

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

PHOENIX: SERVICE ORIENTED ARCHITECTURE FOR
INFORMATION MANAGEMENT THE “FAWKES” CURSOR-ON-
TARGET ROUTER

SEPTEMBER 2011

INTERIM TECHNICAL REPORT

 ROME, NY 13441 UNITED STATES AIR FORCE AIR FORCE MATERIEL COMMAND

AFRL-RI-RS-TR-2011-219

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or
permission to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB Public
Affairs Office and is available to the general public, including foreign nationals. Copies may be
obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2011-219 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/
STEVEN D. FARR JULIE BRICHACEK, Chief
Branch Chief Information Systems Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

SEP 2011
2. REPORT TYPE

Interim Technical Report
3. DATES COVERED (From - To)

JAN 2009 – NOV 2010
4. TITLE AND SUBTITLE

PHOENIX: SERVICE ORIENTED ARCHITECTURE FOR
INFORMATION MANAGEMENT THE “FAWKES” CURSOR-
ON-TARGET ROUTER

5a. CONTRACT NUMBER
In House

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

V. Combs (AFRL), J. Hanna (AFRL), T. Krokowski (RRC), B. Lipa (ITT)

5d. PROJECT NUMBER
S2TS

5e. TASK NUMBER
IH

5f. WORK UNIT NUMBER
03

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

AFRL/RISE, 525 Brooks Road, Rome, NY 13441-4505
ITT, 775 Daedalian Drive, Rome NY 13440
RRC, Ridge Street, Rome NY 13440

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RISE
525 Electronic Parkway
Rome NY 13441

10. SPONSOR/MONITOR'S ACRONYM(S)
 AFRL/RI

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2011-219

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA# 88ABW-2011-0020

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Cursor-on-Target (CoT) is a strategy for enabling DoD systems to communicate much needed time sensitive position or “What,
When, Where” (WWW) information. CoT leverages the ubiquitous XML technology and defines a common, terse yet extensible
message format for communicating WWW information. A data strategy akin to object oriented decomposition is used to define and
manage extensions to the base WWW data. Using this approach CoT can easily and effectively represent BFT, TST, mayday
messages, CSAR reports, spot reports, ISR asset tasking, battlefield reservations, and many other tactical battlefield information
exchange needs.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

26

19a. NAME OF RESPONSIBLE PERSON
VAUGHN COMBS

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

i

Table	of	Contents	
Introduction .. 1

Cursor‐on‐Target ... 1

Design .. 5

Conventions .. 5

Diagram Conventions .. 5

Implementation Language .. 6

Code Conventions and Formatting ... 6

FindBugs : Bug Finding and Reporting Plug‐in .. 7

PMD ... 7

Component Package Implementations ... 7

Service Implementations .. 13

PostGIS Repository .. 15

Storing Information ... 15

Column Definitions ... 15

Querying Information ... 15

Sample CoT Query Message ... 16

Types of Geospatial Queries ... 16

Deleting Information ... 16

Known Limitations .. 16

Future Work .. 17

Requirements .. 17

Testing ... 18

Unit Testing ... 18

Integration Testing .. 19

Reference .. 19

Documents .. 19

Terms and Acronyms .. 20

Releases .. 21

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
1

Introduction	

Cursor-on-Target
"Cursor-on-Target (CoT) is a strategy for enabling DoD systems to communicate much needed
time sensitive position or "What, When, Where" (WWW) information. CoT leverages the
ubiquitous XML technology and defines a common, terse yet extensible message format for
communicating WWW information. A data strategy akin to object oriented decomposition is used
to define and manage extensions to the base WWW data. Using this approach CoT can easily and
effectively represent BFT, TST, mayday messages, CSAR reports, spot reports, ISR asset tasking,
battlefield reservations, and many other tactical battlefield information exchange needs." [4]

CoT messages must adhere to the document standard set forth by the master schema
distributed and maintained by MITRE. This section will provide a brief overview of the required
fields for a valid CoT message. Where practical, field descriptions were copied "as is" from the
CoT schemas in an effort to retain data integrity.

The 'event' node is the parent node of a CoT message and its fields define the "What" and
"When" parts of the message. CoT messages are commonly referred to as "events" due to this
naming scheme. The required fields of the 'event' node include:

• uid - The "uid" attribute is a globally unique name for this specific piece of information.
Several "events" may be associated with one UID, but in that case, the latest (ordered by
timestamp), overwrites all previous events for that UID.

• type - The "type" attribute is a composite of components delimited by the semi-colon
character. The first of which are described here:

o a -Atoms - identifies the fact that this event describes an actual "thing". The
"Atoms" portion of the type tree contains CoT defined fields and part of the MIL-
STD-2525 type definition. To distinguish MIL-STD-2525 type strings from CoT
defined fields, the MIL-STD-2525 types must be represented in all upper case.
When using the "Atoms" designation, the next character in the set defines the
affiliation of the "thing" as follows:

 p - Pending

 u - Unknown

 a - Assumed friend

 f - Friend

 n - Neutral

 s - Suspect

 h - Hostile

 j - Joker

 k - Faker

 o - None specified

 x - Other

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
2

o b - Bits - Events in the "Bit" group carry meta information about raw data
sources. For example, range-doppler radar returns or SAR imagery represent
classes of information that are "bits".

o t - Tasking - (requests/orders) Events in this category are generalized requests
for service. These may be used to request for data collection, request
mensuration of a specific object, order an asset to take action against a specific
point.

• time - The CoT XML schema includes three time values: time, start, and stale. "time" is a
time stamp placed on the event when generated. The format of time, start, and stale are
in standard date format (ISO 8601): CCYY-MM-DDThh:mm:ss.ssZ (e.g., 2002-10-
05T17:01:14.00Z), where the presence of fractional seconds (including the delimiter) is
optional.

• start - The "start" attribute defines the starting time of the event's validity interval. The
start and stale fields together define an interval in time. It has the same format as time
and stale.

• stale - The "stale" attribute defines the ending time of the event's validity interval. The
start and stale fields together define an interval in time. It has the same format as time
and start.</

• how - The "how" attribute gives a hint about how the coordinates were generated. It is
used specifically to relay a hint about the types of errors that may be expected in the
data and to weight the data in systems that fuse multiple inputs.

The fields of the 'point' node describe the "Where" part of the CoT message. Its required fields
include:

• lat - Latitude based on WGS-84 ellipsoid in signed degree-decimal format (e.g. -
33.350000). Range -90 -> +90.

• lon - Longitude based on WGS-84 ellipsoid in signed degree-decimal format (e.g.
44.383333). Range -180 -> +180.

• ce - Circular Error around point defined by lat and lon fields in meters. Although named
ce, this field is intended to define a circular area around the event point, not necessarily
an error (e.g. Describing a reservation area is not an "error"). If it is appropriate for the
"ce" field to represent an error value (e.g. event describes laser designated target), the
value will represent the one sigma point for a zero mean normal (Guassian) distribution.
To ignore this field, enter seven nines, 9999999.

• le - Linear Error in meters associated with the HAE field. Although named le, this field is
intended to define a height range about the event point, not necessarily an error. This
field, along with the ce field allow for the definition of a cylindrical volume about the
point. If it is appropriate for the "le" field to represent an error (e.g. event describes laser
designated target), the value will represent the one sigma point for a zero mean normal
(Guassian) distribution. To ignore this field, enter seven nines, 9999999.

• hae - HAE acronym for Height above Ellipsoid based on WGS-84 ellipsoid (measured in
meters). To ignore this field, enter seven nines, 9999999.

The 'detail' node contains any additional information describing the WWW information described
by the CoT message. It may contain any valid XML, but there are several additional child
schemas defined for common message extensions. Again, the descriptions of these schemas
were copied "as is" from the MITRE schemas to insure data integrity. The provided set of CoT
sub-schemas includes:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
3

• _flow-tags_ - This is a Cursor On Target detail sub-schema that holds "fingerprints" of
the system that have processed a particular CoT event. This information aids in the
routine of CoT messages along a particular processing chain. Each system that touches a
particular CoT event is expected to add its own attribute to this entity. The attribute
name should reflect the particular system name, and the value should be the time stamp
when the information was sent out from that system. Some illustrative _flow-tags_
attributes are adocs, fbcb2, and tadilj, but the attribute list is not a closed set.

• contact - This is a Cursor On Target sub-schema representing communications
parameters for contacting a friendly element for human-to-human communications. The
objective of this schema is to carry the essential information needed to contact this entity
by a variety of means. None of the modes of contact (e.g., e-mail, phone, etc) is
required.

• engage - This is a Cursor On Target sub-schema for representing weapon/target paring
and mission engagement. The objective is to carry the essential information needed to
task an asset for strike/csar/recce/etc. The scheme is intentionally not platform specific
(e.g., we want to be able to strike a target with air, ground, or naval assets.) "Engage" is
a slight misnomre when this sub-schema is applied to ISR or CSAR missions, but the
information remains essentially the same.)

• image - This is a Cursor On Target sub-schema for abstract image product metadata. It is
specifically limited to geographically located (though not necessarily geographically
registered) image products. It is not intended to contain all the meta data typically found
in the NITF header associated with such images, but rather provides sufficient "hints"
about the ISR product to facilitate collection queuing and ipl searching. Full meta data will
reside in the NITF header or other IPL-specific schemas. This sub schema borrows from
the NITF standard. Note, also, that this subschema presumes is is contained within a CoT
base element which provides information about center point, etc. Similarly, the
CoT_shape schema can be used to delimit the bounds of the image. Furthermore, this
element may contain a base64 encoded image file. In this case, the 'mime' attribute
should indicate the image type.

• link - This is a Cursor On Target sub-schema for linking to either another CoT event or an
arbitrary Internet resource. The objective of this schema is to provide an abstract way to
express a relationship between a CoT object and other object. This allows, for example, a
sensor point of interest to be linked back to its source, or a PPLI from a wingman to be
associated with his flight lead. Linkages are always unidirectional. One entity may have
multiple links (i.e., it may be related to multiples other entities). For processing
simplicity, it is required that the relationship graphs will directed and acyclic (no cycles).
The link, itself, names the relationship (using a hierarchy similar to the CoT type), the
UID of the related object (whether CoT or not), possibly provides a URL for retrieving that
object.

• mensuration - This is a Cursor On Target sub-schema for a mensuration meta-data. This
schema encapsulated information of interest of mensuration systems which is not
covered in the CoT base schema. This entity is both an "input" and "output" entity. That
is, it may be used to provide "hints" to a mensuration system, or it may be used by the
mensuration system to record significant information about the mensuration process.

• remarks - This is a Cursor On Target sub-schema for a generic remarks (aka "FreeText").
While the use of free text is strongly discouraged (it hampers machine-to-machine
communication) it is a pragmatic necessity. This entity attempts to encapsulate
"FreeText" in a way that simplifies subsequent machine processing. The content of this
entity is presumed to be a human-readable chunk of textual data. The attributes merely
aid in the machine handling of the data.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
4

• request - This is a Cursor On Target sub-schema for a generic request. This schema
contains information common to all requests, specifically where responses should be
sent, the overall priority of the request, if immediate wilco/cantco acknowledgment is
needed, etc. Detail information for specific request types are carried in sub-schemas
nested within this one.

• sensor - This is (the root class of) a Cursor On Target sub-schema for a steer-able,
staring sensor such as EO, IR, or Radar sensor. The root class is intended to capture only
information on the sensor's orientation and field of view is. Details about it's spectrum,
sensitivity, resolution, modality, performance, etc., should be captured in a "derived"
subschema for that particular type of sensor. All orientation attributes associated with
sensor are normalized to a geodesic frame of reference, removing platform factors such
as roll, pitch, yaw, etc. Therefore an "azimuth" of 0 means the sensor is pointed north
regardless of its platform heading or attitude.

• shape - This is a Cursor On Target sub-schema for a generic shape description. Many
objects are not adequately represented by the simple "point" object in the CoT base
schema. However, it is counterproductive to burden all CoT applications to understand
arbitrary shapes, so "shape" is an optional attribute that can be used to communicate
between shape-aware appreciations. The "point" object in the base schema must still be
populated and the CE and LE fields in the point entity must be set such that the point
completely encloses the area described in any shape entity in the detail section. (This is
needed so that CoT applications can quickly filter out objects that are clearly outside an
area of interest.

• spatial - This is a Cursor On Target sub-schema for spatial information of physical entity.
It is intended to appear in the detail section of the Cursor On Target schema. It has
elements to represent attitude and associated first derivatives (spin). The intention
behind the spatial element is to convey the attitude of a body moving through space with
respect to its "nominal" flight attitude.

• status - This is a Cursor On Target sub-schema designed to contain status information on
a friendly entity. It has no attributes of its own, but contains status sub-schemas such as
fuel, medical, or weapons status.

o fuel - This is a Cursor On Target sub-schema for representing a platform's fuel
status. The objective of this schema is to carry the essential information about a
platform's fuel to enable functions such as weapon target pairing, etc. Two types
of fuel are represented, burn-able (which the platform can consume) and off-load
(which the platform can deliver to another asset.) If multiple types of fuel are
carried, the fuel entity may be repeated.

o medical - This is a Cursor On Target sub-schema containing information on the
medical status of a friendly object.

o weapons - This is a Cursor On Target sub-schema for representing weapon status
information The objective of this schema is to carry the essential information
about a weapon to enable functions such as weapon target pairing to be
accomplished.

• track - This is a Cursor On Target detail sub-schema for track information. The root
element and associated attributes of this schema are intended to appear in the detail
element of the Cursor On Target schema.

• uid - This is a Cursor On Target detail sub-schema that holds the unique ID assigned by
each system that processed this event. Most systems (including CoT) have their own
method for assigning system-wide unique identifiers for a particular object. In general, it
is not possible for a single UID to be used for all systems. This 'uid' entity provides a

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
5

common place where each systems can record its particular UID for each CoT event. Like
the _flow-tags_ element, each system is responsible for adding its own attribute to this
entity. The name of the attribute should represent the system, and the value of the
attribute should be the id that system assigned to this CoT object.

Design
This document outlines the specifics of the Fawkes CoT Router Services including technologies
utilized and key design decisions. The Router Services consist of three segments: the component
packages, the service packages and the Graphical User Interface (GUI) for managing information
flowing through the service. The component and service packages map functionally and
semantically to their respective Phoenix Architecture packages of the same name and extend
many of the basic constructs offered by their respective Phoenix Base Implementation packages
of the same name.

Conventions
This document provides both a literal and conceptual design of the Phoenix architecture. The
literal architecture is a technical specification defined using UML. The conceptual architecture is
a less formal description using plain language and diagrams to provide design concepts and
objectives.

Diagram Conventions

Throughout this document there are a number of non-UML diagrams that are used to illustrate
high-level concepts. Samples of these diagrams are shown below along with usage information.

The figure below shows a sample communication between Phoenix entities via channels.

Entity Meaning Color

Producer Produces information.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
6

Service Manipulates information.

Consumer Consumes information.

Actor A generic term that can mean producer, consumer, or service.

Inquisitor A type of consumer that queries a service to get information.

The figure below is a sample diagram showing labeled information flow.

Implementation Language

Java was selected as the development language of choice for this project due to several factors:

• Ease of Use and Understanding

• Existing Built-in Features including support for RMI, XML, and Concurrency

• Availability of numerous 3rd party libraries such as Log4J, XPP, among many others

• Development Team Experience

At design time the decision was made to go with the latest version of the Java Software
Development Kit (SDK) available, which was Java Developer's Kit (JDK) 6. JDK 7 could not be
considered because it is in an early development phase, which introduces too much risk and
would inhibit engineering productivity.

Code Conventions and Formatting

Code formatting is a huge issue in a distributed development environment. Formatting has been
standardized for the project by applying a standard format configuration file that is enforced
through the activation of the Checkstyle plug-in for Eclipse and Maven. The current Eclipse plug-
in version is 4.4.2 and the current Maven plug-in version is 2.2. More information about the
Checkstyle Eclipse and Maven plug-ins can be found at the Checkstyle web-site:
http://checkstyle.sourceforge.net

The current code format is an extension of Sun's suggested standard code conventions for Java
applications. Some high level settings of note are a max line length of 120 characters, a max

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
7

method size of 150 lines of code, and the application of variable declaration templates consistent
with Sun's standards.

FindBugs : Bug Finding and Reporting Plug-in

Discovering bugs in a project is a job assigned to the FindBugs plug-in for Eclipse and Maven.
Bugs are reported within Eclipse by the FindBugs views provided by the plug-in while the bugs
reported by the Maven plug-in are available for view only through the Maven project module's
individual web-sites. The Eclipse FindBugs plug-in can be configured to run during every
compilation done by Eclipse while the Maven FindBugs plug-in is only run when Maven builds the
module's corresponding web-site. The current versions of the FindBugs plug-in for Eclipse and
Maven are 1.3.7 and 1.2, respectively. More information about the FindBugs Eclipse and Maven
plug-ins can be found at the FindBugs web-site: http://findbugs.sourceforge.net

PMD

The Maven builder for the project also incorporates the PMD plug-in. This plug-in, run only when
Maven builds the corresponding web-site for a project module, checks for possible bugs, dead
and suboptimal code, overly complicated conditional expressions, and duplicate code. PMD
reports are available via a link on each module's web-site. The current version of PMD Maven
plug-in used for this project is 2.4. More information about the PMD plug-in and its capabilities
can be found at its web-site: http://pmd.sourceforge.net

Component Package Implementations
An listing of the CoT Router Services component package implementations and their specifics:

• Channel

• Filter

• Expression

Channel

The channel component package for the CoT Router Services implements a bridging mechanism
that allow native Phoenix services to receive and transmit standard Cursor-on-Target (CoT)
messages using the protocols and transport mechanisms of standard CoT clients. There are three
custom channel implementations that support the UDP, TCP, and streaming TCP transport
mechanisms most commonly utilized by native CoT clients.

Receiving CoT

The CoT specific channel implementations receive messages via UDP and TCP sockets and
convert them to Phoenix information instances. The entire CoT message becomes the metadata
for the information instance, the payload is left as null, and the information type name is set to a
value read from a configuration file. Default information type name for the CoT Router Service is:
"mil.af.rl.cot"

Transmitting CoT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
8

The CoT specific channel implementation transmit messages via UDP and TCP sockets by taking
an instance of Phoenix information, stripping out the metadata, and transmitting it. Since the
metadata of a Phoenix information instance is set to the complete CoT message (within the CoT
Router Services environment), this is all that needs to be done.

Table of Valid CoT-specific Application and Transport Level Protocol Pairs

Application
Level Protocol

Transport
Level
Protocol

Description

tcpcot tcp This pairing defines the "streaming" TCP CoT mechanism where
a TCP socket is opened and CoT messages are
transmitted/received without closing the socket after each
write/read.

cot tcp This pairing defines the native TCP CoT mechanism where a
TCP socket is opened, a single CoT message is
transmitted/received, and then the socket is closed.

cot udp This pairing defines the native UDP CoT mechanism.

Filter

The filter component package for the CoT Router Services contains the filters implemented for
CoT operations. Filters are used to support all of the CoT Router 'edit' operations. These
operations edit the CoT messages when they match subscriptions and before they are sent to
any of the corresponding consumers. There are also filters defined for decimation and metadata
and payload stripping operations.

Implemented Filters

• Decimation Filter - This filter will decimate, or provide a skipping function, over the
information that is sent through it. For example, when applied to a subscription and with
a decimation value set at 2 this filter would only allow every other message to get to the
consumers of the subscription. If the value was set to 1 all messages would get to the
consumers. And to hammer the point home, if the value was set to 5 every fifth message
would be sent to the consumers.

• Metadata Stripping Filter - This filter will remove the metadata from the information
that is provided to it, but leave the payload and information context alone. Since we
currently put the entire CoT message in the metadata and set the payload to null this
filter does not have much use as of yet.

• Monitoring Filter - This filter allows all CoT messages sent through it to continue
untouched, however it will send a copy of each message to a defined CoT output channel
that is being used for monitoring purposes.

• Payload Stripping Filter - This filter will remove the payload from the information that
is provided to it, but leave the metadata and information context alone. Since we

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
9

currently put the entire CoT message in the metadata and set the payload to null this
filter does not have much use as of yet.

• Router Operations Filter - This filter will perform many operations. It always time
stamps and UID stamps each CoT message sent through it. In addition to this and based
on the CoT edit operations defined for the subscription, this filter may perform several
other operations upon the CoT message as well. The edit operations supported by this
filter are explained in full below.

CoT Router Edit Operations

delete() – Remove a node from the CoT message.

EXAMPLE:
<edit event.detail._flow-tags_="delete()">

This example, when applied to a subscription, will remove the /event/detail/_flow-tags_ node
from every message that matches the subscription’s expression and send the modified message
to the subscription’s recipients.

set() – Set the value of a node to the given value.

EXAMPLE:
<edit point.hae="set(444)">

This example, when applied to a subscription, will set the /event/point/@hae value to be 444 for
every message that matches the subscription’s expression and send the modified message to the
subscription’s recipients.

timestamp() – Timestamp the specified node with a date time stamp of the current Zulu time.
If the node exists, replace the current value, if not add the node as a new element and set the
value to the time stamp.

EXAMPLE:
<edit uid="timestamp()">

rate() – Control the rate of data flow by specifying a rated transmission interval for the
subscription’s transmitters. Setting this function requires a field be specified in the router GUI,
even though the field is irrelevant to the function. This function operates as described below:

etc.
rate(.25) = Send a message every 4 seconds
rate(.5) = Send a message every 2 seconds
rate(1) = Send a message every 1 second
rate(2) = Send two messages every 1 second
etc.

EXAMPLE:
<edit uid="rate(.25)">

dump() – Dump the contents of the message matching the subscription to the router log.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
10

EXAMPLE:
<edit uid="dump()">

watch() – Watch the specified subscription and report the UID of each matching event as they
are matched against the subscriptions.

EXAMPLE:
<edit uid="watch()">

Expression

The expression component package for the CoT Router Services defines contexts and expression
processors that are specific to CoT information brokering operations.

CoT Router Expression Processors

Cursor-on-Target defines its own expression lanaguage with its own functions and node paths. A
complete listing of the CoT Router functions used for expression processing is included below:

Most of the functions listed above are translated directly to XPath. However some were either
unable to be tnaslated or deemed to be inappropriate to translate to XPath so a set of custom
CoT expression processors were developed to handle these exceptions to the rule. These custom
processors are as follow:

• In File - A processor that checks if the value at the given path is listed in the identified
file. The file is assumed to be a Comma Separated Values (CSV) file. No other type of file
is supported per CoT definition of this function.

• Size - A processor that checks the size of the CoT message being processed to see if it
matches the defined parameters (I.E. is it larger than X).

Category Tests Description Supporting Implementation Class

Test of tag
existence

exists True if field exists in event -
'exists()'

XpathExpressionProcessor

missing True if field does not exist in
event - 'missing()'

XpathExpressionProcessor

Test if node
has certain
children

child True if entity has any children XpathExpressionProcessor

hasany True if entity has any of these
children 'detail._flow-
tags_=hasany(ncct,adocs,tadilj)'

XpathExpressionProcessor

hasnone True if entity has none of these
children 'detail._flow-
tags_=hasnone(ncct,adocs,tadilj)

XpathExpressionProcessor

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
11

'

hasall True if entity has all of these
children 'detail._flow-
tags_=hasall(ncct,adocs,tadilj)'

XpathExpressionProcessor

Event
expression
tests

is True if event matches any
expression - 'is(neutral,friend)'

XpathExpressionProcessor

isall True if event matches all
expressions -
'isall(neutral,friend)'

XpathExpressionProcessor

isany True if event matches any
expression -
'isany(neutral,friend)'

XpathExpressionProcessor

isnot True if event does not match any
expression -
'isnot(neutral,friend)'

XpathExpressionProcessor

Matching
against a
field

match True if field does match regular
expression - 'match(a-h.*)'

XpathExpressionProcessor

nomatc
h

True if field does not match
regular expression - 'nomatch(a-
h.*)'

XpathExpressionProcessor

Member
tests

member True if field exists in given list of
parameters – member(m-g,m-
p,m)

XpathExpressionProcessor

Numerical
expression
tests

n_eq True if field is numerically equal
to value - 'n_eq(10)'

XpathExpressionProcessor

n_gt True if field is greater than
argument - 'n_gt(27.1)'

XpathExpressionProcessor

n_in True if field is in numeric range -
'n_in(100,200)'

XpathExpressionProcessor

n_lt True if field is less than argument
- 'n_lt(27.1)'

XpathExpressionProcessor

n_out True if field is out of numeric
range - 'n_out(100,200)'

XpathExpressionProcessor

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
12

n_range True if field is in numeric range -
'n_range(100,200)'

XpathExpressionProcessor

String
expression
tests

s_eq True if field is lexicographically
equal to argument - 's_eq(dino)'

XpathExpressionProcessor

s_gt True if field is lexicographically
greater than argument -
's_gt(dino)'

XpathExpressionProcessor

s_in True if field is in lexicographic
(string) range, inclusive -
's_in(betty,wilma)'

XpathExpressionProcessor

s_lt True if field is lexicographically
less than argument - 's_lt(dino)'

XpathExpressionProcessor

s_out True if field is not in lexicographic
(string) range, inclusive -
's_out(betty,wilma)'

XpathExpressionProcessor

s_range True if field is in lexicographic
(string) range, inclusive -
's_range(betty,wilma)'

XpathExpressionProcessor

Value in file
tests

infile True if field is listed in specified
file - 'infile(list.txt)'

InFileExpressionProcessor

notinfile True if field is not listed in
specified file - 'notinfile(list.txt)'

InFileExpressionProcessor

Test size of
XML

larger True if event’s XML
representation is larger than this
many bytes – larger(1024)

SizeExpressionProcessor

smaller True if event’s XML
representation is smaller than
this many bytes – smaller(1024)

SizeExpressionProcessor

Other
subscription
s

indirect True if field matches listed
subscriptions’ tests –
indirect(sub1,sub2)

CotInformationBrokeringServiceWorke
r

Non-
expression
tests

links Search cache for linked events to
send to subscription consumers –
links()

CotInformationBrokeringServiceWorke
r

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
13

unblock Not Implemented

Service Implementations
The Cursor-on-Target (CoT) Router Services (CRS) are comprised of several tiers of Phoenix
Base Implementation services that, in some cases, are configured with CoT-specific logic
modules that provide functionality not included as part of the Base Implementation. Specifically,
the Dissemination, Event Notification, Information Type Management, and Query Services are all
standard Base Implementation services while the Information Brokering, Repository, and
Submission Services have been configured to use logic modules specific to CoT operations.

The CRS are hosted by the Phoenix Java Service Container (JSC), which provides a simple
service execution and management container hosted by a Java Virtual Machine (JVM). This
container hosts and maintains the services and their associated connectors.

1 - CRS Services

"The Tier 1 Operational Services directly interact with the edge actors via information and event
channels. Control operations upon these services by edge actors are possible, depending upon
the security policies being enforced by the implementation. Tier 2 services either do not directly
process information or they do not directly communicate with edge actors to either receive or
deliver information. Tier 3 services provide basic information management functionalities, but
provide interfaces that are not exposed to edge actors. These services are available only through
other service proxies and are not intended to provide direct channel support to the edge actors."
[5]

Dissemination Service

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
14

The CoT Router Services include a Phoenix Base Implementation Dissemination Service (DS).
This service is configured to enable event firing in general and output channel status update
events in particular. These events are used by the CoT Router GUI to track the status of the
output channels to CoT consumers.

Event Notification Service

The Fawkes CoT Router Services include an instance of the Phoenix Base Implementation of the
Event Notification Service (ENS). This service supports the CoT Router GUI by delivering status
update events for input channels, output channels, and subscriptions.

Filter Management Service

The Filter Management Service (FMS) for the CoT Router Services is the storehouse of filter
definitions for the CoT Router. The FMS is used to store and manage the CoT specific filters that
have been developed for the CoT Router Services.

Information Brokering Service

The Information Brokering Service (IBS) for the CoT Router Services is an instance of the
Phoenix Base Implementation IBS, configured with a set of CoT specific expression processors in
addition to the Base Implementation XPath and Expressionless Processors. There are no other
differences between the Base Implementation and CoT Router versions of the IBS. The CoT
expression processors are described here.

Information Type Management Service

The Information Type Management Service (ITMS) for the CoT Router Services is an instance of
the Phoenix Base Implementation of the ITMS. It is used to store the information type definition
for the CoT type and to configure the Repository Service at start-up time to store the CoT
information type.

The standard information type name chosen for CoT messages is: mil.af.rl.cot

The XML Schema Document (XSD) that defines a CoT message's format and syntax is stored by
this service for potential validation operations and reference. This schema contains a set of high
level attributes and the definition for both the root level node of a CoT message and the child
node that defines the spatial aspects of the message. For more details about the contents of a
CoT message as defined by the XSD, see the Introduction.

Query Service

The Query Service (QS) for the CoT Router Services is an instance of the Phoenix Base
Implementation QS. It is used by the Submission Service (SS) when a CoT query message is
submitted. The QS receives the execute query control invocation and farms it out the underlying
Repository Service (RS). It is possible to configure more than one RS for a CoT Services
deployment, though most currently utilize on a single RS. All CoT queries are assumed to be
asynchronous in execution. This was done to allow the user who issued the query to do other
things while awaiting their result set.

Repository Service

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
15

The Repository Service (RS) for the CoT Router Services is an instance of the Phoenix Base
Implementation RS that is configured with a CoT specific implementation of a PostGIS
Repository.

PostGIS Repository
PostGIS provides a set of custom data types and stored procedures that help users efficiently
manage geospatial data. Without PostGIS, users would be required to formulate complex queries
that would be subject to user error and largely inefficient when compared to the feature set
provided by a spatial extension. In order for PostGIS to function, a valid install of the PostgreSQL
RDBMS must exist on the target system. The repository service interfaces with PostgreSQL and
PostGIS through a standard Java Database Connector (JDBC) API.

Storing Information
The underlying PostgreSQL RDBMS ensures that each database transaction is atomic in nature.
As a result of the atomicity it is implied that multiple clients can store and query information
simultaneously without having to provision for concurrent operations. Information stored using
the PostGIS repository assumes the following table layout / column definitions outlined below:

Column Definitions

The scripts needed to create the database table needed by PostGIS repository service are
included as a series of resources with the repository service (in the directory
repository/src/main/resources).

• id - A unique identifier. Populated automatically by the PostgreSQL RDBMS

• uid - The UID for a CoT message

• cot_type - The type of CoT message (e.g., t-x-i)

• start - A timestamp containing the start time for a CoT message

• time - A timestamp containing the defined time (e.g., the time the message was created)
for a CoT message

• stale - A timestamp containing the stale time for a CoT message

• serialized_obj - The serialized Java object representing the full CoT message

• event_pt - The geographical point defined in the CoT message

To enhance query performance, indices have been created on the uid, cot_type, time, and
event_pt columns. The event_pt column and its associated index rely on a standard WGS-84
ellipsoid and require all queries / geospatial functions to rely on the same ellipsoid.

Querying Information
Clients of the PostGIS Repository Service must use the InformationQueryContextInterface to
construct a query object. The predicate supplied to the InformationQueryContextInterface must
be a valid Cursor-on-Target (CoT) message.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
16

Sample CoT Query Message

 <detail>
 <request notify="127.0.0.1:9999:udp">
 <tests>
 <test uid="COT-UID-1" start="range(DTTM-1, DTTM-2)" />
 <test uid="COT-UID-2" />
 </tests>
 </request>
 <shape>
 <polyline>
 <vertex lat="10.1" lon="20.2" />
 <vertex lat="10.2" lon="20.3" />
 <vertex lat="10.3" lon="20.4" />
 <vertex lat="10.4" lon="20.5" />
 </polyline>
 </shape>
 </detail>
The above sample represents a portion of a CoT message that will query the PostGIS repository
service for information within a rectangular area of interest. In addition to storing and querying
geospatial information, the PostGIS repository service can query traditional CoT attributes (see
table schema above) such as UID, start time, and type. The <tests> element can contain one or
more <test> elements that define an attribute driven test. In the sample above, the two test
elements define a query that targets information with that has uid of COT-UID-1 and a start date
range or information that has a uid of COT-UID-2.

Types of Geospatial Queries

Clients can perform spatial queries that are based off of lines, rectangles, and circles. The
following section outlines the XML the client must provide inside the <shape> element for each
type of geospatial query previously mentioned:

• Rectangle - A set of 4 <vertex> elements that define 4 points representing a rectangular
area of interest. The <polyline> element must contain the "closed" attribute and its
value must be "true".

• Line - A series of 2 or more <vertex> elements inside of a <polyline> element.

• Circle - Replace the <polyline> element with the <circle> element.

Deleting Information
Aside from deleting information based on type alone (via the
destroyCollectionForInformationType()), clients can delete information from PostGIS by
providing an instance of the InformationQueryContextInterface with a SQL expression
representing the data to be removed (e.g., DELETE * FROM cot_router WHERE
UID='AIMS.1').

Known Limitations

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
17

The database table mentioned above would need to be modified if additional CoT attributes
needed to be exposed or hidden. Since PostGIS relies on a RDBMS, all of the data must be
homogenous.

Future Work
Support for the ability to query polygons would be trivial to implement and may provide
significant value to the existing repository service. Since PostGIS conforms to the Open GIS
Consortium standards for representing "simple features" in a database, an interface to the
repository service could be created so that analysis / visualization tools could be plugged directly
into the repository service instead of having to setup a client that uses CoT as a message
protocol.

Submission Service

The Submission Service (SS) for the CoT Router Services is an instance of the Phoenix Base
Implementation SS configured with a CoT Router specific Submission Timer Based Buffer. As
everyone knows, the 'doSpend' method of the Timer Based Buffer is currently where the service-
specific logic resides for each service.

CoT Submission Timer Based Buffer

The CoT specific buffer for information submission must inspect each submitted information
instance to determine whether it is a control traffic message or an information message. Control
traffic messages are multiplexed out of the information message stream by type matching. The
CoT messages all contain the requried attribute field named 'type' which has a large set of valid
entries. Each individual control traffic message has a specific type assigned to it. Supported
control traffic messages and their CoT types are:

Message Description CoT Type(s)

Create Subscription 't-b' or 't-b-a'

Destroy Subscription 't-b-c'

Execute Query 't-x-i'

Cancel Query Execution 't-u-z'

Update Query Result Set Transmission Rate 't-x-q-t'

Requirements	
The Fawkes CoT Router Services shall have the following requirements:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
18

1. Support all Cursor-on-Target Router operations for message brokering and editing.

2. Support all Cursor-on-Target Router administrative operations for monitoring and control
purposes.

3. Support the storage and retrieval of Cursor-on-Target messages.

4. Provide mechanisms for service survival in the event of a sudden catastrophic computing
event.

5. Provide mechanisms for information survival in the event of a sudden catastrophic
computing event.

6. Provide mechanisms for information survival in the event of a sudden catastrophic
environmental event.

Testing	

The Fawkes Cursor-on-Target Router Services shall be thoroughly unit, integration, and
performance tested using a variety of commercially available and home-grown testing products
and methodologies.

Unit Testing
Unit testing of all developed project components and services will be accomplished through the
use of the JUnit testing framework. JUnit was chosen because it is becoming the de facto
standard within the Java development world for unit testing and it has well-supported plug-ins
for both the Eclipse IDE and the Maven build environment. The current version of JUnit used for
unit level testing is 4.4.

Unit test coverage reports will be generated by the Cobertura test analysis tool. This tool plugs
into the Maven build environment and will be configured to run whenever the web-site is built for
a Maven project module. Cobertura offers insight as to what executable lines of code have been
tested, how many times they have been executed, and which conditions of a conditional branch
have been satisfied by the tests being run. The reports generated divide executable code
coverage numbers and conditional branch coverage numbers. The current version of Cobertura
Maven plug-in being used is 2.2.

A sample Cobertura report is shown below.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
19

Integration Testing
Integration testing of the CoT Router Services will be done using JUnit tests within their own
Maven module within the Router Services project. There will be two tests that are identical in
functionality but different in set up. One test will set up all services within the test JVM based on
hard-coded configurations and pairings. The other test will set up all services by reading and
applying a Spring configuration file processed by the Base Implementation Java Services
Container (JSC).

Functionally both tests will set up the required services, register a subscription for CoT
information, submit a CoT message to the Submission Service and wait for it to be delivered to a
test consumer (also set up by the tests). This will validate the functionality and integrity of the
CoT Router Services when deployed as a full suite. Both tests will also setup a Repository
Service, but no query will be tested here since the control traffic for CoT queries is both complex
and due to change in the (hopefully) near future.

Further testing of functionality can be accomplished by running the JUnit test labeled as "For
External Clients" and found within the unit tests for the CoT Router Services GUI. Testing the
Router Services via this avenue requires the latest installation of the CoT AIMS FalconView plug-
in (which obviously necessitates the installation of FalconView).

Reference

Documents

1. Lipa, B. "Berkeley Overview". AFRL In‐House Research (Non‐Published), May, 2009.
2. Sun MicroSystems, Inc. "Java Code Conventions".

http://java.sun.com/docs/codeconv/CodeConventions.pdf, 12 September 1997.
3. Oracle. "2.5 Release Overview". http://www.oracle.com/technology/documentation/berkeley‐

db/xml/ref_xml/changelog/2.5.html, September, 2009.
4. MITRE. "CoT Wiki". http://cot.mitre.org/bin/view/CoT, 2010.
5. Combs, V. Hanna, J. Lipa, B. Pape, S. Reilly, J. "Phoenix Base Implementation Technical Report".

AFRL In‐House Research (Non‐Published), January, 2010.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
20

Terms and Acronyms

The table below gives a brief description of important terms and acronyms used in this
document. For definition of Phoenix Architecture terms and acronyms refer to its specification
.

Term/Acronym Meaning

AFRL Air Force Research Laboratory.

API Application Programming Interface.

CoT Cursor‐on‐Target.

DLL Dynamic Link Library.

DoD Department of Defense.

DS Dissemination Service.

ENS Event Notification Service.

FMS Filter Management Service.

GUI Graphical User Interface.

HTTP Hypertext Transfer Protocol.

IBS Information Brokering Service.

IM Information Management.

ITMS Information Type Management Service.

JAR Java Archive.

JSC Java Service Container.

JVM Java Virtual Machine.

NXD Native XML Database.

PMD No official definition, several unofficial including Programming Mistake Detector.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
21

QS Query Service.

RMI Remote Method Invocation.

RS Repository Service.

SOA Service Oriented Architecture.

SS Submission Service.

TCP Transport Control Protocol.

UDP User Datagram Protocol.

UI User Interface.

WWW What, When, Where.

XML Extensible Markup Language.

XPP XML Pull Parser.

XSD XML Schema Document.

XSLT Extensible Stylesheet Language Transformations.

Releases	

This section lists all releases made of the Fawkes Cursor-on-Target Router Services including
short descriptions of why each release was created.

Version Release Description
0.0.1 Internal release used to setup and configure the release process.

0.0.2 Internal release used to trouble shoot the release process.

0.0.3 First full release of the CoT Router Services for external use in the MARTI projects. This
release does not include the Router GUI or the "hardened" Berkeley Repository.

1.0.0 First release of the Router with the bundled GUI and the "hardened" Berkeley
Repository.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
22

1.0.1 Release of router made after operational testing. First release of the PostgreSQL and
PostGIS repository which replaced Berkeley.

1.0.2 Second release of PostgreSQL and PostGIS repository implementation. Now supports
Route Scout queries via a CoT XML sub-schema that AFRL defined.

1.0.3 Implemented the indirect() CoT Router function, the Image Chipper, an enhanced
PostGIS database (for Route Scout queries), and upgraded channels and other
mechanisms to match the 1.2.1 version of the Phoenix Base Implementation.

1.0.4 Released in synchrony with the Base Implementation version 1.2.2.

1.0.5 Released in synchrony with the Base Implementation version 1.2.3.

1.0.6 Version number skipped to synchronize release versions of XPP CoT and Router
projects.

1.0.7 Released in synchrony with the Base Implementation version 1.2.4.

