the underlying assumptions made regarding the importance of web pages and other 
                                                           
2
 In our case, we are not talking about physical links or connections, but rather directional links between two nodes 

that represent a dependency relationship between the nodes where one relies on the other for input to complete 
its mission. 
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systems with similar characteristics cannot be applied to computer systems when trying to 
measure asset criticality. 

7) Graph Theory and Network Analysis 

Network analysis based on graph theory provides other means of measuring the centrality of a 
vertex within a graph to determine the importance of the node within a given graph. These 
approaches have been applied to social networking, urban network planning, space syntax, etc. to 
identify key entities/individuals in a network [25]. The widely used measures of centrality are 
degree centrality, betweenness, closeness, and eigenvector centrality [26]. In fact, the PageRank 
algorithm mentioned previously is a variation of eigenvector centrality. Degree centrality is 
defined as the number of links associated with a node. In networks, this can be applied to the 
degree/level of risk for the node catching a virus that is flowing through a network. While it 
pertains to one aspect of our dependency relationship, it does not consider the strength of the 
dependenices or the values of the dependent nodes. Betweenness is a measure of a vertex within 
a graph, i.e. the extent to which a node lies between other nodes in the network. This measure 
takes into account the connectivity of the node's neighbors, giving a higher value for nodes 
which bridge clusters. The measure reflects the number of people that a person is connecting 
indirectly through their direct links. Thus nodes that occur on many shortest paths between other 
vertices have higher betweenness than those who do not. It does not fit with our model. 
Closeness is the degree an individual is near all other individuals in a network (both direct and 
indirect links). It reflects the ability to access information through the network ‘grapevine’ and is 
equivalent to the concept of shortest path. Closeness also does not fit our model. Lastly, the 
eigenvector centrality measures the importance of a node in a network by assigning scores to all 
nodes based on the principle that connections to nodes having a high score contribute more to the 
node in question, as seen in the PageRank algorithm previously discussed. As mentioned in the 
PageRank discussion earlier, eigenvector centrality does not fit our model either, due to the 
disconnected islands of dependencies and the fact that the criticality of an asset cannot simply 
rely on the ‘sum’ of other nodes connecting to it. While these various measurements are useful in 
many applications, they do not fit well with our definition of asset criticality. The level of 
criticality of an asset cannot be accurately measured using degree, betweenness, closeness, or 
eigenvectors. Whatever approach used needs to be compatible with our other approaches and be 
combined in a way that enables asset criticality values to accurately reflect the true mission 
importance of an asset. 

8) Bayesian Networks 

A Bayesian network is a network-based framework for representing and analyzing models 
involving uncertainty. They can be used to represent probabilistic relationships between 
(conditionally) independent random variables. They are useful for modeling decision aids, data 
fusion, medical diagnostics, and others [27]. Graphically, they are directed acyclic graphs whose 
nodes represent random variables and edges represent conditional dependencies. Each node is 
associated with a probability function that takes as input a particular set of values for the node’s 
parent variables and gives the probability of the variable represented by the node. Potentially, we 
may be able to model the dependency aspect of the AC metric by using Bayesian networks to 
answer the question “What is the probability that the given asset is a critical asset, given that its 
dependent nodes are also critical assets?” However, Bayesian networks are directed, acyclic 
graphs, and our model is not limited to acyclic dependency relationships. Also, in modeling 
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dependency relationships, we are not dealing with uncertainty. In other words, we are not 
determining the probability of a provider node being critical given that its dependent nodes are 
critical. We know that if many critical assets depend on a provider asset, then the provider asset 
is also critical. We just don’t know the level of criticality to assign to it. Therefore, Bayesian 
networks are not suitable for our approach. 

So far, we have provided an overview of various approaches that could be used to measure asset 
criticality. Of these approaches, the most promising and useful ones are the MADM-based 
approaches. They can be applied to steps 1 and 2 of our algorithm in section 3. In the following 
subsection we provide some detail on a couple of well-known and well-used MADM algorithms 
as background.  

4.2 MADM Methods 

The MAMD problem can be concisely expressed in a matrix format where rows represent 
attributes and columns list the competing alternatives (candidates). Thus, a typical element     of 
the matrix indicates the performance rating of the j

th alternative,   , with respect to the  th 
attribute   . This matrix format is called a decision matrix [28]. The attributes, which are our 
factors for the purpose of asset criticality determination, are not necessarily equally important 
making the determination of appropriate weights a prime concern. Furthermore, attributes can 
have different units of measurement that need to be homogenized through a normalization 
procedure. In this section, we examine two different MADM decision-making methods, Simple 
Additive Weighting (SAW) [29] [12] and Technique for Order Preference by Similarity to Ideal 
Solution (TOPSIS) [12] [30]. They were selected here because of their seeming applicability to 
the asset criticality problem, as well as being well-used, well-known methods in the field. 

SAW (Simple additive weighting) method 

This is the most commonly used and straightforward MADM method and is also known as the 
weighted sum method. Each alternative is assigned a weight of which the sum of all the weights 
is equal to 1. Each alternative is assessed regarding its overall performance across all attributes in 
the following way: 

 (  )   ∑             

 

   

 

Where     is the normalized value of each element     in the decision matrix. Of the possible 
values from the above formula, the decision-maker chooses the alternative    such that  (  )  
  (  ) for all  . For asset criticality, factors that determine asset criticality would be multiplied 
by their weights and summed. This would result in asset criticality scores in which    is the most 
critical asset. Table 1 shows a decision matrix composed of three assets, A1, A2, and A3, with 
values ranging from 1 to 5. We can see that A1 is the most critical asset with a score of 3.4 when 
using the SAW method. 

The advantage of this method is that it is a proportional linear transformation of the raw data 
which means that the relative order of magnitude of the standardized scores remains equal. This 
means that the ratio of scores among assets is proportional to the relative criticality. 
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Table 1. Sample calculation of asset criticality using SAW 

 

 

TOPSIS Method (Technique for Order Preference by Similarity to Ideal Solution) 

This approach ranks alternatives according to their closeness to a hypothetical positive ideal 
solution (zenith) and a hypothetical negative ideal solution (nadir). The domain set of 
alternatives is defined as a  -dimension Euclidean space. Therefore, each alternative is 
represented as a point in this space. A basic assumption made here is that each attribute is 
characterized by monotonic increasing or decreasing utility. Using the TOPSIS principle, the 
solutions (i.e. most preferred alternatives) are those which are at the same time farthest from the 
nadir point and closest to the zenith point, with distance being measured by Euclidean distance. 
TOPSIS models this principal by defining ‘relative closeness to the ideal solution’,     according 
to the following relation: 

       
   

  
 

  
    

        (1) 

Where   
 is the  -dimensional Euclidean distance between the     alternative and the nadir 

point, and   
  is the  -dimensional Euclidean distance between the     alternative and the zenith 

point. According to this method, the alternative    is better than    if   
     

  or   
  

 (  
    

 )⁄     
 (  

    
 )⁄ . This calculation is necessary because there can be many 

alternatives that are closest to the ideal solution. Also the alternative closest to the ideal solution 
is not necessarily the farthest from the negative-ideal solution. As can be seen in Figure 3, if we 
only have alternatives A1, A2, and A3, they are all equidistance from A*, the positive-ideal 
solution, but have different Euclidean distances from A-. Now, if we consider A1 and A4, A4 is 
closer to the ideal solution, but A1 is farther from the negative-ideal, A-. The relative distance 
measurement handles these conflicts. 

Criteria weight A1 A2 A3

Criticality of applications 0.5 5 4 3

Number of mission-critical applications 0.3 1 1 2

Number of times targeted 0.2 3 3 2

3.4 2.9 2.5

Assets

Weighted sum
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Figure 3. Euclidean distances to positive and negative ideal solutions 

In order to calculate the relative closeness to the ideal solution, the normalized decision matrix is 
first calculated using the vector method: 

     
   

√∑    
  

   

 

where      is the value of alternative   with respect to attribute   (           ). Then, 
the weighted normalized decision matrix is calculated as: 

                          

Where    is the weight of the     attribute. The zenith    and nadir   are calculated as follows: 

   {  
      

 } = {(            ) (             )}  

   {  
      

 } = {(            ) (             )}  

Where    is associated with benefit criteria, and     is associated with cost criteria3. Thus, the 
zenith (positive ideal solution) is made up of the best value of each criterion over all attributes 
and the nadir (negative ideal solution) is composed of the worst value of each criterion over all 
the attributes. The respective Euclidean distances are calculated as: 

  
  √∑ (      

 )
  

    ,         

  
  √∑ (      

 )
  

    ,         

                                                           
3
 A benefit attribute is one in which higher measures are more desirable for the decision-making problem, and a cost 

attribute is one in which lower measures are more desirable. For example, when buying a car, the gas mileage of the 
car is a benefit attribute, and the price of the car is a cost attribute. 
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The relative closeness is then calculated as in equation (1) to obtain the score for each 
alternative, after which the alternatives are ranked. An example of applying TOPSIS to the same 
assets as those used in the previous example is provided in Table 2. The cells highlighted in 
yellow are the best value of each criterion over all the attributes, and together compose the 
zenith. The cells highlighted in purple are the worst value of each criterion and compose the 
nadir. In other words, the zenith is    {           } and the nadir is     {           }  The 
distances to the zenith and nadir are computed using these values against each value in the 
alternatives. For instance, the distance to    from A1 is 
  

   √(       )  (       )  (       )        and the distance to    from A1 is 
  

   √(       )  (       )  (       )        . The resulting relative closeness 
value   

  for A1 is      (           )       ⁄ . Alternatives A2 and A3 are calculated in a 
similar manner. Again, the most critical asset is A1 with a score of 0.773, which is its relative 
closeness to the zenith. 

 

Table 2. Sample calculation of asset criticality using TOPSIS 

 

 

Eigenvector Prioritization Method for Obtaining Weights 

In order to apply a decision-making method, we need to calculate the relative importance of each 
criterion, i.e. their weights. Weights enable decision-makers to specify the importance of each 
attribute, relative to others, since not all attributes are likely to be considered equally important. 
This process is generally subjective, requiring input from the decision-maker and is likely to vary 
from decision-maker to decision-maker. The decision-maker can express his preferences in either 
an ordinal or cardinal scale, although most models require cardinal weights that are then 
normalized to sum to 1, that is, ∑     where wi is the weight assigned to the  th attribute. 
Various weight assignment techniques are available such as assigning weights from ranks and 
ratio weighting. Rank-based weighting requires ranking all the attributes at the same time, 
placing a heavy cognitive burden on the decision-maker [12]. This makes ratio-based weight 
schemes such as Saaty’s Eigenvector Prioritization method [31] [30] more preferable. In this 
method the decision-maker performs a pairwise comparison of the criteria that they choose for 
their assets. Pairwise comparison involves comparing two attributes at a time, asking the 
importance ratio between them. Mathematically, for n attributes, we would need (n-1) pairwise 
comparisons. However, the result of comparing how much more important C1 is than C2 is the 
inverse of comparing how much more important C2 is than C1. Also, the value of an attribute 

Criteria weight A1 A2 A3

Criticality of applications 0.5 5 4 3 2.5 2 1.5

Number of mission-critical applications 0.3 1 1 2 0.3 0.3 0.6

Number of times targeted 0.2 3 3 2 0.6 0.6 0.4

0.300 0.583 1.020

1.020 0.539 0.300

0.773 0.480 0.227

Assets

value x weight

Distance to Nadir
Distance to Zenith
Relative Closeness
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compared with itself is always 1. Therefore, only  (   )  ⁄  pairwise comparisons are needed. 
In this method, a pairwise comparison matrix is constructed using a scale of relative importance 
with the decision maker’s preferences being stored in either the lower or upper half of the matrix. 
Saaty uses a scale of 1-9 with 1 being equivalent and 9 being absolutely important. The type of 
scale used can be adjusted to fit the application. Then, the geometric mean of each row is 
computed, then normalized to obtain the final weights of the criteria. For example, given three 
criteria C1, C2, and C3 the decision-maker will construct a comparison matrix that may look like 
that of Table 3a [12]. The geometric mean and resulting normalized weights would be computed 
as in Table 3b. 

Table 3a. Pairwise comparison matrix  Table 3b. Weight computation 

      

5. Our Approach 

We have introduced the high level overview of our approach in scoring and ranking assets in 
Section 3. Each step of the approach is expanded in more detail below. 

Step 1. Calculate AC scores based on static factors using a decision-making algorithm 
We examined SAW and TOPSIS because of their popularity and applicability. Neither of these 
algorithms is suitable as-is to use because of our special requirements in section 3, but both 
possess pros and cons. Particularly, we do not want to recalculate scores for all assets when the 
value of an asset changes, or a new one is introduced or deleted. Also, we want to compare 
across scores regardless of which method was used. While each method provides relative scores, 
the different calculation methods lead to different characteristics; the SAW method uses the 
overall value of each alternative to compute a score, while TOPSIS uses distance information. 
Also, the required calculation time for each is different. Since SAW calculations are done 
independently of other assets, if the value of an attribute in an asset changes only that one asset 
needs to be recalculated. In addition, when an asset is added or removed, it does not affect the 
scores of the other assets.  

On the other hand, TOPSIS calculates its scores across all other alternatives using the concept of 
positive and negative ideals, In particular, the positive ideal and negative ideal in TOPSIS are 
relative values, calculated using the given values in the decision matrix. The use of relative 
values for positive and negative ideals is particularly problematic for our dynamic environment 
where asset scores can change, assets can be added or removed, and assets need to be compared 
across different commands. When a change in an asset’s value affects the positive or negative 
ideal, all assets’ distances to the positive and/or negative ideal (and thus the relative closeness) 
need to be recalculated. For example, going back to the example given in Table 2, assume that 
the value for ‘Number of mission-critical applications’ changed from 1 to 3 for asset A1. The 
resulting positive ideals and negative ideals would become    {           }  and    
{           } , respectively. The negative ideal has not changed, but the positive ideal has, 

C1 C2 C3

C1 1.0 0.3 0.5

C2 3.0 1.0 3.0

C3 2.0 0.3 1.0

Geometric mean Weight

C1 (1x1/3x1/2)1/2 = 0.5503 0.1571

C2 (3x1x3)1/2 =2.0801 = 0.5936

C3 (2x1/3x1)1/2 = 0.2493 0.2493
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requiring recalculation of all assets’ distances to the positive ideal as well as their relative 
closeness values. 

Furthermore, this approach makes the positive and negative ideals different for each command, 
leading to incompatible relative distance values. This problem is illustrated in Table 4.  

Table 4. Problems with positive and negative ideal values in TOPSIS 

 

 

The table shows two hypothetical commands. Command A does not have any important assets in 
the sense that its most critical asset only has medium-grade values (i.e. all 3s). However, because 
the positive ideal and negative ideal solutions are composed from the best values across all 
alternatives, A1 has a relative closeness value of 1. Likewise, a highly critical asset, B1, in 
command B also has a relative closeness value of 1. It is safe to assume that A1 and B1are not 
equally critical to the overall mission, and the rating of the commands will help differentiate 
these scores to a degree. But essentially, the problem lies in the fact that each command’s assets 
are rated with respect to the relative values of the assets within the command. While A1 should 
still be ranked and valued as more critical than assets A2 and A3, it should not be held up as the 
‘ideal’ asset, as the TOPSIS method currently has it. 

In general, both SAW and TOPSIS provide similar rankings but TOPSIS has better 
distinguishing capabilities, delineating the differences between similar alternatives [32] [33] 
[34]. For example, the decision matrix in Table 5 shows three alternatives compared using three 
criteria/attributes that are all identical in importance. Scores are computed for the alternatives 
using both the SAW and TOPSIS methods. The three alternatives would be equally preferred 
using the SAW method. Borrowing from utility theory, we would say that the decision-maker is 
indifferent between the three alternatives – i.e. all three are equally critical. However, the results 
of TOPSIS show that the relative distance measurements of the three assets are not identical. 
TOPSIS provides some differentiation between the three alternatives. Using this example, we 
argue that assets are not equally critical just because their values add up to identical sums and 
that TOPSIS results reflect this.  

Furthermore, because of its simple calculation method, SAW is mostly used as a method to 
obtain a preliminary outcome [29]. For these reasons, we selected TOPSIS as our initial method, 
but modified it slightly to overcome the limitations discussed above. 

 

 

Criteria weight A1 A2 A3 B1 B2 B3

criticality level of applications 0.5 3 3 3 5 4 3

value of data on asset 0.3 3 1 2 5 1 2

number of times targeted 0.2 3 3 2 5 3 2

0.000 0.600 0.361 0.000 1.360 1.473

0.632 0.200 0.300 1.673 0.539 0.300

1.000 0.250 0.454 1.000 0.284 0.169

Assets in Command A Assets in Command B

distance to zenith
distance to nadir

relative closeness
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Table 5. Comparison of SAW and TOPSIS 

 

The problem with using TOPSIS in our environment stemmed from the way positive and 
negative ideal values were selected. We modify the distance measurement calculation so that 
absolute positive and negative ideal values are used as the new zenith and nadir, respectively. In 
other words, we create a hypothetical asset that has all possible maximum values and a 
hypothetical asset that has all possible minimum values, and calculate the distance to the zenith 
and nadir from these values respectively. For example, using the decision matrix given in Table 
2, the new absolute zenith is    {           }  and the new absolute nadir is    
{           } after weights have been applied. Using these values to calculate distances and then 
relative closeness measurements, the new TOPSIS scores would be that of Table 6. 

 

Table 6. Calculation of asset criticality using modified TOPSIS 

 

Unlike the original TOPSIS approach that uses only the values available in the decision matrix, 
these zenith and nadir values are fixed. The advantage of this is that if an asset’s value changes 
or the asset itself is removed from the decision-making process, the zenith and nadir values do 
not change, and all the sub-calculations for relative closeness do not need to be recalculated for 
each asset: if an asset’s value changes, then only that asset’s relative closeness (to the absolute 
positive and negative) needs to be recalculated. If an asset is removed, no recalculation of any 
relative closeness values is required since the zenith and the nadir are always computed using 
absolute values. In addition, each command’s assets are rated against their own absolute positive 
and negative values, so that they all scale in a consistent way. Modifying TOPSIS in this manner 
allows asset criticality scores to be comparable and minimizes recalculation time. In a dynamic 
environment, this type of approach is advantageous and necessary.  

As we mentioned earlier, each evaluator/decision-maker needs to be able to assess his assets 
independently of other commands, using whatever criteria they deem important to determining 
the criticality of assets. Because each decision-maker rates assets independently of each other, 
the assets from different commands are not directly comparable at this stage. However, as a 
result, as long as assets are rated in a consistent manner and their relative importance is 
represented as a score, these values can be normalized for inter-command comparisons. This 

Criteria weight A1 A2 A3

Number of mission-critical applications 0.33 4 3 5 1.33333 1 1.66667

Criticality of applications 0.33 4 5 5 1.33333 1.66667 1.66667

Number of times targeted 0.33 4 4 2 1.33333 1.33333 0.66667

4 4 4

0.613 0.528 0.528

value x weight

Assets

SAW
Relative Closeness

Abs. Pos. Abs. Neg.

Criteria weight A1 A2 A3 ideal ideal

Criticality of applications 0.50 5 4 3 2.5 2 1.5 2.5 0.5

Number of mission-critical applications 0.30 1 1 2 0.3 0.3 0.6 1.5 0.3

Number of times targeted 0.20 3 3 2 0.6 0.6 0.4 1 0.2

0.617 0.533 0.419

Assets

value x weight

Relative Closeness
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does not imply that the AC metric of an asset from one command can be directly compared to the 
AC metric of an asset from a different command. Rather, higher-level units would rank the 
importance of lower-level commands to provide a weight measurement that can determine how 
much more important one command is over another using the next step.   

Step 2. Calculate the ratings for each command 
The DoD command structure is hierarchical. The literature presents some hierarchical decision 
making models. However, mostly they assume that the same approach is used throughout the 
process. Some decision making models employ group decision making techniques but assume 
that each actor considers the same set of alternatives and criteria, which does not fit well to our 
problem domain. These techniques are usually applied to explore the cases of different weights 
(among decision makers) for each criteria, when the assessed values are objective, and/or to 
assess weights that are subjective, so as to reach a consensus [20] [35]. In addition, these models 
assume an environment such as that of Figure 4 with assets (i.e. alternatives) only at the lowest 
level. In reality, each command (regardless of its level in the hierarchy) possesses its own assets 
that need to be scored and ranked. In these cases, assets in the lower level would be unfairly 
penalized by their associated commands receiving a low-value weight when using the measures 
discussed above. Therefore, we devised a different hierarchical weight assignment scheme that 
does not overly penalize the lower level commands and their assets and provides a more 
balanced approach. This hierarchical weight assignment scheme can be implemented in two 
different ways. In the first weight assignment method, we ask the decision maker of each 
command to determine how important each of its ‘known’ commands is. By ‘known’ commands 
we mean the command that the decision maker belongs to, as well as the commands directly 
under him. This decision is made by answering the question “How much do you depend on this 
command to complete your mission?” For instance, the decision maker can decide that it relies 
on its own command 100%, while it depends on the two commands below it 100% and 80% 
respectively, to complete its mission. This percentage is translated down from the top level nodes 
to the bottom nodes to achieve a weight. For example, Figure 5 depicts a hierarchy of commands 
in which each decision maker has determined how much he depends on his command, as well as 
the ones directly under him, represented in percentages. While not shown here, we can assume 
that each command has assets under it that it needs to score and rank. From these values, the 
individual weights of the commands are calculated in a top-down manner as shown in Figure 6. 
The weights (given in parentheses) are calculated by taking the weight of the command directly 
above it, and multiplying it by dependency factor on the edge between the target command and 
the one above it. These weights are then used to determine the true values of the assets by 
multiplying the weights of each command to the AC scores of the assets within each respective 
command. 

The second weight assignment method uses one of the MADM approaches, such as TOPSIS or 
SAW. As in the above method, each decision-maker rates his own command and the ones 
directly under him, but instead of answering a subjective question, external factors that reflect 
mission importance are employed. For example, criterion such as situation at geographical 

location is used to make decisions regarding importance of commands. Once each decision-
maker rates its associated commands, weights are calculated the same as in the first method. A 
more detailed example of this method is provided in section 6. 
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With respect to the requirement of near real-time computation, these methods are preferable over 
others since they do not perform pairwise comparison across all the commands at once. A change 
in the dependency of one command will only change the weights of all the commands (and 
assets) under it, and not require total recalculation. While both methods are acceptable, the 
second method allows less subjective measures to be taken, while also providing the justification 
needed (in the form of identified criteria) to determine how a decision maker rated certain 
commands, as well as enabling external factors to affect mission criticality. 

 

Figure 4. Commands with assets 

 

 

Figure 5. Hierarchy of commands with decision-makers’ ratings 

 



23 
 

 

 

Figure 6. Weights of each command calculated 

Step 3. Calculate the dependencies among assets 
When computing the dependency factor of the asset, it should be a factor of how many assets 
depend on the given asset, the strength of the dependencies between provider asset and 
dependent assets, and the AC metric of the dependent assets, as well as the initial AC metric of 
the provider asset. Figures 7 through 9 explain this. Dependency relationships are depicted as 
directed graphs with nodes representing assets and arrows representing the direction of 
information flow in the dependency relationship from provider node (shown in blue) to 
dependent nodes. The numbers on the arrows represent the degree of dependency and the 
numbers in the nodes represent the AC metrics of the assets obtained from steps 1 and 2. 
Provider nodes would also have initial AC values, but to keep things simple, we do not show 
these values here. In Figure 7, we see two assets that have other assets depending on them. All 
other things being equal, the one with more assets depending on it should have a higher AC 
metric. On the other hand, Figure 8 shows two islands of assets, with the same number of assets 
depending on two different assets. The dependent assets are equally critical, but have different 
strengths of dependencies. The strength of dependency is a general concept that implies to what 
degree the dependent node relies on the provider node to complete its mission. In other words, 
the assets in the first group depend on the provider node 50% to complete its mission. In this 
case, the strength of the dependencies matters in determining which of the two provider assets 
are more critical. Lastly, in Figure 9, we see that all other things being equal, the initial criticality 
measurement of the dependent assets, denoted as integers inside the circles, determines the 
criticality of the provider assets. While not shown here, the initial AC metric of the provider 
nodes must also be taken into consideration. For example, in Figure 9, if the provider nodes had 
an initial AC metric of 5, then the adjusted AC metric cannot be below this, just because the 
dependent nodes have low AC values or low strength of dependencies. This initial AC metric 
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was computed using other factors that determined the criticality of the asset independent of 
dependencies and should not be downgraded. 

 

 

Figure 7. Comparing the number of dependencies 

 

Figure 8. Comparing the strength of the dependencies 

 

 

Figure 9. Comparing the AC metric of dependent assets 
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In summary, our dependency algorithm should possess the following properties: 

 Each initial value (i.e. AC metric) of the node/assets in the dependency relationship is the 
independent asset criticality score obtained from the individual asset calculations 
computed by each command and then adjusted across all the commands using the 
command-level ratings. 

 The AC metric of a provider asset should be a function of its initial AC metric, the AC 
metrics of the dependent assets, the strength of the dependencies, and the number of 
assets that depend on it. 

 The resulting value of the providing node should have a lower bound limit of 
    {  (  )                      ( )} where   (  ) is the asset criticality score of 
the dependent asset   ,    is the strength of the dependency from    to provider asset  ,  
   is the set of all assets that depend on  , and   ( ) is the original AC metric score for 
provider asset  . The relationship between the provider asset’s value and the dependent 
nodes’ scores, degree of dependencies or the number of dependent nodes is not linear or 
exponential. An asset that supports 100 other nodes likely more critical than one that 
supports 10 nodes, but is not necessarily 10 times more important. The criticality function 
would likely be defined by a logarithmic relationship between the adjusted criticality 
value of the provider node and the variables (i.e. AC values of dependent assets, number 
of dependent assets, and strength of dependencies). 

While we stated the properties of the dependency algorithm above, the development of the 
algorithm is a work in progress. For this paper, we will just adopt the simple notion of the 
provider node being at least as critical as the most critical value obtained from multiplying each 
asset criticality value by its strength of dependency on the provider node. In other words, the new 
value of the provider node will be the lower bound described above. 

Step 4. Rate the assets based on value-sensitive factors 
Value-sensitive factors such as ‘who is logged on’ and ‘who owns the asset’ may change the 
criticality of an asset depending on what the value of the factor is at a given time. In most 
circumstances, the values of these factors do not affect the criticality of the asset, so we do not 
incorporate them into our initial decision-making process. However, when the factor does 
possess a certain value (e.g. who’s logged on = Admiral), an asset with this value can then 
become quite critical. We assess this value at certain times depending on whether they are static 
value-sensitive or dynamic value sensitive factors. This part of the algorithm is not part of the 
paper and will be addressed separately. 
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6. An Example of the Asset Criticality Algorithm 

In this section we will go through the various steps of the algorithm (steps 1 through 3) using a 
hypothetical example. In this example, we have a command hierarchy that looks like Figure 10, 
and each command in the hierarchy has a set of assets that need to be scored and ranked.  

 

Figure 10. Hypothetical command and control structure with assets 

In this scenario there are four commands, with command A as the top level command having 
three commands under it. Command B is a submarine, Command C is a research facility, and 
Command D is a medical unit. Each command has assets denoted as squares within it. Colored 
assets represent assets that have a dependency relationship with each other. The actual 
dependency relationship of these colored assets is shown in Figure 11. As before, the nodes 
represent the assets and the arrows represent information flow in a dependency relationship 
denoting the dependent node relying on the provider node for input. Labels on the arrows 
represent degrees of dependency with 1.0 implying 100% dependence. In other words, A1 relies 
on C2 100% to complete its mission, while B1 relies on C2 50% to complete its mission. 

 

Figure 11. Network dependencies of assets 
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Each command will rate its assets independently of each other using some MADM approach, 
with the types and importance of attributes to be determined by the decision maker within each 
unit. The top-level command (i.e. Command A) will rate the commands under it as well as itself, 
and then the dependencies will be calculated.  

Table 7 shows the list of potential attributes and scores for each asset. To save space, we show 
the decision matrix for each command in one table. While there are four factors, each command 
only uses three – the three factors that each command considers most appropriate to rate its own 
assets. As can be seen, we have assigned a numerical range of 1-5 for each factor, where 1 is low 
and 5 is high. For example, if there is a lot of sensitive data on the asset, then it would receive a 
rating of 5 for that criterion. In actuality, not all factors will have the same range of values. Thus, 
some normalization will be applied before calculations can be performed. But for now, we are 
keeping things simple. 

 

Table 7. Decision matrix for each command 

 

 

We will use TOPSIS to calculate the scores for assets in each command separately. To simplify 
the example, weights for each factor are assigned arbitrarily. The preliminary results are as 
follows (Tables 8 through 11): 

 

Table 8. Results for Command A 

 

 

 

 

 

Criteria A1 A2 A3 B1 B2 B3 C1 C2 C3 C4 D1 D2 D3

Value of data on asset 5 4 3 4 3 2 5 5 3 3

Frequency of attacks 5 4 2 4 5 3 3 3 4 4 5 2 5

Machine purpose 3 3 4 5 2 2 3 5 4 2

Criticality of applications 3 4 1 5 3 3

Command A Command B Command C Command D

Criteria weight A1 A2 A3

Value of data on assets 0.5 5 4 3 2.5 2 1.5

Frequency of attacks 0.3 5 4 2 1.5 1.2 0.6

Criticality of applications 0.2 3 4 1 0.6 0.8 0.2

0.855 0.750 0.400

value x weight

Assets

Relative closeness
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Table 9. Results for Command B 

 

Table 10. Results for Command C 

 

Table 11. Results for Command D 

 

 

We use our modified TOPSIS with absolute positive and negative values to obtain the results.  

At this point, each decision maker from each command has rated his assets separately using 
different factors and weights. Even though we use a modified TOPSIS these are not comparable 
as is, since the ratings are based on importance to the mission of each command. Despite this, we 
show a ranking of the assets after completing the individual ratings in Table 12. As can be seen 
from the results of Table 12, asset D1, a machine in the medical unit, is ranked most critical. 
Whether this is truly critical or not depends on the criticality of the command itself, which is 
calculated next. 

Table 12. Preliminary Ranking of all assets 

 

Next, we need to rate the commands themselves, so that the importance of the command to the 
overall DoD mission can be reflected into the AC metric. As mentioned earlier, commands rate 
their own command and the commands directly under them. The results are flattened out as 

Criteria weight B1 B2 B3

Frequency of attacks 0.6 4 5 3 2.4 3 1.8

Machine purpose 0.2 3 3 4 0.6 0.6 0.8

Criticality of applications 0.2 5 3 3 1 0.6 0.6

0.736 0.813 0.522

Assets

value x weight

Relative closeness

Criteria weight C1 C2 C3 C4

Value of data on asset 0.5 4 3 2 5 2 1.5 1 2.5

Frequency of attacks 0.2 3 3 4 4 0.6 0.6 0.8 0.8

Machine purpose 0.3 5 2 2 3 1.5 0.6 0.6 0.9

0.754 0.443 0.322 0.775

value x weight

Assets

Relative closeness

Criteria weight D1 D2 D3

Value of data on asset 0.45 5 3 3 2.25 1.35 1.35

Frequency of attacks 0.35 5 2 5 1.75 0.7 1.75

Machine purpose 0.2 5 4 2 1 0.8 0.4

1.000 0.449 0.608

value x weight

Assets

Relative closeness

A1 A2 A3 B1 B2 B3 C1 C2 C3 C4 D1 D2 D3

AC Scores per command 0.855 0.750 0.400 0.736 0.813 0.522 0.754 0.443 0.322 0.775 1.000 0.449 0.608

Ranking 2 6 12 7 3 9 5 11 13 4 1 10 8
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described earlier. The rating can be subjective, asking “how important is this command to the 
mission?” or use a MADM approach for each evaluation. While either SAW or TOPSIS would 
work, to minimize calculations, we will use SAW with criteria selected to determine mission 
importance. Command A will rate itself, as well as Commands B, C, and D using criteria and 
arbitrarily selected weights. The use of factors at this level enables external situations to be 
reflected in the decision-making process. For example, in wartime, strategic commands may 
have less criticality than tactical commands. Situations at geographical locations may also affect 
command criticality. The use of these factors enables decision-makers to appropriately reflect 
them in their judgment, rather than subjectively comparing commands. 

The results of the calculation (shown in Table 13) provide scores for each command that when 
normalized are used as weights for each asset within the respective command. For example, the 
normalized value of Command A is 0.7. This value is multiplied across all assets in Command A 
to obtain actual AC scores. Proceeding in the manner for all of the commands, we obtain the 
scores and ranking shown in Table 14. 

Table 13. Criteria/Factors for rating commands 

 

 

Table 14. Scores and ranking of assets after command level rating applied 

 

We can see from the results that command D, being not as important as other commands to the 
overall mission, has received a damping factor (i.e. weight) that lowered the scores of all its 
assets. Command B, which is a submarine, doing mission critical activities and situated in a 
wartime location is the most critical command, so it has many critical assets. Up to this point the 
criticality of the assets has been measured independently of other assets. 

The next step is to examine dependency relationships and factor them into the criticality 
measure. Using the asset criticality values shown in Table 14, our dependency relationship 
diagram from earlier now looks like Figure 12. It is obvious that asset C2, with an AC metric of 
0.177 is a much more critical asset than its results show, since three relatively critical assets 
depend on it for input. To calculate the new AC metric for C2, we select    {  (  )  
      (  )        (  )        (  )}     {                        }       .  

After calculations C2’s new AC metric becomes 0.599. The results for the other dependency 
relationship are calculated similarly. First, B3’s value is updated to be the max of A2 times its 

Criteria weight A B C D

Mission criticality of command 0.5 5 5 3 2 2.5 2.5 1.5 1

Situation at geographical loc. 0.5 2 5 1 3 1 2.5 0.5 1.5

Sum 3.5 5 2 2.5

 Normalized 0.7 1 0.4 0.5

Commands

value x weight

Asset A1 A2 A3 B1 B2 B3 C1 C2 C3 C4 D1 D2 D3

Value 0.599 0.525 0.280 0.736 0.813 0.522 0.302 0.177 0.129 0.310 0.500 0.224 0.304

Rank 3 4 10 2 1 5 9 12 13 7 6 11 8
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weight and B3’s original value. Then C4’s value is updated to be the max of B3’s new value 
times its weight or C4’s original value. The results of reflecting the dependency is shown in 
Figure 13 for the assets with dependency relationships, and Table 15 for all assets. 

 

 

Figure 12. Dependencies with initial AC metric values 

 

Figure 13. Dependencies with updated AC metric values 

Table 15. Scores and rankings of assets after dependencies 

 

  

Asset A1 A2 A3 B1 B2 B3 C1 C2 C3 C4 D1 D2 D3

Value 0.599 0.525 0.280 0.736 0.813 0.522 0.302 0.599 0.129 0.418 0.500 0.224 0.304

Rank 3 5 11 2 1 6 10 3 13 8 7 12 9
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7. Conclusion and Future Work 

Proper course-of-actions should be based on the severity of an attack, the criticality of the asset it 
targets and the state of the asset. There are many algorithms and tools for categorizing the 
severity of an attack [36] [37]. However, we lack a standardized way to determine the criticality 
of assets, as well as the state of the asset. This paper discusses our approach to determining asset 
criticality in a dynamic, military environment. We outlined our four-step approach for obtaining 
an AC metric that can be used to determine the criticality of an asset as it relates to the overall 
mission. This AC metric is the missing piece in the puzzle that fits in the dynamic DoD 
environment where the nature of the mission may change, the definition of mission criticality can 
change and the values that compose a critical asset may change at any moment. Our approach is 
still being developed: we need to determine the important factors, how we will obtain 
information about these factors for each asset, what the value ranges will be, and how to 
normalize them. We still need to work on measuring the dependency aspect of asset criticality, as 
well as how to incorporate value-sensitive factors into the algorithm. 

Ultimately, event information, asset criticality and asset state will need to be combined to 
determine proper course-of-action. In addition, the sheer amount of data makes manual 
aggregation of this information not feasible for vital decision-making especially in times of 
critical need. These limitations call for an autonomous decision-making process that takes into 
account the context surrounding an event for proper and timely course-of-actions. 

This approach enables not only cyber warriors to make faster and more appropriate course-of-
action decisions but also decision-making to be made at the appropriate levels. Since each 
command rates and scores its own assets, these AC metrics can be used within a command to 
determine proper course of actions for command-level event responses. This can further ease the 
burden of the cyber warrior that needs to monitor millions of data points. 

Future work will be required to incorporate asset state into the environment and to determine 
proper course-of-action using all this information. Knowing the state of the assets would provide 
guidance on how to respond to the attack properly. For instance, if the IA posture of the weapons 
system is secure (i.e. has been patched against vulnerability that the attack is exploiting), then the 
proper response may be to do nothing. If the generic desktop’s state is not as secure, a different 
response may be required, despite both assets undergoing the same type of attack. 
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