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1 Introduction

Let F2 be the prime field of characteristic 2 and let F
n
2 is the n-dimensional

vector space over F2. A function from F
n
2 to F2 is called a Boolean function on

n variables. The reader is referred to Section 1.1 for all the basic notations and
definitions related to Boolean functions.

Boolean functions received a lot of attention in the field of coding theory, se-
quences and cryptology. The most important method of analyzing the Boolean
functions is by exploiting a certain kind of discrete Fourier transform, which is
known, in Boolean function literature, as Walsh, Hadamard, or Walsh–Hadamard
transform [4]. The maximum nonlinearity of a Boolean function is achieved when
the maximum absolute value in the Walsh spectrum is minimized. For even n,
such functions are well known as bent functions and the magnitudes of all the
values in Walsh spectrum are the same. From the perspective of coding theory,
these functions attain the covering radius of first order Reed–Muller code. To-
wards a nega–periodic analogue of the bent criteria, one can use nega–Hadamard
transform and investigate Boolean functions with nega flat spectrum. This mo-
tivated several works in the area of Boolean functions [11,13,14,19] in the last
few years.
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360 P. Stănică et al.

In this paper we concentrate on the nega–Hadamard transform in more details.
In particular, we have the following broad contributions.

– We present a detailed study of some of the properties of nega–Hadamard
transform in Section 2. We obtain several results analogous to Hadamard
transformation.

– Based on the previous analysis, we obtain several results with respect to the
decomposition of negabent functions in Section 3.

– In Section 4, we study negabent functions that are symmetric with respect
to two variables. Our study results simple proof of the main result in the
paper [17] that all the symmetric negabent functions must be affine.

– A characterization of some bent–negabent functions in Maiorana–McFarland
class is obtained in Section 5, thus complementing some results of [19].

1.1 Definitions and Notations

The set of all Boolean functions on n variables is denoted by Bn. Any element
x ∈ F

n
2 can be written as an n-tuple (x1, . . . , xn), where xi ∈ F2 for all i =

1, . . . , n. The set of integers, real numbers and complex numbers are denoted
by Z, R and C respectively. The addition over Z, R and C is denoted by ‘+’.
The addition over F

n
2 for all n ≥ 1, is denoted by ⊕. If x = (x1, . . . , xn) and

y = (y1, . . . , yn) are two elements of F
n
2 , we define the scalar (or inner) product,

respectively, the intersection by

x · y = x1y1 ⊕ x2y2 ⊕ · · · ⊕ xnyn,x ∗ y = (x1y1, x2y2, . . . , xnyn).

The cardinality of the set S is denoted by |S|. If z = a + b ı ∈ C, then |z| =√
a2 + b2 denotes the absolute value of z, and z = a − b ı denotes the complex

conjugate of z, where ı2 = −1, and a, b ∈ R. Any f ∈ Bn can be expressed in
algebraic normal form (ANF) as

f(x1, x2, . . . , xn) =
⊕

a=(a1,...,an)∈F
n
2

μa

(
n∏

i=1

xai

i

)
, μa ∈ F2.

The (Hamming) weight of x ∈ F
n
2 is wt(x) :=

∑n
i=1 xi. The algebraic degree

of f , deg(f) := maxa∈Fn
2
{wt(a) : μa �= 0}. Boolean functions having algebraic

degree at most 1 are said to be affine functions. For any two functions f, g ∈ Bn,
we define the (Hamming) distance d(f, g) = |{x : f(x) �= g(x),x ∈ F2n}|.

The Walsh–Hadamard transform of f ∈ Bn at any point u ∈ F
n
2 is defined by

Hf (u) = 2−
n
2

∑

x∈F
n
2

(−1)f(x)⊕u·x.

A function f ∈ Bn is a bent function if |Hf (u)| = 1 for all λ ∈ F
n
2 . Bent

functions (defined by Rothaus [15] more than thirty years ago) hold an interest
among researchers in this area since they have maximum Hamming distance
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from the set of all affine Boolean functions. Several classes of bent functions were
constructed by Rothaus [15], Dillon [6], Dobbertin [7], and later by Carlet [1].

The sum Cf,g(z) =
∑

x∈F
n
2
(−1)f(x)⊕g(x⊕z) is the crosscorrelation of f and g

at z. The autocorrelation of f ∈ Bn at u ∈ F
n
2 is Cf,f (u) above, which we denote

by Cf (u). It is known [4] that a function f ∈ Bn is bent if and only if Cf (u) = 0
for all u �= 0.

For a detailed study of Boolean functions we refer to Carlet [2,3], and Cusick
and Stănică [4].

The nega–Hadamard transform of f ∈ F
n
2 at any vector u ∈ F

n
2 is the complex

valued function:
Nf (u) = 2−

n
2

∑

x∈F
n
2

(−1)f(x)⊕u·x ıwt(x).

A function is said to be negabent if the nega–Hadamard transform is flat in
absolute value, namely |Nf (u)| = 1 for all u ∈ F

n
2 . The sum

Cf,g(z) =
∑

x∈F
n
2

(−1)f(x)⊕g(x⊕z)(−1)x·z

is the nega–crosscorrelation of f and g at z. We define the nega–autocorrelation
of f at u ∈ F

n
2 by

Cf (u) =
∑

x∈F
n
2

(−1)f(x)⊕f(x⊕u)(−1)x·u.

The negaperiodic autocorrelation defined by Parker and Pott [11,12] is as follows

nf (u) =
∑

x∈F
n
2

(−1)f(x)⊕f(x⊕u)(−1)wt(u)(−1)x·u.

It is to be noted that the difference between the above two definitions is not
critical and both the defintions can be used.

As we will be referring later, we also present the definition of a symmetric
Boolean function. A Boolean function is said to be symmetric if inputs of the
same weight produce the same output, that is, f(x) = f(σ(x)), for any permu-
tation σ.

2 Properties of Nega–Hadamard transform

It is a well known fact that if f ∈ Bn, then the Walsh–Hadamard transform
Hf (λ) is invertible, and so,

(−1)f(x) = 2−
n
2

∑

u∈F
n
2

Hf (u)(−1)x·u, (1)

for all x ∈ F
n
2 . The nega–Hadamard transform is also a unitary transformation.

An immediate consequence of the definition of nega–Hadamard transformation
of a function f ∈ Bn in [11,14] is the following:
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Lemma 1. Suppose f ∈ Bn. Then

(−1)f(y) = 2−
n
2 ı−wt(y)

∑

u∈F
n
2

Nf (u)(−1)y·u, (2)

for all y ∈ F
n
2 .

Next, we prove a theorem that gives the nega–Hadamard transform of various
combinations of Boolean functions. We shall use throughout the well-known
identity (see [10])

wt(x ⊕ y) = wt(x) + wt(y) − 2wt(x ∗ y). (3)

Theorem 1. Let f, g, h be in Bn. The following statements are true:

(a) N0(u) = −N1(u) = ωn ı−wt(u), and Nh⊕1(u) = −Nh(u), u ∈ F
n
2 , where 0,1

are the constant 0, respectively, 1 functions; and, ω is an 8-th primitive root
of 1, namely ω = (1 + ı)/

√
2. In general, for any affine function �a,c(x) =

a · x ⊕ c, we have N�a,c(u) = (−1)c ωn ı−wt(a⊕u).
(b) If h(x) = f(x) ⊕ g(x) on F

n
2 , then for u ∈ F

n
2 ,

Nh(u) = 2−n/2
∑

v∈F
n
2

Nf (v)Hg(u ⊕ v) = 2−n/2
∑

v∈F
n
2

Hf (v)Ng(u ⊕ v).

(c) If �a,c(x) = a · x ⊕ c is affine, then Nf⊕�a,c(u) = (−1)cNf (a ⊕ u).
(d) If h(x) = f(Ax ⊕ a), then Nh(u) = (−1)a·(Au) ıwt(a) Nf (Au ⊕ a), where A

is an n × n orthogonal matrix over F2 (and so, AT A = In).
(e) If h(x,y) = f(x) ⊕ g(y),x,y ∈ F

n
2 , then Nf⊕g(u,v) = Nf (u)Ng(v).

(f) If f ∈ Bn, g ∈ Bk, and h(x,y) = f(x)g(y), then

2k/2Nh(u,v) = Nf (u)Ag1(v) + ωn ı−wt(u)Ag0(v),

Ag1(v) + Ag0(v) = 2k/2ωkı−wt(v),

where Ag0(v) =
∑

y,g(y)=0(−1)y·v ıwt(y), Ag1(v) =
∑

y,g(y)=1(−1)y·v ıwt(y).
Moreover, if k = 1,

21/2Nyf(x)(u, v) = (−1)v ıNf (u) + ωn ı−wt(u)

21/2N(y⊕1)f(x)(u, v) = Nf (u) + ωn(−1)v ı−wt(u)+1.

Proof. Claim (a) follows from Lemma 1 of [19], since N0(u) = −N1(u) =
2−n/2

∑
y(−1)u·y ıwt(y) = ωn ı−wt(u). We now show the first identity of (b) (the

second is absolutely similar). Since

Nf (v) = 2−n/2
∑

y∈F
n
2

(−1)f(y)⊕y·v ıwt(y)

Hg(u ⊕ v) = 2−n/2
∑

z∈F
n
2

(−1)g(z)⊕z·(u⊕v)
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and (see [4, p. 8])
∑

x

(−1)v·x =

{
2n if v = 0
0 if v �= 0,

we obtain (all sums are over F
n
2 )

∑

v∈F
n
2

Nf (v)Hg(u⊕ v) = 2−n
∑

v,y,z

(−1)f(y)⊕g(z)+v·(y⊕z)⊕u·z ıwt(y)

= 2−n
∑

y,z

(−1)f(y)⊕g(z)⊕u·z ıwt(y)
∑

v

(−1)v·(y⊕z)

=
∑

y

(−1)f(y)⊕g(y)⊕u·y ıwt(y) = 2n/2Nf⊕g(u).

Further, (c) follows from (b), since

H�a,c(w) = 2−n/2
∑

y

(−1)a·y⊕w·y⊕c

= 2−n/2(−1)c
∑

y

(−1)(a⊕w)·y

=

{
(−1)c2n/2 if a = w
0 if a �= w.

The property (d) can be derived from [11, Lemma 2] and [19, Theorem 2]. It is
to be noted that [19, Theorem 2] further proves that the action of orthogonal
group preserves bent–negabentness property of a Boolean function. Item (e) is
straightforward. To show item (f), we write

2(n+k)/2Nh(u,v) =
∑

(x,y)∈F
n+k
2

(−1)f(x)g(y)⊕x·u⊕y·v ıwt(x)+wt(y)

=
∑

y,g(y)=1

(−1)y·v ıwt(y)
∑

x

(−1)f(x)⊕x·u ıwt(x)

+
∑

y,g(y)=0

(−1)y·v ıwt(y)
∑

x

(−1)x·u ıwt(x)

= 2n/2Nf (u)
∑

y,g(y)=1

(−1)y·v ıwt(y)

+2n/2ωn ı−wt(u)
∑

y,g(y)=0

(−1)y·v ıwt(y),

from which we obtain the desired identity. Moreover, if k = 1, and g(y) = y, then
Ag0(v) = 1, Ag1(v) = (−1)v ı, and if g(y) = y ⊕ 1, then Ag1(v) = 1, Ag0(v) =
(−1)v ı, and so

21/2Nyf(x)(u, v) = (−1)v ıNf(u) + ωn ı−wt(u)

21/2N(y⊕1)f(x)(u, v) = Nf (u) + ωn(−1)v ı−wt(u)+1.

The proof of the theorem is done. �	
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The next result is analogous to the result on the crosscorrelation of two Boolean
functions [16]. In the nega–Hadamard transform context, the basic idea of this
result is explained in [5] and equation (15) of [13]. In Lemma 2 we are able
to use Hadamard transform because unlike the definition in [5,13] our nega–
crosscorrelation does not include the factor (−1)wt(u).

Lemma 2. If f, g ∈ Bn, then the nega–crosscorrelation

Cf,g(z) =
∑

x∈F
n
2

(−1)f(x)⊕g(x⊕z)(−1)x·z = ıwt(z)
∑

u∈F
n
2

Nf (u)Ng(u)(−1)u·z.

Proof. The sum

ıwt(z)
∑

u∈F
n
2

Nf (u)Ng(u)(−1)u·z = 2−n
∑

x∈F
n
2

∑

y∈F
n
2

(−1)f(x)⊕g(y) ıwt(x)−wt(y)+wt(z)

×
∑

u∈F
n
2

(−1)u·(x⊕y⊕z)

=
∑

x∈F
n
2

(−1)f(x)⊕g(x⊕z)(−1)x·z.

�	
If we consider the case f = g in the previous lemma, then we obtain

∑

x∈F
n
2

(−1)f(x)⊕f(x⊕z)(−1)x·z = ıwt(z)
∑

u∈F
n
2

Nf (u)Nf (u)(−1)u·z

= ıwt(z)
∑

u∈F
n
2

|Nf (u)|2(−1)u·z.
(4)

This is an analogue of autocorrelation of Boolean functions. It is to be noted
that since both Hadamard and nega–Hadamard transforms are unitary they are
energy preserving and hence, Parseval’s theorem holds for both the transforma-
tions. The classical Parseval’s identity takes the form

∑

u∈F
n
2

(Hf (u))2 = 2n

for Walsh–Hadamard transform. Substituting z = 0 in the equation (4), we
obtain a proof of this fact for the particular case of nega–Hadamard transforms.

Corollary 1 (nega–Parseval’s identity). We have
∑

u∈F
n
2

|Nf (u)|2 = 2n. (5)

Lemma 3. A Boolean function f ∈ Bn is negabent if and only if, Cf (z) = 0 for
all z ∈ F

n
2 \ {0}.
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Proof. If f is a negabent function then |Nf (u)| = 1 for all u ∈ F
n
2 . For all

z �= 0, then by (4) we obtain Cf (z) = 0. The converse also follows from the
equation (4). �	
An equivalent result is proved after equation (15) in [13], and in [11, Theorem
2] for the negaperiodic autocorrelation.

Remark 1. Lemma 3 provides an alternative characterization of negabent
functions.

If f is an affine function, then for all z ∈ F
n
2 \ {0} the nega–autocorrelation

Cf (z) = 0. This implies that any affine function is negabent. For alternative
proofs we refer to [19, Lemma 1] and [11, Proposition 1].

3 Decomposition of Negabent Functions with Respect to
Co-dimension One Subspaces

Suppose 1 ≤ r ≤ n. Then any function f ∈ Bn can be thought of as a function
from F

r
2 ×F

n−r
2 into F2. For any fixed v ∈ F

r
2, the function fv ∈ Bn−r is defined

as fv(x) = f(v,x) for all x ∈ F
n−r
2 .

Theorem 2. Let f ∈ Bn expressed as f : F
r
2 × F

n−r
2 → F2. Then

Cf (u,w) =
∑

v∈F
r
2

Cfv,fv⊕u(w)(−1)v·u.

Proof. By definition

Cf (u,w) =
∑

v∈F
r
2

∑

z∈F
n−r
2

(−1)f(v,z)⊕f(v⊕u,z⊕w)(−1)v·u⊕z·w

=
∑

v∈F
r
2

(−1)v·u
∑

z∈F
n−r
2

(−1)fv(z)⊕fv⊕u(z⊕w)(−1)z·w

=
∑

v∈F
r
2

Cfv,fv⊕u(w)(−1)v·u.

(6)

�	

Corollary 2. Suppose f ∈ Bn is expressed as

f(x, y) = f0(x)(1 ⊕ y) ⊕ f1(x)y, for all (x, y) ∈ F
n−1
2 × F2,

where f0, f1 ∈ Bn−1. Then

Cf (w, 0) = Cf0(w) + Cf1(w)

Cf (w, 1) = Cf0,f1(w) − (−1)wt(w)Cf0,f1(w).

The functions f and g are said to have complementary nega–autocorrelation if
for all nonzero u ∈ F

n
2

Cf (u) + Cg(u) = 0.

The following lemma establishes a connection between the nega–autocorrelations
of f , g and their nega–Hadamard transformations.
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Lemma 4. Two functions f, g ∈ Bn have complementary nega–autocorrelations
if and only if

|Nf (u)|2 + |Ng(u)|2 = 2 for all u ∈ F
n
2 .

Proof. Let f, g be two functions with complementary nega–autocorrelations.
Then

|Nf (u)|2 + |Ng(u)|2 = 2−n
∑

z∈F
n
2

ı−wt(z)(Cf (z) + Cg(z))(−1)z·u

= 2−n2n+1 = 2.

Conversely, suppose |Nf (u)|2 + |Ng(u)|2 = 2 for all u ∈ F
n
2 . Then

Cf (z) + Cg(z) = ıwt(z)
∑

u∈F
n
2

(|Nf (u)|2 + |Ng(u)|2)(−1)u·z

= 2ıwt(z)
∑

u∈F
n
2

(−1)u·z

= 2n+1ıwt(z)δ0(z),

where

δ0(z) =

{
0 if z �= 0;
1 if z = 0.

(7)

Thus the functions f and g have complementary nega–autocorrelations. �	
Theorem 3. Suppose h ∈ Bn+1 is expressed as

h(x, y) = f(x)(1 ⊕ y) ⊕ g(x)y, for all (x, y) ∈ F
n
2 × F2,

where f, g ∈ Bn. Then the following statements are equivalent:

(1) h is negabent.
(2) f and g have complementary nega–autocorrelations and Cf0,f1(u) = 0 for all

u ∈ F
n
2 with wt(u) ≡ 1 (mod 2).

(3) |Nf (u)|2 + |Ng(u)|2 = 2 for all u ∈ F
n
2 and Nf (u)

Ng(u) is a real number whenever
|Nf (u)||Ng(u)| �= 0.

Proof. We show first (1) ⇐⇒ (2). Suppose h is a negabent function. Then
Ch(u, a) = 0 for all nonzero (u, a) ∈ F

n
2 × F2. From Corollary 2 we obtain

Ch(u, 0) = Cf (u) + Cg(u) = 0,

for all u ∈ F
n
2 \ {0} and

Ch(u, 1) = Cf,g(u)(1 − (−1)wt(u)) = 0,

which implies Cf,g(u) = 0 for all u ∈ F
n
2 with wt(u) ≡ 1 (mod 2).
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Conversely, let us assume that the functions f and g have complementary
nega–autocorrelations and Cf,g(u) = 0 for all u ∈ F

n
2 with wt(u) ≡ 1 (mod 2).

Then by Corollary 2, Ch(u, a) = 0 for all nonzero (u, a) ∈ F
n
2 × F2. This implies

that h is a negabent function.
We now show (1) ⇐⇒ (3). The nega–Hadamard transform of h at (u, a) ∈

F
n
2 × F2 is

Nh(u, a) = 2−
n+1

2

∑

(x,y)∈F
n
2×F2

(−1)h(x,y)⊕u·x⊕ay ıwt(x,y)

= 2−
n+1

2

∑

x∈F
n
2

(−1)f(x)⊕u·x ıwt(x) + 2−
n+1

2

∑

x∈F
n
2

(−1)g(x)⊕u·x⊕a ıwt(x)+1

=
1√
2
Nf (u) + ı (−1)a 1√

2
Ng(u).

Thus,

Nh(u, a) =

{
1√
2
Nf (u) + ı√

2
Ng(u) if a = 0;

1√
2
Nf (u) − ı√

2
Ng(u) if a = 1.

(8)

Since h is negabent |Nh(u, a)| = 1 for all (u, a) ∈ F
n
2 × F2 we obtain

∣∣∣∣
1√
2
Nf (u) +

ı√
2
Ng(u)

∣∣∣∣ = 1,

∣∣∣∣
1√
2
Nf (u) − ı√

2
Ng(u)

∣∣∣∣ = 1.

(9)

If h is negabent, then by Lemma 4 and the equivalence of the first two statements
proved above we obtain:

|Nf (u)|2 + |Ng(u)|2 = 2 for all u ∈ F
n
2 .

Suppose for u ∈ F
n
2 , |Nf (u)||Ng(u)| �= 0. Let z1 = 1√

2
Nf (u) and z2 = ı√

2
Ng(u).

Then by equation (9) we obtain

|z1 + z2|2 = |z1 − z2|2, that is
z1z2 = −z2z1

Therefore we have Nf (u)Ng(u) = Ng(u)Nf (u), i.e., Nf (u)
Ng(u) = Nf (u)

Ng(u)
=

(Nf (u)
Ng(u)

)
.

This proves that Nf (u)
Ng(u) is a real number.

Conversely, suppose |Nf (u)|2 + |Ng(u)|2 = 2 for all u ∈ F
n
2 and Nf (u)

Ng(u) is a
real number whenever |Nf (u)||Ng(u)| �= 0.

Without loss of generality, we may first assume Nf (u) = 0, for some u ∈ F
n
2 .

Then by the above condition |Ng(u)| =
√

2. By equation (8), |Nh(u, a)| = 1 for
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all a ∈ F2. Next we consider the case when |Nf (u)||Ng(u)| �= 0. Let φ(u) =
Ng(u)
Nf (u) . Then

|Nh(u, a)|2 = | 1√
2
Nf (u) + ı(−1)a 1√

2
φ(u)Nf (u)|2

=
1
2
|Nf (u)|2|1 + ı(−1)aφ(u)|2

=
1
2
|Nf (u)|2(1 + |φ(u)|2)

=
1
2
|Nf (u)|2

(
1 +

|Ng(u)|2
|Nf (u)|2

)

=
1
2
(|Nf (u)|2 + |Ng(u)|2) = 1.

(10)

Thus h is negabent. �	

4 Negabent Functions Symmetric about Two Variables

Suppose h ∈ Bn is a Boolean function which is symmetric with respect to two
variables, y and z say. Then there exist functions f, g, s ∈ Bn−2 such that

h(x, y, z) = f(x) ⊕ (f(x) ⊕ g(x))(y ⊕ z) ⊕ s(x)yz (11)

for all (x, y, z) ∈ F
n−2
2 × F2 × F2. The Boolean function h is bent if and only if,

f and g are bent and s(x) = 1 for all x ∈ F
n−2
2 (see [2,3,4,20]). For negabent

functions we prove the following similar result.

Theorem 4. Suppose h ∈ Bn is expressed as h(x, y, z) = f(x) ⊕ (f(x) ⊕
g(x))(y ⊕ z) ⊕ s(x)yz for all (x, y, z) ∈ F

n−2
2 × F2 × F2. The Boolean func-

tion h is negabent if and only if f and g are negabent and s(x) = 0 for all
x ∈ F

n
2 .

Proof. The nega–autocorrelation of h at (0, 1, 1) is

Ch(0, 1, 1) =
∑

x∈F
n−2
2

∑

y∈F2

∑

z∈F2

(−1)s(x)(1⊕y⊕z)(−1)y⊕z

=
∑

x∈F
n−2
2

(−1)s(x)
∑

y∈F2

(−1)s(x)y⊕y
∑

z∈F2

(−1)s(x)z⊕z

=
∑

x∈F
n−2
2

(−1)s(x)
∑

y∈F2

(−1)s(x)y⊕y(1 + (−1)s(x)⊕1)

= 2
∑

x∈F
n−2
2 ,s(x)=1

(−1)
∑

y∈F2

(−1)2y = 4
∑

x∈F
n−2
2 ,s(x)=1

(−1)

= −4|{x ∈ F
n−2
2 : s(x) = 1}|.
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If h is a negabent function then Ch(0, 1, 1) = 0. Therefore |{x ∈ F
n−2
2 : s(x) =

1}| = 0, which implies that s(x) = 0 for all x ∈ F
n−2
2 . Thus, if h is a negabent

function and symmetric with respect to the variables y and z, then it can be
expressed as

h(x, y, z) = f(x)⊕ (f(x)⊕ g(x))(y ⊕ z), for all (x, y, z) ∈ F
n−2
2 ×F2×F2. The

nega–Hadamard transform Nh(u, a, b) of h at (u, a, b) ∈ F
n−2
2 × F2 × F2 is

2−
n
2

∑

x∈F
n−2
2

∑

y∈F2

∑

z∈F2

(−1)f(x)⊕(f(x)⊕g(x))(y⊕z)+u·x⊕ay⊕bz ıwt(x,y,z).

Expanding the above sum by substituting all possible values of (y, z) ∈ F2 × F2

we obtain

Nh(u, a, b) = 1−(−1)a⊕b

2 Nf (u) + ı (−1)a+(−1)b

2 Ng(u). (12)

Therefore Nh(u, a, b) ∈ {Nf(u),±ıNg(u)} for all (u, a, b) ∈ F
n−2
2 × F2 × F2.

This proves that both f and g are negabent. On the other hand if f and g are
negabent functions then h is also negabent. This shows the converse. �	
Corollary 3. A symmetric negabent function is affine.

Proof. Let h ∈ Bn be a symmetric negabent function. Let us suppose that h has
algebraic degree greater than or equal to 2. Since h is symmetric, it is symmetric
with respect to any two variables. Therefore, it is possible to express h, for at
least one pair y, z of variables, as follows

h(x, y, z) = f(x) ⊕ (f(x) ⊕ g(x))(y ⊕ z) ⊕ s(x)yz,

where s(x) �= 0 for at least one x ∈ F
n−2
2 . But this contradicts the fact that h is

negabent. Hence all symmetric negabent functions are affine. �	
The result of Corollary 3 gives an alternate proof of the fact proved in [17].
In fact, the case for even n can be immediately obtained following the result
of Parker and Pott [11], which gives a connection between bent and negabent
functions.

Theorem 5 ([11, Thm. 12]). A function f : F
2m
2 → F2 is negabent if and

only if f ⊕ s2 is bent, where s2(x1, x2, . . . , x2m) =
∑

i<j xixj is the elementary
symmetric function of degree 2.

We note that s2 is actually a homogeneous (that is, all terms of its ANF are of
the same degree), symmetric and quadratic bent function.

Let s1(x1, x2, . . . , x2m) =
∑

i xi, the (only) symmetric linear function involv-
ing all the variables. In [18] it is shown that the only symmetric bent functions
are s2, s2 ⊕ s1, 1 ⊕ s2, 1 ⊕ s2 ⊕ s1.

In [17], it is proved (by a long argument) that all the symmetric negabent
functions are affine. Following [18,11], the result of [17] can be achieved in a few
lines for even n.
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Theorem 6. Let n be even. A symmetric function f ∈ Bn is negabent if and
only if it is affine.

Proof. Suppose f ∈ Bn is a symmetric negabent function. Then f ⊕ s2 is a bent
function. Since the direct sum of two symmetric functions is symmetric, then
f ⊕ s2 is a symmetric bent function. The only symmetric bent functions are s2,
s2 ⊕ s1, 1 ⊕ s2, 1 ⊕ s2 ⊕ s1 (see [18]). Therefore f can be 0, 1, s1, 1 ⊕ s1 and
nothing else. This proves that if f is a symmetric negabent function on even
number of variables then it is affine.

Conversely, it is known that all affine functions are negabent [19]. Therefore,
symmetric functions on even number of variables, if affine, are negabent. �	
Bent functions do not exist for odd number of input variables. Thus there is
no equivalent characterization of Theorem 5 for odd dimension, and the result
of [17] cannot be proved trivially as before. However, the odd (as well as the
even) case has already been taken care of by Corollary 3.

5 Bent–Negabent Functions in Maiorana–McFarland
Class

In this section we shall investigate bent functions which are also negabent in the
Maiorana-McFarland (MM) class of bent functions, namely

f(x,y) = π(x) · y ⊕ g(x), x,y ∈ F
n
2 (13)

where π is a permutation satisfying wt(x ⊕ y) = wt(π(x) ⊕ π(y)) (we call π a
weight-sum invariant permutation), for all x,y, and g is an arbitrary Boolean
function, both on F

n
2 . We remark that if π is orthogonal, that is, π(x) = A · x

with A orthogonal (AT A = In), then it satisfies the imposed condition (since
wt(π(x)⊕π(y)) = wt(A(x⊕y)), it suffices to show that wt(Az) = wt(z); for that,
consider wt(Az) = (Az)T · (Az) = zT (AT A)z = wt(z)). It could be interesting
to see if there are such weight-sum invariant permutations outside of the linear
orthogonal group generated ones.

Theorem 7. A function as in (13) on F
2n
2 is bent–negabent if and only if g is

bent.

Proof. We evaluate

Nf (u,v) = 2−n
∑

(x,y)∈F
2n
2

(−1)π(x)·y⊕g(x)⊕x·u⊕y·v ıwt(x)+wt(y)

= 2−n
∑

x∈F
n
2

(−1)g(x)⊕x·u ıwt(x)
∑

y∈F
n
2

(−1)π(x)·y⊕y·v ıwt(y)

= 2−n
∑

x∈F
n
2

(−1)g(x)⊕x·u ıwt(x)2n/2ωn ı−wt(π(x)⊕v)

= 2−n/2ωn
∑

x∈F
n
2

(−1)g(x)⊕x·u ıwt(x)−wt(π(x)⊕v).
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Now, using the fact that π is a weight-sum invariant permutation, and by (3),
we obtain

wt(π(x) ⊕ v) = wt(x ⊕ π−1(v)),
wt(x) − wt(π(x) ⊕ v) = −wt(π−1(v)) + 2wt(x ∗ π−1(v)), and

ı2wt(x∗π−1(v)) = (−1)x·π
−1(v),

which implies that

Nf (u,v) = 2−n/2ωn ı−wt(π−1(v))
∑

x∈F
n
2

(−1)g(x)⊕x·(u⊕π−1(v))

= ωn ı−wt(π−1(v))Hg(u ⊕ π−1(v)).

Consequently,
|Nf (u,v)| = |Hg(u ⊕ π−1(v))|,

which implies our claim. �	

The following corollary follows easily from our theorem, since bent functions exist
for any degree up to half of the (even) dimension. We remark that Theorem 10
of [11] gives an upper bound of n−1 on the degree of a bent–negabent function,
but not an existence result.

Corollary 4. If f as in (13) is bent–negabent with π weight-sum invariant, then
the degree of f is bounded by n/2. Moreover, there exist bent–negabent functions
in the MM class of any degree between 2 and n/2.
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6. Dillon, J.F.: Elementary Hadamard difference sets. In: Proceedings of Sixth S. E.
Conference of Combinatorics, Graph Theory, and Computing, Utility Mathematics,
Winnipeg, pp. 237–249 (1975)

7. Dobbertin, H.: Construction of bent functions and balanced Boolean functions
with high nonlinearity. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 61–74.
Springer, Heidelberg (1995)

8. Dobbertin, H., Leander, G.: Bent functions embedded into the recursive framework
of Z-bent functions. Des. Codes Cryptography 49, 3–22 (2008)

9. Lidl, R., Niederreiter, H.: Introduction to finite fields and their applications. Cam-
bridge University Press, Cambridge (1983)

10. MacWilliams, F.J., Sloane, N.J.A.: The theory of error–correcting codes. North-
Holland, Amsterdam (1977)

11. Parker, M.G., Pott, A.: On Boolean functions which are bent and negabent. In:
Golomb, S.W., Gong, G., Helleseth, T., Song, H.-Y. (eds.) SSC 2007. LNCS,
vol. 4893, pp. 9–23. Springer, Heidelberg (2007)

12. Parker, M.G., Pott, A.: Personal Communications
13. Riera, C., Parker, M.G.: One and two-variable interlace polynomials: A spectral

interpretation. In: Ytrehus, Ø. (ed.) WCC 2005. LNCS, vol. 3969, pp. 397–411.
Springer, Heidelberg (2006)

14. Riera, C., Parker, M.G.: Generalized bent criteria for Boolean functions. IEEE
Trans. Inform. Theory 52(9), 4142–4159 (2006)

15. Rothaus, O.S.: On bent functions. Journal of Combinatorial Theory Series A 20,
300–305 (1976)

16. Sarkar, P., Maitra, S.: Cross–Correlation Analysis of Cryptographically Useful
Boolean Functions and S-Boxes. Theory Comput. Systems 35, 39–57 (2002)

17. Sarkar, S.: On the symmetric negabent Boolean functions. In: Roy, B., Sendrier,
N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 136–143. Springer, Heidelberg
(2009)

18. Savicky, P.: On the bent Boolean functions that are symmetric. European J.
Comb. 15, 407–410 (1994)

19. Schmidt, K.U., Parker, M.G., Pott, A.: Negabent functions in the Maiorana–
McFarland class. In: Golomb, S.W., Parker, M.G., Pott, A., Winterhof, A. (eds.)
SETA 2008. LNCS, vol. 5203, pp. 390–402. Springer, Heidelberg (2008)

20. Zhao, Y., Li, H.: On bent functions with some symmetric properties. Discrete Appl.
Math. 154, 2537–2543 (2006)


	Nega–Hadamard Transform, Bent and Negabent Functions
	Introduction

	Nega–Hadamard Transform, Bent and Negabent Functions
	Introduction
	Definitions and Notations

	Properties of Nega–Hadamard transform
	Decomposition of Negabent Functions with Respect to Co-dimension One Subspaces
	Negabent Functions Symmetric about Two Variables
	Bent–Negabent Functions in Maiorana–McFarland Class


