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a b s t r a c t

A set of simplified boundary conditions for a flexible beam connected to a rigid body at

one end and free at the other end is presented and applied to the case of a fluid-

conveying, fluid-immersed pipe. These boundary conditions represent an analytically

tractable approximation to those of a submersible which uses a combination of jet

action and flutter instability induced tail motion to produce thrust. The boundary

conditions are made non-dimensional, and the effect of the non-dimensional mass of

the rigid body on system stability is assessed. The neutral stability of this system is

determined within a two-parameter space consisting of the velocity of the fluid within

the tail, and the forward speed of the submersible. Equations in the literature, derived

using slender-body theory, were used to compute the sign of the thrust produced by the

tail and the tail’s Froude efficiency for the neutrally stable waveforms of the beam.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The dynamics of fluid-conveying pipes have been well-examined in the literature, both with external flow (Hannoyer
and Paı̈doussis, 1978; Paı̈doussis, 2004) and without external flow (Paı̈doussis, 1998). Many boundary conditions have also
been studied. The cantilever (Bourri�eres, 1939; Gregory and Paı̈doussis, 1966) and pinned–pinned (Ashley and Haviland,
1950) conditions form the bulk of the early entries in the literature, and somewhat more exotic conditions, such as that of
a clamped foundation with a spring support (Chen, 1971) have since been added. It is notable that the boundary conditions
considered tend to be those found in classical engineering practice, or improvements upon them. This is in contrast to the
‘‘theory first’’ bent of mind expressed in the literature (Paı̈doussis and Li, 1993, for example), in which theoretical
developments precede practical applications. In this paper, the boundary conditions of a fluid-conveying fluid-immersed
pipe, affixed at one end to a rigid body and free at the other end, are developed and the resultant dynamics of the pipe is
discussed. Far from being a purely theoretical exercise, this work has been aimed at analyzing a novel type of submersible.

In the 1970s, Paı̈doussis and coworkers built and tested (Paı̈doussis, 1976) a propulsor which exploited the dynamics of
a fluid-conveying pipe. The superficial similarity between a fluttering fluid-conveying cantilever and a fish is compelling;
both motions are that of a traveling wave which grows from tip to tail, and it is easy to appreciate that the
well-documented efficiency of fish-like motion (Gray, 1936; Lighthill, 1970) was the motivation for this type of
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mechanism. Although the fluttering motion of the tail was found to be a net gain above the thrust provided by the jet
exhausting into the water, the efficiency did not approach that of a propeller, and after a patent (Paı̈doussis, 1978), the idea
appears to have been dropped. The two works which comprise the published literature on this type of combination
propulsor are primarily experimental, and in the next section we discuss some basic theoretical considerations needed to
compute the thrust and efficiency in its motion.

We believe that several interim developments since Paı̈doussis’ (1976) initial efforts make the fluttering fluid-
conveying tail a compelling problem for reexamination. In the intervening 30 years, both battery and motor technologies
have improved to the point that the prime mover and power source can be packaged into the neutrally buoyant hull of a
submersible; whereas the hull used by Paı̈doussis was large relative to the propulsor, to the point that the beam could be
considered a cantilever. A significant reduction in the size of the hull allows the tail motion to affect those of the hull, and
vice versa. Analysis of a vehicle with a smaller hull therefore requires that the dynamics of the hull be considered when
analyzing the stability of the fluid-conveying tail. A smaller hull significantly reduces drag and may in the future allow a
vehicle of this type to harness the impressive maneuverability of fish. While the present communication does not consider
the additional dynamics present in an accelerating and turning vehicle,1 the boundary conditions presented here are the
closest linear approximation to those found in the proposed submersible.

This paper is organized as follows. Section 2 provides the background for the dynamic equations of fluid conveying,
fluid-immersed pipes and the mechanics of slender-body swimming. Section 3 presents the rigid body boundary
conditions, non-dimensionalizes them, and describes the analytical method used for solution. Section 4 investigates the
flow requirements for controlled flutter and calculations of thrust and efficiency of the waveforms produced by the
fluttering tail. Concluding remarks and directions for future research are provided in Section 5.

2. Background

2.1. Fluid-conveying pipes

The equations of motion and boundary conditions for a cantilever pipe conveying fluid with constant velocity Ui,
immersed in an inviscid fluid flowing with constant velocity Ue, and ignoring gravitational, viscous, pressurization and
tensile effects, are as follows (Paı̈doussis, 2004):

EI
@4y

@x4
þðMU2

i þMeU2
e Þ
@2y

@x2
þ2ðMUiþMeUeÞ

@2y

@x@t
þðmþMþMeÞ

@2y

@t2
¼ 0,

yð0,tÞ ¼ 0,
@y

@x
ð0,tÞ ¼ 0,

@2y

@x2
ðL,tÞ ¼ 0,

@3y

@x3
ðL,tÞ ¼ 0, ð1Þ

where y(x,t) is the displacement of the pipe, as shown in Fig. 1, E, I and L denote Young’s modulus, area moment of inertia,
and length of the pipe, respectively, and m, M and Me represent the mass per unit length of the beam, the internal
(conveyed) fluid, and the external fluid. The masses per unit length of the beam and internal fluid can be easily computed
but the mass per unit length of the external fluid requires approximation. One method for computation of Me is to use the
added mass coefficient (Brennan, 1982). For thin cross-sections, such as that of a flat plate, the added mass is equal to the
mass of water within the cylinder which circumscribes the plate cross-section. A ‘‘finned tube’’, well-suited to providing
both a fluid conduit and a tail of adequate span, is depicted in Fig. 2 with the area responsible for the added external mass
marked. Viscous terms characteristic of the external flow (Hannoyer and Paı̈doussis, 1978) and internal flow (Hellum et al.,
2010b) are of course needed to compute the overall efficiency of the submersible, and affect beam stability as well.
However, to benefit from Lighthill’s (1960) prior work on thrust and efficiency of an oscillating slender body and to keep
the analysis simple, we have chosen to neglect these effects.

Eq. (1) may be non-dimensionalized via the following change of variables:

X ¼
x

L
, Y ¼

y

L
, T ¼

t

L2

EI

mþMþMe

� �1=2

: ð2Þ

If we define the non-dimensional velocities ui and ue and the mass fractions bi and be as follows:

ui ¼
M

EI

� �1=2

UiL, bi ¼
M

mþMþMe
,

ue ¼
Me

EI

� �1=2

UeL, be ¼
Me

mþMþMe
,

1 A recent conference paper (Hellum et al., 2010a) does include these terms and solves the equations of motion with a finite difference scheme. The

results presented in the current work were used to reduce the number of lengthy iterations required to find a thrust-producing region of operation.
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then Eq. (1) can be written in its non-dimensional form

@4Y

@X4
þðu2

i þu2
e Þ
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þ2ðui

ffiffiffiffiffi
bi

q
þue

ffiffiffiffiffi
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q
Þ
@2Y

@X@T
þ
@2Y

@T2
¼ 0: ð3Þ

If we assume a separable form for y(x,t) such that

yðx,tÞ ¼ f ðxÞeiOt ,

the non-dimensional variable Y can then be written as

YðX,TÞ ¼fðXÞeiot , o¼ mþMþMe

EI

� �1=2

OL2: ð4Þ

Separation yields the ordinary differential equation and boundary conditions

@4f
@X4
þðu2

i þu2
e Þ
@2f
@X2
þ2ðui

ffiffiffiffiffi
bi

q
þue

ffiffiffiffiffi
be

q
Þ io @f

@X
�o2f¼ 0,

fð0Þ ¼ 0, f0ð0Þ ¼ 0, f00ð1Þ ¼ 0, f000ð1Þ ¼ 0, ð5Þ

where f0, f00, and f000 denote the first, second, and third derivatives of f with respect to X. The solution of f is assumed to
be of the form fðXÞ ¼ AezX . For specific values of ui, ue, bi and be, the characteristic polynomial of Eq. (5) provides four roots
zn, where zn ¼ znðoÞ, n¼ 1,2,3,4. The solution of fðXÞ therefore takes the form

fðXÞ ¼ A1ez1XþA2ez2XþA3ez3XþA4ez4X : ð6Þ

Substitution of Eq. (6) into Eq. (5) yields the identity

1 1 1 1

z1 z2 z3 z4

z2
1ez1 z2

2ez2 z2
3ez3 z2

4ez4
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1ez1 z3
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Z

A1

A2

A3

A4

2
66664

3
77775¼

0

0

0

0

2
6664

3
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A non-trivial solution (for o) of Eq. (7) is obtained by numerical evaluation of the roots of DetðZÞ ¼ 0. This equation has
infinite roots in o. Substitution of Eq. (6) into Eq. (4) yields

YðX,TÞ ¼
X4

n ¼ 1

AneznXeioT ¼
X4

n ¼ 1

AneRe½zn �X|fflfflffl{zfflfflffl}
ðiÞ

eiðIm½zn �XþRe½o�TÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
ðiiÞ

e�Im½o�T|fflfflfflffl{zfflfflfflffl}
ðiiiÞ

: ð8Þ

It can be seen that Y(X,T) is a product of three exponential terms of which the first term is bounded (since X is bounded),
and the second term is periodic since the exponent is imaginary. The third term can grow unbounded with time if
Im½o�o0 and this represents the onset of flutter instability. The mode and velocity at which the pipe becomes unstable
depends on the fluid mass fractions bi and be. The coefficients An, n¼1,2,3,4, can be computed from the nullspace of the
matrix Z in Eq. (7), once o and zn, n¼1,2,3,4, have been determined. These coefficients are needed to estimate the force
exerted by the fluid-conveying tube on the surrounding fluid.

y(x,t)
x

y

Ui

x dx

dx

R

r

Ui

Fig. 1. A cantilevered fluid-conveying pipe, with a magnified view of a small length element.

S

D

Fig. 2. The cross-section of a finned tube with fluid-conduit diameter D and tail span S. The dotted circle describes the area responsible for the added

external mass Me, which is equal to 0:25rfpS2, where rf is the density of the external fluid.
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2.2. Slender-body swimming

Fish-like propulsion has been a topic of interest in the academic community for more than 60 years and several robotic
platforms have been built (see Triantafyllou et al., 2000; Mcmasters et al., 2008) to exploit the phenomenon. In this paper,
we propose a mechanism (see Fig. 3) in which a fluttering fluid-conveying tail provides thrust by both jet and tail action;
the tail has the cross-sectional profile of a finned tube like the one shown in Fig. 2. A similar mechanism was constructed in
the 1970s (Paı̈doussis, 1976) and was found to produce positive thrust only if the phase velocity of the tail displacement
was greater than the forward speed of the vessel.

Thrust production via a high phase velocity traveling wave was described first in a paper by Lighthill (1960), which
used slender-body analysis to approximate the thrust produced by an idealized fish. Lighthill found that a traveling
waveform, for example yðx,tÞ ¼ f ðxÞcosðkxþOtÞ, can produce positive thrust if ðO=kÞ4Ue, where Ue is the speed of the body
relative to the external fluid. The quantity O=k is known as the phase velocity. The following equation is the dimensional
form of Eq. (8) for a single waveform

ynðx,tÞ ¼ AneRe½Zn �xeiðIm½Zn�xþRe½O�tÞe�iIm½O�t , ð9Þ

where Zn and O are the dimensional wavenumber and frequency. The waveform described by Eq. (9) will result in positive
thrust if

Re½O�
Im½Zn�

4Ue:

The above equation can be non-dimensionalized to the form

Re½o�
L2

EI

mþMþMe

� �1=2 L

Im½zn�
4ue

EI

Me

� �1=2 1

L
)

Re½o�
Im½zn�

4
ue

b1=2
: ð10Þ

Eq. (10) gives us a condition under which a waveform will generate positive thrust, where Re½o�=Im½zn� is the non-
dimensional phase velocity of the waveform.

The icthyoid propulsor (Paı̈doussis, 1976) was described to have a single phase velocity, which was measured by direct
observation. While a single phase velocity is relatively simple to determine experimentally, determination of positive
thrust is not straightforward in the context of Eq. (8) since it has four traveling waveforms of different, spatially variable
amplitudes and phase velocities. In the context of Eq. (8), it is easier to estimate thrust by the method laid out by Lighthill
(1960) and Wu (1971). In those papers, a slender2 fish is considered and the time-averaged thrust t is given by the relation

t ¼ 1
2Me

�
½ _y2
�ðUey0Þ2�x ¼ L�½ _y

2
�ðUey0Þ2�x ¼ 0

�
, ð11Þ

where y¼y(x,t) denotes the displacement of the slender body from its neutral position, _y and y0 denote partial derivatives
of y with respect to time and x, and overbar refers to a long-term time average. In the above equation, increasing Me

increases the thrust generated; this leads to the design choice of the finned-tube in Fig. 2. The form of Eq. (11) also makes it
clear that a higher forward speed Ue requires a higher velocity _y to sustain it. Both Lighthill (1960) and Wu (1971) derived
the expression in Eq. (11) without the assumption of harmonic motion. If harmonic motion is assumed, the time average
over a single cycle is sufficient. Note that Eq. (11) differs slightly from that found in Wu (1971).3 Wu’s assumption that no
mass is affected at x¼0 is relaxed, since we are dealing with a uniform tail rather than a tapered fish which has zero area at
the tip.

A similar expression (Lighthill, 1960) was derived for the average power P required to provide the displacements y(x,t)

P ¼UeMe

�
½ _yð _yþUey0Þ�x ¼ L�½ _yð _yþUey0Þ�x ¼ 0

�
, ð12Þ

which includes the power lost in the vortex wake. Eqs. (11) and (12) indicate that a large magnitude of _y produces greater
thrust but also requires higher energy input. This can also be verified from the expression of the Froude efficiency

x

Ue y

L

Ui

Fig. 3. The proposed submersible, comprises a rigid body and a fluid-conveying flexible tail.

2 A definition of ‘‘slender body’’ can be found in Section 2 of Wu (1971).
3 Eq. (47) in that work.
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(Lighthill, 1960) of the motion of the slender body

Z¼ tUe

P
: ð13Þ

In this paper we consider a submersible which comprises a rigid body and a fluid-conveying tail. The expression for
efficiency in Eq. (13) does not account for power lost to internal fluid shearing in the pipe, or external drag. The actual
efficiency of the submersible will therefore be somewhat lower after these effects are accounted for.

3. Fluid-conveying pipe affixed to a rigid body

3.1. Simplified boundary conditions

The complete dynamics of a submersible with a fluid-conveying fluttering tail, as shown in Fig. 3, was derived by
Hellum et al. (2010a). However, a simplified model that permits better understanding of the important parameters
governing the motion is desirable. To this end, we make the following assumptions:

(i) The rigid body is symmetric about the plane containing the neutral surface of the undeformed beam.
(ii) The rotation of the rigid body, denoted by y in Fig. 4, is small. This is in addition to the Euler–Bernoulli beam

assumption that the slope of the tail is small everywhere along its length.
(iii) The submersible has zero acceleration in the x direction. This allows us to ignore the ‘‘forces’’ that arise from a non-

inertial reference frame.
(iv) The added mass coefficient associated with the rigid body is zero. This assumption simplifies the analysis by allowing

us to concentrate on the geometry of the rigid body in the xy plane. This is equivalent to the assumption that the rigid
body is a planar lamina in the xy plane.

The above assumptions allow us to write the boundary conditions for the fluid-conveying tail4 at x¼0 as follows:

EI
@3y

@x3
þMB

@2y

@t2
�‘

@3y

@x@t2
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x ¼ 0

¼ 0, ð14aÞ

EI
@2y

@x2
�ðJBþMB‘

2Þ
@3y

@x@t2
þMB‘

@2y

@t2

� �
x ¼ 0

¼ 0, ð14bÞ

where MB is the mass of the rigid body, and JB is the mass moment of inertia of the rigid body about its center of mass, and
‘ is the distance of the center of mass of the rigid body from the base of the tail. The boundary conditions in Eq. (14) can be
derived from the free-body diagram of the rigid body in Fig. 4 as follows:

�V¼MB
@2y

@t2
�‘

@3y

@x@t2

� �
x ¼ 0

, M�‘V¼ JB
@3y

@x@t2

� �
x ¼ 0

:

It should be pointed out that the variable y in Fig. 4 denotes the orientation of the rigid body, which is equal to the slope of
the tail at x¼0, i.e., y¼ ½@y=@x�x ¼ 0. Since the rigid body is symmetric about the plane containing the neutral surface of the
undeformed beam, the force F does not affect the boundary conditions.

Using Eq. (2), we can obtain the non-dimensional form of Eq. (14a):�
Y 000 þmð €Y�l €Y

0
Þ

�
X ¼ 0

¼ 0, ð15aÞ

�
Y 00�mfðcBþl

2
Þ €Y
0
�l €Y g

�
X ¼ 0

¼ 0, ð15bÞ

x

y

Fig. 4. Free-body diagrams of the rigid body and tail of the submersible in Fig. 3.

4 The result given here is similar to that in Bhat and Wagner (1976) with the exception that they have been derived here at x¼0 rather than x¼L.
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where

m¼ MB

ðmþMþMeÞL
, l¼

‘

L
, cB ¼

JB

MBL2

are non-dimensional parameters of the rigid body. Physically, m is the ratio of its mass to the mass of the rest of the system,
l is a non-dimensional distance, and cB is the square of the non-dimensional radius of gyration. Note that Eq. (15a)
provides the boundary conditions for a free end as m-0, and that of a clamped end as m-1. The free-end conditions can
be shown easily whereas the clamped-end conditions can be shown by allowing m to approach1 in Eqs. (15a) and (15b)
which yields

½ €Y�l €Y
0
�X ¼ 0 ¼ 0, ð16aÞ

½ðcBþl
2
Þ €Y
0
�l €Y �X ¼ 0 ¼ 0: ð16bÞ

Since cBa0, it can be readily shown from Eqs. (16a) and (16b) that €Y ¼ €Y
0
¼ 0 at X¼0. Assuming zero initial velocities, i.e.,

_Y ð0,0Þ ¼ _Y
0
ð0,0Þ ¼ 0, we obtain the clamped end conditions _Y ð0,TÞ ¼ _Y

0
ð0,TÞ ¼ 0.

3.2. Method of analysis

The simplified boundary conditions for a fluid-conveying pipe affixed to a rigid body are investigated in the same
manner as that of a cantilever pipe, which was discussed in Section 2.1. Using the boundary conditions in Eqs. (15a) and
(15b) we get the following relation that is similar to Eq. (7):

Z1 Z2 Z3 Z4

z1 z2 z3 z4

z2
1ez1 z2

2ez2 z2
3ez3 z2

4ez4
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1ez1 z3

2ez2 z3
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4ez4

2
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3
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2
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3
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0

0

0

2
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3
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where Zn, zn, n¼ 1,2,3,4, are defined by the relations

Zn ¼ z2
nþmo

2½ðcBþl
2
Þzn�l�,

zn ¼ z3
n�mo

2ð1�lznÞ:

Eq. (17) leads to a solution of the form given by Eq. (8). Since the proposed application of the swimming submersible
requires the oscillations of the fluttering tail not to grow with time, the points of neutral stability, i.e., Im½o� ¼ 0, are sought
in the ui–ue space.

For a given m, l, cB, bi, be, and a given forward velocity ue, the value of ui for which Im½o� ¼ 0 can be found through the
analysis of an Argand diagram, an example of which is provided in Fig. 5. This diagram is constructed (Hellum et al., 2010b;
Gregory and Paı̈doussis, 1966) by determining the natural frequencies of a set of modes at ui¼0, then gradually
incrementing ui to determine Re½o� and Im½o� for higher values of ui. The natural frequencies at the onset of flutter
instability, ocr , are the locations where the resultant curves cross the imaginary axis. The velocities at which this occurs
are referred to as critical velocities, ucr. This procedure yields a single neutrally stable point in the ui–ue space. Clearly,
while it is possible to search the entire ui–ue space for these neutrally stable points, this would require construction of a
large number of Argand diagrams to obtain an acceptable resolution in ue, which is prohibitively time-expensive. To
mitigate this problem, an automated method similar in character to that discussed above is proposed.

third root

second
root

first
root

0 20 40 60

0

20

10

Fig. 5. Argand diagram for the first three modes of oscillation for bi ¼ 0:01, be ¼ 0:9, l¼ 1=2, cB ¼ 1=12, m¼ 2:25 and ue¼1.0.
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In the automated method, the value of ui required for neutral stability at ue¼0 is first computed by interpolating values
of ui for which Im½o� � 0. This is repeated once more for ue ¼ E, where E is a small number. Subsequent points may be found
in the following manner, which is explained with the help of Fig. 6. For a set of two consecutive neutrally stable points
already determined, such as the points marked 1 and 2 in Fig. 6, the next point is guessed to exist at point 30 at a distance
E1 from point 2 along the vector ~v drawn from point 1 to point 2. Several points at which to compute o are then chosen
near point 30 along a vector perpendicular to ~v. These points are separated from each other by the distance E2. The value for
ocr may now be found by interpolation, and computation of the critical values of ui and ue follows trivially. This procedure,
in which the direction of iteration is nearly perpendicular to the curve, was necessary to navigate some of the sharp turns
in the neutral stability curves given in the next section. In general, lower values of E1 and E2 are needed for curves with
sharper turns, and in the current work, E1 ¼ 0:02, E2 ¼ 0:002 were found to suffice. The method was found to be robust as
well; while we present results for a single rigid body of variable mass in this paper, changes in other parameters can be
easily accommodated.

4. Stability, thrust and efficiency

4.1. Neutral stability

We obtained neutral stability curves in the ui–ue space for a fluid-conveying pipe affixed to a rigid body, using the
simplified boundary conditions discussed in Section 3. These neutral stability curves were obtained for various values of m.
The values of the other parameters were chosen as follows:

bi ¼ 0:01, be ¼ 0:9, l¼ 1=2, cB ¼ 1=12:

The values of bi and be used here reflect the finned-tube geometry, shown in Fig. 2. The nature of this geometry is such that
a large amount of external fluid is associated with the oscillations of the tail and this explains the relatively large value of
be. Likewise, the small value of bi reflects the small area through which internal fluid is conveyed. The values of l and cB

correspond to a uniform cylinder with length equal to that of the tail.
The neutral stability curves are shown in Fig. 7. The area inside each curve (towards the origin) represents the region

where the tail does not flutter whereas the area outside represents the region where the tail flutters. The difference
between the low-m and high-m curves is striking. For values of ueo2:9, the value of ui required to create flutter decreases
with increase in the value of m. The confluence of all the curves at ue � 2:9 is also interesting though no theoretical reason
for this confluence is apparent. It should be mentioned that the curves’ tendency to pass close to one another is not a
unique scenario. Recall that the rigid body can be described by the parameters cJ , l, and m, of which we have only
investigated the latter in detail in this work. Changing the values of cJ and l does not, in our experience, remove this
tendency of the curves to intersect at a point, though the point in ui–ue space is different.

For values of ue42:9, higher values of m are neutrally stable at a higher value of ue for a given value of ui. This implies that for
a given flow rate provided by the prime mover, a tail affixed to a hull of larger mass will tend to flutter at higher forward speed.
The curves also indicate that higher values of m are neutrally stable at a higher value of ui for a given value of ue. This implies that
for a given external flow, a tail affixed to a hull of larger mass will require higher internal flow to flutter.

Fig. 8 plots the relationship between ue and ocr . It can be seen from this figure that for high mass ratios, there exist
certain regions of the ue parameter space where ocr is sensitive to ue. This sensitivity may be used to determine a ‘‘sweet
spot’’, where a higher oscillation frequency may be obtained with a minimal change in ue. This increase in oscillation
frequency and concomitant increase in _y will increase the thrust produced by the beam, per Eq. (11), and can be used for
designing high-acceleration maneuvers for the submersible. Thrust production and efficiency in the context of Eqs. (11)
and (12) are discussed in the next two sections.

neutral stability curve

Fig. 6. Figure illustrating the procedure used to find the neutral stability curve.
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4.2. Thrust characteristics

To determine the thrust produced by the fluttering tail of the proposed submersible, we non-dimensionalize Eq. (11)
and compute the average over one cycle as follows:

t� ¼ tL2

EI
¼
ocr

4p

Z 2p=ocr

0

�
½be

_Y
2
�u2

e Y 02�X ¼ 1�½be
_Y

2
�u2

e Y 02�X ¼ 0

	
dT : ð18Þ

The function Y(X,T) is found by the method laid out in Section 2.1, and takes the form of Eq. (8). Eq. (8) has both real and
imaginary parts; only the real part is physically manifest and contributes to the thrust. Assuming neutral stability
(Im½o� ¼ 0), the real part of Eq. (8) is

YðX,TÞ ¼
X4

n ¼ 1

eRe½zn �X

�
Re½An�cosðIm½zn�XþRe½o�TÞ�Im½An�sinðIm½zn�XþRe½o�TÞ

	
: ð19Þ

The coefficients An in Eq. (19) are found by computing the nullspace of the matrix in Eq. (17). The terms _Y and Y 0 in Eq. (18)
can then be obtained from Eq. (19) through differentiation.

Fig. 9 reproduces the curves of neutral stability in Fig. 7 with dark lines depicting the region on each curve where the
thrust is negative. Notice that no value of m allows thrust-producing flutter instability at ui¼0. This matches with our
physical intuition that a flapping flag cannot generate thrust. At low values of ui, the positive hydrodynamic work is
predominantly contributed by the external fluid and reduces the energy of that fluid; this phenomenon can be put to use
in power generation (Tang et al., 2009). It is also interesting to note that systems with lower values of m can produce thrust
at lower values of ui than systems with higher values of m, though the high-m systems have higher forward speed ue.

It is important to remember, however, that merely having positive thrust from the tail does not guarantee that a given
ui–ue point can be reached. The system’s drag and the thrust of the fluid jet will also govern the submersible’s top speed.
Since the drag of the system will, for a neutrally buoyant vessel, be strongly related to the displacement and mass, we will
reserve these concerns for a later work more closely tied to the physical realization of the submersible.
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Fig. 8. Plot showing the relationship between ocr and ue for different values of m.
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Fig. 7. Neutral stability curves for different values of m.
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Finally, it should be mentioned that the calculations presented here are purely concerned with the thrust produced by
the traveling waveform in the fluttering tail. As such, the thrust produced by the fluid jet is not considered. However, it has
been shown through experiments (Paı̈doussis, 1976) that this loss of thrust can be overcome such that the combined jet
and tail action produces a net thrust that is higher than that of a fixed jet.

4.3. Hydrodynamic efficiency

Similar to the expression for thrust, Eq. (12) can be non-dimensionalized and the average over one cycle computed, to
give the average non-dimensional power W�:

P� ¼
PM1=2

e L3

ðEIÞ3=2
¼
ocr

2p

Z 2p=ocr

0

�
½beue

_Y
2
�u2

eb
1=2
e Y 0 _Y �X ¼ 1�½beue

_Y
2
�u2

eb
1=2
e Y 0 _Y �X ¼ 0

	
dT: ð20Þ

From Eq. (13), the expression for Froude efficiency can be written as

Z¼ tUe

P
¼
t�ue

P�
: ð21Þ

Efficiencies computed using Eq. (21) are plotted with respect to ue for various values of m in Fig. 10. Each curve plots the
efficiency for neutrally stable points in the ui–ue space. Per the discussion in Wu (1971), Eq. (21) has meaning only when
the thrust is positive, and therefore, Fig. 10 plots the efficiency only for neutrally stable points with positive thrust, the
non-darkened regions of Fig. 9.

It is interesting to note that the maximum efficiency is insensitive to the value of m. This will provide flexibility in
submersible design since the mass of the hull can be chosen based on other factors such as power source, drag and
buoyancy, rather than hydrodynamic efficiency. For each value of m, the efficiency remains near its peak value for a wide
range of ue. This trend resembles the efficiency curves for tail-swimming fish which are known to maintain efficiency over
a broad range of swimming speeds. Incidentally, this broad peak in efficiency is not characteristic of typical marine
propellers, which tend to be most efficient over a narrow range of velocities.
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Fig. 10. Efficiency for neutrally stable points in the ui–ue space and for different values of m. Note that the curve for m¼ 2:5 is unique in that it has an

interim region of zero efficiency.
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Fig. 9. The darkened region of each neutral stability curve (left of the dotted lines) depicts the region of negative thrust.
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It should be mentioned that the values of efficiency cited here consider only the power used to generate tail motion in
the external pressure field and the thrust provided by the tail. Other factors, such as pipe losses and viscous drag, will
affect the efficiency of the vehicle when considered as a whole. However, the thrust provided by the fluid jet has also not
been considered; a full accounting of the system’s efficiency would require further investigation.

A combined perspective in Figs. 9 and 10 is presented in Fig. 11, which depicts the neutral stability curve for m¼ 2:5 in
three dimensions, with the efficiency shown out of the plane of the page. It is easy to see from this figure that the efficiency
of tail motion for a propulsor of this type is dependant on both ue and ui. Since a value of zero on the above chart represents
a net zero or negative thrust, it should be pointed out that high values of ue require high values of ui in order for the tail to
oscillate with a thrust-generating waveform.

5. Concluding remarks

The equations of motion for an immersed fluid-conveying pipe affixed to a rigid body have been derived, and the results
compared to the classical (Hannoyer and Paı̈doussis, 1978) case of an immersed fluid-conveying cantilever. It was shown
that both the cantilever and free pipe can be expressed as special cases of the rigid body boundary condition. The neutral
stability curve in ui–ue space was computed over a wide range of values of the rigid body mass fraction m. The serpentine
nature of these curves renders it difficult to make statements about the entire parameter space; nonetheless, some local
trends can be observed. At low values of ue, beams affixed to a rigid body of larger mass become unstable at lower values of
ui, but this trend is reversed for higher values of ue. It was also found that the stability of the system is insensitive to
additional rigid body mass above m¼ 25, i.e., the system’s behavior is largely indistinguishable from that of a cantilever.
This implies that cantilever assumptions would be applicable to large vessels whereas small submersibles require analysis
of the type presented in this paper.

Estimates of the sign of the thrust produced by the fluttering tail and the efficiency of that thrust have also been
computed. While an estimate regarding the magnitude of the thrust would require consideration of external viscous terms
and limit cycle analysis, some general statements about the suitability of this type of propulsor can be made. A relatively
high value of ui is required to drive a thrust-producing flutter instability. Although a system of this type may permit flutter
instability for ui¼0, instability driven entirely by the external flow does not provide a thrust-producing motion. This is
consistent with our expectation that a flapping flag does not produce thrust. Also, it is clear that smaller values of m lead to
thrust-producing instability at lower values of ui, though these motions occur at lower forward velocity. We also note that
the efficiency of the produced thrust is relatively insensitive to ue over a wide range of ue values. Similar observations have
been made for live fish (Rohr and Fish, 2006), which move with a waveform reminiscent of the traveling waveform
generated by a fluid-conveying pipe. It is therefore heartening that one of the great advantages of fish-like propulsion is
preserved.

The overall efficiency of the submersible, as opposed to the efficiency of the tail motion, depends on other effects not
considered here. These include the efficiency with which the prime mover can generate fluid momentum, pipe losses, and
external drag acting on both the hull and the tail. The drag affects the stability of the beam, per (Hannoyer and Paı̈doussis,
1978), and determines the maximum amplitude of the tail’s oscillations. It is important to reiterate here that the
relationship between the internal velocity ui and the submersible’s forward speed ue is determined ultimately by the
thrust produced and the vehicle’s drag characteristics.

Although we have largely confined our analysis to the single non-dimensional parameter m, it is possible to investigate
the role of many other parameters for a vehicle of this type. Besides the parameters identified in this work, a terminal
nozzle might be used at the free end, or a fish-like planform used for the shape of the tail. Analysis of the latter system
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Fig. 11. Efficiency as a function of ui and ue for the mass fraction m¼ 2:5.
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must be performed numerically and we expect both tail thrust and efficiency to be improved by such a design. A fish-like
planform, with a large reduction in area near the tip of the tail, has been shown (Lighthill, 1970) to be highly efficient for
producing thrust on the basis of slender-body theory. A beam with a fish-like planform will be relatively weak at a location
near its end, and then much stiffer in that portion which mimics the caudal fin. This should lead to a large, out-of-phase
angle between this ‘‘fin’’ and the forward portion of the tail, a condition which is seen in swimming fish.
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