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Background and Objective

ONR has been funding Prof. Roy and Prof. Baldwin to perform research on Event Rep-
resentation in Humans and Machines.  Prof. Roy's portion of that research involves de-
veloping an unsupervised learning system that acquires structured event representa-
tions of human activity grounded in naturalistic video observations.  The output of that 
system is to be an action lexicon that encodes recurrent hierarchical temporal patterns 
discovered from a large video corpus.

The initial video corpus contains 90,000 hours of video. One of the most compute inten-
sive tasks in analyzing such large video databases, both for learning the action lexicon 
and for subsequently recognizing instances of the lexical elements, is robust tracking of 
objects and people.  Existing hardware and software limit the efficiency with which 
tracking and other key analyses can be performed.  

The goal of the work undertaken with the supplemental funding was to determine 
whether Dr. Bates's proposed "approximate computing" technology could radically im-
prove the speed and energy consumption of the tracking task.

Bates's technology is built on the idea of a massively parallel programmable SIMD co-
processor, fitting roughly 100,000 processing elements (PEs) on a single chip, where 
each PE is capable of rapidly performing very low accuracy floating point arithmetic 
(approximately 1% error per operation).  Each PE consists of approximately ten thou-
sand transistors and contains, besides the arithmetic circuits, roughly 100 words of local 
memory and a somewhat flexible local interconnect scheme.  For well-suited tasks, 
where software can recover sufficiently accurate results using the relatively inaccurate 
underlying hardware, the machine is able to compute thousands of times mores effi-
ciently than CPUs and hundreds of times more efficiently than GPUs and FPGAs.

The following is a diagram showing the basic architecture of the processor and co-
processor system:
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Research Activities Undertaken

In order to determine whether the Cognitive Machines Group's tracking technology 
could be accelerated, Dr. Bates worked with George Shaw, a Master's student in the 
group, to understand the group's existing technology and to attempt to adapt it to run on 
Bates's proposed massively parallel, approximate arithmetic, SIMD hardware.

Mr. Shaw was developing a tracking system that combined a variety of tracking meth-
ods into an overall tracker, with the expectation that overall tracking performance would 
exceed the performance of the individual trackers.  The overall tracker was structured 
as a pipeline.  The first step in the supplemental research was to understand what tasks 
in this pipeline were slow and would most benefit from acceleration.  Below is a brief 
overview of the pipeline, followed by discussion of the speed and feasibility of accelera-
tion for relevant stages.

The first stage is reading video from disk.  Some of the research undertaken by the 
Cognitive Machines Group using the video library requires the frames to be randomly 
accessible.  For this reason, the video is compressed as a collection of independent 
frames using JPEG image compression.  This is in contrast to more effective time-
aware compression, such as MPEG, which is not used because such compression does 
not easily admit fast random access to frames.  So the first step in the analytics pipeline 
is to read the JPEG frames from disk and decode them.

Once a frame is decoded and available, it is analyzed to distinguish foreground pixels 
from background pixels.  Background pixels are intended to be the (approximately) un-
changing part of the video, while foreground pixels are the components that make up 
the objects to be tracked.
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Multiple trackers operate on the foreground pixels.  A motion tracker groups the fore-
ground pixels into connected components, then attempts to track motion of those com-
ponents.  A color-based tracker compares the color distribution of foreground pixels 
from frame to frame, forms a probability density map based on the color correspon-
dence, and then tracks the high density regions using a variant of the mean-shift algo-
rithm.

Higher levels combine the results of the multiple trackers, handle disappearance and 
coalescing of objects, and produce a final set of tracking results.

Mr. Shaw reported that the first stages of the pipeline, reading and decompressing 
frames and foreground/background separation, accounted by a large margin for the bulk 
of the processing time.  So we decided to focus on determining whether those tasks 
could be implemented and accelerated using the low precision SIMD architecture.

Foreground/Background Separation

The first task we looked at was foreground/background separation.  This was being 
done using a "MOG" approach - where a mixture of Gaussians model is attached to 
each pixel position in the video.  The model specifies a set of Gaussians, each defined 
by a mean and a standard deviation.  The values are measured in some color space 
component, such as luminosity.  As frames are processed, each pixel is compared to its 
model.  If, on a given frame, a pixel's value falls within a specified distance (measured in 
standard deviations) from the mean of one of the Gaussians, then the pixel is consid-
ered to be background.  Otherwise, it is considered foreground.  Further, the models are 
modified on each frame so that modest deviations from an existing mean will cause the 
corresponding Gaussian to migrate toward the new pixel value, while new Gaussians 
will be created (and not recently matched Gaussians will be deleted) when there are 
sufficiently many occurrences of pixel values not matching any existing Gaussian.

This well known method works fairly well for foreground/background separation.  It has 
the disadvantage that a temporarily stable foreground object gradually will fade to be-
come background.  It also has the disadvantage of requiring substantial floating point 
computing at every pixel of every frame.  However, this computing pattern maps well to 
a SIMD architecture, because if, say, each pixel position is assigned to a core (Process-
ing Element), and if the new frame is loaded into the SIMD grid, then all cores can com-
pare their locally stored pixel with their locally stored models and perform the steps of 
the MOG algorithm with relatively little waste of computing capacity.  (The compute time 
is proportional to the maximum number of models stored at any pixel position, which is 
a small constant number, such as typically 5 in Shaw's explorations.)

Thus, MOG should make efficient use of the SIMD hardware, and the time taken to run 
MOG would be some thousands of machine instructions per frame.  This means proc-
essing times in the tens of microseconds per frame, once the frame is loaded into SIMD 

page 3 of 7



memory.  The implementation of MOG that the group currently runs on serial machines 
takes tens of milliseconds per frame.

The question about this approach is whether doing the Gaussian-related computations 
in approximate floating point produces sufficiently good results.  That is a question that 
is difficult to analyze theoretically, but easy to test experimentally.  So we undertook 
such an experiment.

An advantage of Bates's architecture is that its approximate arithmetic can be exactly 
modeled using a traditional digital computer with only about 10x overhead.  Bates pro-
vided a set of routines that precisely emulated the primitive hardware arithmetic - Add, 
Subtract, Multiply, Divide, Sqrt.  On top of these Bates and Shaw built routines needed 
to do the Gaussian modeling, such as exponentiation.  The latter, for instance, was ex-
pressed as several leading terms of the Taylor expansion of e^-x.

Shaw's existing MOG code was then modified to run using low precision arithmetic and 
to produce exactly the same results that would be produced by an actual hardware im-
plementation.  The code was run on a two minute sample of video extracted from the 
group's video library.  It was compared to the same algorithm run using full floating point 
arithmetic on a traditional CPU.

An example frame, processed using traditional floating point, is below.  The same 
frame, reprocessed using Bates's proposed low precision arithmetic, follows.

Floating point foreground/background separation
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Low precision foreground/background separation

Displayed side by side, to the eye, these images appear identical.  Over the complete 
two minute sequence, the average number of classification differences per frame was 
.0014% (ie, 14 pixels differed on average in each 1M pixel frame). 

JPEG decompression

With good results on foreground/background separation, we turned out attention to a 
paper study of JPEG decompression.  The general method of JPEG encoding, as de-
scribed on Wikipedia, is as follows:

- The representation of the colors in the image is converted from RGB to Y′CBCR, con-
sisting of one luma component (Y'), representing brightness, and two chroma compo-
nents, (CB and CR), representing color. This step is sometimes skipped.

- The resolution of the chroma data is reduced, usually by a factor of 2. This reflects the 
fact that the eye is less sensitive to fine color details than to fine brightness details.
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- The image is split into blocks of 8×8 pixels, and for each block, each of the Y, CB, and 
CR data undergoes a discrete cosine transform (DCT). A DCT is similar to a Fourier 
transform in the sense that it produces a kind of spatial frequency spectrum.

- The amplitudes of the frequency components are quantized. Human vision is much 
more sensitive to small variations in color or brightness over large areas than to the 
strength of high-frequency brightness variations. Therefore, the magnitudes of the high-
frequency components are stored with a lower accuracy than the low-frequency compo-
nents. The quality setting of the encoder (for example 50 or 95 on a scale of 0–100 in 
the Independent JPEG Group's library[15]) affects to what extent the resolution of each 
frequency component is reduced. If an excessively low quality setting is used, the high-
frequency components are discarded altogether.

- The resulting data for all 8×8 blocks is further compressed with a lossless algorithm, a 
variant of Huffman encoding.

JPEG decoding performs the above steps in reverse order, though step 4, the quantiza-
tion step, produces loss of information when reversed.  

The most computationally intense step of the decoding process is the inverse discrete 
cosine transform.  Whereas the other steps take a modest amount of computing per 
pixel, the DCT requires a 64 element (8x8 pixel) convolution of floating point numbers 
for every pixel.  However, the convolution is local and the weights of each component of 
the convolution are the same everywhere in the image, so if the image is loaded into the 
processing elements of the 2D hardware array, each weight can be sequentially broad-
cast to all processing elements simultaneously, and the convolutions can be performed 
across the whole image in parallel.

JPEG decoding, in general, requires high precision.  For instance, some methods of en-
coding video, using JPEG as a component, require that the encoder know precisely 
what the decoder will do.  However, for the application we are considering, where each 
frame is encoded independently and where we want to do tracking, which is a method 
that must be (and is) robust to noise in its inputs, such as, for instance, when performing 
foreground/background separation, we do not expect that high precision will be needed.  
Compressing and expanding sample images using JPEG shows that with reasonable 
compression ratios pixel values frequently vary from source to reconstruction by 5%.  
From other experience using the low precision approach, we believe errors due to low 
precision arithmetic should be below this level and should not substantially degrade the 
JPEG decompression results.

Besides the parallelism inherent in performing DCT at every pixel in an image, JPEG 
encodings are composed of a series of encoded data blocks, with each chunk of blocks 
terminated by a “restart marker.”  The encoder resets at each restart marker, which 
means the chunks can be decoded independently.  This means that a JPEG file can be 
split into a collection of entirely independent subfiles, each of which can be decoded in 
parallel.  There is much SIMD-style parallelism inherent in JPEG decompression.
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JPEG reasonably achieves compression ratios of 100x.  Loading an image into the 
SIMD machine in compressed form, decompressing it in place, then continuing the ana-
lytics pipeline (such as foreground/background separation) without needing to move the 
uncompressed image between CPU and accelerator, allows us to get an effective 100x 
improvement in bandwidth of the CPU/accelerator bus.  This bypasses one of the main 
places where Amdahlʼs law could limit acceleration - sending image data from disk to 
CPU to accelerator.

Our conclusion in analyzing JPEG decompression is that it is likely that the process can 
be performed on a low precision SIMD machine, yielding sufficiently good results to en-
able subsequent stages of the analytics pipeline to function, while making efficient use 
of the hardware and thus achieving great speedup and low energy consumption.

Feature based tracking

Feature-based tracking is another well known and powerful tracking method, but it has 
been too slow for Speechome to consider.  Subsequent to the work described here, in 
commercial work funded by an ONR SBIR award, Bates has been assisting a group of 
vision researchers study feature-based tracking using SIFT-like features.  Tracking algo-
rithms run using the emulated arithmetic work well in low precision.

Conclusion

Accelerating tracking using massively parallel, low arithmetic precision, SIMD architec-
tures continues to look very promising.  Foreground/background separation works sur-
prisingly well.  Getting around bus bandwidth bottlenecks by doing JPEG decompres-
sion on the accelerator appears likely to work well.  In subsequent independently per-
formed work, feature-based tracking has been shown to work well.

Ongoing analysis of the underlying hardware continues to show that there are no con-
ceptual difficulties requiring further research, and that the hardware is manufacturable at 
extremely low cost per arithmetic operation per second.  Tracking looks feasible at very 
low energies, such as required in small UAVs, at very low cost, such as required in 
mass market consumer products, and at the enormous speeds and low costs required 
to accelerate Speechome-like video analytics in a research environment.

Thus, we believe the answer to our original question, whether Dr. Bates's proposed 
"approximate computing" technology could radically improve the speed and energy 
consumption of the tracking task, is yes.
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One of the most compute intensive tasks in analyzing naturalistic video is tracking objects and people.  Tracking complete databases 
containing hundreds of thousands of hours of video has traditionally been extremely time consuming and/or expensive.  The 
massively parallel, low arithmetic precision, SIMD architecture proposed by Bates was studied to determine whether it could bring 
great efficiency benefits to tracking.  The slowest subtasks in the tracking pipeline were studied, and it appears that tracking is a task 
that maps well to the proposed hardware, with the potential for thousands of times speedup, lower energy use, and cost, compared to 
traditional CPU-based methods.
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