Writing Parallel Parameter Sweep Applications with pMatlab

Hahn Kim, Albert Reuther, Jeremy Kepner
{hgk, reuther, kepner} @ll.mit.edu
MIT Lincoln Laboratory, Lexington, MA 02144

Abstract

Parameter sweep applications execute the same piece of code multiple times with unique sets of
input parameters. This type of application is extremely amenable to paralelization. This
document describes how to paralelize parameter sweep applications with pMatlab by
introducing asimple serial parameter sweep application written in MATLAB , then parallelizing
the application using pMatlab.

1. Introduction

Parameter sweep applications are a class of application in which the same code is run multiple
times using unique sets of input parameter values. This includes varying one parameter over a
range of values or varying multiple parameters over a large multidimensional space. Examples
of parameter sweep applications are Monte Carlo simulations or parameter space searches.

In parameter sweep applications, each individual run is independent of all other runs. This
property is important for parallelizing parameter sweep applications because it means we can
formulate this type of problem in aleader-worker paradigm. The SETI@Home project is awell-
known leader-worker paralel application [1]. The SETI@Home servers at UC-Berkeley
distribute jobs to computers around the world. None of the jobs communicate with each other;
they only communicate their results back to the SETI@Home servers when they are done
computing the job. Because each job is independent, it does not matter if the 415th job
completes after the 420th job completes. It is only important that each job completes and its
results are recorded. This type of application, in which individual processors do not
communicate with each other during processing, is known as embarrassingly parallel.
Parameter sweep applications are also embarrassingly parallel.

The rest of this paper is structured as follows. Section 2 describes the basic concept behind
parallelizing parameter sweep applications. Section 3 introduces a basic serial parameter sweep
application written in MATLAB. Section 4 demonstrates how to parallelize the serial code using
pMatlab. Section 5 compares the results of the serial and parallel codes and Section 6 concludes
with a summary.

This document assumes that the reader has a basic understanding of pMatlab. Before continuing,
it is recommended that the reader first read [2], which provides an overview of paralel
programming and introduction to pMatlab.

This work is sponsored by the Department of the Air Force under Air Force contract FA8721-05-C-0002. Opinions,
interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the United States
Government. MATLAB isaregistered trademark of The Mathworks, Inc.

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
2011 2. REPORT TYPE 00-00-2011 to 00-00-2011
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Writing Parallel Parameter Sweep Applicationswith pMatlab 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
M assachusetts | nstitute of Technology,Lincoln REPORT NUMBER
Laboratory,Lexington,MA,02144

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONY M(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Parameter sweep applications execute the same piece of code multiple timeswith unique sets of input
parameters. Thistype of application isextremely amenable to parallelization. This document describes
how to parallelize parameter sweep applicationswith pMatlab by introducing a smple serial parameter
sweep application written in MATLAB , then parallelizing the application using pMatlab.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18.NUMBER | 19a. NAME OF
ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE Same as 10
unclassified unclassified unclassified Report (SAR)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2. Parallelization Process

A typical parameter sweep application consists of afor loop which repeatedly executes the same
code, usualy in a function. A unique set of arguments is supplied to the function in each
iteration. Since the loop iterator has a unique value for each iteration, it can be used to compute
the set of arguments. A more advanced parameter sweep application may nest multiple for loops
and use multiple iterators to compute the input arguments.

This is the model used to parallelize parameter sweep applications with pMatlab. Each iteration
is computed entirely on one processor; different loop iterations are processed on different
processors. The advantage of using pMatlab to parallelize parameter sweep applications is its
ability to abstract the mechanism for distributing data and computation across multiple
processors. When the user creates a distributed matrix, i.e. a dmat, in pMatlab, he need only
specify a map to describe how to distribute the dmat. After dmat is distributed, each processor
operates on only itslocal section of the dmat.

3. Serial Code

This section presents code for a serial MATLAB program that implements a basic parameter
sweep application. The seria parameter sweep application consists of two files:

e param sweep_serial . m—ThisMATLAB script repeatedly calls sanpl e_f uncti on
within afor loop, supplying a unique set of input argumentsin each iteration.

* sanple_function. m—This MATLAB script contains the function the user wishes to
parameter sweep.

In this example, sanpl e_f uncti on is caled 16 times within afor loop. sanpl e_f uncti on
accepts three inputs arguments and returns three output values. The output values for each
iteration are stored in a 16x3 matrix, where each row stores the output of a unique iteration and
each column stores one of the three outputs for a given iteration.

3.1. param_sweep_serial.m
This section describes par am sweep_seri al . m SeeFigure 1.

Lines 4-5 set the number of iterations to perform, n, and number of output arguments of
sanpl e_functi on, m These values will be used to set the dimensions of the matrix that will
store the output of all loop iterations. n specifies the number of rows in the matrix and m
specifies the number of columns. Each row will store the outputs of a single iteration and each
column will store one output. In the example, sanpl e_f unct i on computes three outputs and
iscalled 16 times.

Line 8 creates the output matrix, z, with size mn. The matrix z will store the results of
sanpl e_functi on.

Lines 11-18 contain the for loop that calls sanpl e_function n times, supplying different

inputs for each iteration i i . Line 13 computes an argument value, ny_ot her _ar g, based on
ii. Line17 calssanpl e_function, passing it three input arguments. The first argument is

MATLAB isaregistered trademark of The Mathworks, Inc. 2

the loop iterator, i i . The second argument is set to 0. The third argument ismy_ot her _arg.
The reason for setting the second argument to O will become clear when the code is parallelized.
Theresultsof sanpl e_f uncti on arereturned and writtentorow i i in the output matrix z.

Line 21 indicates that the program completely successfully.

Line 24 displaystheresults of al n callsto sanpl e_f uncti on.

3.2. sample_function.m
This section describessanpl e_f uncti on. See Figure 2.

sanpl e_f uncti on simply returns the values of its three input arguments as output values. The
first argument is the current loop iteration. The second argument is the rank of the local
processor. The third argument is another argument whose value is computed based on the
current loop iteration.

% basi c paraneter sweep code (serial)

% Set data sizes.
m = 3; % nunber of output argunments
n = 16; % nunber of independent iterations

% Create z — data output nmatrix.
z = zeros(n, m;

CONoTRWNE

NRRRPRRRRPRRRRER
QUONOURWNRO

% Loop over the |ocal indices
for i1 = 1l:size(z, 1)
% Cal cul at e anot her argunent
my_other _arg = 2.5 * ii;

% Call a function with the index, and other argunents, and
% store the result in a row
z(ii, :) = sanple_function(ii, 0, my_other_arg);
end %for ii

% Finalize the program

21: disp(* SUCCESS);

22:

23 %Finally, display the resulting matrix on the | eader
24. disp(z);

Figure1l—Codefor param sweep_seri al . mbasic serial MATLAB codethat implements a parameter
sweep application

function [out] = sanple function(i_global, my_rank, ny_other_arg);
out = zeros(1,3);
out (1)

out (2)
out (3)

i _gl obal;
ny_rank;
ny_ot her _arg;

NogkwhE

Figure2—Codefor sanpl e_f uncti on. m samplefunction called by the parameter sweep application

MATLAB isaregistered trademark of The Mathworks, Inc. 3

4. Parallel Code

In this section, we will modify the serial code presented earlier so that it can run on multiple
processors using pMatlab. The parallelized parameter sweep application consists of three files:

* RUN. m—Thisisthe standard pMatlab script that launches the parameter sweep
application. See Figure 3. For an explanation of RUN. m refer to [1].

e param sweep_paral | el . m—Thisisamodified version of par am sweep_seri al ,
using pMatlab to distribute computation and gather the results of sanpl e_f uncti on
from all processors.

* sanpl e_functi on. m—Thisfunction is unchanged from the serial version.

Remember that pMatlab follows the single-program multiple-data (SPMD) model, in which the
same program runs on al processors but each processor contains different data. Figure 5
graphically depicts the SPMD program flow of par am sweep_par al | el and compares it with
the program flow of param sweep_seri al . Each individual loop iteration is depicted, with
each processor computing mutually exclusive sets of iterations simultaneoudly.

% RUN is a generic script for running pMatlab scripts.

% Def i ne nunber of processors to use
Ncpus = 4;

% Nane of the script you want to run
nFile = 'paramsweep_parallel’;

CoNoTRWNE

% Def i ne cpus

11: % Run on user’s |ocal machine
12: %cpus = {};

14: % Specify which machines to run on
15: cpus = {'node-1', 'node-2', 'node-3', 'node-4'};

17: % Run the script.
18: ['Running ' nFile ' on ' nunstr(Ncpus) ' cpus']
19: eval (pRUN(nFile, Ncpus, cpus));

Figure 3—Codefor RUN. m pMatlab script to launch par am sweep_paral | el . m

MATLAB isaregistered trademark of The Mathworks, Inc. 4

oxNoarwhE

% basi ¢ paraneter sweep code

%

% Want to parallelize the follow ng | oop:
%for ii = 1:n

% z(ii) =f(ii, otherArgs...)

% end %for ii

% Turn parallelismon or off.
PARALLEL = 1;

% Set data sizes.
m = 3; % nunber of output argunents
n 16; % nunber of independent iterations

% Create Maps.
mapl = 1;
i f (PARALLEL)
% Break up rows.
mapl = map([Np 1], {}, 0:Np-1);
en

% Create z - data output matrix.
z = zeros(n, m napl);

% Get the local portion of the global indices
my_i _gl obal = global _ind(z, 1);

% Get the local portion of the distributed matrix
nmy_z = local (z);

% Loop over the local indices

for i _local = 1:1ength(my_i _global)
% Det ermi ne the global index for this (local) iteration
i_global = ny_i_global (i_local);

% Cal cul at e anot her argunent
nmy_other_arg = 2.5 * i_gl obal

% Call a function with the global index, and other argunents, and

% store the result in a local row

nmy_z(i_local, :) = sanple_function(i_global, pid, ny_other_arg);
end % for i_local

% Store the local portion of z into the distributed matrix z
z = put_local (z, ny_z);

% Finally, aggregate all of the output onto the | eader process
z_final = agg(z);

% Finalize the pMATLAB program
di sp(' SUCCESS') ;

% Finally, display the resulting matrix on the | eader
disp(z_final);

Figure4 —Codefor par am sweep_paral | el . m pMatlab version of the serial parameter sweep

application in par am sweep_seri al . m Red and blueindicate linesthat have been added and modified,

MATLAB isaregistered trademark of The Mathworks, Inc.

respectively, in theoriginal serial code.

Serial
Rank ———0
Pre-loop Pre-loop _
code code
7 Il
21 Loop
3 - iterations
50
6 Post loop
) 7 =
E Loop < 8y code
F iterations oy
104
11§
124
13§
ig— -- Time <
160 saved
' Post loop
code
. N .Y __ vV __ Y _

Figure5— Depiction of SPMD program flow for par am sweep_paral | el .

4.1. param_sweep_parallel.m.
This section describes par am sweep_paral | el . m SeeFigure 4.

Line 9 enables or disables the pMatlab library. |If PARALLEL is set to O, then the script will not
initialize the pMatlab library, call any pMatlab functions, or create any pMatlab data structures.
It will smply run serial MATLAB code on the local processor. If PARALLEL isset to 1, then the
pMatlab library will be initialized, dmats will be created instead of regular MATLAB matrices,
and any functions that have dmat input arguments will call the associated pMatlab function.

Lines 12-13 set the number of iterations to perform, n, and number of output arguments of
sanpl e_functi on, m These values will be used to set the dimensions of the matrix that will
store the output of al loop iterations. n specifies the number of rows in the matrix and m
specifies the number of columns. Each row will store the outputs of a single iteration and each
column will store one output. In the example, sanpl e_f unct i on computes three outputs and
iscaled 16 times.

MATLAB isaregistered trademark of The Mathworks, Inc. 6

Ncpus=4 : Number of CPU’s
z: Distributed matrix m=3: Number of outputs per iteration;
12 3+ each column holds 1 output value
(1
2
Rank 0 <
3
>_ A R
5 " my_rank=2: Local CPU's rank
Rank 1 < 6 my z: Section of z residing on rank 2
7
8
- - 123 i local=[1 2 3 4]:
g 9 1 oo
k‘ Local indices of my_z
Rank2 < .. 10 2 on rank 2
- < e]| ;
12 12 4
13
Rank3 < my i global=[9 10 11 12]:
5 - Global indices of my z on rank 2
16 e
n=16: Number of iterations; each row holds output values for 1 iteration

Figure6 - Graphical depiction of data structurescreated in par am sweep_paral | el . m

Lines 16 through 20 specify the map, map1, for the output matrix. By default, mapl is set to 1.
If PARALLEL isset to 1, then amap object is constructed that distributes the output matrix’s rows
among processors, essentially distributing loops iterations among processors. See Figure 5.

Line 23 creates the output matrix, z, and initializes it to all zeros. Note that if PARALLEL is set
to 0, then ann- m 1 matrix is created, which is equivalent to an- mmatrix. If PARALLEL isset to
1, then map1 is a map object and the pMatlab zer os function is called and creates a dmat object
that distributes the matrix across all processors, as depicted in Figure 6.

Clearly, each processor owns only a portion of the global output matrix. Line 26 obtains the
global indicesin dimension 1 (i.e. rows) owned by just the local processor. In this example, the
output matrix contains 16 rows distributed across four processors. Processor O owns rows 1
through 4, processor 1 owns 5 through 8, processor 2 owns 9 through 12 and processor 3 owns
13 through 16. Thus, gl obal _i nd will returnthevector[1 2 3 4] onrank O,[5 6 7 8] on
rank 1,[9 10 11 12] onrank 2, and[13 14 15 16] onrank 3. For more details on global
vs. local indices, see[2].

Line 29 copies the processor’s local portion of the output dmat to a regular MATLAB matrix,
ny_z.

MATLAB isaregistered trademark of The Mathworks, Inc. 7

Lines 32 through 42 comprise the core of the parameter sweep application. These lines define
the for loop that will compute al n iterations of sanpl e_f unct i on on distributed over multiple
processors. The key difference in programming serial and parallel parameter sweep applications
isthe concept of global and local indicesiterations and indicesin parallel programming.

At line 45, each processor has computed the results for its iterations. The put _| ocal function
copies the contents of my_z on each processor into the dmat z.

At line 48, the dmat z contains the results of al iterations of sanpl e_f unct i on, but distributed
across all processors. The agg function aggregates the contents of z into a regular MATLAB
matrix, z_fi nal , located on the leader process, rank 0. Note that on all other processors,
z_final containsjust the processor’slocal section of z instead of the entire contents of z.

Line 51 indicates that the program completed successfully.

Line 54 displays on Pid=0 the results of al n calls to sanpl e_functi on. Note that since
z_final isempty on all other processors, just the local portion of z will be displayed.

param sweep_seri al param sweep_parall e
SUCCESS SUCCESS
1. 0000 0 2.5000 1. 0000 0 2.5000
2.0000 0 5. 0000 2.0000 0 5. 0000
3. 0000 0 7.5000 3. 0000 0 7.5000
4. 0000 0 10.0000 4. 0000 0 10.0000
5. 0000 0 12.5000 5. 0000 1.0000 12.5000
6. 0000 0 15.0000 6. 0000 1.0000 15.0000
7. 0000 0 17.5000 7.0000 1.0000 17.5000
8. 0000 0 20.0000 8. 0000 1.0000 20.0000
9. 0000 0 22.5000 9. 0000 2.0000 22.5000
10. 0000 0 25.0000 10. 0000 2.0000 25.0000
11. 0000 0 27.5000 11. 0000 2.0000 27.5000
12. 0000 0 30.0000 12. 0000 2.0000 30.0000
13. 0000 0 32.5000 13. 0000 3.0000 32.5000
14. 0000 0 35.0000 14. 0000 3.0000 35.0000
15. 0000 0 37.5000 15. 0000 3.0000 37.5000
16. 0000 0 40.0000 16. 0000 3.0000 40.0000

Figure 7 — Comparison of outputsfor the serial and parallel parameter sweep applications.

5. Serial vs. Parallel

Figure 7 compares the results of param sweep_seri al and param sweep_paral lel. To
reiterate, the first, second and third columns contain the iteration number, the rank of the
processor that computed that iteration, and the value computed based on the iteration,
respectively. Note that the values for the first and second columns are the same. Only the
second column, the processor ranks, differs. This shows that different iterations are indeed
computed on different processors, but that as long as the results are not dependent which
processor they were computed on, the results are the same.

MATLAB isaregistered trademark of The Mathworks, Inc. 8

6. Adding Parallelism

One tenet of good software engineering is that programs should not be run on full scale inputs
immediately. Rather, programs should initially be run on a small test problem to verify
functionality and to validate against known results.
inputs until the program is fully validated and ready to be run at full scale. The same s true for
parallel programming. Parallel programs should not run at full scale on 32 processors as soon as
the programmer has finished taking a first stab at writing the application. Both the test input and
number of processors should be gradually scaled up.

The following is the recommended procedure for adding parallelism to a pMatlab application.

The program should be scaled to larger

This procedure gradually adds complexity to running the application.

1
2.
3.
4.
S.
6
Figure 8 shows the sequence of parameters that should be used to scaling pMatlab applications.

See [2] for examples on how to set these parameters and for more details on how to apply good
software engineering practices to pMatlab.

MATLAB isaregistered trademark of The Mathworks, Inc.

Run with 1 processor on the user’slocal machine with the pMatlab library disabled.

Thistests the basic serial functionality of the code.

Run with 1 processor on the local machine with pMatlab enabled. Tests that the
pMatlab library has not broken the basic functionality of the code.
Run with 2 processors on the local machine. Tests the program’s functionality works

with more than one processor without network communication.

Run with 2 processors on multiple machines. Test that the program works with
network communication.

Run with 4 processor s on multiple machines.
I ncrease the number of processors, asdesired.

In pMatlab code InRUN. m
1. | PARALLEL = O; Ncpus = 1; cpus = {};
2. | PARALLEL = 1; Ncpus = 1; cpus = {};
3. | PARALLEL = 1; Ncpus = 2; cpus = {};
4. | PARALLEL = 1; Ncpus = 2; cpus = {'nodel', ' node2'};
5. | PARALLEL = 1; Ncpus = 4; cpus = {'nodel', ' node2'};
6. | PARALLEL = 1; cpus = {'nodel', ' node2'};

Figure8— Examplesequence of parametersfor scaling parallel programs.

7. Conclusion
In thisis paper we accomplished the following:

» Defined parameter sweep applications

» Presented an example serial parameter sweep application implemented in MATLAB
» Parallelized the serial example using pMatlab

» Compared the results of the serial and parallel parameter sweep applications

The applications discussed in this paper are only simple examples of how pMatlab can be used to
parallelize one type of embarrassingly parallel application. However, the basic concepts
presented can be easily expanded to encompass more complex applications. For more
information on specific pMatlab functions discussed here, see [3].

8. References

[1] http://setiathome.ssl.berkeley.edu
[2] H. Kim. “Introduction to Parallel Programming and pMatlab.” MIT Lincoln Laboratory.
[3] H. Kim, N. Travinin. “pMatlab Function Reference.” MIT Lincoln Laboratory.

MATLAB isaregistered trademark of The Mathworks, Inc. 10

