

Architecting Service-Oriented Systems

Philip Bianco
Grace A. Lewis
Paulo Merson
Soumya Simanta

August 2011

TECHNICAL NOTE
CMU/SEI-2011-TN-008

Research, Technology, and System Solutions Program
Unlimited distribution subject to the copyright.

http://www.sei.cmu.edu

SEI markings v3.0 / 19 July 2011

Copyright 2011 Carnegie Mellon University.

This material is based upon work supported by United States Department of Defense under Contract No. FA8721-05-C-

0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded re-

search and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do

not necessarily reflect the views of the United States Department of Defense.

This report was prepared for the

SEI Administrative Agent

ESC/XPK

5 Eglin Street

Hanscom AFB, MA 01731-2100

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS

FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY

KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,

WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS

OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY

WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT

INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal use is

granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written or

electronic form without requesting formal permission. Permission is required for any other external and/or commercial

use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

For information about SEI publications, please visit the library on the SEI website (www.sei.cmu.edu/library).

* These restrictions do not apply to U.S. government entities.

CMU/SEI-2011-TN-008 | i

Table of Contents

Abstract vii

1 Introduction 1

2 Summary of Existing Work 3
2.1 SOA Design Patterns 3
2.2 Evaluating SOA 3
2.3 SOA Layers 5

3 SOA Architectural Principles 8
3.1 Standardization (Interoperability) 9
3.2 Loose Coupling 11
3.3 Reusability 13
3.4 Composability 14
3.5 Discoverability 15

4 Common Components of a Service-Oriented System 18
4.1 Enterprise Service Bus 18

4.1.1 Supporting Patterns and Tactics 18
4.1.2 Impact on System Quality 20

4.2 Service Registry and Repository 21
4.2.1 Supporting Patterns and Tactics 22
4.2.2 Impact on System Quality 23

4.3 Messaging System 23
4.3.1 Supporting Patterns and Tactics 23
4.3.2 Impact on System Quality 25

4.4 Business Process Engine 26
4.4.1 Supporting Patterns and Tactics 27
4.4.2 Impact on System Quality 28

4.5 Monitoring and Management Tools 29
4.5.1 Supporting Patterns and Tactics 29
4.5.2 Impact on System Quality 30

5 Conclusions 31

References 32

CMU/SEI-2011-TN-008 | ii

CMU/SEI-2011-TN-008 | iii

List of Figures

Figure 1: SOA Layers 6

Figure 2: High-Level Notional View of a Service-Oriented System 8

Figure 3: WS* Web Services Protocol and Standards Stack 10

Figure 4: ESB Patterns and Sub-Patterns (adapted from [Erl 2009]) 19

Figure 5: Asynchronous Messaging Pattern, Specializations, and Sub-Patterns 25

Figure 6: Orchestration Pattern and Sub-Patterns (adapted from [Erl 2009]) 27

CMU/SEI-2011-TN-008 | iv

CMU/SEI-2011-TN-008 | v

List of Tables

Table 1: Effect of Standardization 10

Table 2: Effect of Loose Coupling 12

Table 3: Effect of Reusability 13

Table 4: Effect of Composability 15

Table 5: Effect of Discoverability 16

Table 6: ESB Aspects that Negatively Affect System Qualities 20

Table 7: ESB Aspects that Positively Affect Systems Qualities 21

Table 8: Service Registry and Repository Aspects that Negatively Affect System Qualities 23

Table 9: Service Registry and Repository Aspects that Positively Affect System Qualities 23

Table 10: Messaging System Aspects that Negatively Affect System Qualities 25

Table 11: Messaging System Aspects that Positively Affect System Qualities 26

Table 12: Business Process Engine Aspects that Negatively Affect System Qualities 28

Table 13: Business Process Engine Aspects that Positively Affect System Qualities 28

Table 14: Monitoring and Management Tools Aspects that Negatively Affect System Qualities 30

Table 15: Monitoring and Management Tools Aspects that Positively Affect System Qualities 30

CMU/SEI-2011-TN-008 | vi

CMU/SEI-2011-TN-008 | vii

Abstract

Service orientation is an approach to software systems development that has become a popular
way to implement distributed, loosely coupled systems, because it offers such features as standar-
dization, platform independence, well-defined interfaces, and tool support that enables legacy sys-
tem integration. From a quality attribute point of view, the primary drivers for service orientation
adoption are interoperability and modifiability. However, a common misconception is that an ar-
chitecture that uses a service-oriented approach can achieve these qualities by simply putting to-
gether a set of vendor products that provide an infrastructure and then using this infrastructure to
expose a set of reusable services to build systems. In reality, there are many architectural deci-
sions that need to be made. An architectural decision that promotes interoperability or modifiabili-
ty can negatively impact other qualities, such as availability, reliability, security, and perfor-
mance. The goal of this report is to present general guidelines for architecting service-oriented
systems, how common service-oriented system components support these principles, and the ef-
fect that these principles and their implementation have on system quality attributes.

CMU/SEI-2011-TN-008 | viii

CMU/SEI-2011-TN-008 | 1

1 Introduction

Despite a highly publicized report that claimed that “SOA is Dead,1” the reality is that service-
oriented architecture (SOA) is still a popular architectural style for designing and developing dis-
tributed systems. As with any architectural style, SOA can be described in terms of the important
architectural elements and the relationships among them. In this report, we examine how the de-
sign of these elements and their relationships impact system quality.

Solutions that use a service-oriented2 approach are intended to satisfy business or mission goals
that include quality requirements such as easy and flexible integration with legacy systems (inte-
roperability), streamlined business processes (maintainability), reduced costs (modifiability), and
agility to handle rapidly changing business processes (extensibility). These are the primary archi-
tectural drivers addressed by SOA adoption, and are achieved by adhering to a set of design prin-
ciples for service-oriented systems that will be described later in the report. However, there are
other important quality attributes such as availability, reliability, security, and performance that
have to be addressed. In addition, an architectural decision that promotes one of these quality
attributes can negatively impact any other quality attribute.

As an architectural pattern, SOA is an appropriate solution in some situations; however, there are
situations in which it is not appropriate or in which it has to be used in conjunction with other
technologies to achieve desired system qualities. A few examples of situations when SOA may
not be appropriate include the following:

• In a solution that does not require the integration of components or systems running on dif-
ferent platforms, or implemented using different technologies, service orientation may be
overkill because there is an overhead for the use of SOA technologies to provide interopera-
bility across platforms.

• For a system built on a homogenous development platform with few interactions with legacy
systems running on different platforms in which the situation is not likely to change, a move
towards service orientation is hard to justify.

• If a system consists of co-located components or distributed components that interact via
email messages, file sharing or proprietary messaging systems, the sophisticated integration
mechanisms provided by SOA may introduce an unnecessary burden.

• Hard real-time systems are clearly not a good match for service orientation. Strict timeliness
requirements conflict with several aspects of common technologies used in service-oriented
systems (e.g., web services) that may introduce unbounded overhead in processing, such as
extensible markup language (XML) parsing, validation, and transformation; network com-

1 http://apsblog.burtongroup.com/2009/01/soa-is-dead-long-live-services/comments/page/2/

2 We use the term service-oriented system to separate SOA as a set of technologies from service-orientation as
a system or approach that incorporates and applies SOA-related concepts and technologies.

CMU/SEI-2011-TN-008 | 2

munication; proxies and stubs for technology adaptation; and intermediary components (e.g.,
a service registry or an enterprise service bus [ESB]).

• Embedded systems are not naturally fit to host service-oriented systems. Embedded plat-
forms have limited computing power, memory, and disk resources. Many SOA technologies
are heavyweight in terms of memory and CPU requirements. Thus, designing a SOA solu-
tion for the software on a washing machine or a video-game console can bring unneeded
complication and overhead.

Architects therefore play a crucial role in determining what expectations can or cannot be met by
SOA adoption, and where decisions can be made for the benefit of the organization and the ac-
complishment of system quality attributes. Reasoning about these difficult decisions can be sim-
plified by using known solutions for promoting quality attributes that are important to the sys-
tems’ stakeholders. These known solutions are often codified as architectural patterns and tactics.
An architectural pattern “deals with a specific, recurring problem in the design of a software sys-
tem…to construct architectures with specific properties [Buschmann 1996].” Architectural pat-
terns are used to generate designs that are predictable and well understood. Architectural patterns
can be decomposed into a set of architectural tactics. Architectural tactics are design decisions
that are known to influence quality attribute responses [Bass 2003]. An example of a tactic is to
introduce redundancy to promote system availability by reducing system downtime (e.g., system
availability rises from 99.0% to 99.9% when a redundant element is added).

The goal of this report is to show architects of service-oriented systems how to decompose these
systems into a set of architectural patterns and tactics that promote important system quality goals.
Section 2 summarizes existing related work. Section 3 presents a set of SOA architectural prin-
ciples that are realized through patterns and tactics. Section 4 presents the common elements of a
service-oriented system, how these elements support the SOA architectural principles, and the
system qualities that these elements promote.

CMU/SEI-2011-TN-008 | 3

2 Summary of Existing Work

A common misconception (mostly vendor driven) is that simply by adopting a SOA strategy or
even acquiring a SOA infrastructure, an organization has established a complete well-crafted ar-
chitecture that will help the organization achieve its many business goals [Lewis 2007]. In reality,
SOA is an architectural pattern from which an infinite number of architectures can be derived—
both good and bad. Appropriate decisions regarding tradeoffs are very specific to the system in
consideration, providing one more reason why organizations make a mistake in assuming that
SOA represents a “finished” architecture. This section summarizes existing work that addresses
the architecture and design of service-oriented systems as a key activity in the implementation of
service-oriented systems. Our report builds on this existing work to provide guidance for archi-
tects that need to make design decisions in service-oriented systems.

2.1 SOA Design Patterns

Architectural patterns are used to generate designs that are predictable and well understood. These
patterns leverage knowledge and experience to produce proven solutions to recurring design prob-
lems. The book SOA Design Patterns by Thomas Erl (with contributions from over thirty practi-
tioners) as well as the SOA Patterns website, describe approximately eighty-five patterns for ser-
vice-oriented systems. The goal of SOA design patterns is to provide a “master catalog and
pattern language for SOA” for practitioners that are designing a system using service orientation
[Erl 2009]. Some of these patterns have been described in other work, such as Design Patterns
and Pattern-Oriented Software Architecture [Gamma 1994, Buschmann 1996]. Thomas Erl shows
how these patterns relate to the principles of service-oriented design. Examples of patterns include

• Patterns for the infrastructure needed to support service orientation, such as Enterprise Ser-
vice Bus (ESB) and Service Registry

• Patterns for creating inventories of services, such as Service Normalization and Service Lay-
ers

• Patterns for composing services, such as Entity Abstraction, Agnostic Context, Capability
Composition, and Enterprise Inventory

• Patterns for reliable messaging, such as Reliable Messaging

• Patterns for atomic distributed service transactions, such as Atomic Service Transaction

• Patterns for security, such as Brokered Authentication, Data Origin Authentication and Data
Confidentiality

• Patterns for encapsulating legacy systems, such as Legacy Wrapper and Service Messaging

2.2 Evaluating SOA

Evaluating the architecture of a service-oriented system is not much different from evaluating any
other kind of software architecture. The goal is to assess the ability of the software architecture to
successfully address the requirements of the system or, more broadly, the business goals. The ba-
sic principles for the evaluation of any software architecture using a business-goal and quality-

CMU/SEI-2011-TN-008 | 4

attribute-based approach, such as the Architecture Tradeoff Analysis Method® (ATAM®) [Bass
2003], include

• Quality attribute requirements shape the architecture. If achievement of functionality were
the only requirement, the system could exist as a single monolithic module with no internal
structure at all [Bass 2003]. However, components and infrastructure elements are replicated
because of availability requirements, concurrency is introduced, network and database access
are avoided because of performance requirements, modules are organized into layers because
of modifiability requirements, and so on. Therefore, a software architecture can only be eva-
luated if the quality attribute requirements are understood.

• A broad group of stakeholders need to be involved in the elicitation of quality requirements
because they bring together a variety of disparate concerns that the architect might overlook.
Network administrators may have specific requirements for bandwidth utilization; informa-
tion security personnel may bring new confidentiality requirements; the database administra-
tor may want to constrain the execution time of data access operations; an external service
consumer may have interoperability requirements; and so on.

• Design decisions often incur quality attribute tradeoffs. In a software architecture evaluation,
the appropriateness of each design decision is weighed only after the importance of each
quality attribute requirement is understood.

• Because architectural decisions tend to have a pervasive effect on implementations and have
a significant impact on business, performing an early architecture evaluation is particularly
valuable and recommended.

• When a system includes connectivity with other systems and business entities, the political
forces involved with this connectivity can be as important as both technical and non-
technical concerns in architecture tradeoff considerations.

These architectural evaluation principles can be applied to service-oriented systems because these
systems are often part of technologically diverse environments that involve a large number of de-
sign considerations. Examples of SOA-related design decisions that are explored during an evalu-
ation and should be considered during the design process include

• What communication protocol should be used between each pair of service consumer and
service provider?

• What integration approach should be followed? ESB-based or direct point-to-point?

• Should an orchestration server (e.g., a business process execution language [BPEL] engine)
be used?

• Should a service registry be used? What capabilities besides naming and location would it
provide?

• Should a defined service operation be synchronous or asynchronous?

• What is the appropriate granularity for the operations in each service interface?

• What are the system strategies for exception handling and fault recovery?

® Architecture Tradeoff Analysis Method and ATAM are registered in the U.S. Patent and Trademark Office by

Carnegie Mellon University.

CMU/SEI-2011-TN-008 | 5

• Should message-level security be used to protect messages? Or is channel-level security
enough?

• What authentication and authorization mechanisms will be used?

• What service versioning mechanism will be used?

Evaluating a Service-Oriented Architecture [Bianco 2007] discusses the design decisions listed
above and several others, but also provides the pros and cons of the different design alternatives
with respect to various quality attributes. For example, static service binding (with no registry)
yields better response time, whereas dynamic service binding (with a registry) incurs a perfor-
mance overhead but yields better modifiability. The report also lists sample design questions that
could be raised in an architecture evaluation and during the design of a service-oriented system to
make sure that different quality requirements are addressed. Some examples of these questions are

• Which standards does the supporting platform implement?

• Can this particular service operation be called asynchronously?

• Do operations in the service interfaces map to transactional boundaries?

• How stable is the business process that will be executed in the service-oriented system?

• Which types of failures is the system subject to?

• Does the architecture provide a mechanism (e.g., digital signatures) to ensure that a third
party will not intercept and alter message contents (tampering)?

• What kind (e.g., lightweight directory access protocol [LDAP]-based) and scope (e.g., enter-
prise-wide) of security domain are going to be used for managing the identity of participat-
ing users and systems?

• Can XML validation be turned off?

• Is a registry being used? If so, is it used for dynamic routing of service calls (e.g., for failov-
er)?

• If an orchestration engine is being used, does it generate audit trails that support transaction
traceability and regulatory requirements?

• How long should old versions of services/operations be available?

• What is the unit of versioning? Service or operation within a service?

2.3 SOA Layers

There are many sources that provide a form of reference architecture or layered approach for sys-
tems that use a service-orientation approach [Bieberstein 2008, Arsanjani 2004]. These layers fa-
cilitate separation of concerns, and designers have a set of architectural decisions that need to be
made in each layer. Figure 1 shows the typical layers of a service-oriented system that are pri-
marily functional in nature.

CMU/SEI-2011-TN-008 | 6

Figure 1: SOA Layers

This service-oriented system includes the following layers:

• Presentation—The benefit of creating a presentation layer is decoupling the client-side pres-
entation implementation from the service implementation to allow each to change indepen-
dently. This layer is generally not the focus of service-oriented design.

• Business process—The services provided in the services layer are often composed into
workflows to assist in the development of applications. This provides flexibility to change
the workflows as business processes change.

• Services—Services reside in this layer. The invocation of these services can be determined at
design time or bound dynamically through a service registry at runtime. These services are
broken into additional layers to assist in the composition of services into complete business
processes. The additional layers include:

− Utility-based services, which provide utility-based functions such as notification, log-
ging and exception handling. These operations are largely agnostic to business processes

and can therefore be reused in multiple business processes.

− Entity-based services, which operate on a set of business entities (or data entities). These
operations are largely agnostic to business processes and can therefore be reused in mul-

tiple business processes.

− Task-based services, which are “business services with a functional boundary directly

associated with a specific parent business task or process” [SOA Methodology 2010].

CMU/SEI-2011-TN-008 | 7

• Enterprise—These components contain code that specifically fulfills service needs or code
that accesses the functionality in operational systems. “These special components are a ma-
naged, governed set of enterprise assets that are funded at the enterprise or the business unit
level. …This layer typically uses container-based technologies such as application servers to
implement the components, workload management, high-availability, and load balancing”
[IBM 2004].

• Operational Systems—This layer consists of existing custom-built, commercial, external
systems or some combination of these. Careful analysis of these systems needs to be com-
pleted to determine the operations that should be exposed as services. These services are
considered to have enterprise-wide utility.

Many reference architectures provide additional layers for integration, governance, monitoring,
and management, as will be discussed in Section 4.5.

CMU/SEI-2011-TN-008 | 8

3 SOA Architectural Principles

SOA architectural principles are general guidelines for architecting service-oriented systems.
These principles are ideally enabled by the decisions found in the architecture of the system. In a
service-oriented architectural pattern we characterize explicit boundaries between its four main
types of elements: service consumers, SOA infrastructure, service interfaces, and service imple-
mentation, as shown in Figure 2.3

Erl and others have defined additional principles for service design [Erl 2008]. The principles in
this section are similar, but they apply to the full architecture of the service-oriented system: the
integration of services (interface and implementation), service consumers, and the SOA infra-
structure. Each principle contains a short description and a table that explains the effects that each
principle has on selected system quality attributes.

Figure 2: High-Level Notional View of a Service-Oriented System

Architects of service-oriented systems often find themselves in a conflict. On one hand, there are
business/mission goals and quality attribute requirements driving the architecture of a system. On
the other hand, there are principles of service-orientation that influence the architecture of a sys-
tem and impact a system’s quality attributes. It is at this intersection of these two sets of quality
attributes where conflicts arise and an architect needs to make decisions. The responsibility of the
architect is to try to apply each principle in the context of the business goals of the system and to
make the necessary tradeoffs and architectural decisions in order to meet the system’s business

3 Figure 2 is a much more generic representation of the elements shown in Figure 1. The goal of Figure 2 is to

illustrate the four major elements of a service-oriented system, independent of implementation technologies.

End User
Application

Service
A

SOA Infrastructure

Enterprise
Information System

Portal

Internet

External
System

Service
B

Service
C

Service
D

Internal Users

DiscoverySecurity

Legacy or New
Service Code

Internal
System

Service Consumers

Infrastructure

Service
Implementation

Service Interfaces

External
Consumer

Data
Transformation

CMU/SEI-2011-TN-008 | 9

goals. It is important to note that the impact on quality is not binary (positive or negative) because
specific system context may impact the effect on quality attributes of interest. The information
contained in each of the following subsections reflects general trends.

3.1 Standardization (Interoperability)

One of the enablers of widespread SOA adoption, especially in the case of WS* web services,4 is
standardization at multiple levels, as shown in Figure 3. Standardization in service-oriented sys-
tems has multiple advantages including tool support and leverage of third-party system compo-
nents that in the end can lead to shorter development times.

The WS* base stack (HTTP, XML, SOAP, and WSDL) is fairly stable and has large tool support.
For example, there are multiple tools that will take a web service definition language (WSDL)
document as input and produce all the code necessary to invoke the associated service. However,
beyond the base stack it is not that straightforward because of the over-abundance of standards.
There are currently over 100 WS* standards produced by organizations such as OASIS and W3C
in areas that include business process specification, composition, messaging, reliable messaging,
transaction management, security, and management. Some of these standards are complementary
and some are competing. In addition, many of these standards have extensions, as well as areas
that can be interpreted in multiple ways [Lewis 2008a].

The Web Services Interoperability Organization (WS-I) is an organization chartered to promote
web services interoperability across platforms, applications, and programming languages [WS-I
2010]. WS-I has profiles for the basic stack and for security to provide clarifications, refinements,
interpretations, and amplifications in areas of the standards that are subject to multiple interpreta-
tions. There are also tools to check that artifacts (e.g., a WSDL file) and actual messages being
exchanged are in conformance with the profiles. The WS-I tools are especially useful in cases in
which WSDL and XML files are automatically generated and may not conform to the assump-
tions of the development and deployment environment, e.g., different XML schema versions, dif-
ferent namespaces, malformed XML, etc. The tools that facilitate the usage of these standards will
be one criterion that an architect uses to select between competing standards.

4 In WS-* Web services, (1) data is represented using XML, (2) service interfaces are described using Web Ser-

vices Description Language (WSDL), (3) payload is transmitted using Simple Object Access Protocol (SOAP)
over Hypertext Transfer Protocol (HTTP), and, optionally, (4) Universal Description, Discovery and Integration
(UDDI) is used as the directory service. In addition, although not part of the basic implementation, there are
over 100 standards to support other system qualities such as WS-Security for security and WS-
ReliableMessaging for reliability.

CMU/SEI-2011-TN-008 | 10

Figure 3: WS* Web Services Protocol and Standards Stack

The following table summarizes how standardization—in aspects such as service description, ser-
vice discovery, message formats, encoding, and transport—impacts quality attributes in a service-
oriented system.

Table 1: Effect of Standardization

Quality Attribute Effect Explanation

Interoperability Positive

Standardization in service-oriented system implementations is the primary enabler
of interoperability, both across platforms and vendors. However, policies and
standards have to be in place to increase interoperability through consistency
(e.g., service interfaces, data models, implementation technologies, and versions
of infrastructure elements).

Modifiability Positive

• Standardization at the service interface level enables service providers to
change service implementations (e.g., to port a service implementation to a
new language) without a major effect on service consumers, as long as the
service interface and the expected behavior of the implementation remain un-
changed.

• Standardization at the infrastructure level, mainly for integration between com-
ponents, enables infrastructure components5 to change as technology
changes without as many effects on consumers.

• The use of XML as a form of standardization provides flexibility in contract
specification to deal with changes without having major effects on service con-
sumers (e.g., new elements in an XML schema can be made temporarily op-
tional, XML schemas can have extension points if certain changes are antic-
ipated).

5 Infrastructure components are elements of the SOA infrastructure shown in Figure 2. Examples of an infrastruc-

ture component include ESB, service registry, load balancer, and monitoring tools.

S
e

cu
rity

M
a

na
g

e
m

ent

T
ransaction

s

Q
uality of S

ervice

CMU/SEI-2011-TN-008 | 11

Quality Attribute Effect Explanation

Performance Negative

• The use of XML for standardization in most service-oriented implementations
has a negative effect on performance because XML involves three CPU-
intensive activities: parsing, validation, and transformation [Juric 2004].

• Some standards (e.g., SOAP) require bridges, proxies, stubs, and similar ele-
ments to perform transformations and translations that are needed for intero-
perability.

Reusability Positive

• Standardized service interfaces enable services to be used across multiple
business and operational processes. However, proper service identification
processes have to be in place such that all services represent independent
and cohesive business/operational tasks.

• Standards are often used to promote reuse between service providers and
consumers that use heterogeneous technologies. However, the parsing of
these standard formats incurs significant runtime overhead which contributes
to latency of single operations.

Security It de-
pends

• In the case of WS* Web Services, these inherit all the attacks from all the
standards used in their implementation, such as XML Denial of Service
(XDoS) attacks [Sullivan 2009].

• From a security standards perspective, WS-Security is the emerging standard
for web service security and accommodates multiple security models and en-
cryption technologies [OASIS 2006]. However, WS-Security by itself does not
define a security solution; it simply provides the elements to create a security
solution. For example, there must be an agreement between service consum-
ers and providers on certain elements such as the security tokens to be used
for authentication [OASIS 2006]. All these agreements, as well as the tools to
generate and validate tokens, are part of the security solution.

Testability Positive

Standardization enables the use of commercial testing tools for service-oriented
environments as well as additional forms of testing that take into account that
system components might not be available at design time, such as interface-
based testing [Ghosh 2000].

3.2 Loose Coupling

Loose coupling is one of the key goals for SOA adoption. There are multiple areas where an arc-
hitect can make decisions to promote loose coupling. If loose coupling is an important architec-
tural driver, an architect should:

• Ensure that service providers and service consumers are independently able to make deci-
sions about technology. A service consumer should not be bound to a particular technology
(e.g., programming language, database, platform) in order to use a service. Service consum-
ers should be allowed to select technologies that best fit their organizational context and pol-
icies, enterprise architecture, legacy systems, licensing model, and development model. The
architect should define how messages will be exchanged, how messages will be formatted,
and how services will be described. SOA implementations that are built using web services
use XML for message exchange and service description and stable standards such as SOAP
and HTTP for communications. These constraints make loose coupling possible in service-
oriented environments. Distributed computing technologies such as CORBA and
COM/DCOM result in tighter coupling between the consumer and the provider because they
have to share the same interface (with no intermediary), the consumer has to install and run
specific components, and the consumer has to create an execution context that is maintained
during the interaction.

CMU/SEI-2011-TN-008 | 12

• Create services that are independent, self-contained capabilities that can be used in isolation
from capabilities provided by other services. Services should react to messages by perform-
ing the required operations based on message content. The service should have no know-
ledge of how the response will be used, the order in which it needs to be invoked, or how the
input message was created.

• Enable the actual binding between a service consumer and a service at runtime. The later you
defer binding the more flexibility service providers and service consumers have to develop
their software systems independently. In an ideal situation, the only agreement required is
the service interface description, which includes a set of ordered messages that have a de-
fined schema. Therefore, assuming that the service interface remains unchanged, the service
consumer can elect to use an alternative service that abides by the agreement without code
changes and the service provider can change service implementations without affecting the
service consumer.

The following table summarizes how achieving the goal of loose coupling impacts quality
attributes in a service-oriented system.

Table 2: Effect of Loose Coupling

Quality Attribute Effect Explanation

Interoperability Positive

Standardization of data representation and service description inherent to ser-
vice-orientation enables loose coupling of technologies chosen by different or-
ganizations that need to interoperate.

Modifiability Positive

Loose coupling between service provider and service consumer enables each
to change implementations independently as long as the service interface and
the expected behavior of the implementation remain unchanged.

Performance Negative

• The use of standards to promote loose coupling can have a negative effect
on performance when CPU- and memory-intensive activities, such as pars-
ing, validation, and transformation are required [Juric 2004].

• Run-time binding is more expensive than static binding, but the impact can
be limited to a single one-time cost.

Reliability It Depends Loose coupling enables service consumers to move to alternative service im-
plementations in case of service failure; redundancy can be implemented in the
case of stateless services. Self-contained services can also promote reliability
by constraining the propagation of failures. However, the potential lack of con-
trol over service elements (e.g., third-party service implementations) introduces
unpredictability.

Reusability Positive

Because services are not bound to a particular implementation or technology, it
is easier to reuse them. In addition, because of the loose coupling between
services, it is easier to reuse services without worrying about the dependencies
between them. However, proper service identification processes have to be in
place such that all services represent independent and cohesive busi-
ness/operational tasks.

Scalability Positive

Because of loose coupling it is possible to create a scalable architecture in
which new service instances are added on-demand to meet increased loads.

Security Negative

• Overall system security can be affected because of lack of control over sys-
tem elements. Services developed by different organizations may not have
practices to ensure that service implementation code is written securely.

• The use of XML to enable loose coupling introduces new security threats
such as XML Denial of Service (XDoS) [Sullivan 2009].

CMU/SEI-2011-TN-008 | 13

3.3 Reusability

The goal of increasing reuse in this context is mostly associated with service reusability. Services
are reusable because they represent self-contained functionality that can be used in multiple busi-
ness processes. If reusability is a business goal, an architect may employ the following strategies:

• Identify services that perform utility operations (i.e., logging) and data manipulation and
design them so that they are independent of the business processes that use them. This is
known as abstracting common services to promote reusability. This will avoid unnecessary
duplication of logic that performs these operations as part of multiple business processes.

• Design services to be stateless when possible. Services should not maintain conversational
state. Each service request is self-contained and independent of other requests. Even though
it is possible to build stateful services, there are advantages of stateless services for reusabili-
ty. Stateless services can be replicated more easily to promote many different QoS require-
ments such as availability (redundancy) and scalability to meet additional demand (load ba-
lancing).

• Provide infrastructure that abstracts or mediates differences between service consumers and
service interfaces such as binding technologies or standards. An example is an Enterprise
Service Bus that implements the VETRO (Validate – Enrich – Transform – Route – Operate)
pattern to deal with differences between service consumers and providers [Chappell 2004].

• Provide mechanisms to allow consumers to find a service that meets their needs. This will be
discussed in Section 3.5.

Promoting reusability has an impact on other quality attributes. The table below provides a gener-
al assessment of how quality attributes are impacted.

Table 3: Effect of Reusability

Quality Attribute Effect Explanation

Interoperability Positive

Service reusability also depends on providing standard interfaces to reusable
service functionality, therefore increasing interoperability between service con-
sumers and services.

Maintainability/
Evolution

Positive

Reusable services and other assets provide common functionality that reduces
the number of instances of logic that need to be maintained. When changes are
required there is usually less effort required.

Performance Negative

Techniques for promoting reusability are often at conflict with performance.
Standards are often used to promote reuse between service providers and con-
sumers that use heterogeneous technologies. The parsing of these standard
formats incurs runtime overhead, which contributes to latency of single opera-
tions.

Reliability It Depends

Increased reusability means that a potentially greater number of service con-
sumers will be affected if there are problems with a service or other reusable
assets. As the number of service consumers that depend on a reusable service
grows, the more important it is that the architecture has reliability mechanisms
to detect and recover from failures.

Scalability It Depends

It is possible to identify services with high usage and create a scalable architec-
ture to deal with services that have high demand. In the case of stateless ser-
vices, introducing redundancy is simplified. Stateful services add an additional
requirement for synchronization between two instances of the same service if
they are replicated, which introduces complexity.

CMU/SEI-2011-TN-008 | 14

Testability Positive

Reusable services and other assets that have been unit tested can be reused
without having to be retested.

3.4 Composability

The end goal of composability is to be able to change pieces of a business process rapidly when
the business environment changes, without impacting the consumers of the composite service that
implements the business process.

Service composability depends on many of the same service characteristics as service reusability:
self-contained functionality, standardized interfaces, and availability in a service registry. It also
relies on proper service identification and careful service interface design. The difference between
composability and reusability is that composability relies on a set of reusable services that have
properties that enable them to be composed. A composition may rely heavily on infrastructure
such as an orchestration engine for the choreography of services based on business workflows.

Composability introduces architectural risks that require strategies for mitigation. Below are some
examples:

• In self-contained application transactions it is relatively simple to commit changes to system
state for successful operations or to roll back to a previous state when failures occur. In a
service composition there are often partial failures that introduce inconsistent states that need
to be repaired. This is complicated because the underlying services are often implemented
using different technologies. Web services provide standards for distributed transactions, but
there are many interoperability issues between the vendor products that are part of the solu-
tion. A possible mitigation strategy is to commit to a single vendor platform but this creates
conflicts with other drivers for SOA adoption (e.g., reusability, interoperability). Other miti-
gation strategies include

− Retrying failed operations a specified number of times. This requires all service opera-

tions to be idempotent (i.e., duplicate requests are not processed).

− Creating service agents that have logic to perform inverse or compensating operations.

This is possible but often extremely complex.

• Creating compositions with services that span multiple organizational boundaries can intro-
duce significant architectural risks because of the loss of control. The QoS of each service
can change radically over time. A simple change in deployment (i.e., installing a patch to
remove a vulnerability) can have major effects on latency. Possible mitigation strategies in-
clude

− Negotiate service level agreements that specify QoS and the penalties for violations of
that agreement. It is important to note that service level agreements often do not provide

adequate compensation for actual damages.

− Select providers that collect metrics and provide specialized interfaces to access current
data relating to important QoS requirements to determine if they meet the response

measures (e.g., average latency, service availability) of your architectural drivers.

− Conduct experiments using a set of synthetic transactions and collect metrics associated

with the response measures of your architectural drivers.

CMU/SEI-2011-TN-008 | 15

The following table summarizes how composability impacts quality attributes in a service-
oriented system.

Table 4: Effect of Composability

Quality Attribute Effect Explanation

Interoperability It Depends

• Tools that support service composition are likely to have constructs and
technologies to deal with mismatches between participating services.

• Standards for composing services introduce cross-vendor interoperability
challenges.

Performance Negative

• Orchestration engines, if used instead of point-to-point compositions, intro-
duce an additional layer of computation.

• Performance is determined by the lowest performing service in the composi-
tion. If composed services are executed serially rather than in parallel, per-
formance is determined by the sum of each service performance.

Reliability/
Availability

Negative

• Service compositions may require transactional behavior that is complex to
manage in a service-oriented environment because participating services
are potentially distributed, multi-platform, and even multi-organizational.

• The availability of the composition is calculated by multiplying the availability
of each member (e.g., .99 * .99 *.99, produces an availability of approx-
imately 97%).

Security Negative

Increased composability means that services have the potential to be com-
posed in ways that original designers never envisioned. This may cause inad-
vertent disclosure of sensitive information through aggregation. The classic
example is when two or more pieces of “benign” data are fused together and
become proprietary or classified information.

Testability It Depends

• Service compositions that have already been tested can be reused without
having to conduct unit and integration tests on the composition. Unfortunate-
ly, the compositions may require retesting when used in different systems
depending on risk tolerance.

• Changes to individual participating services trigger retesting of all the com-
positions that the service participates in.

3.5 Discoverability

In a service-oriented environment, services are created and published in a place that is accessible
to service consumers (e.g., service registry, web page, directory, etc.). Ideally, service consumers
can query this service registry looking for services that satisfy desired capabilities. At a minimum,
the metadata associated with a service is its interface specification or contract. Additional metada-
ta associated with a service is commonly stored in a service repository6 and includes attributes
such as

• Description

• Classification

• Usage history

• Test cases

• Test results

6 Even though service registry and service repository are often used interchangeably, we use service registry to

describe a system element similar to a searchable directory and service repository to describe a system ele-
ment that stores additional metadata and artifacts associated with services registered in the service registry.

CMU/SEI-2011-TN-008 | 16

• Quality metrics

• Documentation

• Sample code

Service discovery in practice is often done at design time. The developer of the service consumer
queries the service registry at design time and obtains the necessary information in order to invoke
the service. Discovery depends on the availability of the service registry as well as the quality of
the information in the registry. High availability of the registry at design time is unlikely to be
required and the quality of the information is a governance issue, which we will not address in
this report. We will focus on the dynamic aspects of service discovery.

Dynamic service discovery refers to service discovery that happens at runtime. Unfortunately, the
word dynamic is used in many ways to describe the binding between service consumers and ser-
vices. There are various degrees of dynamism. The architect needs to decide the appropriate level
of dynamism required to meet architecturally significant requirements. Below are some decisions
relating to varying degrees of dynamism:

• At the lower end of the spectrum an architect can choose to create proxy services that serve
as gateways for binding to specific service instances based on runtime conditions or user
properties. These proxies can provide many benefits such as location independence, request
filtering, and load balancing. This level of runtime binding is a common, out-of-the-box fea-
ture of many commercial and open-source SOA infrastructures, such as an enterprise service
bus (ESB). A registry would not be required.

• At the higher end of the spectrum is fully dynamic binding in which service consumers are
capable of querying service registries at runtime, selecting the “best” service from the list of
returned services, and invoking the selected service—all at runtime, and without human in-
tervention. There is an important tradeoff with fully dynamic binding. It requires semantical-
ly described services that use an ontology or data dictionary that is shared between service
consumers and service providers such that there is a common understanding of the meaning
of exchanged data and the relationships between data elements. Semantic Web Services
represent an active area of research, as well as an unsolved problem that is not yet ready for
large-scale deployment.

The following table summarizes how dynamic discovery impacts quality attributes in a service-
oriented system.

Table 5: Effect of Discoverability

Quality Attribute Effect Explanation

Interoperability Positive

Because of late or runtime time binding, the infrastructure can be set up to check
the registry at runtime and point to different versions of a service depending on
service consumer or message characteristics.

Maintainability/
Evolution

Positive

Service registries may be set up to have pointers to different versions of services
such that changes in services have minimal impact on existing service consumers.

CMU/SEI-2011-TN-008 | 17

Quality Attribute Effect Explanation

Performance It Depends

It is common for service registries to be used by service consumer developers at
design time, which means that the registry would not have an impact at runtime.
However, if the infrastructure is set up such that the registry is checked at runtime
or the registry performs some form of selection between different versions of a
service, there is an additional computation involved that affects performance.
These effects can be reduced by reducing the number of times the registries need
to be queried.

Reliability It Depends

Because of late binding, the infrastructure can be set up to check the registry at
runtime and point to alternate instances of services depending on error conditions
such as service unavailability.

Reusability Positive

An important benefit of a service registry that supports service discovery is reusa-
bility of services. The registry can be used so that designers can find services that
fit their needs to avoid unnecessary duplication of functionality.

Scalability It Depends

Because of late binding, the infrastructure can be set up such that all compatible
instances of a specific service are checked at runtime for current utilization and the
request is forwarded to the service that has the lowest utilization. However, if the
registry has to be checked at runtime, it may become a bottleneck.

CMU/SEI-2011-TN-008 | 18

4 Common Components of a Service-Oriented System

As shown earlier in Figure 2, the main elements of a service-oriented system are service consum-
ers, services (interface plus implementation), and the SOA infrastructure. The SOA infrastructure
plays an important role in service-oriented systems because it mediates differences between ser-
vice consumers and providers therefore promoting important quality attributes such as interopera-
bility, modifiability, and extensibility. What follows are some of the components that are com-
monly part of a SOA infrastructure, its supporting patterns and tactics and the impact that these
components have on overall system quality.

4.1 Enterprise Service Bus

An Enterprise Service Bus (ESB) is a software pattern that can be part of a SOA infrastructure
and acts as an intermediary between service consumers and service providers. Service consumers
are designed to interact with the ESB and the ESB is configured to route and transform different
kinds of request and response messages between service consumers and service providers. There
are vendor products that implement many of the features described below in the supporting pat-
terns and tactics section. It is important to understand that an ESB is not required in order to im-
plement a service-oriented system. In certain contexts point-to-point integration between service
consumers and providers makes sense. In homogeneous environments that are under a single or-
ganization’s control, an ESB may be overkill.

4.1.1 Supporting Patterns and Tactics

ESB is a “compound” pattern that consists of the following patterns, as shown in Figure 4 [Erl
2009]:

• Intermediate Routing: A generic router service intercepts messages (service requests and
responses) and based on routing logic determines where the messages should be forwarded.
The routing logic may be augmented to support many tactics:

− Load balancing (e.g., fail-over to a backup in case the primary destination service is un-

available)

− Service version selection (e.g., requests are sent to compatible versions of a service in

order to support backwards compatibility during transition periods)

− Service selection based on message data (e.g., requests from premium clients are sent to

a faster processing component)

− Access control rules (e.g., a request from an unauthenticated user is routed to a login

page)

− Exception handling (e.g., a response error message that is rerouted to a service responsi-

ble for centralized exception handling)

CMU/SEI-2011-TN-008 | 19

Figure 4: ESB Patterns and Sub-Patterns (adapted from [Erl 2009])

• Service Broker: SOA solutions often integrate components that were developed at different
times or by different organizations. It is not unusual to find mismatches between the required
interface of a service consumer and the provided interface of the respective service provider.
These mismatches may result from differences in (1) the structure of the data exchanged, (2)
the data format representation used for the message content and (3) the communication pro-
tocol or component model. The service broker pattern is itself a compound pattern that pre-
scribes the use of an intermediary (the ESB) that deals with these mismatches by applying
the following three other patterns:

− Data Model Transformation: Data sent from the service consumer in a given structure
is transformed into a different structure that is expected by the service provider (and
likewise for the data sent back as a response from the provider to the consumer). In
XML terms, for example, this pattern has the service broker applying an XSLT transfor-

mation from one XML schema to another.

− Data Format Conversion: Used whenever service consumer and provider need to ex-

change data represented in different formats (e.g., XML, CSV, JSON).

− Protocol Bridging: The service consumer sends a request using a protocol (e.g., SOAP
version 1.2 over HTTP) and the service broker intercepts the request and converts it to a
request to the service provider using a different protocol (e.g., Java Remote Method In-
vocation (RMI)). The protocol mismatch between service provider and consumer can
vary from a simple version mismatch for the same protocol (e.g., SOAP v1.1 versus
v1.2) to the use of different protocols in one or more protocol layers (e.g., SOAP over
HTTP versus SOAP over JMS (Java Messaging Service)).

• Asynchronous Messaging: Some ESB products provide messaging system capability and
allow service requests and responses to be exchanged via messaging channels. The messag-
ing channels can be configured as point-to-point queues or publish-subscribe topics. Queuing
inside the ESB may be transparent to participating service consumers and providers. Al-
though messaging channels are often used for asynchronous messaging, ESB products can
also use these channels for synchronous business transactions using request and response
queues and callback addresses in the service configuration.

CMU/SEI-2011-TN-008 | 20

• Interceptor: Some ESBs offer the ability to configure interceptors, which are software ele-
ments that are activated for all requests and responses. An interceptor is called by the ESB
and receives the service request (or response on the way back) as a parameter. The intercep-
tor can be used for cross-cutting functionality such as logging, authorization checks, and per-
formance profiling. After successful execution, the interceptor lets the message proceed to its
destination or the next interceptor in the chain.

4.1.2 Impact on System Quality

Table 6 and Table 7 explain respectively the negative and positive effect on different quality
attributes related to the use of an ESB in a SOA solution. Not all ESB products provide all the
features discussed in this report. The quality impact considerations discussed below only apply to
products that provide the corresponding feature.

Table 6: ESB Aspects that Negatively Affect System Qualities

Quality Attribute Explanation of Negative Effect

Modifiability

If the ESB performs intricate data model transformations, a substantial part of the service
consumer and provider interaction logic becomes codified by the transformation rules
(e.g., XSLT stylesheets). These transformation rules add to the complexity of developing
and maintaining the solution.

Performance7 • The ESB is an intermediary and hence produces a communication overhead if com-
pared to direct point-to-point communication between service consumer and provider.
The processing done by the ESB (e.g., routing logic, data model transformation, data
format conversion, protocol conversion) adds to the roundtrip time of the service ex-
ecution.

• The routing logic can often be changed dynamically. The ability to configure routing
rules at runtime or even at load time typically incurs a performance overhead related
to loading routing data from configuration files and interpreting routing rules.

• If the ESB is providing reliable messaging, there is a performance overhead involved
with message persistence and acknowledgement notification.

Security • The ESB is another component to protect and a complex one. Misconfigured or cor-
rupted routing logic may result in unauthorized access.

Availability • The ESB may be a single point of failure in the system.

7 It is important to note that performance is not always about overhead. Some additional overhead is acceptable if

predictable performance is attained. There are many fine-grained decisions that affect predictability such as
service design, message size, operating systems, and protocols.

CMU/SEI-2011-TN-008 | 21

Table 7: ESB Aspects that Positively Affect Systems Qualities

Quality Attribute Explanation of Positive Effect

Interoperability

The ESB allows disparate systems to interoperate in spite of mismatches in data models,
data representation formats, communication protocols and implementation technologies.
This capability is particularly important to integrate legacy systems and silo applications
that run on different platforms.

Modifiability

• The ability to perform data model transformation enables the deployment of new ver-
sions of a service without disrupting existing service consumers. Service requests us-
ing data models of old versions are transformed to adhere to the current version of
the service interface.

• Data format conversion and protocol bridging capability increase the ability of the
system to easily incorporate new service consumers or providers that use different
data formats and technologies. Because format and protocol conversion are typically
provided out-of-the-box in ESB products, they do not incur an implementation com-
plexity penalty.

Reliability

When the receiver of a service request or response has failed, the ESB may queue the
message until the service is available again. The internal queue of requests and res-
ponses is sometimes persistent, which yields even better reliability.

Security The ESB may include access control functionality. It may enforce authentication and
authorization rules in service message exchanges.

4.2 Service Registry and Repository

Service registries and repositories can be custom built, but are often provided by a product in the
SOA infrastructure. Vendor products support a subset of the functionality listed below:

• Dependency Management: Provide automatic dependency detection and the ability to spe-
cify certain dependencies (e.g., use of another service for input validation) to aid architects
when performing change impact analysis. Even though this feature is commonly used for
build automation, it can also help architects in root cause analysis of service failures.

• Discovery: Support the ability of consumers to query the registry to find services that fit
their needs. In addition to desired capabilities, query criteria can include supported standards,
security policies, and QoS parameters specified in a service-level agreement (SLA).

• Versioning: Offer multiple versions of the same service, each version possibly with a differ-
ent interface and SLA.

• Event Notification: Allow stakeholders (e.g., developers, consumers, business process own-
ers) to subscribe to notifications of changes to registry content of interest (e.g., service inter-
face changes).

• Access Control: Provide security mechanisms to protect unauthorized access to service arti-
facts such as WSDL descriptions, BPEL descriptions, and policies.

• Policy Management: Service registries support the specification of policy assertions that a
service consumer must meet prior to service invocation. The classic example of a security
policy assertion is that all inbound messages must use the SHA-1 hashing algorithm for mes-
sage integrity and 256-bit encryption.

• Federation Capabilities: The ability to integrate multiple registries so that they appear to be
a single registry from the service consumer perspective.

CMU/SEI-2011-TN-008 | 22

4.2.1 Supporting Patterns and Tactics

Some supporting patterns and tactics for service-oriented systems include:

• Canonical Expression: Service contracts are standardized with naming conventions to
avoid inconsistency that could lead to a service catalog that is ambiguous. The goal is to
make service contracts consistently understood and interpreted [Erl 2009]. An example of
this pattern would be consistent naming of service operations across enterprise-wide servic-
es. This pattern supports service-oriented principles of reusability and discoverability.

• Metadata Centralization: As organizations increase in size, the risk of producing functio-
nality that already exists also increases. This can result in wasted effort and can create incon-
sistencies in how common operations are implemented. To prevent these issues, service me-
tadata is published in a central service registry to enable discovery. This metadata is usually
controlled by formal processes for publication so that resources that make it into the registry
are largely enterprise-wide services that are agnostic to functional context [Erl 2009].

• Canonical Versioning: A service inventory that has different policies for version control
has the potential to create modifiability and interoperability challenges. These challenges can
negatively impact service development and reuse as well as dynamic access to services. This
pattern often leverages existing versioning and configuration management policies in an or-
ganization [Erl 2009]. A typical example of a service versioning policy is how long an exist-
ing service contract will be supported after a new version of the service contract is released.

• Publish-Subscribe: Service registries often allow service consumers to register to receive
notification of service contract changes. It can often also be set up such that change notifica-
tions are automatically sent to all consumers.

• Use of an Intermediary: A service registry provides location transparency such that the
physical location of a service can be changed without requiring modification to service con-
sumers.

• Maintaining Existing Interfaces: Service registries support multiple versions of services to
maintain backward compatibility for periods of time when service contracts are broken to al-
low service consumers to continue to use a service until the required changes can be made on
the service consumer side.

• Adherence to Defined Protocols: Service registries support standards for description, poli-
cy assertions, and data schemas.

• Runtime Registration: Services can be registered and added to a service registry at runtime.

• Multiple Registry Copies: Many registry products support clustering multiple instances to
insure that registry/repository is not a single point of failure. This tactic also can improve re-
gistry throughput through load balancing of requests.

CMU/SEI-2011-TN-008 | 23

4.2.2 Impact on System Quality

Table 8 and Table 9 explain respectively the negative and positive effect on different quality
attributes related to the use of a service registry and repository in a SOA solution.

Table 8: Service Registry and Repository Aspects that Negatively Affect System Qualities

Quality Attribute Explanation of Negative Effect

Availability A registry that is not replicated can be a single point of failure.

Performance

Using the registry for dynamic discovery and binding of services and consumers increas-
es latency.

Security

Exposing details of service metadata can provide useful information for attackers who
can compromise services.

Table 9: Service Registry and Repository Aspects that Positively Affect System Qualities

Quality Attribute Explanation of Positive Effect

Availability

Service registries can be used at runtime (i.e., procedures to retry requests) to deter-
mine if a suitable replacement for a service that has failed can be found and invoked.

Interoperability • Multiple versions of the same service that use different approaches for communica-
tion (e.g., SOAP, REST) or different data formats (e.g., XML, JSON) can be made
available in the service registry. Service consumers can find compatible services by
querying the registry.

• The standards for service description and policy assertions are mature.

Modifiability • The service provider and consumer are loosely coupled and binding can be delayed
until runtime.

• Change impact analysis can be informed by the dependency management capabili-
ties found in many service registries.

• Multiple versions of a service can be maintained to allow time for service consumers
to migrate to use new versions of a service.

Security

Consumers can query the service registry for services that provide appropriate mes-
sage-level security, confidentiality, etc.

4.3 Messaging System

A messaging system, also known as message-oriented middleware, is often part of the execution
environment of enterprise applications. It allows distributed components to exchange asynchron-
ous messages. Messaging systems have existed long before the advent of SOAP and other Web
Services standards. Today they are commonly used in SOA solutions for transactions that involve
background processing because they can provide high levels of scalability and reliability. In fact,
messaging system capability has been embedded or integrated in many ESB products and busi-
ness process engines.

4.3.1 Supporting Patterns and Tactics

In a service-oriented system, service consumers and providers can communicate via asynchronous
message exchanges, which are routed via the underlying infrastructure (messaging system). The
basic asynchronous messaging pattern is complemented and specialized by messaging-related
patterns as shown in Figure 5. These messaging patterns applicable to service-oriented systems
are just a subset of a vast collection of known enterprise integration patterns [Hohpe 2003]. Some
other messaging patterns can include:

• Service Callback: This pattern is used when a service consumer sends an asynchronous
message to a service provider and the service business logic requires the service provider to

CMU/SEI-2011-TN-008 | 24

send back one or multiple response messages to the service consumer. In this case, the origi-
nal request contains a callback address to which the service provider sends the response mes-
sages. The callback address can be a port of the service consumer or can point to a complete-
ly different location. Service callback makes asynchronous messaging an alternative to RPC-
like interactions (e.g., as in SOAP-based web services) and has the benefit that the caller is
not blocked while waiting for a response. This pattern is particularly useful for services that
take a long time to process or long-running business processes in which the consumer needs
to keep track of step completion.

• Correlation Identifier: When messaging is used to asynchronously send a request in a re-
quest-reply interaction, the sender needs a way to correlate the original request to the reply
message (the callback) that also arrives asynchronously some time later. One solution is for
the sender to make only one request at a time so that there is only one outstanding request at
any time. But this alternative creates throughput and scalability issues and is often not ac-
ceptable. A better alternative is to extend the message content8 to include a correlation iden-
tifier—a unique identifier that is added to the request and later added to the callback so that
the sender can correlate both messages.

• Reliable Messaging: The goal of this pattern is to guarantee message delivery in case of
failure. The queues are persisted so that messages in the queues are not lost in case the mes-
saging system crashes. Once a message is successfully delivered it can be removed from the
temporary storage. Reliable messaging may also include positive and negative acknowled-
gements for each message or group of messages [Erl 2009].

• Point-to-Point Channel: Service providers and consumers communicate through a message
channel (queue), which is a unidirectional conduit of messages. The service consumer sends
a service request message to the queue and does not get blocked while waiting for a re-
sponse—unlike synchronous RPC-like interactions. There might be different components
and multiple component instances that get messages from the same queue, but each message
is delivered to only one receiver. Depending on the messaging system features and the confi-
guration of the messaging channel: (a) messages may be delivered in the order of arrival or
according to the message priority, (b) the sender may or may not receive an acknowledge-
ment that the message was delivered and (c) the point-to-point channel can follow the push
or the pull model:

− Push: The messaging system signals the message receiver component of the arrival of a

message. The receiver needs to be pre-registered with the queue.

− Pull: Message receivers need to poll the queue periodically to retrieve messages.

• Publish-Subscribe Channel: In this case, the messaging system allows components to sub-
scribe to a message channel (often called “topic”). The message sent to the topic is for-
warded asynchronously to all subscribers of that topic. Subscribing and unsubscribing (or
closing the connection to the message channel) can be done at runtime. Each subscriber rece-
ives the same message no more than once. The message is considered consumed when all

8 The correlation identifier is not part of the service input or output data; it is added to the header (as message

metadata) rather than to the body of the message.

CMU/SEI-2011-TN-008 | 25

subscribers have received it or the message expires because of timeout. Some messaging sys-
tems have the option of a durable subscriber—when the subscriber is not available to receive
a message the system saves the message for a certain amount of time. When the subscriber
reconnects, it receives all messages that were saved by the messaging system. Similar to a
point-to-point channel, a publish-subscribe channel may use the push or the pull model.

Figure 5: Asynchronous Messaging Pattern, Specializations, and Sub-Patterns

4.3.2 Impact on System Quality

Table 10 and Table 11 discuss how different quality attributes of a SOA solution are negatively
and positively affected by the use of a messaging system.

Table 10: Messaging System Aspects that Negatively Affect System Qualities

Quality Attribute Explanation of Negative Effect

Interoperability The use of the same API for implementing the message producing and message con-
suming code (e.g., JMS API in the Java world) does not guarantee interoperability. The
message producer and the message consumer services have to use locally the same
messaging system product or compatible products. Most messaging systems products
use proprietary wire protocols for communication. The alternative is to introduce a bridge
connector. For example, a service running on a platform that contains Microsoft MQ can
send a message to an IBM MQSeries destination queue on a different computer through
an MSMQ-MQSeries bridge. Some ESB products provide this bridging capability.

Modifiability • The asynchronous message paradigm is more complex because it requires a call-
back. The sender of the original message has to implement a callback endpoint and
deal with the waiting and correlation of responses.

• When an asynchronous message is sent, both service consumer (message sender)
and provider (message receiver) execute in parallel. The concurrent execution of dif-
ferent parts of the same transaction requires extra caution when accessing resources,
and adds complexity to the exception handling logic (e.g., retries, compensating oper-
ations).

CMU/SEI-2011-TN-008 | 26

Performance Going through the messaging system incurs an overhead in the overall processing due to
queue processing delays and persisting messages in the queue. Thus, messaging sys-
tems are more advisable when there are no stringent timing requirements for message
processing.

Reliability Atomic transactions that embody tasks activated via asynchronous messages are often
infeasible.

Table 11: Messaging System Aspects that Positively Affect System Qualities

Quality Attribute Explanation of Positive Effect

Interoperability • There are emerging standards for the wire-level protocol used by messaging systems
that should allow different systems to interoperate. One of them is advanced queueing
message protocol (AMQP), an open standard initially proposed by J.P. Morgan and
now under the responsibility of the AMQP Working Group [AMQP 2010]. Another
standard is Stomp, which is a text-based protocol specification published as part of an
open source project hosted by codehaus.org [Stomp 2010].

• The WS-ReliableMessaging standard allows message producers and consumers
implemented in different languages and on different platforms to interoperate using
the SOAP protocol [OASIS 2007]. Support for this emerging standard has been an-
nounced by a number of middleware vendors.

Modifiability If the service consumer and provider can communicate via messages it is easier to insert
a mediator of that interaction.

Performance • Service requests are processed by message consumers in the background with no
blocking time for the service consumer.

• Publish-subscribe channels are efficient in local networks because the messaging
system can take advantage of the Ethernet bus architecture and use IP Multicast
[Hohpe 2003]. In this case, a single IP packet is sent and multiple recipients can read
it.

Reliability Many messaging systems offer reliable messaging with persistent queues and guaran-
teed delivery of messages.

Scalability and
Availability

• Horizontal scalability in some messaging systems can be achieved by creating clus-
ters of replicated messaging system nodes. These cluster configurations provide load
balancing, high availability, and automatic failover.

4.4 Business Process Engine

A business process engine is a software component responsible for processing incoming requests
by performing the steps of the business process that correspond to that request. These steps typi-
cally involve calling one or more services. Part of the business process engine solution is a busi-
ness process modeling (BPM) tool that allows the description, and often visualization, of a busi-
ness process. The BPM tool then generates a business process9 that is deployed to and executed
by the business process engine when processing requests.

The services that participate in the execution of the business process do not interact directly with
each other; they interact with the business process engine that coordinates the execution. Because
of this coordination role, the business process engine is often called an orchestration engine or
orchestration server. A business process engine may or may not be part of the SOA infrastructure,
but if it is not, the business process has to be coded manually as part of the service implementa-
tion or in the service consumer.

9 The BPM tool stores the business process specification in a given language (for example, web services busi-

ness process execution language (WS-BPEL)). For deployment to the process engine, the business process
may be compiled into a different language used by the business process engine.

CMU/SEI-2011-TN-008 | 27

4.4.1 Supporting Patterns and Tactics

The business process engine follows the SOA design pattern called orchestration [Erl 2009]. This
pattern is a compound pattern—it results from the combination of four other patterns, as shown in
Figure 6.

Figure 6: Orchestration Pattern and Sub-Patterns (adapted from [Erl 2009])

The four patterns that make up the compound orchestration pattern are:

• Process Abstraction: This pattern prescribes that the business logic specific to a given busi-
ness process should be implemented in a task-based service, basically following the layered
structure described in Section 2.3. The task-based service does not contain logic that is reus-
able across services, such as data access and utilities. Instead, the task-based service is com-
posed by calling entity and utility services. This separation of services in layers enables reuse
and service composition, which are important to successfully employ a business process en-
gine solution.

• Process Centralization: The Process Abstraction pattern provides a business logic layer.
However, the task-based services in that layer may be implemented independently and scat-
tered across the organization. The Process Centralization pattern recommends that these ser-
vices be placed in a centralized location. Furthermore, an orchestration engine becomes re-
sponsible for executing the business logic services. Instead of being manually coded, these
services can be defined using a BPM tool and compiled to a format readable by the orches-
tration engine. The orchestration engine mediates the interaction with entities, utilities, and
other services that participate in the business process, and also provides special capabilities,
such as fault handling, life-cycle management for long-running asynchronous service inte-
ractions, human tasks as part of the workflow, notifications, and parallel execution of servic-
es.

• State Repository: The execution of a business process may involve the invocation of mul-
tiple services. Data returned from a given service invocation may not be used until much lat-
er in the process workflow. To avoid holding the data in memory for extended periods, this
pattern introduces a repository for temporarily storing the business process state. Despite the
performance overhead to persist data and retrieve it later when it is needed, the state reposi-

CMU/SEI-2011-TN-008 | 28

tory decreases overall memory consumption and improves reliability of the system because
state may be restored from the repository upon a failure. Temporarily storing process state in
a database is sometimes called dehydration. Dehydration points may be designed into the
business process, but can also be inserted automatically by some business process engines.

• Compensating Transaction: The execution of a business process may fail because an ex-
ception occurred in a participating service or in the business process engine. In this case, da-
tabase changes made by the participating services may need to be rolled back to the previous
state. Often these services do not run in the context of a single database transaction or a dis-
tributed transaction. The Compensating Transaction pattern provides an alternative that con-
sists of implementing service compensating logic in each service. This logic is invoked by
the business process upon a failure and performs an “undo” of the changes previously made
by the service. For each operation in the service interface that alters persistent data, an undo
operation is added to the interface.

In addition to service orchestration, some business process engine products have capabilities that
promote interoperability. These products implement the following patterns, which were discussed
in Section 4.1.1:

• Data model transformation

• Data format conversion

• Protocol bridging

4.4.2 Impact on System Quality

Table 12 and Table 13 discuss the negative and positive effects in different quality attributes when
a business process engine is used in a SOA solution.

Table 12: Business Process Engine Aspects that Negatively Affect System Qualities

Quality Attribute Explanation of Negative Effect

Modifiability • The need to design and implement compensating transactions into services increases
the complexity of the solution and can increase the size and complexity of service in-
terfaces.

• The ability to dynamically modify routing rules that are part of a business process
workflow has the risk of having untested logic running in production. Thus, such
changes should go through traditional testing phases.

Performance Upon the specific event that triggers a business process, the business process engine
executes the business process and intermediates the interaction of the participating ser-
vices. That orchestration role incurs a performance overhead.

Security • The business process engine is another component to protect. Misconfigured or cor-
rupted workflow logic may result in a security breach.

• The business process engine may be a single point of failure in the SOA infrastructure
(a security and availability concern).

Table 13: Business Process Engine Aspects that Positively Affect System Qualities

Quality Attribute Explanation of Positive Effect

Interoperability Some business process engines are capable of interacting with services through different
protocols (e.g., SOAP over HTTP, SMTP, JMS) and therefore promote seamless integra-
tion of these disparate services.

Modifiability • Externalizing business process flow logic from a service’s code allows easier imple-
mentation of business rules. Business process workflows can more easily be changed
if a visual workflow modeling tool is available.

• Entity- and Utility-based services are the best candidates for reusable logic in typical

CMU/SEI-2011-TN-008 | 29

Quality Attribute Explanation of Positive Effect

service-oriented systems. Providing entity services and utility services in separate
layers improves reuse by allowing business logic services across different domains to
be implemented by composing entity and utility services as necessary.

• Many changes to the data model can be handled by adapting the entity services,
minimizing the impact on business logic services.

Reliability Business process engines have built-in fault handling mechanisms. Besides, the busi-
ness process workflow is executed strictly based on the business process model usually
created using a BPM tool. Thus, a business process that uses a business process engine
should be more reliable and less error-prone than a custom-developed workflow applica-
tion.

4.5 Monitoring and Management Tools

Software monitoring and management tools are a group of tools that enable organizations to
detect, diagnose, and react to potential problems in applications—these tools are often part of
ESB products. SOA monitoring and management tools enable organizations to monitor and man-
age service-oriented systems. These tools are used for runtime monitoring to provide information
that can be used to maintain system quality of service and to inform tactics and patterns such as

• Dynamic load balancing can use information from the monitoring tool about service re-
sponse time or CPU and memory usage to distribute requests across replicated resources.

• Failover and recovery procedures can be activated based on failures reported by monitoring
tools.

• Service removal or replacement can be triggered by failure detection and historical data on
the rate of failure of a service in a particular configuration.

4.5.1 Supporting Patterns and Tactics

The set of tactics used for monitoring service-oriented systems includes

• Heartbeat: A heartbeat is a message sent periodically by the service to the monitoring com-
ponent confirming that the service is running. A heartbeat does not verify that the service is
working properly, only that it is responsive.

• Ping: In general, a ping is a message sent periodically by the monitoring component to the
service that generates a response. A reply to the ping message within the expected response
time indicates that the service is running and can process and respond to the ping.

• Synthetic Transaction: This is an extension of a ping using fabricated input to the service
interface. A synthetic transaction verifies that a set of services is able to execute a transaction
properly. This is often done using test accounts so that execution of these transactions does
not impact business operations.

• Status Message/Tracing: This is a message that is sent based on the status of a transaction.
Status messages enable application-level monitoring where services send detailed status
messages at critical steps in a transaction, thus providing information for an end-to-end view
of the transaction.

• Agent: An agent is an autonomous, continuously running software entity. Customized agents
can monitor services, audit logs, memory probes, and incoming and outgoing messages, and
report abnormal behavior such as a high request volume.

CMU/SEI-2011-TN-008 | 30

• Instrumentation: Instrumentation is code added to the service implementation to capture
data related to metrics. The data (measures) is processed by monitoring tools, which can de-
termine status and performance levels of the service.

• Complex Event Processing (CEP): With CEP, message traffic is monitored and analyzed in
real-time to identify patterns of events that may be useful to the business or, in the case of
service monitoring, may indicate a threat or an attack.

4.5.2 Impact on System Quality

Table 14 and Table 15 discuss the negative and positive effects in different quality attributes when
a business process engine is used in a SOA solution.

Table 14: Monitoring and Management Tools Aspects that Negatively Affect System Qualities

Quality Attribute Explanation of Negative Effect

Performance There are many techniques (i.e., ping, heartbeat, and synthetic transactions) that are
used for monitoring that consume system resources such as memory, processing cycles
and network bandwidth. If not designed carefully, these monitoring messages may have
a negative effect on the overall throughput.

Table 15: Monitoring and Management Tools Aspects that Positively Affect System Qualities

Quality Attribute Explanation of Positive Effect

Availability The monitoring tool can detect failures and notify the appropriate system artifacts to act in
response to the failure (e.g., switching to a redundant software element or hardware).

Performance Monitoring and management tools can be used to identify services that may be over-
loaded. New instances of service consumers can be dynamically created and the excess
requests can be transparently routed to ensure proper load balancing.

Reliability Synthetic transactions can be used to determine that services are accurately servicing
requests or complying with policies.

CMU/SEI-2011-TN-008 | 31

5 Conclusions

Service-oriented architecture (SOA) is an architectural style for designing and developing distri-
buted systems. Drivers for SOA adoption typically include easy and flexible integration with leg-
acy systems, streamlined business processes, reduced costs, innovative service to customers, and
agility to handle rapidly changing business processes. From an architectural and quality attribute
perspective these drivers usually translate to interoperability and modifiability, which are
achieved by adhering to a set of architectural principles for service-oriented systems such as loose
coupling, standardization, reusability, composability, and discoverability. However, promoting
interoperability and modifiability as well as adhering to these principles requires architects to
make architectural decisions based on tradeoffs with other quality attributes that may be important
to system stakeholders, or defined by SOA governance, such as availability, reliability, security,
and performance.

Between 2005 and 2007, multiple surveys were conducted by organizations such as Forrester,
Gartner, and IDC that showed that the top drivers for SOA adoption were mainly internally fo-
cused: these top drivers generally included application integration, data integration, and internal
process improvement. This is changing. A recent survey published by Forrester shows that the
number of organizations currently using SOA for external integration is approximately one third
of the surveyed organization [Forrester 2009]. While the percentage of externally focused SOA
applications is still a minority, this percentage has been growing and the trend will continue as
organizations look at SOA adoption for supply-chain integration, access to real-time data, and
cost reduction through the use of third-party services via the cloud or software-as-a-service
(SaaS). As organizations expand their systems to cross organizational boundaries, architects will
have to re-evaluate the use of SOA as an architectural style in these systems. They may need to
architect their systems in such a way that qualities are met without having to sacrifice the loosely
coupled, stateless, standards-based nature of the relationship between service consumers and ser-
vice providers’ characteristics that have made SOA a worthwhile technology to adopt.

In essence, as an architectural style, SOA may be an appropriate solution in some situations, but
there will be other situations in which it is not appropriate or it has to be used in conjunction with
other technologies to achieve the desired system qualities. The architect is often at conflict be-
cause on one hand there are business and mission goals that dictate the quality attributes that are
important for system success. On the other hand, the architect using service-orientation wants to
adhere to SOA principles and leverage SOA to its advantage and find out that it makes it difficult
to achieve quality goals. The information provided in this report illustrates some of these conflicts
and should help an architect navigate the underlying implications and provide reasons to be selec-
tive and deliberate in the architecting process. The architects of service-oriented systems play a
crucial role in determining what expectations can or cannot be met by SOA adoption, and where
tradeoffs can be made for the benefit of the organization and the accomplishment of system quali-
ty attributes.

CMU/SEI-2011-TN-008 | 32

References

URLs are valid as of the publication date of this document.

[Afshar 2007]
Afshar, M. SOA Governance: Framework and Best Practices, Version 1.1. Oracle, May 2007.
http://www.oracle.com/us/technologies/soa/oracle-soa-governance-best-practice-066427.pdf

[AMQP 2010]
AMQP Working Group. Advanced Message Queuing Protocol 1.0 recommendation draft.
http://www.amqp.org/ Accessed March 31, 2011.

[Arsanjani 2004]
Arsanjani, Ali. Service-oriented modeling and architecture. November 2004.
http://www.ibm.com/developerworks/library/ws-soa-design1/

[Bass 2003]
Bass, Len; Clements, Paul; & Kazman, Rick. Software Architecture in Practice. Addison-Wesley
Professional, 2003. http://www.sei.cmu.edu/library/abstracts/books/0321154959.cfm

[Bianco 2007]
Bianco, Phil; Kotermanski, Rick; & Merson, Paulo. Evaluating a Service-Oriented Architecture
(CMU/SEI-2007-TR-015). Carnegie Mellon University, Software Engineering Institute, 2007.
http://www.sei.cmu.edu/library/abstracts/reports/07tr015.cfm

[Bieberstein 2008]
Bieberstein, Norbert; Jones, Keith; Laird, Robert G.; & Mitra, Tilak. Executing SOA: A Metho-
dology for Service Modeling and Design. July 2008.
http://www.informit.com/articles/article.aspx?p=1194198

[Buschmann 1996]
Buschmann, F.; Meunier, R.; Rohnert, H.; Sommerlad, P.; & Stal, M. Pattern-Oriented Software
Architecture Volume 1: A System of Patterns. Wiley, 1996.

[Chappell 2004]
Chappell, D. Enterprise Service Bus. O’Reilly, June 2004 (ISBN 0-596-00675-6).

[Clements 2010]
Clements, Paul; Bachmann, Felix; Bass, Len; Garlan, David; Ivers, James; Little, Reed; Merson,
Paulo; Nord, Robert; & Stafford, Judith A. Documenting Software Architectures: Views and
Beyond, 2nd Edition. Addison-Wesley, 2010.
http://www.sei.cmu.edu/library/abstracts/books/0321552687.cfm

[Erl 2008]
Erl, Thomas. SOA: Principles of Service Design. Prentice Hall, 2008 (ISBN: 0-13-234482-3).

CMU/SEI-2011-TN-008 | 33

[Erl 2009]
Erl, Thomas. SOA Design Patterns. Prentice Hall, 2009.

[Forrester 2009]
Forrester Research. Enterprise and SMB Software Survey, North America and Europe, Q4 2008,
2009.

[Gamma 1994]
Gamma, E.; Helm, R.; Johnson, R.; & Vlissides, J. Design Patterns: Elements of Reusable Ob-
ject-Oriented Software. Addison-Wesley Professional, 1994.

[Ghosh 2000]
Ghosh, S. Testing Component-Based Distributed Applications. Purdue University, USA. 2000.

[Hohpe 2003]
Hohpe, Gregor & Woolf, Bobby. Enterprise Integration Pattern. Addison-Wesley, October 2003.

[Juric 2004]
Juric, M. B.; Kezmah, B.; Hericko, M.; Rozman, I.; & Vezocnik, I. “Java RMI, RMI tunneling
and Web services comparison and performance analysis.” SIGPLAN Not. 39, 5 (May 2004): 58-
65. DOI= http://doi.acm.org/10.1145/997140.997146

[Lewis 2005]
Lewis, Grace & Wrage, Lutz. A Process for Context-Based Technology Evaluation (CMU/SEI
2005-TN-025). Carnegie Mellon University, Software Engineering Institute, 2005.
http://www.sei.cmu.edu/library/abstracts/reports/05tn025.cfm

[Lewis 2007]
Lewis, Grace; Morris, Ed; Simanta, Soumya; & Wrage, Lutz. “Common Misconceptions about
Service-Oriented Architectures.” Proceedings of the 6th IEEE International Conference on
COTS-Based Software Systems (ICCBSS 2007), February 2007.

[Lewis 2008a]
Lewis, Grace, et. al. Why Standards Are Not Enough To Guarantee End-to-End Interoperability.
Seventh International Conference on Composition-Based Software Systems (ICCBSS 2008),
2008, pp. 164-173.

[Lewis 2008b]
Lewis, G.; Morris, E.; Smith, D.; & Simanta, S. SMART: Analyzing the Reuse Potential of Legacy
Components in a Service-Oriented Architecture Environment (CMU/SEI-2008-TN-008). Carne-
gie Mellon University, Software Engineering Institute, 2008.
http://www.sei.cmu.edu/library/abstracts/reports/08tn008.cfm

[Morris 2010]
Morris, Ed; Anderson, Bill; Balasubramaniam, Sriram; Carney, David; Morley, John; Place, Pat;
& Simanta, Soumya. Testing in SOA Environments (CMU/SEI-2010-TR-011). Carnegie Mellon
University, Software Engineering Institute, 2010.
http://www.sei.cmu.edu/library/abstracts/reports/10tr011.cfm

CMU/SEI-2011-TN-008 | 34

[OASIS 2006]
OASIS. Web Services Security: SOAP Message Security 1.1 (WS-Security 2004). 2006.
http://docs.oasis-open.org/wss/v1.1/

[OASIS 2007]
OASIS. Web Services Reliable Messaging (WS-ReliableMessaging) Version 1.1. http://docs.oasis-
open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-os-01.pdf

[OMG 2009a]
Object Management Group. Business Process Model and Notation (BPMN) Version 2.0 Beta 1.
August 2009. http://www.omg.org/cgi-bin/doc?dtc/09-08-14

[OMG 2009b]
Object Management Group. Service-Oriented Architecture Modeling Language (SoaML)—
Specification for the UML Profile and Metamodel for Services (UPMS) Version 1.0 Beta 2. De-
cember 2009. http://www.omg.org/spec/SoaML/1.0/Beta2/

[Simanta 2009]
Simanta, Soumya; Morris, Edwin J.; Lewis, Grace; Balasubramaniam, Sriram; & Smith, Dennis
B. A Scenario-Based Technique for Developing SOA Technical Governance (CMU/SEI-2009-
TN-009). Carnegie Mellon University, Software Engineering Institute, 2009.
http://www.sei.cmu.edu/library/abstracts/reports/09tn009.cfm

[SOA Methodology 2010]
SOA Methodology. SOA Methodology. 2010. http://www.soamethodology.com

[Stomp 2010]
Stomp Protocol Specification, Version 1.0. 2010. http://stomp.codehaus.org/Protocol

[Sullivan 2009]
Sullivan, B. XML “Denial of Service Attacks and Defenses.” MSDN Magazine (November 2009).
http://msdn.microsoft.com/en-us/magazine/ee335713.aspx

[TOG 2006]
The Open Group (TOG). The Open Group Architecture Framework (TOGAF). 2006.
http://www.opengroup.org/architecture/togaf8-doc/arch/index.html

[White 2004]
White, Stephen A. Introduction to BPMN. May 2004.
http://www.bpmn.org/Documents/Introduction_to_BPMN.pdf

[WS-I 2010]
WS-I. Web Services Interoperability Organization. http://www.ws-i.org (2010).

[zur Muehlen 2008]
zur Muehlen, Michael. How much BPMN do you need? March 2008. http://www.bpm-
research.com/2008/03/03/how-much-bpmn-do-you-need/

CMU/SEI-2011-TN-008 | 35

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

August 2011

3. REPORT TYPE AND DATES
COVERED

Final

4. TITLE AND SUBTITLE

Architecting Service-Oriented Systems

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Philip Bianco, Grace A. Lewis, Paulo Merson, Soumya Simanta

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2011-TN-008

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)
Service orientation is an approach to software systems development that has become a popular way to implement distri-
buted, loosely coupled systems, because it offers such features as standardization, platform independence, well-defined
interfaces, and tool support that enables legacy system integration. From a quality attribute point of view, the primary drivers
for service orientation adoption are interoperability and modifiability. However, a common misconception is that an architec-
ture that uses a service-oriented approach can achieve these qualities by simply putting together a set of vendor products
that provide an infrastructure and then using this infrastructure to expose a set of reusable services to build systems. In
reality, there are many architectural decisions that need to be made. An architectural decision that promotes interoperability
or modifiability can negatively impact other qualities, such as availability, reliability, security and performance. The goal of
this report is to present general guidelines for architecting service-oriented systems, how common service-oriented system
components support these principles, and the effect that these principles and their implementation have on system quality
attributes.

14. SUBJECT TERMS

Service-oriented architecture, system architecture, quality attributes

15. NUMBER OF PAGES

46

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18

298-102

	Architecting Service-Oriented Systems
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	1 Introduction
	2 Summary of Existing Work
	3 SOA Architectural Principles
	4 Common Components of a Service-Oriented System
	5 Conclusions
	References

