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Abstract: To design simply-supported, flexible impact beams spanning 
between cells or bents for lock approach walls, a dynamic structural analysis 
of the beam under impact time-history loads for design- specific barge 
trains is required. At several locks, this flexible structural feature is the 
primary structural member resisting the glancing-blow impact event of a 
barge train as it aligns itself with a lock. This technical report describes an 
engineering methodology used to conduct this dynamic structural analysis 
and visualize the resulting deflections, moments, and shears. This 
engineering methodology is implemented with a PC-based FORTRAN 
program and visual modeler named Impact_Beam. The engineering 
formulation for Impact_Beam uses time-history force data that are scaled 
for design specific barge trains to perform a dynamic structural response 
analysis for either a single degree of freedom system or a modal time-
history analysis for the simply supported beam subjected to a impact load 
that is travelling along the beam. Time-history force data has been collected 
from the interpretation of the results from the 1997 full-scale barge train 
impact prototype experiments conducted at Old Lock and Dam 2 just north 
of Pittsburgh, PA, and of the 2008 full-scale barge train impact experiments 
conducted at Winfield Lock and Dam, Winfield, WV. This database of pulse 
time-history can be scaled for site specific design barge trains with approach 
angle and velocity using the companion software Impact_Force. It is also 
possible to use force time-histories from other impact simulation software 
(e.g., dBEAS). The engineering formulation for Impact_Beam is verified 
against the original Winfield experiments using modal time-history analysis 
and dBEAS simulations using single degree of freedom analysis. 

 

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. 
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 
be construed as an official Department of the Army position unless so designated by other authorized documents. 
 
DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 
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Preface 

This technical report describes an engineering methodology for the dynamic 
response analysis of a simply supported, flexible impact beam to barge train 
impact loading. This engineering methodology is implemented in a PC-
based FORTRAN program and Visual Modeler named Impact_Beam, which 
is also discussed in this report. The engineering formulation for 
Impact_Beam uses an impact force time-history acting on the flexible 
impact beam to characterize the impact event. This impact force time-
history may be obtained using a companion program Impact_Force 
(Ebeling, et al. 2010). Included in this effort is the interpretation of the 
results from the 2008 full-scale impact experiments conducted on a flexible 
approach wall at Winfield Lock and Dam, Winfield, WV. 

The investigation reported herein was authorized by the Headquarters, 
U.S. Army Corps of Engineers and was performed during the period of 
October 2009 to September 2011 under the Navigation Systems Research 
Program. The research was performed under Work Unit G99180, entitled 
“Vessel/Barge Impact”. Jim Walker is the HQUSACE Navigation Business 
Line Manager. 

The Program Manager for the Navigation Systems Research Program is 
Charles Wiggins in the Coastal and Hydraulics Laboratory (CHL), U.S. 
Army Engineer Research and Development Center (ERDC). Dr. John Hite, 
CHL, was the Inland Focus Area Leader. Jeff Lillycrop is the Technical 
Director for Navigation in CHL. The research is being led by Dr. Robert M. 
Ebeling of the Information Technology Laboratory under the general 
supervision of Dr. Reed L. Mosher, Director ITL: Dr. Deborah F. Dent, 
Deputy Director ITL; Dr. Robert M. Wallace, Chief of the Engineering and 
Informatic Systems Division, ITL. Dr. Ebeling is the Principal Investigator 
of the Navigation Systems “Vessel/Barge Impact” work unit under which 
this research was performed. 

This report was authored by Dr. Ebeling, Abdul N. Mohamed and Barry C. 
White of ITL, Professor Jose R. Arroyo of the University of Puerto Rico 
Mayaguez, Ralph W. Strom, consultant, and Bruce C. Barker of ITL. White 
is in the Computational Analysis Branch, ITL. Mohamed is in the Data 
Analysis and Assessment Branch, ITL. Impact_Beam PC-based software 
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development and Winfield full-scale impact data interpretation were made 
by Dr. Ebeling, Mohamed, Professor Arroyo, Strom and White. Bruce C. 
Barker, Branch Chief of the Sensor Measurement and Instrumentation 
Branch, ITL, collected the 2008 Winfield Lock approach wall full-scale 
impact experiment data and beam response data discussed in this report.  

COL Kevin J. Wilson was Commander and Executive Director of ERDC. 
Dr. Jeffery P. Holland was Director. 
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Unit Conversion Factors 

Multiply By To Obtain 

feet 0.3048 meters 

pounds (force) per square inch 6.894757 kilopascals 

pounds (mass) per cubic inch 2.757990 E+04 kilograms per cubic meter 

tons (2,000 pounds, mass) 907.1847 kilograms 
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1 Dynamic Structural Time-History 
Response Analysis of a Simply 
Supported, Flexible Approach Wall Beam 
During Barge Train Impact 

1.1 Introduction - glancing impact blows and flexible approach wall 
structural systems 

A glancing blow impact event of a barge train impacting an approach wall as 
it aligns itself with a lock is an event of short duration; the contact time 
between the impact corner of the barge train and the approach wall can be 
as short as a second or as long as several seconds. In order to reduce 
construction costs as well as to reduce damage to barges during glancing 
blow impacts with lock approach walls, the next generation of Corps 
approach walls are more flexible than the massive, stiff-to-rigid structures 
constructed in the past. A flexible approach wall or flexible approach wall 
system is one in which the wall has the capacity to absorb impact energy by 
deflecting or “flexing” during impact, thereby affecting the dynamic impact 
forces developing during the impact event. This report summarizes an 
engineering methodology and corresponding software for performing a 
dynamic structural response analysis of a simply supported, flexible impact 
beam to a barge impact event. The results of the analysis are used to size 
and to design the structural member. A comparison to an equivalent static 
loading is included so as to gage the level of dynamic behavior occurring 
during the impact event. 

1.2 Examples of the next generation flexible approach walls 

Examples of this next generation of Corps flexible approach walls are 
shown in Figures 1.1 through 1.9 for the three locks at Marmet, London 
and Winfield (courtesy of Huntington District).  

Marmet Lock: The Marmet Locks and Dam are located about 68 miles 
above the mouth of the Kanawha River at Marmet, W.V. The twin locks, 
built in 1934, measured 56 feet by 360 feet. The addition of the new, larger 
lock, adjacent to the existing lock, will accommodate the increased traffic at 
Marmet. The new upstream guide wall is straight, approximately 1,600 feet 
long, and has conventional steel wall armor (left wall in Figure 1.1 plan 
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view). The Figure 1.2 wall consists of 14 drilled shaft piers, spaced at 105 feet 
on center, and a concrete-filled nose cell (not shown). This substructure 
supports 15 post-tensioned concrete box beams. Each pier is constructed of 
two drilled shafts with cast-in-place concrete cap beams to support the 
precast concrete wall beams. Refer to Figures 1.1 through 1.4. A thrust block 
(Figure 1.1) is provided at the cap beam to transfer the barge impact from 
the beam into the shafts and nose cell. The hollow, rectangular beams have 
an outside dimension of 10 feet by 10 feet. The weight of each of the precast 
beams is approximately 500 tons. The new upstream approach guard wall is 
also straight, approximately 950 feet long, and has conventional steel wall 
armor (right wall in Figure 1.1 plan view). The wall consists of seven piers 
spaced at 122 feet on center, concrete-filled nose cell. This substructure 
supports 8 post-tensioned concrete box beams. These beams are shown in 
Figure 1.3 during transport to the site. Figure 1.4 shows the placement of 
one of these beams. Each pier is a concrete-filled sheet pile cell, approxi-
mately 31 feet in diameter. The hollow, rectangular beams have an outside 
dimension of 10 feet wide by 8 feet deep. 

London Lock: The structure consists of five concrete-filled sheet-pile cells 
spaced at 32 m (105-ft) center to center and a concrete-filled sheet-pile nose 
cell, which support five precast concrete beams. An example of this flexible 
impact beam is shown in Figures 1.5 during placement and in Figure 1.6  

 
Figure 1.1 Marmet Flexible Upper Approach Walls (courtesy of Huntington District) 
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Figure 1.2 Marmet Lock Upper Guide Wall Intermediate Piers during construction (courtesy of 

Huntington District) 

 
Figure 1.3 Transporting the Post-tensioned Beams to Marmet Lock (courtesy of Huntington 

District) 
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Figure 1.4 Lifting and setting the Marmet approach wall beams (courtesy of Huntington 

District) 
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Figure 1.5 Lifting the Post-tensioned Beams at London Lock (courtesy of Huntington District) 

 
Figure 1.6 Transporting the Post-tensioned Beams to London Lock (courtesy of Huntington 

District) 
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Figure 1.7 Winfield Lock Approach Wall Beam at Placement (courtesy of 

Huntington District) 

 
Figure 1.8 End view of the match-cast guide wall box beams at the fabrication yard (courtesy 

of Huntington District) 
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Figure 1.9 Side view of one of three match-cast guide wall box beams at the fabrication yard 

(courtesy of Huntington District) 

during transport. The London Locks and Dam upstream guard wall is on 
the Kanawha River at London, West Virginia. Each sheet-pile cell is 
constructed with a thrust block to transfer the barge impact from the beam 
into the cell. The hollow, rectangular precast wall beams are each 105 ft 
long, and have an outside dimension of 10 ft by 8 ft high. The weight of each 
of the precast concrete beams is approximately 340 tons. 

Winfield Lock Guard Wall: Figure 1.7 shows a flexible Winfield Approach 
(Guard) wall precast concrete beam during placement. Each approximately 
112 feet long, 10 feet by 10 feet hollow beam was match cast in three 
segments and then post-tensioned to form one beam. They are hollow to 
save weight and cost and to allow them to be inspected.  

Winfield Lock Guide Wall: The 10 feet wide by 8 feet deep hollow post-
tensioned concrete box beams used to form the Guide wall in the approach 
area to the old lock are approximately 118' long. Figures 1.8 and 1.9 shows 
end and side views at the casting yard. The top is 1'-3" thick, the bottom is 
1'-3" thick, the impact face is 2'-6" thick and the back face is 1'-0" thick. 
The beams were match-cast in 3 sections then were post-tensioned using 
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10 tendons, each being jacked to 192.7 ksi and seated at 188.2 ksi after 
seating losses. The beams rest on concrete filled sheet pile cells and thrust 
blocks. The beams bear on two (2) - 1'-6" x 2'-4" x 2" thick bearing pads on 
either end. The beams are tied back to the thrust block using (2) 1 3/8" 
diameter threadbar on each end. The threadbar are installed inside grease 
filled conduits cast into the thrust block and beams. The threadbar are not 
tensioned, only snugged hand tight. The impact is transferred into the 
thrust block through one (1) 1'-4" x 3'-6" x 2" thick bearing pad at each end 
of the beam. All bearing pads have a durometer hardness of 50+/- and all 
concrete is 5000 psi at 28 days. 

1.3 Static versus dynamic loading for approach wall impacts 

A static or quasi-static load is one that is applied in such a way that the 
impulse of the load can be modeled as a single force acting in equilibrium 
with the resisting force of the simply supported impact beam, and therefore 
the velocity of the structure is constant. A problem becomes dynamic when 
the inertial forces (d’Alembert forces) of the structure vary rapidly and 
significantly. As such, the load is not in equilibrium with the resisting forces 
when the maximum deflection of the body mass is reached. An instantly 
applied load for an elastic response under ideal conditions will produce 
twice the stress and deformation demands of a statically applied load. This 
aspect of dynamic behavior is commonly demonstrated in books on 
structural dynamics by equating external work to internal strain energy 
(e.g., Chopra, 1995). 

Barge impact testing (e.g., interpretation presented for the 2008 Winfield 
test results in Appendix A and for the 1997 Pittsburgh Prototype test results 
in Appendix B of Ebeling, et al., 2010) indicates the collision of a barge train 
with an approach wall can be represented as a short duration pulse. It 
suggests that the amount of external work done by the pulse over the 
approach wall can be greater than that it would experience if the same 
external work is applied in a zero velocity (i.e. static loading) environment, 
producing higher internal strain energy in the approach wall. The 
engineering methodology and supporting Impact_Beam PC-based software 
described herein is intended to capture this aspect of dynamic behavior. An 
impact factor is used to represent the ratio of the deformation from a load 
applied dynamically divided by the deformation occurring as a result of a 
load applied statically. With the internal restoring force being proportional 
to the displacement by the structural stiffness for elastic beams, this ratio 
also reflects the ratio of dynamic to static internal structural restoring 
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forces. A noteworthy observation is that in the Chapter 4 study by Chopra 
(1995) of the dynamic response of linear elastic, single-degree-of-freedom 
(SDOF) systems subjected to various types of pulse excitations, the 
displacement (and thus the internal structural restoring force) experienced 
by the SDOF system can be up to, but not exceed, twice that it would 
experience if the load were applied statically (i.e., a maximum impact load 
factor of two, as shown in Chopra’s Equation 4.3.4). For the generalized 
single-degree-of-freedom system used for the mathematical model of the 
impact beam of the approach wall (discussed in Chapter 2), this also infers 
an upper bound of two for the ratio of dynamic-to-static deformations (and 
for the ratio of dynamic-to-static internal restoring forces) for a linear 
elastic flexible impact beam. This is an integral part of the time-history 
modal response procedure of analysis. 

A glancing blow impact event of a barge train impacting an approach wall as 
it aligns itself with a lock is an event of less than 4 seconds (see Table A.1 in 
Ebeling, et al., 2010); the contact time between the impact corner of the 
barge train and the approach wall can be as short as a second or as long as 
several seconds. For the 1997 Pittsburgh Prototype field test data of Patev, 
Barker and Koestler (2003b), and Ebeling, White, Mohamed and Barker 
(2010) found that for the eighteen impact tests of interest the duration of 
contact during impact by the 2-by-2 barge train with the stiff-to-rigid wall at 
Old Lock and Dam 2 (just north of Pittsburgh, PA) to have a mean impact 
time of 3.05 seconds with a standard deviation of 0.34 seconds (coefficient 
of variation, COV, of 0.11). The 2008 impact tests at the flexible Guide wall 
of Winfield provides additional time of impact data. 

When an impact event occurs, the flexible beam starts from an at-rest 
position of zero displacement. As the impact event progresses the beam’s 
deflection changes with time, thereby creating a velocity within the beam. 
Since the displacement of the beam will not be constant with time of impact, 
neither will the beam’s velocity be a constant with time. Consequently, with 
the velocity of the flexible impact beam varying with time, the beam will 
accelerate and decelerate during its translatory motion during and after the 
impact event concludes, exhibiting a free vibration behavior. 

1.4 Overview of dynamic time-history response analysis of a flexible, 
simply supported beam 

Due to the flexibility and the mass of the new generation flexible approach 
walls, the impact event can be a dynamic event from the point of view of the 
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mathematical structural model.1 In structural dynamics the mathematical 
model of bodies of finite dimensions undergoing translatory motion are 
governed by Newton’s Second Law of Motion, expressed as 

 F m a= ·å  (1.1) 

at each time step t during motion. In the mathematical model, the forces 
acting on the flexible wall mass at each time step t include (1) the impact 
force at time step t, (2) the elastic restoring forces (of the beam), and (3) the 
damping forces (of the beam). This report discusses an engineering 
methodology that uses Equation 1.1 to compute the dynamic structural 
response of the mass of the Figure 1.10 simply supported, flexible impact 
beam mathematical model to the impact force time history (impact applied 
at a fixed position along the beam). The impact event is idealized as shown 
in Figure 1.11 for the mathematical beam and impact event model as the 
force time history Fnormal-wall(t) by creating a synthetic time history or by 
scaling of existing pulse force time-histories recorded during the full-scale 
barge impact experiments conducted at Winfield Lock & Dam (Barker, et 
al., 2010) and the Pittsburgh Prototype tests (Patev, et al., 2003b). The 
Figure 1.11 force time history denotes the component of the pulse force time 
history acting normal to the wall.2 Initial barge train contact with the wall 
starts at time t1 and ends at time t2. The solution to this dynamic problem 
will be a succession of solutions at user specified time steps starting at time 
t1. These solution time steps are dictated by the time step the user selects for 
the barge train impact force time history, created using the PC-based 
software Impact_Force (Ebeling, White, Mohamed and Barker, 2010). Due 
to the nature of dynamic structural response of some types of beams3 with 
consideration of both the duration and frequency characteristics of the 
impact force time history, the peak response of the simply supported, 
flexible impact beam may occur during impact (i.e., between times t1 and t2) 
or after impact concluded (i.e., after time t2). The engineering methodology 
discussed in this report and corresponding software is capable of addressing 
both types of dynamic structural systems responses. 
                                                                 

1 As observed by Paz (1985, page 10), a mathematical model is the symbolic designation for the 
substitute idealized system that includes all key structural features, characteristics, boundary 
conditions and assumptions imposed on the physical system. 

2 The solid arrow in Figure 1.10 represents the impact pulse force time history acting on the beam while 
the dashed arrow represents the impact pulse force time history acting on the impact corner of the 
barge; equal and opposite forces. 

3 The structural (beam) characteristic used to determine when peak structural response occurs is the 
natural period of the simply supported impact beam and is discussed in Chapter 2. 



ERDC/ITL TR-11-1 11 

 

 
Figure 1.10. Barge train impacting at a fixed impact position along the simply 

supported, flexible impact beam mathematical model with the barge train 
oriented at an approach angle  to the wall’s XGlobal axis (plan view) 

An alternative formulation incorporated within the PC-based program 
Impact_Beam allows for the specification of a barge train having an initial 
contact with the impact beam at position designated X_Impact (in PC-
program Impact_Beam input terminology) at time t1 and moving in contact 
at a constant velocity V along the beam as shown in Figure 1.12.1 The 
position of the impact point force moves with time after contact. Time after 
contact is designated as an increment in time, ti , and occurs at an absolute 
time of [t1 + ti]. The change in position of the contact force is designated a 
distance X from initial contact point X_Impact and is given by 

 Δ Δ iX V t= ·   (1.2) 

The position of the point load along the beam at time ti is 

 point load[ ] _ Impact Δ
itx X X= +  (1.3) 

                                                                 
1 The Velocity, V, of the barge train in the direction of the XGlobal axis is along the line of the beam and it’s 

user provided value to PC-program Impact_Beam is designated as X_Impact_velocity. 
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a) Idealized synthetic pulse force time history 

 
b) Scaling of an existing pulse force time history recorded at the full-scale impact experiment 

conducted at Winfield Lock & Dam by Barker, et al. (2010) 

Figure 1.11 Idealized Examples of an impact pulse force time history created using 
Impact_Force 
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Figure 1.12Barge impact point force moving along the wall from initial contact time t1 to final 

contact time t2 

Introducing Equation 1.2, Equation 1.3 becomes 

 [ ]point load[ ] _Impact Δ
it ix X V t= + ·  (1.4) 

Thus, the Figure 1.11b normal force time history moves along the beam 
from time t1 to time t2 according the user specified velocity V.  

1.5 Dynamics of a distributed-mass and –stiffness system of a 
simply supported beam; an infinite-degree-of-freedom system 

Considering the long spans and distribution of mass and stiffness along 
the length of this one category of flexible impact beam, i.e., the simply 
supported, flexible impact beam1, an infinite-degree-of-freedom system 
mathematical model is used to compute its transverse vibration. The 
mathematical model of a beam of this type has an infinite number of 
degrees of freedom because its mass is evenly distributed. 

                                                                 
1 Simply supported impact beams are used at Marmet, London and Winfield Locks to name a few. 
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1.6 Impact factors 

Because it is a dynamic event the structural response of approach wall mass 
at every time step t to the impact load imparted (at each time step t) to the 
flexible wall mass is not the same as if the force at each time step is applied 
statically (i.e., with acceleration equal to zero in Equation 1.1).1 Therefore, 
included within the response computations of the infinite-degree-of-
freedom system (infinite-DOF system) engineering methodology for the 
impact beam is the computation of; 

 a Displacement Impact Factor (DIF), defined as the ratio of the 
deflection during dynamic vibration divided by its static deflection, 

 a Moment Impact Factor (MIF), defined as the ratio of the internal 
moment during dynamic vibration divided by the static internal 
moment, and  

 a Shear Force Impact Factor (SFIF), defined as the ratio of the shear 
force during dynamic vibration divided by its static shear force. 

These ratios reflect the level of dynamic amplification (or attenuation) 
during dynamic response of the mass of the flexible impact beam. This 
factor gives the engineer a sense of the level of dynamic response taking 
place within the beam’s mass during its vibration resulting from the 
impact by the barge train. 

1.7 Report contents 

This engineering methodology is implemented in a PC-based FORTRAN 
program and Visual Modeler named Impact_Beam, which is also 
discussed in this report. A pulse force time history (normal to the flexible 
approach wall) is used in this dynamic time-history response analysis to 
represent the demand made of the simply supported, flexible beam mass 
during the impact event. The impact force time history to be used in the 
Impact_Beam analysis is created by the companion PC-based program 
Impact_Force (Ebeling, White, Mohamed and Barker, 2010). The 
engineering formulation for Impact_Force uses the impulse momentum 
principle to convert the linear momentum of a barge train into a pulse 
force time history acting normal to the approach wall. 

                                                                 
1 As observed by Clough and Penzien (1993, page 4), because the loading is not applied slowly, 

noteworthy inertial forces result from the structural time-varying displacements of the (distributed) 
mass of the Figure 1.8 flexible beam which in turn are influenced by the magnitude of inertial forces; 
it’s a closed cycle of cause and effect. 
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The engineering formulation developed for and implemented in 
Impact_Beam assumes that the District engineer will have knowledge of  

1. the length, modulus of elasticity, moment of inertia and mass per unit 
length (equal to the weight per unit length divided by the gravitational 
constant) (including hydrodynamic added mass for the beam) of the 
simply supported, flexible impact beam , 

2. the point of initial impact,  
3. the velocity, V, the barge train moves along the approach wall during 

impact (distributed – mass and –stiffness system of a simply supported 
beam case) , and  

4. the impact pulse force time history normal to the impact beam. 

The engineering formulation developed for Impact_Force assumes that 
the District engineer will have knowledge of 

1. the size, the weight (and mass) of the barge train (including hydrodynamic 
added mass), 

2. the barge approach velocity (often expressed in local barge coordinates), 
and  

3. approach angle (the angle measured from the face of the wall to the side of 
the barge train). 

This information will be required for the usual, unusual and extreme 
design load cases. 

Chapter 2 describes the relationships that comprise the engineering 
formulation used to solve Newton’s Second Law of Motion for the dynamic 
response of a simply supported, flexible impact beam subjected to a pulse 
force time-history used to represent the impact at the point of contact 
between the barge train and the flexible approach wall. Because the mass of 
the beam is distributed continuously along its length, the displacements and 
acceleration will be defined for each point along the axis of the Figure 1.10 
simply supported, flexible impact beam.1 In this initial engineering 
formulation implemented in Impact_Beam, the numerical solution of the 
Newton’s Second Law of Motion for the impact pulse force time history 

                                                                 
1 An alternative formulation used in structural dynamics is to create a mathematical model of the Figure 

1.8 impact beam in which the continuous mass of the beam is concentrated at discrete points with the 
displacements and accelerations determined at these discrete locations during the course of the 
dynamic analysis; commonly referred to as a lumped-mass model. 
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applied to the simply supported, flexible impact beam makes use of 
Duhamel’s Integral. This formulation (evaluated using numerical methods) 
makes use of the superposition principle and as such, is restricted to linear 
systems. Note: Future enhancements to be proposed for Impact_Beam 
include an upgrade to nonlinear structural response during extreme 
impacts, at which time the numerical solution of Newton’s Second Law of 
Motion would be changed. 

Chapter 3 summarizes the computation of transverse beam displacements, 
shears and internal moments to a long, simply supported, flexible impact 
beam due to static point loading. Computed results for these three beam 
response parameters, compared to computations made using the Chapter 
2 structural dynamic response formulation provide insights into if 
dynamic amplification occurs for the flexible impact beam being analyzed. 
Dynamic to static responses expressed in terms of “Impact Factors” are 
also presented in this chapter. 

Chapter 4 will present an overview of the Visual Modeler Graphical User 
Interface (GUI) for Impact_Beam. The Impact_Beam Visual Modeler is 
capable of creating two types of input data files: 1) Input data file for a 
Dynamic Response Analysis of a Simply Supported Beam and 2) Input 
data file for a Dynamic response analysis of a Single Degree of Freedom 
system. For the Dynamic Response Analysis, the Impact_Beam Visual 
Modeler has the capability to perform two types of plots; 1) Individual 
Sensor Plot and 2) Animated Beam Response. The Input for the 
Impact_Beam Visual Modeler force time history comes from the 
Impact_Force Visual Modeler.  

Chapter 5 will present some numerical examples based on the elastic 
simply supported beam used during Winfield experiments and some 
examples based on a SDOF system. The first numerical example is the 
comparison of the results of a simply supported beam subjected to a non-
moving dynamic load based on Impact_Beam and SAP2000. This example 
provides the validation for Impact_Beam. Then, this chapter discusses the 
interpretation of the structural response of the Winfield flexible guide wall 
impact beam for Winfield Experiment Test # 10. Comparisons are made in 
this chapter between the results computed for these impact events using 
PC-program Impact_Force and the corresponding data recorded during 
the impact events. The Impact_Beam software is used to estimate the 
dynamic modulus of elasticity of the simply supported beam used during 
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Winfield Experiments. The SDOF numerical examples presented in 
Chapter 5 are the following; 1) a SDOF model obtained from Paz (1985); 2) 
a numerical example of a SDOF model of Winfield experiment for Test # 
10; 3) a numerical example of a SDOF model of Winfield experiment for 
Test # 10 using a bilinear stiffness but assigning the same stiffness for each 
section of the force-displacement relationship; 4) a numerical example of a 
SDOF model of Winfield Experiment for Test # 10 for a linear stiffness 
model calculated using the average total deflection of the beam between 
sensor LD3 and LD4; 5) a set of examples presented to compare the results 
obtained with the computer program dBEAS and Impact_Beam. Force 
time histories generated by dBEAS were used as the input forcing function 
of Impact_Beam and the responses of both systems (dBEAS – 2DOF and 
Impact_Beam – SDOF) were compared. These comparisons were made 
changing the damping ratio of the base isolators under the dBEAS and the 
approach velocity of the barge train.  

Chapter 6 presents the results of the analysis done to the Winfield simply 
supported elastic beam using Impact_Beam to estimate the dynamic 
modulus of elasticity. The results presented in this chapter follow the same 
procedure done in Chapter 5 for Winfield Experiment Test # 10.  

Chapter 7 presents the conclusions of this report based on the 
Impact_Beam computer software. 

Appendix A summarizes the traditional single-degree-of-freedom system 
response in free vibration. 

Appendix B summarizes the application of Duhamel’s Integral to calculate 
the displacement response of a single degree of freedom system. In 
addition, an alternate or explicit solution of the Duhamel’s integral is 
presented as an additional formulation to determine the response of a 
SDOF system subjected to initial conditions and an arbitrary dynamic 
load. Finally, this appendix presents the modification of the equation of 
motion of underdamped SDOF systems that exhibits a spring bilinear 
force-displacement relationship. The equation of motion results the same 
as if the spring is linear but with a change in the dynamic load. 

Appendix C summarizes the numerical procedure used to solve for the 
dynamic response (displacement and velocity) using Duhamel’s Integral 
applied to a generalized SDOF system model.  
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Appendix D describes the ASCII input data file to the PC-based FORTRAN 
program Impact_Beam which performs a dynamic structural response 
evaluation of the simply supported, flexible impact beam of distributed 
mass. This ASCII input data file (Impact_Beam.IN) is created by a Visual 
Modeler. 

Appendix E describes the ASCII output file of the PC-based FORTRAN 
program Impact_Beam which performs a dynamic structural response 
evaluation of the simply supported, flexible impact beam of distributed 
mass. The name of this output file is Impact_Beam_Simulation.OUT. 

Appendix F presents in detail derivation of the equations to calculate the 
deflection of a simply supported beam under the action of a concentrated 
static load at a specified distance “a” from the left support reaction. 

Appendix G presents the results of the estimation of the Dynamic Modulus 
of Elasticity Considering the Axial and Bending Deformation for the 
Winfield Experiment Test # 10 using Impact_Beam computer program. 

Appendix H presents the methodology for determining the mass per unit 
length of the simply-supported beam at Winfield. Hydrodynamic added 
mass is taken into account. 

Appendix I discusses the effects of selecting the total number of frequency 
modes for analysis of the simply supported beam under dynamic loads. 
Recommendations for the appropriate number of modes are given. 

Appendix J discusses the location of laser deflection and strain gage 
sensors for the barge impact tests at Winfield. These locations are used 
when deflections and moments are captured for comparison with the 
Winfield test data in the Impact_Beam computer program. 

Appendix K discusses the efforts to recapture neoprene pad compression 
secant stiffness from the reaction points on the Winfield simply-supported 
beam using the Impact_Beam computer program. Discussions of 
literature definitions for neoprene compression stiffness are included. 
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2 Engineering Methodology to Compute the 
Dynamic Structural Time-History 
Response of a Simply Supported, Flexible 
Approach Wall Beam During an Impact 
Event 

2.1 Introduction 

In structural dynamics the mathematical model of bodies of finite 
dimensions undergoing translatory motion are governed by Newton’s 
Second Law of Motion, expressed as 

 F m a= ·å  (1.1 bis) 

at each time step t during motion. In the mathematical model of transverse 
vibration, the forces acting on the flexible impact beam mass at each time 
step t include:  

1. the impact force at time step t,  
2. the elastic restoring forces (of the beam), and  
3. the damping forces (of the beam).  

The mathematical model of the beam in the engineering formulation 
described in this chapter has an infinite number of degrees of freedom 
because its mass is distributed. In this initial engineering formulation 
implemented in the PC-based program Impact_Beam, the numerical 
solution of dynamic transverse beam deflections, beam moments and 
shear force responses to the impact pulse force time-history applied to the 
simply supported, flexible impact beam of distributed mass and flexural 
stiffness makes use of modal response analyses as a function of position 
along the beam combined with a generalized coordinate solution for 
dynamic response with time for each mode considered. Superposition of 
modal responses is evoked to obtain the total dynamic beam responses. 
The generalized coordinate solution for dynamic response with time is 
solved using Duhamel’s Integral. Duhamel’s Integral is outlined in 
Appendix B and is evaluated using numerical methods by Impact_Beam 
that are outlined in Appendix C. This chapter discusses the various 
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relationships used in this engineering methodology that are implemented 
in Impact_Beam. 

2.2 Dynamics of a distributed-mass and –stiffness system of a 
simply supported beam; an infinite-degree-of-freedom system 

Considering the long spans and distribution of mass and stiffness along the 
length of one category of flexible impact beam, i.e., the simply supported, 
slender,1 flexible impact beam of the type shown in Chapter 1, an infinite-
degree-of-freedom system mathematical model is used for its transverse 
vibration. Applying D’Alembert’s Principle2, the sum of forces in the trans-
verse direction of the beam shown in Figure 2.1 is 

 ( ) ( ),
V u

V V dx p x t dx m x dx
x t

é ù¶ ¶ê ú- + · + · - · · =
ê ú¶ ¶ë û

2

2
0  (2.1) 

Note that a damping force is not included in Equation 2.1 but will be 
accounted for at a later stage in the dynamic beam response formulation 
using the generalized coordinate solution for dynamic response with time. 

Introducing the three equations listed in the left-hand side of Figure 2.1 
and simplifying, the Equation 2.1 partial differential equation governing 
the motion u(x,t) subjected to external dynamic forces p(x,t) becomes 

 ( ) ( ) ( ),
u u

m x EI x p x t
t x x

é ù¶ ¶ ¶ê ú· + · =ê ú¶ ¶ ¶ë û

2 2 2

2 2 2
 (2.2) 

with a distributed mass m(x) and flexural rigidity EI(x) per unit length both 
as a function of position x along the beam. The solution to Equation 2.2 is 
based on imposing a boundary condition of zero displacement and zero  

                                                                 
1 A slender beam implies that during beam flexure the plane cross-section of a beam remains plane, i.e., 

the Bernoulli-Euler theory. That is, shear deformations are negligible for a slender beam and are not 
accounted for in the formulation discussed in this chapter. 

2 Chopra (1995, 2001), Paz (1985) and Clough and Penzien (1993) all observe that D’Alembert’s 
Principle of dynamic equilibrium is commonly applied to this simply supported, slender beam problem 
and is based on the concept of a fictitious inertia force (fi), a force equal to the product of mass times 
acceleration that acts in a direction opposite to the acceleration. In Figure 2.1 the beam is assumed to 
be accelerating in the direction of positive displacement u(x,t) at time t so fi acts as shown, in the 
opposite direction to u(x,t). D’Alembert’s Principle states that with inertia forces (e.g., fi in the Figure 
2.1 insert figure box) included via the last term in Equation 2.1, a system is in equilibrium at each time 
instant. Thus a free-body diagram of a moving mass can be drawn as shown in Figure 2.1 and 
principles of statics can be used to develop the equation of motion as is done here. 
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Figure 2.1. Simply-supported flexible beam with distributed mass and flexural 

stiffness, equations of equilibrium and forces and moments on a beam element. 

moment at each end of the Figure 2.1 simply supported beam as well as 
imposing the initial displacement ( , )u x 0  and initial velocity ( , )u x 0  along 

the entire beam at time t = 0. 

2.2.1 Free vibration response for a single mode of an infinite-degree-of-
freedom system - a solution in two parts 

In the case of free vibration for the slender beam, Equation 2.2 simplifies to 

 ( ) ( )u u
m x EI x

t x x

é ù¶ ¶ ¶ê ú· + · =ê ú¶ ¶ ¶ë û

2 2 2

2 2 2 0  (2.3) 

For this model, the displacements and acceleration will be defined for each 
point along the longitudinal axis of the simply supported, flexible impact 
beam as depicted in Figure 2.1. In this formulation, the transverse displace-
ments u(x,t) at all locations along the beam are defined by two terms: 

 the shape function  x , and 
 the generalized coordinate q(t) 
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The equation for the transverse beam displacement at position x along the 
beam and at time t is 

 ( ) ( ) ( ),u x t φ x q t= ·  (2.4) 

Substitution of Equation 2.4 into Equation 2.3 and collecting terms, 
numerous structural dynamics books including Chopra (1995, 2001), Paz 
(1985, 1991), and Clough and Penzien (1993), all show that the partial 
differential equation becomes two ordinary differential equations, one 
governing the time varying function q(t), 

 q ω q+ =2 0  (2.5) 

and a second governing the spatial function , 

 ( ) ( ) ( ) ( )EI x φ x ω m x φ x
é ù¢¢· - · · =ë û

2 0  (2.6) 

Observations:  

 The dynamic transverse beam displacement response u(x,t) is the 
product of two terms; ( )φ x  and q(t). Thus, the solution for u(x,t) is 

achieved in two parts; the first solution is made for  x  and the second 
solution is made for q(t). 

 The first term, ( )φ x , in Equation 2.4 is a function (only) of position 

along the simply supported beam and the second term, q(t), is a 
function (only) of time. 

 There are two ordinary differential equations governing dynamic beam 
response; one governing position response and a second governing 
time response. Their solutions combine to the total response. 

 Equation 2.5 has the same form as the equation governing the free 
vibration of a SDOF system with a natural frequency  (refer to 
Equation A.2 in Appendix A, but without its second term, i.e., the 
damping term).  

Note that, for any user specified mass and stiffness distributions along the 
beam, there are infinite sets of frequencies  and associated mode shapes 
(x) that satisfy Equation 2.6 for the simply supported beam boundary 

 x
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conditions of zero displacements and zero moments at each end of the 
slender beam. 

The next sub-section addresses the solution of mode shapes (x); the first 
term of the two terms in Equation 2.4 for transverse beam displacement 
u(x,t). Sub-section 2.2.3 will address the solution of q(t); the second term 
in Equation 2.4 for u(x,t). 

2.2.2 Mode shapes (x) and natural vibration frequencies for a uniform 
beam 

For the special case of a slender, simply supported beam of uniform (i.e., 
constant) mass designated m  per unit length and uniform flexural 
stiffness, EI, along a simply supported beam, Equation 2.6 becomes 

 ( ) ( )ivφ x β φ x- · =4 0 (2.7) 

with 

 
ω m

β
EI

·
=

2
4  (2.8) 

and (the real form of) the general solution for the spatial function ( )φ x  is 

 
( ) ( ) ( )

( ) ( )
sin cos

sinh cosh

φ x C β x C β x C

β x C β x

= · · + · · +

· · + · ·
1 2 3

4

 (2.9) 

The solution for the four constants C1, C2, C3, and C4 and for the eigenvalue 
parameter  are determined by applying the boundary conditions of zero 
displacements and zero moments to each end of the simply supported 
beam. Applying the boundary conditions u(0,t) = 0 and moment M(0,t)=0 
at x = 0 results in constants C2 and C4 both equal to zero. Similarly, applying 
the boundary conditions u(L,t) = 0 and moment M(L,t)=0 at x = L results in 
constant C3 equal to zero and leads to the frequency equation 

 ( )sinC β L· · =1 0  (2.10) 

Equation 2.10 is satisfied for the cases of 

 β L n π· = ·  (2.11) 
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for n equal to 1, 2, 3, … 

Introducing Equation 2.8, Equation 2.11 becomes 

 n

n π EI
ω

L m
·

= ·
2 2

2
 (2.12) 

By setting C1 equal to unity, this makes the maximum amplitude of the 
spatial function ( )φ x  equal to unity as well, and Equation 2.9 reduces to 

 ( ) sin
n π x

φ x
L

æ ö· · ÷ç= ÷ç ÷çè ø
 (2.13) 

Recognizing that, for a simply supported beam with uniform distributed 
mass, there are an infinite number of frequencies and mode shapes, 
Equation 2.13 is re-written as 

 ( ) sinn

n π x
φ x

L

æ ö· · ÷ç= ÷ç ÷çè ø
 (2.14) 

and thereby acknowledges via the (subscript) notation that the spatial 
function ( )φ x  is in actuality the mode shape ( )nφ x  for mode n with a 

natural frequency n . The mode shapes and (undamped) natural frequen-
cies for a uniform simply supported beam are idealized in Figure 2.2 for the 
first three modes, i.e., n = 1, 2 and 3. 

Observations:  

 There are infinite sets of mode shapes n(x) and associated frequencies 
n that satisfy Equation 2.7 for this simply supported uniform beam, 
from mode number n equal to one to mode number n equal to infinity.  

 Equation 2.12 defines the natural frequency n for each mode n, and 
 Equation 2.14 defines the mode shape  xn  for each mode n. 
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Figure 2.2. Idealization of the first three (undamped) natural vibration mode shapes 
and frequencies of a simply supported flexible beam with uniform mass and flexural 

stiffness. 

2.2.3 Definition of modal variables for a simply supported uniform beam 
with an infinite-DOF system subject to dynamic loading p(x,t) - a 
solution in two parts 

The displacement response of the mathematical model of a simply 
supported uniform beam (with a distributed mass and stiffness) to a 
dynamic external force p(x,t) applied transverse to the beam is 

 ( ) ( ) ( ), n n
n

u x t φ x q t
¥

=

= ·å
1

 (2.15) 

Observations: 

 Equation 2.15 expresses the superposition of the contribution of 
individual (orthogonal) modes (from mode number n equal to one to 
mode number n equal to infinity); superposition is restricted to linear 
beam response problems. 

 The solution is made at each user specified point x along the beam. 
 The solution for the (mode shape) term n(x) for mode n is given by 

Equation 2.14. 

x

L



  





 


L

x
x

 sin1

  





 


L

x
x

 2
sin2

  





 


L

x
x

 3
sin3

m

EI

L


2

2

1



m

EI

L





2

2

2

4 

m

EI

L





2

2

3

9 
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 The solution for the (generalized coordinate) term qn(t) for mode n is 
obtained by numerically solving Duhamel’s Integral (Appendix B). 

 Note that a solution for n(x) and for qn(t) is determined each for mode 
n and the solutions for n(x) and for qn(t) will each differ from one 
mode to the next. 

Substituting Equation 2.15, Equation 2.2 after some mathematical 
manipulations as described, e.g., by Chopra (1995, 2001) or Paz (1985, 
1991), becomes 

 ( ) ( ) ( )n n n n nM q t K q t P t· + · =  (2.16) 

where the mode n mass is given by 

 ( )( )
L

n nM m x φ x dxé ù= · ë ûò
2

0

 (2.17) 

For a uniform beam m(x) is set equal to a constant mass  per unit 
length, and Equation 2.17 becomes 

 ( )
L

n nM m φ x dxé ù= · ë ûò
2

0

 (2.18) 

Introducing Equation 2.14 and performing the integration, Equation 2.18 
becomes 

 n

m L
M

·
=

2
 (2.19) 

The mode n stiffness (as implemented in the PC-based program 
Impact_Beam) is 

 n n nK ω M= ·2  (2.20) 

Introducing Equations 2.12 and 2.19, Equation 2.20 for mode n becomes 

 n

n π
K EI

L

·
=

·

4 4

32
 (2.21) 

m



ERDC/ITL TR-11-1 27 

 

And the mode n external force is given by 

 ( ) ( ) ( ),
L

n nP t p x t φ x dx= ·ò
0

 (2.22) 

This external forcing function Pn(t) for mode n is used as the forcing 
function to the SDOF system, whose response is designated as qn(t) and 
solved using Duhamel’s Integral as summarized in Appendix B for each 
mode n = 1 to the highest mode specified in the analysis (theoretically, up 
to infinity). 

2.2.4 Definition of dynamic modal n force Pn(t) for loads at a fixed point on 
a beam or travelling along the beam 

For a user specified, time varying point load p( point loadx ,t) applied at a 

(fixed) position of x set equal to point loadx  along the beam, Equation 2.22 for 

mode n becomes 

 ( ) ( ) ( )point load point load,n nP t p x t φ x= ·  (2.23) 

with  loadpointxn  for mode n is given by  

 ( ) point load
point load sinn

n π x
φ x

L

æ ö· · ÷ç ÷= ç ÷ç ÷çè ø
 (2.24) 

From the initial time that the barge train contacts the impact beam from 
contact time t1 through final contact time t2 (Figure 2.3), the point load p(

point loadx ,t) remains fixed at position point loadx  along the beam. The initial 

impact point position point loadx  is designated by the variable X_Impact as 

user input data as shown in the Appendix D. 

An alternative formulation incorporated within the PC-based software 
Impact_Beam allows for the specification of a barge train having an initial 
contact with the impact beam at position 

1
][ loadpoint tx  (i.e., X_Impact in the 

Impact_Beam software input terminology) at time t1 and moving in contact 
at a constant velocity V along the beam as shown in Figure 2.31. The 

                                                                 
1 The Velocity, V, of the barge train in the direction of the XGlobal axis is along the line of the beam and its 

user provided value to PC-program Impact_Beam, which is designated as X_Impact_velocity. 
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position of the impact point force  ][,][ 1 loadpoint it ttxp
i

  moves with time ti. 

Its change, in distance X from initial contact point X_Impact at time ti, is 
given by 

 Δ Δ iX V t= ·  (1.2 bis) 

 
Figure 2.3. Barge impact point force moving along the wall from initial contact time t1 

to final contact time t2. 

The position of the point load along the beam at time ti is 

 point load[ ] _ Impact Δ
itx X X= +  (1.3 bis) 

Recall that by introducing Equation 1.2, Equation 1.3 becomes 

 [ ]point load[ ] _Impact Δ
it ix X V t= + ·  (1.4 bis) 

For a user specified, time varying point load  ][,][ 1 loadpoint it ttxp
i

  that 
moves with a velocity V along the beam, substituting Equation 1.4 for 

loadpointx , Equation 2.23 for mode n becomes 

 
( ) ( )

( )
[ _Impact Δ ],

[ _Impact Δ ]

n i

n i

P t p X V t t

φ X V t

= + · ·

+ ·
 (2.25) 

with  loadpointxn  for mode n given by  

[Xpoint load]t1

L

[Xpoint load]ti

V

X = V*tiX

 ][,][ 1 loadpoint it ttxp
i


 1loadpoint ,][

1
txp t
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 ( )point load

[ _Impact Δ ]
sin i

n

n π X V t
φ x

L

æ ö· · + · ÷ç= ÷ç ÷÷çè ø
 (2.26) 

2.2.5 Dynamic mode n displacements un(x,t), modal moments Mn(x,t) and 
modal shears Vn(x,t) for a simply supported uniform beam subject to 
dynamic loading p(x,t) and a solution to part one of two parts 

For a slender, uniform beam (with m(x) equal to a constant mass m  per 
unit length), the (undamped) natural frequency n for mode n is given by 
Equation 2.12. The displacement for mode n is 

 ( ) ( ) ( ),n n nu x t φ x q t= ·  (2.27) 

Recall the spatial function  xn  is the mode shape for mode n with a 
natural frequency n, given by Equation 2.14 for the user specified point x 
along the beam. The solution for the (generalized coordinate) term qn(t) for 
mode n is obtained by numerically solving Duhamel’s Integral (Appendix 
B). The solution for un(x,t) for each mode n is accomplished by the PC-based 
software Impact_Beam. In theory, there are an infinite number of modes 
for a uniform beam. In actuality, only a finite number of modes provide a 
practical contribution to beam response (i.e., displacements, moments and 
shear forces). Impact_Beam allows the user to specify the maximum 
number of modes, designated mode r, to be used in the transverse 
displacement, moment and shear force response analyses. For the user 
specified number of modes one through r, the total uniform beam 
displacement is 

 ( ) ( ), ,
r

n
n

u x t u x t
=

=å
1

 (2.28) 

with each mode n displacement defined by Equation 2.27. The bending 
moment along the uniform beam (for the user defined one to r modes) is 

 ( ) ( ) ( ) ( ) ( ), ,
r r

n n n
n n

M x t M x t EI x φ x q t
= =

¢¢= = · ·å å
1 1

 (2.29) 

which for a uniform beam EI(x) equals a constant value EI, Equation 2.29 
becomes 
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 ( ) ( ) ( ),
r

n n
n

M x t EI φ x q t
=

¢¢= · ·å
1

 (2.30) 

The second derivative of the Equation 2.14 mode shape is 

 ( ) sinn

n π n π x
φ x

L L

æ ö· · · ÷ç¢¢ =- ÷ç ÷çè ø

2 2

2
 (2.31) 

Shear is the partial of the moment with respect to x. The shear along the 
uniform beam (for the user defined one to r modes) is 

 ( ) ( ) ( ) ( ) ( ), ,
r r

n n n
n n

V x t V x t EI x φ x q t
= =

¢é ù¢¢= = · ·ë ûå å
1 1

 (2.32) 

which for a uniform beam EI(x) equals a constant value EI, Equation 2.32 
becomes 

 ( ) ( ) ( ),
r

n n
n

V x t EI φ x q t
=

¢¢¢= · ·å
1

 (2.33) 

The third derivative of the Equation 2.14 mode shape is 

 ( ) cosn

n π n π x
φ x

L L

æ ö· · · ÷ç¢¢¢ =- ÷ç ÷çè ø

3 3

3
 (2.34) 

2.2.6 Generalized coordinate solution qn(t) for dynamic response with time 
for each mode n considered - a solution to part two of two parts 

Although Equation 2.15 expresses the transverse beam displacement u(x,t) 
as the superposition of an infinite number of modes, in actuality, the 
solution is based on a user specified finite number of modes. So, for user 
specified r modes, the Impact_Beam software computes the dynamic 
transverse displacement along the uniform beam as equal to 

 ( ) ( ) ( ),
r

n n
n

u x t φ x q t
=

= ·å
1

 (2.35) 

Similarly, the dynamic moments for a uniform beam are given by 
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 ( ) ( ) ( ),
r

n n
n

M x t EI φ x q t
=

¢¢= · ·å
1

 (2.30 bis) 

and the shear forces for a uniform beam are given by 

 ( ) ( ) ( ),
r

n
n

V x t EI φ x q t
=

¢¢¢= · ·å
1

 (2.33 bis) 

Observe, in these three equations, that the dynamic transverse 
displacements, moments and shear forces are all a product of two terms: 

 the shape function and its derivatives, and  
 a generalized coordinate qn(t) for each mode n.  

The previous sub-sections describe the solution for the first term and the 
shape function (with its derivatives). Note that the shape function solely is 
a function of position. This sub-section describes the solution for the 
second term, the generalized coordinate qn(t). Note that the generalized 
coordinate solely is a function of time. 

Along with others, Paz (1985) observes that the equation of motion for 
each mode, e.g., mode n, of the generalized coordinate qn(t) is analogous 
to the modal equation for a discrete (i.e., lumped mass) system and as 
such, that the modal damping can simply be added to Equation 2.16 to 
become 

 ( )( ) ( ) ( )n n n n n n nM q t C q t K q t P t· + · + · =   (2.36) 

where the fraction of critical damping for mode n, n , is equal to 

  
,

n
n

n critical

C
ζ

C
=  (2.37) 

Dividing through by modal Mass Mn and introducing Equation 2.37, 
Equation 2.36 becomes 

 ( ) ( )
( ) ( ) n

n n n n n n
n

P t
q t ζ ω q t ω q t

M
+ · · · + · =22   (2.38) 
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Equation 2.36 for each specified mode n (i.e., from mode one up to the user 
specified mode r) has the same form as the equation governing the forced 
vibration of a SDOF system with a natural frequency ; refer to the lower 
right equation in Figure B.1. The solution for the generalized coordinate 
qn(t) for mode n is obtained by solving Duhamel’s Integral for a classically 
damped system. 

2.2.7 Duhamel’s Integral solution for the generalized coordinate solution 
qn(t) for dynamic response with time for each mode n 

One approach to the solution of the equation of motion for the generalized 
coordinate term qn(t) for mode n in Equation 2.38 is Duhamel’s Integral, as 
discussed in Craig (1981).1 Duhamel’s Integral is based on representing the 
applied force time-history as a sequence of infinitesimally short impulses. 
Note that, because superposition is used, application of Duhamel’s Integral 
is limited to linear elastic systems. 

The displacement response qn(t) for mode n to a time-varying modal force 
applied to mode n, is obtained by adding the responses to all of the 
individual impulses up to the time t of interest for mode n. Appendix B 
summarizes a traditional derivation of Duhamel’s Integral for a SDOF 
system. Key to this derivation is the observation that the magnitude of the 
impulse is equal to the change in momentum. This allows for the introduc-
tion of the force time-history into the free vibration response relationship, 
Equation A.9, for a SDOF system. 

The Appendix B Duhamel’s Integral derivation has been adapted in this 
sub-section to the solution of the generalized coordinate solution qn(t) for 
each mode n. The solution to the generalized coordinate solution qn(t) for 
mode n which starts at rest, i.e., with zero initial displacement and zero 
initial velocity at time t equal to 0, is expressed as 

 
( )

( ) ( ) ( ) ( )( ) sinn n

t
ζ ω t τ

n n D n
n D n

q t P τ e ω t τ dτ
M ω

- - é ù= · · · -ê úë û· ò
0

1
 (2.39) 

                                                                 
1 Appendix B discusses the application of Duhamel’s integral to the solution of the dynamic response of 

a SDOF system. Note that both Equation 2.38 and the equation given in the lower right of Figure B.1 
are both second order differential equations of the same form. 
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for a critical damping ratio value n1, undamped natural circular frequency 
n, and damped natural circular frequency (D)n. The modal forcing func-
tion time-history Pn(t) is expressed as  nP  in Equation 2.39 and is based 

on the user defined impact pulse force time-history. Equation 2.39 is 
analogous to Equation B.4 for the dynamic response of a SDOF system 
starting at-rest and subjected to a time-varying, external forcing function. 
This equation is solved numerically using the procedure outlined in 
Appendix C. 

The slender, uniform beam possesses for each mode n a unique value for 
the undamped natural frequency n and equal to 

 n

n π EI
ω

L m
·

= ·
2 2

2
 (2.12 bis) 

and damped natural frequency (D)n defined for mode n as 

 ( )D n nn
ω ω ζ= · - 21  (2.40) 

In addition, each mode n of a slender beam with constant mass m per unit 
length will possess a unique modal mass Mn 

 n

m L
M

·
=

2
 (2.19 bis) 

and a unique (to mode n) modal forcing function time-history Pn(t)  

 ( ) ( ) ( )point load point load,n nP t p x t φ x= ·  (2.23 bis) 

for a user specified, time varying point load p( point loadx ,t) applied at a 

(fixed) position x = point loadx  along the beam. The value for ( )point loadnφ x  for 

mode n in Equation 2.23 is  

 ( ) point load
point load sinn

n π x
φ x

L

æ ö· · ÷ç ÷= ç ÷ç ÷çè ø
 (2.24 bis) 

                                                                 
1 The user specifies the fraction of critical damping n for mode n as well as all other user specified 

modes, and is typically a value between 0.0 and 0.1. 
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The user defined, time varying point load p( point loadx ,t) may be developed 

using the companion PC-based software Impact_Force. It is important to 
recognize that values for n, (D)n and Mn, and time-history Pn(t), will each 
vary with mode number. 

In the case of a point force moving along the beam, a unique (to mode n) 
modal forcing function time-history Pn(t) is given by 

 
( ) ( )

( )
[ _Impact Δ ],

[ _Impact Δ ]

n i

n i

P t p X V t t

φ X V t

= + · ·

+ ·
  (2.25 bis) 

with  loadpointxn  for mode n given by  

 ( )point load

[ _Impact Δ ]
sin i

n

n π X V t
φ x

L

æ ö· · + · ÷ç= ÷ç ÷÷çè ø
 (2.26 bis) 

Recall that x point load moves along the beam and for a given time 
increment ti after initial contact (t1) is  

 [ ]point load[ ] _Impact Δ
it ix X V t= + ·  (1.4 bis) 

The time-history response for each SDOF system for each mode n, qn(t), in 
Equation 2.39 is solved for the forcing function Pn(t) applied to mode n. 

2.3 Summary of PC-based program Impact_Beam computation of 
dynamic beam Displacements u(x,t), Moments M(x,t) and Shears 
V(x,t) for a slender, simply supported, uniform beam subject to 
dynamic loading p(x point load,t) 

The PC-based computer program Impact_Beam solves for the dynamic 
beam displacements, moments and shears for a slender, simply supported, 
uniform beam subject to a time-varying point load p( point loadx ,t). Section 2.2 

described the derivation of the engineering methodology implemented in 
Impact_Beam for a slender, simply supported, uniform beam case. The 
solution is accomplished in two parts for each mode, summing the products 
of the two solutions from mode one up to the user specified maximum mode 
r. In response to the user specified, time varying point load p( point loadx ,t) 
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applied at a (fixed) position x = loadpointx  along the beam, the dynamic beam 
transverse displacements are 

 ( ) ( ) ( ),
r

n n
n

u x t φ x q t
=

= ·å
1

 (2.35 bis) 

The first part of the solution is made for the mode shape term  xn  for 
mode n using Equation 2.14. The second part of the solution is made for 
the generalized coordinate qn(t) using Equation 2.39 for mode n. 

The dynamic moments for a uniform beam (of constant EI) are given by 

 ( ) ( ) ( ),
r

n n
n

M x t EI φ x q t
=

¢¢= · ·å
1

 (2.30 bis) 

The first part of the solution is made for the second derivative of the shape 

function for mode n,  xn
 , using Equation 2.31. The second part of the 

solution is made for the generalized coordinate qn(t) using Equation 2.39 
for mode n. 

The dynamic shear forces for a uniform beam (of constant EI) are given by 

 ( ) ( ) ( ),
r

n
n

V x t EI φ x q t
=

¢¢¢= · ·å
1

 (2.33 bis) 

The first part of the solution is made for the third derivative of the shape 
function for mode n, ( )nφ x¢¢¢ , using Equation 2.34. The second part of the 

solution is made for the generalized coordinate qn(t) using Equation 2.39 
for mode n. 

The left and right vertical support reactions can be calculated using 
Equations 2.33 and 2.34  

 ( ) ( ) ( ),
r

n n
n

V x t EI φ x q t
=

¢¢¢= · ·å
1

 (2.33 bis) 

where 
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 ( ) cosn

n π n π x
φ x

L L

æ ö· · · ÷ç¢¢¢ =- ÷ç ÷çè ø

3 3

3
 (2.34 bis) 

for x = 0 and x = L. The resulting expressions are the following; 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

,

,

r

A n n
n

r

B n n
n

R t V x t EI φ x q t

R t V x L t EI φ x L q t

=

=

¢¢¢= = = · = ·

¢¢¢= = = · = ·

å

å
1

1

0 0

 (2.41) 

and  

 
( )

( ) ( )cos

n

n

n π
φ x

L
n π

φ x L n π
L

·¢¢¢ = =-

·¢¢¢ = =- ·

3 3

3

3 3

3

0
 (2.42) 

where the magnitudes of AR and BR  are the left and right vertical supports 

reactions time-history, respectively. 

Observations: 

 Chopra (1995), Paz (1985), and Clough and Penzien (1993) observe that 
higher modes contribute more to the dynamic moment response for a 
simply supported uniform beam than to its displacement response. 

 Chopra (1995), Paz (1985), and Clough and Penzien (1993) also observe 
that higher modes contribute more to the dynamic shear force response 
for a simply supported uniform beam than to its moment response. 

 Experience with the application of this uniform mass and uniform 
stiffness slender beam solution process dictates that more modes must 
be included for accurate solutions compared to the number of modes 
considered adequate in a lumped mass modal solution. 
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3 Computation of Transverse Beam 
Displacements, Internal Shears and 
Moments Impact Factors 

3.1 Introduction 

Long, slender flexible beams such as those used for impact beams (i.e., 
flexible approach walls) as shown in Chapter 1, can respond to an impact 
pulse force time-history with intensities that can be larger, the same, or 
smaller than if that same load is applied as a sequence of static loadings.1 
This chapter summarizes the computation of transverse beam displace-
ments, shears and internal moments to a long, simply supported, flexible 
impact beam due to static point loading. Computed results for these three 
beam response parameters, compared to computations made using the 
Chapter 2 structural dynamic response formulation provide insights into 
whether or not dynamic amplification occurs for the flexible impact beam 
being analyzed. Dynamic to static responses are expressed in terms of 
“Impact Factors.” 

3.2 Impact factors used in Impact_Beam 

Because a barge train impact with a flexible impact beam (i.e., a flexible 
approach wall) is a dynamic event, the structural response of this flexible 
approach wall mass at every time step t to the impact load imparted to the 
flexible wall mass is not the same response as if the force at the same time 
step t is applied statically (i.e., with acceleration equal to zero in Equa-
tion 1.1).2 Therefore, included in Impact_Beam is the computation of three 
Impact Factors; the first is for transverse beam displacements, the second 
for shear forces, and the third for bending moments. They are defined as: 

 Displacement Impact Factor DIF; the ratio of the dynamic deflection at 
any position along the beam at each time step divided by its static 
deflection calculated at the same position along the beam due to a 

                                                                 
1 Note that structural amplification is influenced by, among other factors, the span of the flexible beam 

and the cross-sectional geometry of a prestressed concrete beam. 
2 As observed by Clough and Penzien (1993, page 4), because the loading is not applied slowly, 

noteworthy inertial forces result from the structural time-varying displacements of the (distributed) 
mass of the Figure 2.1 flexible beam which in turn are influenced by the magnitude of inertial forces; 
it’s a closed cycle of cause and effect. 
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static force applied at the same position as the dynamic load.1 It will be 
shown in section 3.3 that the point of maximum static deflection lies 
within a narrow region; within 8 percent of beam length, either side of 
the mid-span of a simply supported impact beam when subjected to a 
point load. 

 Shear Force Impact Factor SFIF; the ratio of the dynamic shear force at 
any position along the beam at each time step divided by its static shear 
force calculated at the same position along the beam due to a static 
force applied at the same position as the dynamic load . The point of 
maximum static shear occurs anywhere between the position of the 
point load and the reaction that is closest to the point load (i.e., the 
shear force is uniform within this region).  

 Moment Impact Factor MIF; the ratio of the dynamic moment at any 
position along the beam at each time step divided by its static moment 
calculated at the same position along the beam due to a static force 
applied at the same position as the dynamic load. For a simply 
supported beam, the point of maximum static moment is at the 
position of the point load. 

Since the (internal) restoring force of the beam is proportional to the 
beam’s deflection (by a stiffness term), the DIF ratio also reflects the level 
of dynamic restoring force amplification (or attenuation) during dynamic 
response of the mass of the flexible impact beam. This and the other two 
impact factors give the engineer a sense of the level of dynamic response 
taking place within the beams’ mass. 

3.3 Beam deflection under an eccentric static load P 

This sub-section summarizes the deflection equations for a simply 
supported beam subjected to a static load P applied anywhere along the 
beam. The deflection relationships are derived in numerous books. The 
beam response to a static point load applied to any point along a simply 
supported beam can be derived by integration, moment area or by other 
methods (as described in references on Strength of Materials and Structural 
Analysis, including Cernica (1966)). Figure 3.1 shows a simply supported 
beam subjected to a static point load P with the length of beam and load 
position definitions. 

                                                                 
1 Chopra (1995) refers to this displacement ratio as the” impact factor” and Paz (1985) refers to this 

ratio as the “dynamic load factor. “ 
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Figure 3.1. Simply supported beam – 

static load P. 

Figure 3.2 provides a definition of terms for the equations cited in this 
sub-section to compute deflection of this simply supported beam.1 

 
Figure 3.2. Distance definitions a and b for 

Equations 3.1 through 3.4 for a simply 
supported beam with the distance “left of P” 

> L/2. 

The maximum deflection for a static load P: 

 
( ) /

P b L b
δ

L EI

· · -
=

· · ·

3 22 2

9 3
 (3.1) 

occurs at the position 

 '
L b

x
-

=
2 2

3
 (3.2) 

The following deflection equations are based upon the distances a and b 
from the support to the static point load P, where the value for distance a 
is always greater than or equal to the distance b, as shown in Figures 3.2 
and 3.3. Deflections at any point x’ where 0 < x’ < a are 

                                                                 
1 After Table 4-1 on page 253 of Cernica (1966). 
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Note solution for: a>L/2 and b<L/2

“left of P” = a

For: “left of P” > L/2 and “right of P” <L/2

“right of P” = b

true x, x’
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Figure 3.3. Distance definitions a and b for 

Equations 3.1 through 3.4 for a simply 
supported beam with the distance “left of 

P” < L/2. 
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And deflections at any point x’ where a < x’ < L are 
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To use the above equations when the static point load P is at a position 
where the “left of P” distance is less than L/2 (as measured from the left-
hand-side reaction point), the transformation depicted in Figure 3.3 is 
required. 

The general equations for the transversal deflection of a simply supported 
beam as presented in Figure 3.1 is as follows 
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and 
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Note solution for: a>L/2 and b<L/2

“left of P” = b

For: “left of P” < L/2 and “right of P” > L/2

“right of P” =a

x’true x
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where the x value is measure from the left support. This solution is helpful 
because it is not necessary to consider the transformation of the x 
coordinate depicted in Figure 3.3. That is, by using Equations 3.5 and 3.6, 
no considerations have to be made related to which distance, a or b, is 
greater or less. Equations 3.5 and 3.6 were used to calculate the static 
transverse displacement of the simply supported beam subjected to a static 
concentrated load in Impact_Beam computer software. These equations are 
derived in Appendix F.  

Parametric calculations summarized in Figure 3.4 show that the point of 
maximum static deflection depends upon the location of the point load 
and is only at beam center when a mid-span static point load is applied. 
The “normalized deflections” summarized in this figure are for a unit static 
point load and for EI equal to unity. Multiply the Figure 3.4 “normalized 
deflection” values by the value of (P/EI) to obtain actual deflection values 
or apply Equations 3.3 and 3.4 according to the distance definitions 
established in Figures 3.2 and 3.3. 

 
Figure 3.4. Normalized displacements for the 13 unit point load positions along the simply 

supported beam subjected to a static point load of unity and with a value of unity for EI. 

These resulting maximum normalized displacements and their 
corresponding positions along the simply supported beam are summarized 
in Table 3.1 for each of the 13 static point load P positions. These results 
show that: 
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a) the point of maximum deflection occurs when the position of the static 
point load P is mid-span of the beam, 

b) there is symmetry in computed normalized maximum displacements 
for equidistant distances for the unit static point load P about the 
center of the beam, 

c) the magnitude of the maximum displacements diminishes as the 
distance to the point load form the center of the beam increases, and 

d) with a unit static point load P positioned between 0.1*L and 0.9*L, the 
point of maximum displacement falls within a narrow range distance of 
approximately 0.43*L and 0.57*L. A separate calculation (not include 
in this table) for a unit point load P at 0.01*L results in a maximum 
displacement computed at approximately 0.42*L. 

Table 3.1. Maximum normalized displacements for each of the thirteen unit point load P 
positions along a simple beam with a value of unity for EI. 

(a) Continued 
(left of P)/L 0 0.1 0.2 0.25 0.3 0.4 0.5 

MAX Deflection 0 0.00632 0.01207 0.01456 0.01671 0.01975 0.02083 

point of 
maximum 
displacement 
in (true x 
coordinate/L) 

0 0.42554 0.4343 0.44098 0.44924 0.47085 0.5 

(b) Concluded 
(left of P)/L 0.5 0.6 0.7 0.75 0.8 0.9 1 

MAX Deflection 0.02083 0.01975 0.01671 0.01456 0.01207 0.00632 0 

point of 
maximum 
displacement 
in (true x 
coordinate/L) 

0.5 0.52915 0.550757 0.559017 0.565685 0.57446 1 

3.4 Displacement impact factor DIF 

Parametric studies of the response of SDOF systems summarized in Chapter 
4 of Chopra (1995) report that for pulse force time-history duration duration 
greater than one-half the natural period of an undamped SDOF system, i.e., 
>(½*Tn), peak displacement responses occur during the pulse loading.1 In 

                                                                 
1 When the pulse force time history duration duration is less than one-half the natural period of an 

undamped SDOF system, i.e., <(½*Tn), peak dynamic displacement responses occur after the pulse 
loading. 
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this case, the comparison of the maximum value for the dynamic 
displacement u(x,t) occurring along the beam and at any time to static 
displacement for the pulse time-history p(xpoint load,t) applied as a static load 
becomes a relevant displacement index to the dynamic response of the 
beam.  

Given a pulse force time-history p(xpoint load,t) applied at a point xpoint load 
along the beam; the Displacement Impact Factor DIF is defined as the value 
of dynamic deflection u(x,t) computed at position x along the beam and 
during any time step t using Equation 2.33 divided by the static deflection at 
this same position x along the beam for an applied static point load set equal 
to the magnitude of the pulse time-history at the same time step used for 
the dynamic displacement calculation p(xpoint load,t) using Equations 3.5 and 
3.6. Recall the dynamic deflection is 

 ( ) ( ) ( ),
r

n n
n

u x t φ x q t
=

= ·å
1

 (2.33 bis) 

with r modes considered in the analysis. Then, the Displacement Impact 
Factor is calculated as 

 
( )int ,po load

dyn

st x t

u
DIF

u

æ ö÷ç ÷=ç ÷ç ÷çè ø
 (3.7) 

DIF is computed at each point along the beam for each time step of the 
pulse time-history by the computer program Impact_Beam. 

Observations: 

 If the point load is applied at a slow rate so that inertial forces resulting 
from the structural time-varying displacements of the beam mass are 
negligible, the DIF is unity.  

 Based on the response of SDOF systems with (duration/Tn)> ½: At the 
other extreme (to static loading), if the load is applied instantaneously 
the DIF can be as large as 2.0, for zero damping (as shown in Chapter 4 
of Chopra (1995) for SDOF systems). A limiting value less than two 
may occur depending upon factors that include the level of damping 
specified. 
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 Contributions of higher frequencies in a MDOF system such as a beam 
with distributed mass may alter this limiting factor of two value since 
higher frequencies can either add to or subtract from the overall 
displacement response; by Equation 2.33, the total beam displacement 
response is equal to the sum of displacements across all user defined 
frequencies 1 to r. 

 Based on the response of SDOF systems with (duration/Tn)< ½: The peak 
response for a time-varying load of finite duration, e.g., a half-sine pulse 
force time-history is applied to a SDOF system with (duration/Tn)< ½, 
the peak dynamic response occurs during free vibration response (i.e., 
after the pulse force time-history concludes). The DIF can be less than 
unity, even for zero damping, as demonstrated in the upper two figures 
of Figure 4.8.2 in Chapter 4 of Chopra (1995) for SDOF system 
responses. 

3.5 Shears and internal bending moments of a beam subjected to a 
concentrated static load 

The shear and moment diagrams for a simply supported beam subjected to 
a static point load of magnitude P are given in Figure 3.5. 

Note: solution is valid for: L>a>0

V1

V2

P

a

L

b

“left of P” = a “right of P” = b

true x, x’

R2R1

Mmax

Shear Diagram

Moment Diagram

 
Figure 3.5. Shear and moment diagrams for a simply supported beam with a static point load P. 
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The reaction forces R1 and R2 are given as 

 
b

R P
L

= ·1  (3.8) 

 
a

R P
L

= ·2  (3.9) 

and the magnitude of the internal shear force of the beam is equal to 

 V R=1 1  (3.10) 

for x<a, and 

 V R=-2 2  (3.11) 

for x>a, as shown in Appendix G. That is, the shear distribution is constant 
along the beam section to the left and to the right of the location of the 
point load P, as shown in Figure 3.5. For completeness, 

 P R R= +1 2  (3.12) 

The maximum bending moment, located at the point load, is 

 MaxM R a= ·1  (3.13) 

After introducing Equation 3.8, it becomes 

 Max

a b
M P

L
·

= ·  (3.14) 

The internal bending moment of the beam for x<a is 

 ( ) Max

x
M x M

a
= ·  (3.15) 

and  
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for x>a, as shown in Appendix G. 

3.6 Shear force impact factor (SFIF) 

Given a pulse force time-history p(xpoint load,t) applied at a point xpoint load 
along the beam; the Shear Force Impact Factor (SFIF) is defined as the 
value of the dynamic shear force V(x,t) computed at position x along the 
beam and during any time step t by Equation 2.31 divided by the static 
shear force calculated at this same position x along the beam for an applied 
static point load set equal to the magnitude of the pulse time-history at the 
same time step used for the dynamic shear calculation p(xpoint load,t) using 
Equations 3.10 and 3.11. Recall the dynamic shear force is given by 

 ( ) ( ) ( ),
r

n
n

V x t EI φ x q t
=

¢¢¢= · ·å
1

 (2.31 bis) 

with r modes considered in the analysis. Then, the Shear Force Impact 
Factor is calculated as 
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SFIF is computed at each point along the beam for each time step of the 
pulse time-history by the computer program Impact_Beam. The point of 
maximum static shear occurs anywhere between the position of the point 
load and the reaction that is closest to the point load (i.e., the shear force is 
uniform within this region). Impact_Beam will determine the value for 
SFIF for the user specified slender, simply supported impact beam and for 
the applied pulse force time-history. 

Observation: 

 If the point load is applied at a slow rate, so that inertial forces 
resulting from the structural time-varying displacements of the beam 
mass are negligible, the SFIF is unity. 

3.7 Moment impact factor (MIF) 

Given a pulse force time-history p(xpoint load,t) applied at a point xpoint load 
along the beam; the Moment Impact Factor (MIF) is defined as the value 
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of dynamic moment M(x,t) computed at position x along the beam and 
during any time step t by Equation 2.28 divided by the static moment 
calculated at this same position x along the beam for an applied static 
point load set equal to the magnitude of the pulse time-history at the same 
time step used for the dynamic moment calculation (xpoint load,t) using 
Equations 3.15 and 3.16. Recall the dynamic moment is given by 

 ( ) ( ) ( ),
r

n n
n

M x t EI φ x q t
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¢¢= · ·å
1

 (2.28 bis) 

with r modes considered in the analysis. Then, the Moment Impact Factor 
is calculated as 
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MIF is computed at each point along the beam for each time step of the 
pulse time-history by the computer software Impact_Beam. Impact_Beam 
will determine the value for MIF for the user specified slender, simply 
supported impact beam and for the applied pulse force time-history. 

Observation: 

 If the point load is applied at a slow rate so that inertial forces resulting 
from the structural time-varying displacements of the beam mass are 
negligible, the MIF is unity. 
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4 Visual Modeler GUI for Impact_Beam 

4.1 Background 

To conduct a dynamic structural response analysis of flexible approach 
walls at Corps locks using structural dynamics engineering computer 
programs, a force time-history is needed to represent the impact of a barge 
train with the approach wall. This force time-history can be created with the 
PC-based software Impact_Force (Ebeling et al. 2010). The engineering 
formulation for Impact_Force uses existing pulse data or synthetic pulse 
data and the impulse momentum principle to convert the linear momentum 
of a barge train into a scaled pulse force time-history acting normal to the 
approach wall. Included in its software development effort was the 
interpretation of the results from the 1997 full-scale barge train impact 
prototype experiments conducted at Old Lock and Dam 2 just north of 
Pittsburgh, PA, and of the 2008 full-scale barge train impact experiments 
conducted at Winfield Lock and Dam, Winfield, WV. 

This chapter introduces the Impact_Beam graphical user interface. The 
various inputs and how they should be used are discussed. The 
Impact_Beam visual modeler has a similar tab-like structure as the 
Impact_Force visual modeler. The appropriately scaled output force time-
history that is generated from the Impact_Force software will serve as the 
input force time-history for the Impact_Beam visual modeler. Section 4.3.2 
will discuss this particular feature. Figure 4.1 shows the Impact_Force units 
and the barge train input parameters that emulate Winfield Barge Impact 
Experiment 10. 

Figure 4.2 displays the scaled impact time-history normal to the approach 
wall for Barge Impact Experiment 10. This experiment recorded a maxi-
mum force of 517 kips. Four distinct pulses are also noticeable for Experi-
ment 10. The first noticeable pulse occurs with the maximum peak of 
517 kips. The second, third, and fourth noticeable pulses have peak values of 
approximately 232 kips, 139 kips, and 74 kips, respectively. This trend of 
decreasing amplitude pulses as the impact event proceeds is typical for all of 
the Winfield field impact tests. (A similar trend was observed in the pulse 
time-history results for the 1997 full-scale barge train impact prototype 
experiments conducted at Old Lock and Dam 2 and shown in Appendix B of 
Ebeling et al. 2010.) 
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Figure 4.1. Impact_Force units and barge train information tab. 

Figure 4.3 shows the frequency information from the Fourier transforma-
tion of the Figure 4.2 normal force time-history recorded during Barge 
Impact Experiment 10. The natural frequencies for this experiment are 
1.22 Hz (0.82 second) and 3.42 Hz (0.29 second). The near zero frequency 
is a long period wave form. It is artificial, introduced by a drift in the 
recording electronics (i.e., a DC underlying offset). It is not inherent to the 
structural system and is to be ignored. 

4.2 Introduction 

Figure 4.4 shows the Introduction tab for Impact_Beam. Also shown on this 
figure are the titles for the other five tabs; Units and Analysis Type, Time 
History, Output Parameters, Analyze, and Output. The different subsections 
of this chapter discuss each tab. Impact_Beam has the capability to perform 
two types of analysis: 1) Dynamic Response Analysis of a simply supported 
beam, 2) Single Degree of Freedom (SDOF) Analysis. Section 4.3 will 
discuss the Dynamic Response Analysis of a simply supported beam. 
Section 4.4 will discuss the SDOF Analysis. 
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Figure 4.2. Impact_Force plot of force time-history output of barge experiment test 10. 

4.3 Dynamic response analysis of a simply supported beam 

A glancing blow impact event of a barge train with an approach wall as it 
aligns itself with a lock is an event of short duration; the contact time 
between the impacting corner of the barge train and the approach wall can 
be as short as a second or as long as several seconds. To reduce construction 
costs, as well as to reduce damage to barges during glancing blow impacts 
with lock approach walls, the next generation of Corps approach walls are 
more flexible than the massive, stiff-to-rigid structures constructed in the 
past. A flexible approach wall or flexible approach wall system is one in 
which the wall has the capacity to absorb impact energy by deflecting or 
“flexing” during impact, thereby affecting the dynamic impact forces 
developing during the impact event. The PC-based software Impact_Beam 
is used for performing a dynamic structural response analysis of a simply 
supported, flexible impact beam to a barge impact event. A pulse force time-
history is used to represent the impact at the point of contact between the 
barge train and the flexible approach wall. The results of the analysis may be 
used to design a new structural member or evaluate the demands made of 
an existing impact beam. 
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Figure 4.3. Impact_Force plot of Fourier Transformation of barge experiment test 10. 

 
Figure 4.4. Impact_Beam introduction tab. 



ERDC/ITL TR-11-1 52 

 

The PC-based software Impact_Beam is based on an engineering 
formulation that solves Newton’s Second Law of Motion for the dynamic 
response of a simply supported, flexible impact beam subjected to a pulse 
force time-history representing the impact force over time at the point of 
contact between the barge train and the flexible approach wall. 

4.3.1 Units and Analysis Type tab 

In this tab, the user chooses the units that will be used as input and the type 
of analysis that will be used for the problem. The interface for the Units and 
Analysis Type tab is shown in Figure 4.5. The Units frame has a collection of 
radio buttons next to a chart of units. Selecting the appropriate radio button 
determines the units that will be used for input and engineering computa-
tion, as defined by the charts. The input parameters for the problem depend 
on what analysis option is selected by the user. Figure 4.5 shows the input 
parameters when the user selects the Dynamic Response Analysis of simply 
supported beam option. 

 
Figure 4.5. Impact_Beam Unit and Analysis Type tab with the Dynamic Response Analysis of a 

simply supported beam option selected. 
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For the Dynamic Response Analysis of a simply supported beam option, the 
user will input data interactively in regards to the following beam span and 
properties: length (in the X direction), impact point (in the X direction), 
impact velocity (in the X direction), neoprene seat widths (on the left and 
right side), neoprene seat gaps (on the left and right side), mass, moment of 
inertia, and Young’s Modulus in the Simply Supported Beam Span and 
Properties frame. A visual aide showing the beam is provided to assist the 
user in entering the information for the left and right neoprene seat widths 
and gaps (between the end of the pad and the end of beam). This informa-
tion is required to compute the effective beam length, which is discussed in 
Chapter 5. Effective beam length is defined as the distance from center-to-
center of the neoprene pads. After providing the input value for the left and 
right neoprene seat width and gaps, the user can click the Update Beam 
Distance button, located in the Beam Length Results frame, to confirm the 
results for the effective beam length, the distance to the left reaction point of 
the beam, and the distance to the right reaction point of the beam. 
Figure 4.7 shows the result of the user clicking the Update Beam Distance 
button in the Beam Length Results frame. 

 

 
Figure 4.6. Showing that the units to the right of the input text boxes change accordingly 

to the units selected from the table. 

*Note: The units to the right of the input text boxes change 
in correspondence to the units selected in the table, as 
shown in Figure 4.6. 
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Figure 4.7. Showing the results of clicking the Update Beam Distance button in the Beam 

Length Results frame. 

4.3.2 Time History tab 

The Time History tab is more complex than the Unit and Analysis Type 
tab. Input for this tab is dependent on the force time-history data that is 
generated from the Impact_Force Visual Modeler. This tab is broken down 
into two sections: the time history properties section and the time history 
comparison (optional) section. 

To select a file for the force time-history data, click the “Browse” button at 
the top of the tab. A file open dialog will appear, allowing the user to open 
force time-history data with an extension of “.frc” (“frc” denotes force 
time-history). It may be necessary to navigate to the directory where the 
force time-history data, generated with the Impact_Force software, is 
stored. The default force time-history file generated by Impact_Force is 
named “Force.FRC” and stored in the Impact_Force installation directory 
by default. This is the filename that the user should select as the force 
time-history data for the Impact_Beam visual modeler. Figure 4.9 shows 
the user browsing the force time-history data that was generated from the 
Impact_Force visual modeler. 
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Figure 4.8. The Time History selection window. 

 
Figure 4.9. Browsing for Force Time-History data. 
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When a file has been selected, its name is displayed in the label next to the 
browse button. The window will contain a plot of the selected force time-
history data. Figure 4.10 shows the plot of the force time-history data in 
the window. In the Time History properties frame, four non-editable text 
boxes will be populated from the force time-history data: the header 
information describing what force time-history was selected, the time step 
of the data, the number of points, and the beam response ending time.  

 
Figure 4.10. Adding a Force Time-History to the window. 

The user has the option to add quiet time, as zero force data for a specified 
time, to the beginning of the force time-history by entering the amount of 
seconds inside the text box located by the “Initial Quiet Time” label. After 
entering the desired amount of quiet time, the user has to click the 
“Update Time” button, which will update the force time-history with the 
additional quiet time with a corresponding force of zero. If the user elects 
not to add any quiet time, then a value of 0 seconds should be left in the 
“Initial Quiet Time” text box. Figure 4.11 shows 1 second of quiet time 
added to the force time-history.  
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Figure 4.11. Adding 1 second of quiet time to the Force Time-History. 

A seldom used resampling option can be selected to interpolate the force 
time-history data for shorter time steps. The user has the option to 
resample the data using linear interpolation by selecting the yes or no 
option buttons, respectively. 

The user has the option to compare the results of an Impact_Beam 
simulation with experimental data recorded at the Winfield Lock in 
Winfield, West Virginia. To select a file for the comparison time-history, 
click the “Browse” button at the bottom of the tab. A file open dialog will 
appear, allowing the user to open a Winfield Barge Impact Beam time-
history data with an extension of “.txt” (“txt” denotes a text file). It may be 
necessary to navigate to the directory where the recorded Winfield Barge 
Impact Beam data are stored. When the program is installed there should 
be a directory named “Winfield_Barge_Impact_Beam“ which stores the 
Winfield Barge Impact Beam time-histories. This directory contains all of 
the recorded beam deflections, rigid body deflections, and strain gage data 
from the August 2008 full-scale impact experiments. Figure 4.12 shows 
the user browsing the Winfield Barge Impact Beam time-history data. 
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Figure 4.12. Browsing for Winfield Barge Impact Beam Comparison Time-History data. 

When a file has been selected for the comparison time-history, its name is 
displayed in the label next to the browse button. Then, the user has to click a 
check in the check box that is located next to the label named “Compare”. If 
the user does not click a check in the check box, then a comparison will not 
be performed. Figure 4.13 shows the results of selecting the Comparison 
Time History option. 

4.3.3 Output Parameters tab 

In this tab, the user will select the output parameters that are required for 
the analysis of an Impact_Beam problem. The number of beam frequencies, 
damping ratio, sensor positions along the beam, and desired units for 
output are examples of the output parameters for Impact_Beam. The 
output parameters presented to the user are dependent on the analysis 
option that is selected. Figure 4.14 shows the output parameters for the 
Dynamic Response Analysis of a simply, supported beam. 
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Figure 4.13. Selection of Comparison Time History option. 

 
Figure 4.14. Output parameters tab for the Dynamic Response Analysis of a simply, 

supported beam option. 
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The number of beam frequencies and the damping ratio for each beam 
frequency is required for the Dynamic Response Analysis of a simply 
supported beam. In the Dynamic Analysis Control frame, the user will 
specify the number of beam frequencies for the problem. Clicking the 
“Create” button will create the desired amount of frequency check boxes 
with a corresponding input text box for the damping ratio, initially filled 
with the default damping ratio. The user will also have the capability to 
individually modify the damping ratio for each beam frequency. The user 
is required to check at least one frequency for the output. 

Appendix I provides a summary of parametric test results with different 
values for the total number of input frequencies. From the test results, it is 
recommended that the user enter at least 5 frequencies to ensure that 
deflections have converged to consistent results. For moments to converge 
to consistent results, a total of at least 15 frequencies need to be entered, 
and for shear forces to converge, a total of at least 30 frequencies need to be 
entered. The number of frequencies chosen does not have a significant 
impact on the program run time, which is typically under two minutes. 

The sensor positions along the beam are also required for the Dynamic 
Response Analysis of a simply supported beam. In the Dynamic Analysis 
Computational Output Control frame, the user can specify the sensor 
locations along the beam by adding a linear distribution of sensor positions 
or by adding an individual sensor position. There are two sub-frames for 
each respective case. To add a linear distribution of sensor positions, the 
user will specify a start sensor position value, an end value sensor position 
value, and the number of sensors that will be placed within the start and 
end values. Clicking the “Linear Distribution Sensor Group” button will 
place the linear distribution of sensor positions inside of a list box in 
ascending order. Figure 4.15 shows the result of adding a linear distribution 
of sensor positions along the beam. In the “Add Individual Sensor Position” 
sub-frame, a user can specify individual sensor positions along the beam. 
Clicking the “Add” button will add an individual sensor position to the list 
box. If the comparison option is selected, the sensor positions stored in the 
Winfield test data file will be populated in the list box automatically. 

The user can delete an unwanted sensor position by selecting it from the 
list box and clicking the “Delete” button. Also, a multi-delete of unwanted 
sensor positions works in a similar fashion by selecting sensor positions 
while pressing the Ctrl key at the same time. Clicking the “Clear” button 
will remove all of the sensor positions located in the list box. 
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Figure 4.15. Adding a Linear Distribution of Sensor Positions. 

In the Displacement Units frame and the Beam Bending Moment Units 
frame, the user will choose the units that will be used as output for the 
displacement and the beam bending moments, respectively. 

4.3.4 Analyze tab 

The Analyze tab serves two major functions for the Impact_Beam Visual 
Modeler. It first provides a visual confirmation of the user’s input for the 
problem. Figure 4.16 shows a visual confirmation of the user’s input for 
the Dynamic Response Analysis of a simply supported beam. Inside of the 
window, there is a plot of the beam, a plot of the force time-history (from 
Section 4.3.2), the start and end impact points along the beam and the 
sensor locations along the beam (from Section 4.3.3). Each of these 
elements is color coordinated in the legend in the top left corner of the 
window. 

Secondly, the Analyze tab also allows the user to run the Impact_Beam 
program and view the consequent output. Before the data can be run, valid 
input must be entered on the Units and Analysis Type tab and the Output 
Parameters tab, and a force time-history must be in the TimeHistory 
window of the Time History tab. If these conditions are met, the “Run 
Analysis” button is enabled, as shown in Figure 4.16. 
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Figure 4.16. Analyze tab. 

Clicking Run Analysis will execute the Impact_Beam program on the data 
that was entered for the Units and Analysis Type tab, the Time History tab, 
and the Output Parameters tab. After the analysis has been performed, a 
message box will alert the user that the Impact_Beam program has finished 
analyzing the data (shown in Figure 4.17). 

 
Figure 4.17. Finished analyzing data 

message box. 

Clicking OK will allow the user to proceed in viewing the results of the 
analysis in the Output tab. The results are stored in a file named 
“Impact_Beam_Simulation.IBO”, and its description is included in 
Appendix E. It is recommended that the user of the program use the tools 
in the Output tab to view the output data graphically, as quite a bit of data 
are stored in the file. 



ERDC/ITL TR-11-1 63 

 

4.3.5 Output tab 

The Output tab provides the visualization options that will be used to view 
the output results of the Impact_Beam simulation. This tab is composed of 
two visualization options: 1) An animated beam response over time, 2) An 
individual sensor position response along the beam over time. The two 
visualization options will not be enabled until the user opens the 
Impact_Beam output simulation file. Figure 4.18 shows the Output tab in 
its default state. 

 
Figure 4.18. Default state for the Output tab. 

To select a file for the output simulation data, click the “Browse” button at 
the top of the tab. A file open dialog will appear, allowing the user to open 
the output simulation data with an extension of “.out” (“out” denotes output 
file). After the user has run the analysis, an output simulation file named 
“Impact_Beam_Simulation.OUT” will be created in the Impact_Beam 
installation directory. This is the filename that the user should select as the 
output simulation file for the Impact_Beam visual modeler. Figure 4.19 
shows the user browsing for the Impact_Beam output simulation file. 
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Figure 4.19. Browsing for Output Simulation data. 

When the output simulation file has been selected, its name will be 
displayed in the label next to the browse button. If the comparison option is 
selected, then the comparison filename will be displayed near the bottom of 
the frame. If the comparison option is not selected, then the comparison 
filename will not be displayed. The Impact_Beam output simulation for the 
Dynamic Response Analysis of a simply supported beam consists of six data 
types:  

 Dynamic Deflection,  
 Dynamic Shear Force,  
 Dynamic Moment,  
 Displacement Impact Factor (DIF),  
 Shear Force Impact Factor (SFIF), and  
 Moment Impact Factor (MIF).  

Each of the data types can be viewed by either of the two visualization 
options. Clicking the “Beam Plot” button will let the user view the animated 
beam response over time. Clicking the “Time History” button will let the 
user view the individual sensor position response along the beam versus 
time. The sensor positions for the Time History option will be selected from 
the drop-down box named “Sensors”. If the comparison option was 
selected, then there will be a sub-frame called “Comparison” that will allow 
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the user to select which data type will be viewed in the comparison output. 
Only beam deflections or moments can be viewed for the comparison 
output, as shown in Tables 4.1 and 4.2. Additional information about sensor 
locations can be found for the sensors in Appendix J. Sensor names are 
followed by their location to enable the user to more easily compare values. 
Figure 4.20 shows the viewing output options being enabled. 

Table 4.1. Location along the beam of laser deflection sensors used for 
Winfield barge impact tests. 

Sensor Location from support (ft) 

LD2 111.781 
LD3 73.5625 
LD4  58.906 
LD5 44.24 
LD7 6.094 
LD1 and LD6 are on the adjacent beams  

Table 4.2. Location along the beam of strain sensors used to determine 
moments for Winfield barge impact tests. 

Sensor Location from support (ft) 

S1 82.802 
S2 70.813 
S3 58.823 
S4 46.833 
S5 34.844 

4.3.6 Beam Plot 

Beam Plot is the viewing option that will display the animated beam 
response over time. After clicking the “Beam Plot” button, the user will be 
presented with a plot of the beam, shown in Figure 4.21. The Beam Plot 
consists of a simply supported beam, the start impact point, and the end 
impact point. The legend in the top left corner has these elements color-
coordinated. Also, the sensor positions along the beam and the force time-
history are displayed on the Beam Plot. In this example (shown in 
Figure 4.21), Dynamic Deflections was selected as the data type and Beam 
Deflections was selected for the comparison option. The x-axis shows the 
Deflection (in) value and the y-axis shows the sensor positions along the 
beam (ft). The blue circles represent the sensor positions specified by the 
user in the Output Parameters tab (see Section 4.4). 
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Figure 4.20. Viewing Output Options are enabled. 

 
Figure 4.21. Beam Plot Results. 
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4.3.6.1 Animation controls 

The animation controls are a set of buttons located directly below the 
center of the window. A tool tip is provided by scrolling the mouse over 
each button. A brief description of the buttons that make up the animation 
controls is listed below.  

  “Begin Data” – steps to the start of the animation  

  “Step Rewind” – steps back one time step  

 ,  “Play/Pause” – plays the animation / pauses the animation 

  “Step Forward” – steps forward one time step  

  “End Data” – steps to the end of the animation 

To start the animation, press the “Play” button. The start time and the end 
time of the animation are respectively the minimum time and the maximum 
time specified in the force time-history. The time counter, located directly 
below the right corner of the window, will specify the time step during the 
animation. While the animation is playing, the user will have an idea of 
where the impact occurs at a given time step by the following indicators 
(shown in Figure 4.22):  

 
Figure 4.22. Beam Plot Result at 0.28 seconds. 
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 A red circle will move along the force time-history, giving a sense of the 
magnitude of the force at a given time.  

 A red horizontal line will move from the start impact point to the end 
impact point, giving the actual position of the load at a given time. 

The user will also have the option to view the beam response for a particular 
time step. By default, the user can specify a time step in the text box located 
directly below the left corner of the window. Clicking the “OK” button will 
display the beam response at the specified time step. If the animation is 
playing, the user will have to click the “Pause” button to pause the anima-
tion before specifying the time step of interest. Figure 4.22 shows the beam 
response at a time step of 0.28 seconds. Clicking the “Back” button will take 
the user back to the Viewing Options display as shown in Figure 4.20. 

4.3.6.2 Time History plot 

Time History is the viewing option that will display an individual sensor 
position response along the beam versus time. After selecting a sensor from 
the “Sensors” drop-down list and clicking the “Time History” button, the 
user will be presented with a plot of the time-history, shown in Figure 4.23. 
In this example, Dynamic Deflections was selected as the data type and 
Beam Deflections was selected for the comparison option. The x-axis shows 
the Time (secs) value and the y-axis shows the Deflection (in) value. The 
values of the x and y coordinates will be displayed by scrolling the mouse 
over any point in the time-history plot. A plot of the beam along with the 
start impact point (green arrow), the end impact point (blue arrow) and the 
selected sensor (red arrow) is displayed on the right side of the window. 
This will give the user an indication of where the sensor was positioned 
along the beam. Clicking the “Back” button will take the user back to the 
Viewing Options display as shown in Figure 4.20. 

4.4 SDOF analysis 

Since the solution being used is a time-history modal response method of 
analysis, a SDOF response analysis is fundamental to part of this solution 
process. The Impact_Beam software allows for user input and analysis of a 
SDOF system. User input in the Visual Modeler is presented below with 
pulse force time-history collected from the dBEAS software (Ebeling et al. 
2010). The dBEAS software is developed for the purpose of determining 
impact forces as a barge train collides with a Deformable Bullnose Energy 
Absorbing System (BEAS), an innovative structure designed to prevent  
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Figure 4.23. Time History plot. 

lashing failures resulting in barges that are out of control due to an impact 
between a tow and a lock approach wall bullnose. Chapter 5 deals with the 
verification process that was performed between the dBEAS software and 
Impact_Beam software. It is worthwhile to notice that the Impact_Beam 
software can deal with pulse force time-histories from other sources than 
the collected data from Pittsburgh and Winfield. 

4.4.1 Units and Analysis Type tab 

Refer to Section 4.3.1 for information regarding the Units component of the 
Units and Analysis Type tab. Figure 4.24 shows the input parameters when 
the user selects the SDOF Analysis option with a linear slope. Figure 4.25 
shows the input parameters when the user selects the SDOF Analysis option 
with a bi-linear slope. 

For the SDOF Analysis option, the user will select the forcing function type 
(force time-history or acceleration time-history) and the slope type (linear 
or bi-linear) in their respective sub-frames. In the SDOF Properties sub-
frame, the user will interactively input data regarding the mass and the 
damping ratio of the SDOF system. The input information for the SDOF 
slope properties is dependent upon what SDOF slope type was selected by  
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Figure 4.24. Impact_Beam Unit and Analysis Type tab with the SDOF analysis option with a 

linear slope. 

 
Figure 4.25. Impact_Beam Unit and Analysis Type tab with the SDOF analysis option with a bi-

linear slope. 
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the user; linear or bi-linear. For a linear slope, the user only has to specify 
the spring stiffness (K). For a bi-linear slope, the user will have to specify 
the following: number of base isolators, the spring stiffness (K1 and K2), 
and the displacement (X1 and X2). A visual aide of the SDOF system and 
the slope function is provided for each of the SDOF slope types. For a 
linear slope (shown in Figure 4.24), the visual aid is used to assist the user 
in entering the information for K. For a bi-linear slope (shown in Figure 
4.25), the visual aid is used to assist the user in entering the information 
for K1 and K2 and X1 and X2. The SDOF system example problem for the 
Impact_Beam Visual Modeler will use the bi-linear slope properties, as 
shown in Figure 4.25. 

4.4.2 Time History tab 

Refer to Section 4.3.2 for information regarding opening a input force 
time-history and the time-history properties for the Time History tab. 
There is not a comparison time-history option for the SDOF Analysis. 
Figure 4.26 displays a force time-history for a super-barge model as 
discussed in Chapter 5 (a single barge with the weight of 15 barges+tow). 

 
Figure 4.26. Adding a Force Time-History to the window. 
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4.4.3 Output Parameters tab 

In this tab, the user will select the output parameters that are required for 
the analysis of an Impact_Beam problem. In the Displacement Units frame 
and the Force Units frame, the user will choose the units that will be used as 
output for the displacement and the force, respectively. Figure 4.27 shows 
the output parameters for the SDOF Analysis option. 

 
Figure 4.27. Output parameters tab for the SDOF Analysis option. 

4.4.4 Analyze tab 

The Analyze tab for the SDOF Analysis provides a visual confirmation of 
the user’s input for the force time-history. Figure 4.28 shows a visual 
confirmation of the user’s input of the force time-history for the SDOF 
system.  

The Analyze tab also allows the user to run the Impact_Beam program and 
view the consequent output. Before the data can be run, valid input must 
be entered on the Units and Analysis Type tab and the Output Parameters 
tab, and a force time-history must be in the Time History window of the 
Time History tab. If these conditions are met, the “Run Analysis” button is 
enabled, as shown in Figure 4.28. 
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Figure 4.28. Analyze tab. 

Clicking Run Analysis will execute the Impact_Beam program on the data 
that was entered for the Units and Analysis Type tab, the Time History tab, 
and the Output Parameters tab. After the analysis has been performed, a 
message box will alert the user that the Impact_Beam program has finished 
analyzing the data (shown in Figure 4.29). Clicking OK will allow the user to 
proceed in viewing the results of the analysis in the Output tab. 

 
Figure 4.29. Finished analyzing data message 

box. 
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4.4.5 Output tab 

The Output tab allows the user to view the output results of the 
Impact_Beam simulation. The user will have a list of data types to choose 
from to view the output. The Impact_Beam output simulation for the SDOF 
Analysis is consisted of six data types: Force, Displacement, Velocity, 
Acceleration, Spring Force, and Damping Force. An output plot of each data 
type versus time will be displayed in the window of the Output tab. The x-
axis is the time (seconds) value and the y-axis is the selected data type value 
with its respective units. Also, the values of the x and y coordinates will be 
displayed by scrolling the mouse over any point in the time-history plot. 
Figures 4.30-4.35 shows the output plot for each of the six data types. 

4.5 Conclusions 

This chapter has provided an overview of the capabilities of the 
Impact_Beam visual modeler and postprocessor interface. It has discussed 
the inputs required to perform both single and multiple degree of freedom 
analysis of a structure under dynamic loading. It allows the user to input 
beam specifications and impulse force time-histories that can proceed along 
the beam for the determination of the dynamic structural response of the 
simply supported, flexible impact beam. It also allows the user to visualize 
the deflections, moments, and shear forces internal to the beam during the 
time of impact either as time-history response at a user-specified point on 
the beam or as a time-step based animation of the response along the entire 
beam. 
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Figure 4.30. Plot of Force vs. Time. 

 
Figure 4.31. Plot of Displacement vs. Time. 
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Figure 4.32. Plot of Velocity vs. Time. 

 
Figure 4.33. Plot of Acceleration vs. Time. 
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Figure 4.34. Plot of Spring Force vs. Time. 

 
Figure 4.35. Plot of Damping Force vs. Time. 
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5 Validation and Verification of the 
Impact_Beam Software 

5.1 Introduction to the Impact_Beam software 

The Impact_Beam engineering software can solve two different dynamic 
analyses. Each one of them has a particular sub-case that is also 
incorporated in Impact_Beam.  

In the first dynamic analysis, Impact_Beam can be used to calculate the 
dynamic response of a Single Degree of Freedom (SDOF) system subjected 
to an external dynamic load. The SDOF can be a damped or undamped 
system. The underdamped SDOF model is considered by means of the 
damping ratio definition (=c/ccrit<1.0). One feature of this option is that 
the stiffness can be modeled as a single spring constant (k=f/x), or can be 
modeled as a spring with a bilinear force-displacement relationship. If the 
bilinear stiffness model is used, the response is calculated using the 
recursive alternate formulation to solve the Duhamel’s integral (explicit 
formulation), as presented in Appendix C.  

The second dynamic analysis Impact_Beam can perform is the calculation 
of the dynamic transverse beam deflections, beam moments and shear force 
responses to the impact pulse force time-history applied to the simply 
supported, flexible impact beam of distributed mass and flexural stiffness 
that makes use of modal response analyses as a function of position along 
the beam combined with a generalized coordinate solution for dynamic 
response with time for each mode considered. The external dynamic load 
can be located at a specific position along the beam or can be a moving 
dynamic load with a prescribed initial position and a constant velocity of 
motion. Superposition of modal responses is evoked to obtain the total 
dynamic beam responses. The generalized coordinate solution for dynamic 
response with time is solved using Duhamel’s Integral. Duhamel’s Integral 
is outlined in Appendix C and is evaluated using numerical methods similar 
to those presented in Paz, 1985. If the simply supported, flexible impact 
beam of distributed mass and flexural stiffness model is used, the Displace-
ment Impact Factor (DIF), the Shear Force Impact Factor (SFIF), and the 
Moment Impact Factor (MIF) are also calculated. 
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5.2 Validation of Impact_Beam using SAP2000 

The Impact_Beam computer program has the capability to calculate the 
dynamic response of a continuous elastic beam due to a moving transverse 
concentrated dynamic load. This section presents the validation of 
Impact_Beam by comparing its results against the results obtained from the 
well-known structural analysis computer program SAP2000, Computers 
and Structures, Inc. 2003. The model in both computer programs has the 
following input data;  

 the effective beam length (from center to center of neoprene pads) is 
112.6 ft,  

 the moment of inertia of the beam is 517.2 ft4,  
 the cross sectional area is equal to 46 ft2, and  
 the mass per unit length of the beam is 0.25486 kips/ft, which 

considers the hydrodynamic added mass (discussed in Appendix H).  

The force time-history of Winfield Test #10, which has a maximum force of 
517.4 kips was used as the excitation. SAP 2000 considers the dynamic load 
to be applied at a specific position along the beam. For that reason, the force 
time-history was fixed to act at a position of 64.1 ft from the left support for 
both software packages. This distance (64.1 ft) is the position of initial 
contact of the barge train for Winfield Test #10. Impact_Beam has the 
capability to consider a moving dynamic load. In the Impact_Beam input 
data, the initial point of contact was also 64.1 ft and the velocity of the 
moving dynamic load was set to zero. With these values, both programs 
have the same load conditions. The SAP2000 model had 12 beam elements 
and no shear energy was considered. The damping ratio was assigned as 2% 
of the critical damping for each considered mode. Also in Impact_Beam, 
twelve modes of vibration were considered with a 2% damping ratio for 
each mode. The resulting fundamental natural period was the same in 
Impact_Beam and SAP2000 with a value of 0.199 seconds. The maximum 
displacement at midspan was calculated by SAP2000 to be 0.433 inch and 
Impact_Beam produced a maximum displacement at midspan of 0.4276 
inch. These results produce a 1.2% difference between the Impact_Beam 
and SAP2000 results. The maximum internal bending moment was 
calculated by Impact_Beam and SAP2000 as 13,483.41 kip * ft and 
13,594.06 kip * ft, respectively. These results produce a 0.8 % difference 
between the Impact_Beam and SAP2000 results. The output results from 
Impact_Beam were validated when compared to the SAP2000 results. 
Figures 5.1 and 5.2 show the moment and displacement time-histories, 
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respectively, at midspan for SAP2000 and Impact_Beam. Figures 5.3 
and 5.4 show the beam deflection and the internal moment diagram for the 
time step of maximum dynamic force (t = 0.2 seconds), respectively. 

 
Figure 5.1. Moment time-history at midspan calculated using Impact_Beam and SAP2000. 

 
Figure 5.2. Displacement time-history at midspan calculated using Impact_Beam and 

SAP2000. 
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Figure 5.3. Beam deflection at time of maximum dynamic load calculated using Impact_Beam 

and SAP2000. 

 
Figure 5.4. Internal bending moment at time of maximum dynamic load calculated using 

Impact_Beam and SAP2000. 
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5.3 Continuous beam model from Impact_Beam to estimate the 
dynamic modulus of elasticity of the simply supported beam 
used in Winfield Test #10 

The full-scale Barge Impact Test #10 conducted at Winfield serves as the 
template for reducing and interpreting the field data. The simply supported 
beam possesses a unique value for the dynamic modulus of elasticity, which 
is necessary for beam response computations. Because a dynamic modulus 
of elasticity was not captured during the tests at Winfield, it became 
necessary to estimate a value using the collected sensor data from Winfield. 
This subsection discusses the procedures for processing and computing this 
estimate. Different instrumentation provided differing values, which could 
be used to determine an estimate for the dynamic modulus of elasticity. The 
following sub-subsections discuss and collate the differing individual 
estimates for the dynamic modulus of elasticity, and compute an average 
estimate. 

5.3.1 Calculation of the beam deflection based on reference, neoprene 
and laser deflections 

During the Winfield Experiment, several tests were performed and data 
from displacement, acceleration and strains were gathered. The collections 
of laser deflections and the neoprene deformations allow the calculation of 
the beam deflection (elastic curve). The beam experienced some amount of 
rigid body motion due to base motion that came from displacement of the 
connection between beam segments and neoprene pad deformation. The 
laser deflection at Sensors 1 and 6 defines the motion of the reference or 
base frame. These two sensors are located in the adjacent beams. The Linear 
Variable Differential Transformer (LVDT) relative displacement sensors at 
the ends of the beam, named D2-1Y and D6-3Y, account for the in-line 
displacement of the beam due to deformation of the neoprene pads for tests 
up through barge impact test #13. After test #13, LVDT sensor D6-3Y was 
moved. For these calculations, D6-3Y was emulated by linearly interpola-
ting the laser deflections on either side of the sensor D6-3Y location. Then, 
to calculate the beam deflection, the contribution of each rigid body motion 
(system and neoprene pads) must be subtracted from the laser deflection at 
LD3, LD4 and LD5 (total displacements). This concept can be observed in 
Figure 5.5. The experimental beam deflection at LD3 and LD4 sensor 
locations was calculated using the laser deflection recorded during the 
experiment, the neoprene seat deformation and the foundation displace-
ment (displacement time-history at Sensors LD1 and LD6). The neoprene  
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Figure 5.5. Parameters used to calculate the beam deflection based on experimental data. 

deformation and foundation displacement produce an in-line displacement 
of the elastic, simply supported beam. After this in-line motion occurs, the 
elastic beam starts to deform producing the elastic curve shape. The 
variables that enter in the calculation of the beam deflection (elastic curve) 
are the laser deflections LD1, LD3, LD4, LD5 and LD6; the (relative) 
displacements at the start and end of the impacting beam D2-1Y and D6-3Y; 
and the x position along the beam where the beam deflection is to be 
calculated, LD3, LD4, LD5 locations. These parameters are shown in 
Figure 5.5. 

It can be shown from Figure 5.5 that the beam deflection (Δ஻஽ሻ is equal to 
the laser deflection (Δ௅஽ሻ minus the distance y2. The system displacement 
and neoprene displacement has to be subtracted from the laser deflection 
displacement recorded during the experiment. In mathematical notation, 
the beam deflection (Δ஻஽ሻ is 

 Δ ΔBD LD y= - 2  (5.1) 

where 
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 (5.3) 

and 

 ** Δ Δ
. Δ

.
L D L D

L Dy
é ù-ê ú= +
ê úë û

1 6
1 6123 6458333

129 6458333
 (5.4) 

Lastly, substituting Equations (5.3) and (5.4) into Equation (5.1), the beam 
deflection at each sensor location LD3, LD4 and LD5 can be calculated. The 
distance x (in feet) measured along the X-axis in Equation (5.2) has an 
origin at the labeled Y-axis position as shown in Figure 5.5. For each time 
step during the experiment, the terms in Equations (5.1) through (5.4) were 
recorded. During Winfield Test #10, there were three locations where the 
laser deflections were measured. The location of each of the three sensors 
were; LD3 at 71.0425’, LD4 at 56.38625’ and LD5 at 41.7196’. To use 
Equations (5.1) through (5.4), these positions have to be modified; 
increased by six feet (the distance between each of the Y axis reference 
frames). At time equal to 0.20365 seconds, the maximum values for the 
beam displacements obtained from Equation (5.2) are the following; at LD3 
– 0.40 inch, at LD4 – 0.42 inch, and at LD5 – 0.38 inch. Figure 5.6 shows 
the displacement time-history at sensor LD1 and LD6. They are associated 
to the displacement the adjacent beams experienced during the Winfield 
Test #10. Figures 5.7 through 5.9 show the beam and laser displacement 
time-histories at each sensor location of LD3, LD4 and LD5, respectively. 
Figure 5.10 shows the beam displacement time histories for each Sensor at 
LD3, LD4 and LD5. 
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Figure 5.6. Displacement time histories for the Laser displacement LD1 and LD6 sensors 

mounted on the beams adjacent to the impact beam. 

 
Figure 5.7. Beam and laser displacement time-history at sensor LD3. 
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Figure 5.8. Beam and laser displacement time-history at sensor LD4. 

 
Figure 5.9. Beam and laser displacement time-history at sensor LD5. 
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Figure 5.10. Beam deflection time-history at sensor LD3, LD4 and LD5. 

5.3.2 Estimation of the dynamic modulus 

5.3.2.1 Estimation of the dynamic modulus of elasticity based on calculate 
experimental beam deflection at LD3, LD4 and LD5 sensor location 

Impact_Beam computer program has the capability to calculate the 
dynamic response (transverse displacement) of a continuous elastic beam 
due to a moving dynamic load. This feature allows Impact_Beam to 
estimate the dynamic modulus of elasticity of the concrete continuous 
beam used during Winfield experiment Test #10. The input for this 
Impact_Beam analysis is as follows:  

 The effective length of the beam (from center to center of neoprene 
pads) was 112.6 ft,  

 The moment of inertia of the beam was 517.2 ft4,  
 The mass per unit length of the beam was 0.25486 kips/ft,  
 The barge train was moving at 2.99 ft/s, and  
 The first point of contact was at 64.1 ft from the left support. 

The procedure for the estimation of the dynamic modulus of elasticity was 
as follows. First, the location of each sensor LD3, LD4 and LD5 was 
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calculated as 71.0425, 56.38625 and 41.7196 ft, respectively, as shown in 
Figure 5.11. At these positions, a sensor was place in the program to obtain 
results from the program at these specific locations. Ten modes were used 
and a damping ratio of 0.02 was used for each mode. The elastic modulus is 
a variable entered as input data in the input file. It was fixed with a lower 
value (790,000 ksf), that is, a lower value than the one expected for the 
dynamic modulus of elasticity. Then, a special version of Impact_Beam 
FORTRAN code was created to iterate from this initial modulus of elasticity 
until the specified beam deflection at sensor location LD3, LD4 and LD5 
was achieved. The values that the computer program had to match were the 
ones obtained in the previous section; that is, at LD3 – 0.40 inch, at LD4 – 
0.42 inch, and at LD5 – 0.38 inch. Following this procedure, the computer 
program obtained a simulation beam displacement equal to the 
experimental beam displacement and the value for the modulus of elasticity 
for this condition is the resulting dynamic modulus of elasticity. The 
resulting values for the dynamic modulus of elasticity for the LD3, LD4 and 
LD5 locations were 796,800 ksf (5,533.33 ksi), 812,400 ksf (5,641.67 ksi) 
and 799,000 ksf (5,548.61 ksi), respectively. Figures 5.12 through 5.14 show 
the transverse displacement time-history at each sensor location resulting 
from the analysis done to estimate the dynamic modulus of elasticity. It can 
be observed that the maximum deflection obtained for the simulation 
matches with the maximum experimental value. 

 
Figure 5.11. Location of LD3, LD4 and LD5 sensors. 
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Figure 5.12. Beam displacement time-history for a dynamic modulus of elasticity based on 

maximum displacement at sensor LD3. 

 
Figure 5.13. Beam displacement time-history for a dynamic modulus of elasticity based on 

maximum displacement at sensor LD4. 
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Figure 5.14. Beam displacement time-history for a dynamic modulus of elasticity based on 

maximum displacement at sensor LD5. 
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The Impact_Beam computer program has the capability to calculate the 
dynamic internal moment of a continuous elastic beam due to a moving 
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modulus of elasticity of the concrete continuous beam used during Winfield 
experiment Test #10. The input for this Impact_Beam analysis is as follows:  

 The effective beam length (from center to center of neoprene pads) was 
112.6 ft,  

 The moment of inertia of the beam was 517.2 ft4,  
 The mass per unit length of the beam was 0.25486 kips / ft,  
 The barge train was moving at 2.99 ft/s, and  
 The first point of contact was at 64.1 ft from right reaction (right 

neoprene pads, Figure 5.15).  

The procedure for the estimation of the dynamic modulus of elasticity was 
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S4B;S4F and S5B;S5F was calculated as 80.28208 ft, 68.2925 ft, 
56.30291667 ft, 44.31333 ft and 32.32375 ft, respectively, as shown in 
Figure 5.15. 
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Figure 5.15. Location of S1B;S1F, S2B;S2F, S3B;S3F, S4B;S4F and S5B;S5F sensors. 

In the input file for the modified Impact_Beam FORTRAN code, each one 
of these positions was specified as a location where the results were of 
interest. Ten modes were used and a damping ratio of 0.02 was used for 
each mode. The initial modulus of elasticity was assigned a value of 
790,000 ksf, which is lower than the expected value for the dynamic 
modulus of elasticity. Then, the modified Impact_Beam FORTRAN soft-
ware was iterated from this initial modulus of elasticity until the specified 
curvature at sensor locations S1B;S1F, S2B;S2F, S3B;S3F, S4B;S4F and 
S5B;S5F was achieved. Each sensor location represents one run of the 
computer program and one value for the estimated modulus of elasticity. 
The maximum curvature at each sensor location was obtained from the 
experimental curvature time-history. The curvature time-history at each 
sensor location was obtained from the normal strain recorded during the 
Winfield Test #10 divided by 4.59 ft for the back sensor and 1.91 ft for the 
front sensors, as shown in Figure 5.16. 

The calculated experimental curvatures (from experimental normal strains) 
were calculated as; at S1B – 1.65398E-05 rads/ft, S1F – 1.39779E-
05 rads/ft, S2B – 2.41901E-05 rads/ft, S2F – 2.72716E-05 rads/ft, S3B – 
2.61507E-05 rads/ft, S3F – 2.49923E-05 rads/ft, S4B – 4.43823E-07 
rads/ft, S4F – 1.62622E-05 rads/ft, S5B – 1.45119E-07 rads/ft and S5F – 
9.47187E-06 rads/ft. The Impact_Beam software calculates the dynamic 
internal bending moment and, for that reason, the comparison had to be 
made against the experimental internal moment. The experimental bending 
moment is calculated by multiplying the curvature at each sensor by the 
modulus of elasticity and the moment of inertia. Both values change during 
the process of increasing the modulus of elasticity. The process ends when 
the experimental and simulation bending moments reach the same results. 
The modulus of elasticity at this step is the corresponding dynamic modulus 
of elasticity based on the curvature at this sensor location.  
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Figure 5.16. Experimental curvature calculation at sensors S1B;S1F, S2B;S2F, S3B;S3F, 

S4B;S4F and S5B;S5F. 

The resulting values for the dynamic modulus of elasticity for S1B, S1F, 
S2B, S2F, S3B, S3F, S4F, and S5F were 1,522,000 ksf (10,569 ksi), 
1,845,000 ksf (12,812 ksi), 1,324,000 ksf (9,194 ksi), 1,059,000 ksf 
(7,354 ksi), 1,117,000 ksf (7,757 ksi), 1,221,000 ksf (8,479 ksi), 
1,688,000 ksf (11,722 ksi), and 2,349,000 ksf (16,313 ksi), respectively. 
Figures 5.17 through 5.40 show the experimental and simulation moments 
and curvature time-histories at each specific sensor location. The 
convergence of the mathematical process to find the dynamic modulus of 
elasticity at each sensor location is also presented in these sets of figures. 
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Figure 5.17. Curvature time-history at S1B sensor. 

 
Figure 5.18. Curvature convergence at S1B sensor. 
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Figure 5.19. Moment time-history at S1B sensor. 

 
Figure 5.20. Moment convergence at S1B sensor. 
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Figure 5.21. Curvature time-history at S1F sensor. 

 
Figure 5.22. Curvature convergence at S1F sensor. 
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Figure 5.23. Moment time-history at S1F sensor. 

 
Figure 5.24. Moment convergence at S1F sensor. 
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Figure 5.25. Curvature time-history at S2B sensor. 

 
Figure 5.26. Curvature convergence at S2B sensor. 
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Figure 5.27. Moment time-history at S2B sensor. 

 
Figure 5.28. Moment convergence at S2B sensor. 
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Figure 5.29. Curvature time-history at S2F sensor. 

 
Figure 5.30. Curvature convergence at S2F sensor. 
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Figure 5.31. Moment time-history at S2F sensor. 

 
Figure 5.32. Moment convergence at S2F sensor. 
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Figure 5.33. Curvature time-history at S3B sensor. 

 
Figure 5.34. Curvature convergence at S3B sensor. 
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Figure 5.35. Moment time-history at S3B sensor. 

 
Figure 5.36. Moment convergence at S3B sensor. 
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Figure 5.37. Curvature time-history at S3F sensor. 

 
Figure 5.38. Curvature convergence at S3F sensor. 
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Figure 5.39. Moment time-history at S3F sensor. 

 
Figure 5.40. Moment convergence at S3F sensor. 
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5.3.2.3 Final remarks on the dynamic modulus of elasticity estimation 

The resulting values for the dynamic modulus of elasticity based on 
experimental beam deflection and experimental curvatures obtained from 
the experimental normal strains are presented in Tables 5.1 and 5.2. 

Table 5.1. Dynamic modulus of elasticity based on experimental beam deflection. 

Sensor LD3 LD4 LD5 

Dynamic 
Modulus of Elasticity, ksf 
(ksi) 

796,800 (5,533) 812,400 (5,642) 799,000 (5,549) 

Average Dynamic Modulus of Elasticity = 802,733 ksf (5,574.54 ksi) 

Table 5.2. Dynamic modulus of elasticity based on experimental curvatures. 

Sensor S1B S1F S2B S2F S3B S3F S4B S4F S5B S5F 

Dynamic 
Modulus of 
Elasticity, 
ksf 
(ksi) 

1,522,000 
(10,569) 

1,845,000 
(12,812) 

1,324,00
0 (9,194) 

1,059,000 
(7,354) 

1,117,000 
(7,757) 

1,221,000 
(8,479) 

N/A 
1,688,000 
(11,722) 

N/A 
2,349,000 
(16,313) 

Average Dynamic Modulus of Elasticity = 1,515,625 ksf (10,525 ksi) 

From the values observed in Table 5.1, the dynamic modulus of elasticity 
based on experimental beam displacement is very consistent. The 
resulting average dynamic modulus of elasticity is equal to 802,733 ksf 
(5,574.54 ksi). The Winfield Impact Beam 28-day design compressive 
strength was fcd = f’c= 5,000 psi. Based on Tabsh and Aswad, (1995), the 
static probable 28-day compressive strength is, 

   .   ,  fcp fcd psi= ⋅ =1 11 5 550  (5.5) 

But based on Carrasquillo, Nilson and Slate (1981), the probable 90-day 
(long term) static compressive strength is,  

   .   , .  fcpl fcp psi= ⋅ =1 15 6 382 5  (5.6) 

Using Branson (1977) equations as per Johns and Belanger (1981) 
equations, the static modulus of elasticity is, 

 ( . ) ) , , . ,c c pl c plE f f w psi ksf= - ⋅ = =339 0 0015 4 104 708 64 591 078  (5.7) 
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where w = 145 pcf. Finally, using the dynamic modulus of elasticity 
definition as per Nam, Compomanes and Kim (1977) and by Johns and 
Belanger (1981), which establishes a relation between the dynamic and the 
static modulus of elasticity of 1.3,  

 . , .   , .  cd cE E ksi ksf= ⋅ = =1 3 5 336 12 768 401 45  (5.8) 

The ratio of the average dynamic modulus of elasticity based on experi-
mental beam deflection (Table 5.1) to the static modulus of elasticity of 
Equation (5.7) produced a value of 1.358. This factor compared to the 
factor of 1.3 presented by Johns and Belanger (1981). 

The resulting values for the dynamic modulus of elasticity based on experi-
mental curvatures obtained from the experimental normal strains are 
presented in Table 5.2. There exists an inconsistency of the dynamic 
modulus of elasticity obtained from experimental curvature when compared 
to the dynamic modulus of elasticity obtained from experimental beam 
deflections. The dynamic modulus of elasticity obtained from the experi-
mental curvature was above the expected values. The experimental curva-
tures used in the estimation of the dynamic modulus of elasticity were small 
values producing high values for the dynamic modulus of elasticity. It can 
be observed that the curvature values at S4B and S5B were not presented 
because the experimental curvature at these locations were small values and 
do not compare to the calculated curvatures at other sensor locations. If 
these values of curvature are used to estimate the dynamic modulus of 
elasticity, a very high dynamic modulus is obtained that does not fit the 
data.  

An additional attempt to estimate the dynamic modulus of elasticity was 
performed by considering the beam under bending and axial effects. Both 
effects can be included because the impact force applied to the beam by 
the barge train is not aligned transverse to the beam. If the axial normal 
strain is to be considered, then the neutral axis of the beam does not lie at 
the centroid of the cross section. The development of the procedure to 
calculate the curvature at each sensor location is presented in Appendix G. 
After considering that the normal strain can be induced by the axial and 
bending effects, the resulting estimation of the dynamic modulus of 
elasticity was also high. Table 5.3 shows the dynamic modulus of elasticity 
based on experimental curvatures calculated considering the axial and 
bending effects. 
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Table 5.3. Dynamic modulus of elasticity based on experimental curvatures (axial and 
bending effects). 

Sensor S1 S2 S3 S4 S5 

Dynamic 
Modulus of 
Elasticity, ksf 
(ksi) 

1,618,000 
(11,236) 

1,245,000 
(8,645.8) 

1,152,000 
(8,000) 

5,423,000 
(37,659.7) 

6,980,000 
(48,472) 

Average Dynamic Modulus of Elasticity = 3,283,600 ksf (22,803 ksi) 

There exists an inconsistency of the dynamic modulus of elasticity obtained 
from experimental curvature calculated considering the axial and bending 
effects when compared to the dynamic modulus of elasticity obtained from 
experimental beam deflections. The dynamic modulus of elasticity obtained 
from the experimental curvature was above the expected values. The 
explanation of the behavior of the strain gages (curvatures) during Winfield 
Test #10 is beyond the scope of this (current) analysis. Additional research 
is needed to process this normal strain data so that it can be used to 
estimate the dynamic modulus of elasticity. 

5.3.3 Simulation and experimental moment time-history comparison 
based on average dynamic modulus of elasticity obtained from 
experimental beam deflection 

This section presents the calculation of the simulation moment time-history 
using Impact_Beam and the experimental moment time-history. To 
perform this analysis, the Impact_Beam input data must be first presented. 
For the Winfield Test #10, the effective beam length (from center to center 
of neoprene pads) was 112.6 ft. The moment of inertia of the beam was 
517.2 ft4. The mass per unit length of the beam was 0.25486 kips/ft. The 
barge train was moving at 2.99 ft/s and the first point of contact was at 
64.1 ft from right reaction (right neoprene pads, Figure 5.41). The location 
of each sensor S1B;S1F, S2B;S2F, S3B;S3F, S4B;S4F and S5B;S5F was 
calculated as 80.28208 ft, 68.2925 ft, 56.30291667 ft, 44.31333 ft and 
32.32375 ft, respectively, as shown in Figure 5.41. 

In the Impact_Beam input file, each one of these positions was specified as 
a location where the results were of interest. Ten modes were used and a 
damping ratio of 0.02 was used for each mode. The elastic modulus was 
assigned a value of 802,733 ksf, which is the average value obtained from 
the experimental beam deflection analysis in the previous section. This 
dynamic modulus of elasticity was also used to calculate the dynamic  
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Figure 5.41. Location of S1B;S1F, S2B;S2F, S3B;S3F, S4B;S4F and S5B;S5F sensors. 

experimental moment by multiplying this value by the moment of inertia 
and the experimental curvature. The resulting maximum bending moments 
obtained with these values and using the experimental curvatures at sensors 
S1B, S1F, S2B, S2F, S3B and S3F were 6,866.91 kips * ft, 5803.26 kips * ft, 
10,043.1 kips * ft, 11,322.46 kips * ft, 10,857.06 kips * ft, 10,376.12 kips * ft, 
respectively. The maximum bending moment obtained from simulation 
(Impact_Beam) at sensor locations S1B, S2B and S3B were 9,705.0 kips * ft, 
13,037.0 kips * ft and 12,567.2 kips * ft, respectively. The corresponding 
bending moment time histories are presented in Figures 5.42 through 5.44. 
It can be observed that the shape of the simulation response is similar to the 
experimental moment time-history. However, the magnitude of the simula-
tion results is higher than the experimental results. The ratio of the maxi-
mum bending moment at each position (S1B;S1F), (S2B;S2F) and 
(S3B;S3F) to the experimental moment at S1B, S1F, S2B, S2F, S3B and S3F 
produced values of 1.41, 1.67, 1.30, 1.15, 1.16 and 1.21, respectively. This 
amplification factor can be explained if it is considered that the dynamic 
modulus of elasticity used in these calculations was based on the experi-
mental beam displacement and not on the experimental curvature. 

5.4 SDOF system numerical examples 

This sub-section discusses three groups of SDOF response calculations 
being made using Impact_Beam. The first compares a SDOF response 
computed using Impact_Beam to results published by Paz (1985). The 
second group of calculations, made using three distinct assumptions for 
spring stiffness, compares Impact_Beam results to Winfield Test #10 
results. The third group of calculations, made using five distinct 
assumptions for spring stiffness based on base isolator characteristics for a 
Deformable BEAS, compares Impact_Beam results to dBEAS software 
(Ebeling et al. 2011) results. 
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Figure 5.42. Moment comparison at sensor S1B and S1F using the average dynamic modulus 

of elasticity obtained from experimental beam deflection. 

 
Figure 5.43. Moment comparison at sensor S2B and S2F using the average dynamic modulus 

of elasticity obtained from experimental beam deflection. 
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Figure 5.44. Moment comparison at sensor S3B and S3F using the average dynamic modulus 

of elasticity obtained from experimental beam deflection. 

5.4.1 Numerical example obtained from Paz (1985) 

Paz (1985) presented an Example 4.2 on page 78 that considers a SDOF 
subjected to an external dynamic load and calculates the response of the 
system. The spring in the system is modeled using a linear relation between 
the internal force of the spring and the displacement the spring undergoes. 
This SDOF system and the spring force – displacement behavior is 
presented in Figure 5.45. 

 
Figure 5.45. SDOF model used in example 4.2 in Paz, 1985. 
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The input data for the SDOF system example obtained from Paz (1985) is 
as follows (it is important to mention that the example is presented in 
consistent units): 

 Mass (M)= 100 
 Stiffness coefficient(k) = 100,000 
 Damping ratio (C)= 5% 
 Time step = 0.005 
 Dynamic external load as shown in Figure 5.46. 

 
Figure 5.46. Dynamic external force time-history used for numerical example 1. 
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Table 5.4. Impact_Beam input file for Example 4.2 of Paz, 
1985. 

2 386.086 1 

0 100.0  0.05 0 

100000. 

0.005  4 0.12  1 

0. 0. 

0.020 120000. 

0.04 120000. 

0.06 0.0 

386.086 386.086 1 

It is important to mention that the spring constant is defined by one slope 
equal to 100,000. After Impact_Beam made the calculations, an output 
file is obtained, as shown next. 

Table 5.5. Results obtained for Example 4.2 of Paz, 1985 using Impact_Beam (continued). 

Response of a Single Degree of System Using Duhamel Integral Solution 

SDOF MASS    =  100.000 

SDOF Spring Constant   =  100000.00 

SDOF Damping Constant  =  316.2278 

Undamped Natural Frequency =  31.623 radians/sec 

Damped Frequency  = 31.583 radians/sec 

SDOF Damping Constant  = 316.2278 

Critical Damping Constant  =  6324.5553 

Relative Damping   = .0500 

Undamped Natural Frequency & Period: Damped Natural Frequency & Period  

 

radians/sec Hertz Seconds : radians/sec Hertz Seconds 

31.623  5.033 .1987 : 31.583  5.027 .1989 

The results obtained with Impact_Beam are the same results presented in 
the numerical example in Paz, 1985. The resulting displacement time-
history is presented in Figure 5.47. 
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Table 5.5. Results obtained for Example 4.2 of Paz, 1985 using Impact_Beam (concluded) 

TIME FORCE DISPL VELOCITY ACC. SUP. REAC. 

.0000 .0000 .000 .000 .00  .00 

.0050 30000.0000 .001 .745 296.40  266.26 

.0100 60000.0000 .010 2.944 580.82  1356.95 

.0150 90000.0000 .033 6.521 846.40  3889.82 

.0200 120000.0000 .077 11.366 1086.86 8515.61 

.0250 120000.0000 .147 16.594  1000.24  15634.93 

.0300 120000.0000  .242  21.329  890.23  25153.09 

.0350 120000.0000 .360 25.463  759.91  36847.58 

.0400 120000.0000 .496 28.901 612.82 50413.83 

.0450 90000.0000 .646 30.825 156.47 65336.24 

.0500 60000.0000 .800 30.471 -296.59 80601.41 

.0550 30000.0000 .947 27.883 -735.21 95112.86 

.0600 .0000 1.076 23.161 -1148.74 107799.47 

.0650 .0000 1.177 17.198 -1230.96 117782.91 

.0700 .0000 1.247 10.904 -1281.42 124741.06 

.0750 .0000 1.285 4.438 -1299.36 128540.42 

.0800 .0000 1.291 -2.035 -1284.87 129132.08 

.0850 .0000 1.265 -8.358 -1238.80 126550.22 

.0900 .0000 1.208 -14.374 -1162.79 120909.47 

.0950 .0000 1.122 -19.939 -1059.19 112401.18 

.1000 .0000 1.010 -24.924 -931.00 101288.64 

.1050 .0000 .874 -29.214 -781.77 87902.56 

.1100 .0000 .719 -32.714 -615.54 72639.51 

.1150 .0000 .548 -35.349 -436.68 55973.74 

.1200 .0000 .367 -37.067 -249.82 38529.60 

Maximum (Absolute) SDOF Displacement  = 1.29 

Maximum (Absolute) SDOF Velocity  = -37.07 

Maximum (Absolute) SDOF Relative Acceleration = -1299.36 

Maximum (Absolute) SDOF Support Force  = 129132.08 
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Figure 5.47. Impact_Beam SDOF system response using input data from Paz, 1985. 

5.4.2 Winfield Test #10 – Linear spring stiffness 

This example represents a simplified model of the elastic beam used at 
Winfield Test #10. It considers the elastic beam of the field experiment as a 
SDOF system. Instead of moving an external dynamic load along the beam 
at a specified velocity, as was the case of the experiment, the external 
dynamic load has a fixed location for the SDOF model. This numerical 
example is based on a linear stiffness coefficient obtained from the 
experimental results of Winfield Test #10. The linear stiffness model used is 
as idealized in Figure 5.48. 

 
Figure 5.48. SDOF model used for numerical example 5.4.2. 
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To obtain the equivalent linear stiffness (slope of the force-displacement 
relationship) for the spring of the SDOF model, the maximum dynamic load 
recorded during Winfield Test #10 (517,400 lbs) was divided by the 
corresponding total beam deflection, which is the sum of the foundation 
displacement, supports (neoprene) displacement and beam elastic curve. 
The total beam displacement at its midspan was 0.523 inch. This calculation 
provides the value of the stiffness of the SDOF model, which is 989,292.543 
lbs/inch. 

Equivalent static force: This stiffness coefficient was calculated using 
the dynamic maximum force divided by the maximum dynamic deflection. 
This concept is presented in Chopra (1981) and in El-Tawil, Severino, and 
Fonseca (2005) as the equivalent static force. The equivalent static force is 
the static force necessary to produce the same deflection at the point of 
interest as produced by the dynamic event. Alternatively, the equivalent 
static force can be interpreted as the external force that will produce the 
same deformation in the stiffness component of the system as that 
determined by dynamic analysis. In this example, the unknown is the 
stiffness of the system. Using the concept of the equivalent static force, the 
stiffness can be estimated based on the dynamic maximum force and the 
dynamic maximum displacement. It can be done using the maximum 
dynamic load and maximum dynamic displacement because at that time 
step, low magnitude damping and inertia forces are acting in the system. 
Then, the maximum dynamic force in the spring is transformed to an 
equivalent static load. Based on the definition of the equivalent static load, 
the stiffness coefficient can be calculated.  

Two cases of damping ratio were considered in this analysis. The damping 
ratio was fixed first at ߚ ൌ 0.02, and the second case was for ߚ ൌ 0.05. The 
following input data was used in this example: 

 Mass (M) = 1,195.985575 lbs  s2 / inch 
 Stiffness coefficient (k) = 517,400 / 0.523 = 989,292.543 lbs/inch 
 Damping ratio (c) = 0.02, 0.05 
 Time step = 0.002 sec. 
 Dynamic external load as shown in Figure 5.49. 
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Figure 5.49. Dynamic external force time-history for numerical example 5.4.2. 

The maximum value of the force time-history obtained from Winfield Test 
#10 and used in this example is 517.4 kips. The maximum value for the 
dynamic response of the SDOF system with ߚ ൌ 0.02 was 0.56 inch and 
with ߚ ൌ 0.05 was 0.54 inch. As a matter of comparison, the maximum 
beam deflection calculated using the laser measurements and neoprene 
seats deformation during the experimental procedures was recorded as 
0.52 inch. The resulting deflection of the SDOF simulation is in agreement 
with the Winfield Test #10 recorded data. The whole deflection time-history 
is presented in Figure 5.50 and the similarity in shape and magnitude of 
both curves can be observed. 

5.4.3 Winfield Test #10 – Bilinear spring Stiffness 

This example represents a simplified model of the elastic beam used at 
Winfield Test #10. It considers the elastic beam of the field experiment as a 
SDOF system. Instead of moving an external dynamic load along the beam 
at a specified velocity, as was the case of the experiment, the external 
dynamic load has a fixed location for the SDOF model. This numerical 
example is based on a bilinear force-displacement relationship for the 
spring, as shown in Figure 5.51. The bilinear sloped solution has a  
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Figure 5.50. Comparison of the dynamic response of the SDOF model and the beam 

deflection measured during Winfield Test #10. 

 
Figure 5.51. SDOF model used for numerical example 5.4.3. 

different derivation than the single spring stiffness solution. To verify the 
bilinear solution, both segments of the stiffness curve will be given the same 
stiffness coefficient as used for the constant stiffness of the example in 
subsection 5.4.2. The value of the stiffness coefficient was obtained from the 
experimental results of Winfield Test #10. 

The purpose of this example is to show two concepts: (1) the same results 
are obtained when both slopes of the two slope spring model are assigned 
the same slope as the single slope spring model, and (2) the explicit solution 
of the Duhamel’s integral presented in Appendix C and used in the bilinear 
slope force-displacement relationship is an alternate way to calculate the 
dynamic response of a SDOF system without using a numerical integration 
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procedure, as the model of one slope force-displacement relationship does 
(see example 5.4.2). To obtain the equivalent linear stiffness (slope of the 
force-displacement relationship) for the spring of the SDOF model, the 
maximum dynamic load recorded during Winfield Test #10 (517,400 lbs) 
was divided by the corresponding total beam deflection, which is the sum of 
the foundation displacement, support (neoprene) displacement and beam 
elastic curve. The total beam displacement at its midspan was 0.523 inch. 
This calculation provides the value of the stiffness for each segment of the 
force-displacement relationship of the SDOF model, which is 989,292.543 
lbs/inch. This stiffness coefficient is calculated using the equivalent static 
force method discussed in sub-subsection 5.4.2. 

In addition, the deflection limits where each segment is valid are also 
provided to Impact_Beam. The first segment of the stiffness curve begins 
with a deflection of 0.0 and proceeds to location x1. The second segment 
begins immediately after deflection x1 and proceeds along its stiffness curve 
to deflection x2. For this example x1 was selected to be 0.25 inch and x2 was 
selected to be 54 inches. This provided the information necessary for 
Impact_Beam to cover both sections of the force-displacement relationship. 
In this example two damping ratios were considered, ߚ ൌ 0.02 and ߚ ൌ
0.05. The following input data was used in this example: 

 Mass (M) = 1,195.985575 lbs  s2/inch 
 Stiffness coefficients (k1 =k2 = k): 517,400/0.523 = 989,292.543 lbs/ 

inch 
 Limits for displacement: x1 = 0.25 inch; x2 = 54 inches 
 Damping ratio = 0.02, 0.05 
 Time step = 0.002 sec. 
 Dynamic external load as shown in Figure 5.52. 

The maximum value for the time-history used in example 5.4.3 is 
517.4 kips, as was obtained during Winfield Test #10. The maximum value 
for the dynamic response of the SDOF system with ߚ ൌ 0.02 was 0.56 inch 
and with ߚ ൌ 0.05 was 0.54 inch. For comparison, the maximum beam 
deflection from Winfield was calculated based on laser measurements and 
neoprene seat deformation during the experimental procedures, and had a 
value of 0.52 inch. The resulting deflection of the SDOF simulation is in 
agreement with the Winfield Test #10 recorded data. The whole deflection 
time-history is presented in Figure 5.53 and the similarity of both curves 
can be observed. 
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Figure 5.52. Dynamic external force time-history for numerical example 5.4.3. 

 
Figure 5.53. Comparison of the dynamic response of the SDOF model and the beam 

deflection measured during Winfield Test #10, using the bilinear force-displacement spring 
model. 
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With the results shown in example 5.4.3 the following points were 
demonstrated: 

 The second slope of the force-displacement relationship was reached 
because the maximum displacement of the system was approximately 
0.54 inch and the displacement where the second slope begins is 
0.25 inch; 

 The same results are obtained when using the explicit recursive 
formulas of the Duhamel’s integral, as presented in Appendix C, as 
when using the numerical integration scheme; and  

 When the two slope force-displacement relationship spring model has 
the same stiffness value for each slope; the procedure produces the 
same dynamic response as when using the single slope force-
displacement relationship spring model with that same stiffness. 

5.4.4 Winfield Test #10 – Linear spring stiffness – average beam 
deflection between LD3 and LD4 locations 

This example represents a simplified model of the elastic beam used at 
Winfield Test #10. It considers the elastic beam of the field experiment as a 
SDOF system. Instead of moving an external dynamic load along the beam 
at a specified velocity, as was the case of the experiment, the external 
dynamic load has a fixed location for the SDOF model. This numerical 
example is based on a linear stiffness coefficient obtained from the 
experimental results of Winfield Test #10, as idealized in Figure 5.54. 

 
Figure 5.54. SDOF model used for numerical example 5.4.2. 

To obtain the equivalent linear stiffness (slope of the force-displacement 
relationship) for the spring of the SDOF model, the maximum dynamic 
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and LD4 sensor locations, which produces a value of 0.514295 inch. Using 
this average deflection and the maximum dynamic load, the value of the 
stiffness of the SDOF model can be calculated, which results in 
1,006,037.4 kips/inch. This concept can be observed in Figure 5.55. This 
stiffness coefficient is calculated using the equivalent static force method 
discussed in sub-subsection 5.4.2. 

 
Figure 5.55. Equivalent SDOF system for the Winfield Test #10, using the average of the 

maximum LD3 and LD4 displacements. 

The damping ratio was assumed to be ߚ ൌ 0.02. The following input data 
was used in this example: 

 Mass (M) = 1,195.985575 lbs  s2/inch 
 Stiffness coefficient (k) = 517,400 / 0.514295 = 1,006,037.4 lbs/inch 
 Damping ratio (c) = 0.02 
 Time step = 0.002 sec. 
 Dynamic external load as shown in Figure 5.56. 

It can be observed that the value of the equivalent spring stiffness will 
change if the calculation of k is done in other positions along the beam. If 
the dynamic load is applied at other locations, the deflection value will be 
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different. 
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Figure 5.56. Dynamic external force time-history for numerical example 5.4.4. 

The maximum value of the force time-history obtained from Winfield Test 
#10 and used in this example is 517.4 kips. The maximum value for the 
dynamic response of the SDOF system with ߚ ൌ 0.02 was 0.54 inch. As a 
matter of comparison, the maximum average laser deflection recorded 
during the experiment was 0.51428 inch. The resulting deflection of the 
SDOF simulation is in agreement with the Winfield Test #10 recorded data. 
The whole deflection time-history is presented in Figure 5.57 and the 
similarity in shape and magnitude of both curves can be observed. 

Using the equivalent spring stiffness of 1,006,037.4 lbs/inch 
(12,072.45 kips/ft), the equivalent modulus of elasticity for the system can 
be calculated. It is well-known that the equivalent spring stiffness for a 
simply supported beam subjected to a static concentrated force is  
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Figure 5.57. Comparison of the dynamic response of the SDOF model and the average laser 

displacements LD3 and LD4 measured during Winfield Test #10. 

where;  

 Esystem = modulus of elasticity of the system,  
 I = moment of inertia about the neutral axis,  
 L = total span length,  
 a = distance to the left support from the point of load application, 

and  
 b = distance to the right support from the point of load application 

(b = L – a).  

The modulus of elasticity calculated from Equation (5.9) is called equivalent 
modulus of elasticity for the system because the stiffness coefficient used to 
calculate the Esystem is based on the average of the maximum displacement 
of the two adjacent laser deflection sensors to the point of load application. 
This deflection reflects the displacement of the system (adjacent beams), 
neoprene pad deformation and elastic curve of the beam. For Winfield Test 
#10 the approach velocity along the beam was v = 2.99 ft/sec, the point of 
initial contact was at 7.8 ft to the left of the midspan and the time of 
maximum force was t = 0.2 sec. The following values can be derived from 
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this information using Equation (5.1); I = 517.2 ft4, L = 112.6 ft, a = L/2 – 
7.8 – v  t = 112.6/2 -7.8 - 2.99  0.2 = 47.902 ft from left support, and b = L 
– a = 112.6 – 47.902 = 64.698 ft. Finally, substituting these values into 
Equation (5.1) leads to the solution of an equivalent modulus of elasticity for 
the system, which is Esystem = 663,434.9 kips/ft2 = 4,607.2 kips/in2.  

The resulting values of Edynamic obtained in sub-section 5.3.2 are greater 
than the value of E obtained in this sub-section. The value presented in 
this sub-section (Esystem = 663,434.9 kips / ft2 = 4,607.2 kips / in2 ) was 
obtained using the average of the total deflection between sensor locations 
LD3 and LD4 of 0.51428 inch, which includes the system (adjacent beams) 
deflection, neoprene pad (support) deflection and beam deflection. 
However, the Edynamic in sub-section 5.3.2 (Average Edynamic = 802,733 ksf 
= 5,574.54 ksi) was calculated with the beam deflection (beam deflection is 
lower than total deflection) at each sensor location LD3, LD4 and LD5. As 
the displacement increases, the system becomes more flexible resulting in 
a lower modulus of elasticity. 

5.4.5 Comparison of the response of dBEAS 2-DOF System and a SDOF 
system of Impact_Beam 

This subsection presents a comparison of the response of a Deformable 
Bullnose Energy Absorbing System (BEAS) using the computer program 
Impact-Beam and dBEAS (Ebeling et al. 2011). The computer program 
dBEAS considers a barge train as a multi-degree-of-freedom system which 
is impacting a deformable bullnose. dBEAS calculates the force time-
history a specified barge train generates at the deformable bullnose during 
impact and the effects (force, displacement, velocity and acceleration) on 
the barge train and the deformable bullnose. The dBEAS computer 
program was used to model the impact of a single barge on a deformable 
bullnose. The weight of the single barge is equivalent to the weight of a 
barge train consisting of 15 barges plus the tow boat of 52,100 kips. The 
single super-barge (15-weights+tow) was traveling at 2 ft/sec. The impact 
force between the super-barge and the deformable bullnose was generated 
with dBEAS computer program. Then, this force was used as part of the 
input data for the SDOF model in Impact_Beam to calculate the response 
of the deformable bullnose and compare the results against the dBEAS 
computer program results. Next, five examples will be presented where the 
response of the deformable bullnose was calculated using dBEAS and 
Impact_Beam computer programs to verify the solution method and 
accuracy of both mathematical models. 
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5.4.5.1 Bilinear force-displacement base isolators stiffness with 15 ,0 = ߚ 
and 30% 

The computer program dBEAS was used to estimate the impact force time-
history for the super-barge model (single barge with the weight of 
15 barges+tow) and this force was used as input force in the Impact_Beam 
SDOF model. The responses of both models were compared to observe the 
behavior of a 2-DOF system and a SDOF system. The dBEAS model is 
idealized in Figure 5.58. Note as shown in Figure 5.58, that the center of 
gravity of both systems is coincident with the center of rigidity of the dBEAS 
and the line of action of the impact force, so all motions will be translational 
along the line of action (i.e., no rotations). This condition (head-on impact 
event) can be modeled by a 2-DOF system as shown in Figure 5.59. That is, 
the 2-DOF system is equivalent to a “super-barge” model impacting the 
deformable BEAS. The barge train longitudinal stiffness was estimated at 
1,200 kips/inch and the deformable bullnose properties are the following; 
weight of 3,978.255 lbs  s2/inch, 8 base isolators with bilinear stiffness 
defined as idealized in Figure 5.60. In this case, the force-displacement 
relationship is defined by k1 = 11,170.21 lbs/in, k2 = 57,558.14 lbs/in, x1 = 
28.2 inches, and x2 = 54 inches. The damping ratio for this example was 0% 
for each base isolator. Because the group of base isolators are acting in 
parallel for the impact nosing of the Deformable BEAS, the total stiffness 
and total damping for the SDOF model of Impact_Beam is calculated by 
adding the contribution of each single base isolator to obtain an equivalent 
single stiffness and damping ratio. 

 
Figure 5.58. Plan View of the 2-DOF system of the super-barge dBEAS model. 

C.G. C.G. C.R.kbow

W = 15 barges + tow

K8‐base isolators

8 Base Isolators

Deformable BEAS

V15 barges + tow



ERDC/ITL TR-11-1 126 

 

 
Figure 5.59. 2-DOF system of the super-barge dBEAS model. 

 
Figure 5.60. Deformable BEAS spring (k8-base isolators) bilinear force-displacement relationship. 

The impact force time-history produced by dBEAS is presented in 
Figure 5.61. This force time-history is used as input force time-history for 
the SDOF system of Impact_Beam, as shown in Figure 5.62. 

The response of the SDOF system of Impact_Beam and the response of the 
2-DOF system of dBEAS computer programs are presented in Figure 5.63. 
The maximum displacement for the SDOF system and the 2-DOF system 
was 29.8835 inches and 29.8824 inches, respectively. In both cases, the 
second slope of the force-displacement relationship of the spring was 
reached (x1 = 28.2 inches). It can be observed that the same response was 
obtained from two independent mathematical tools, Impact_Beam and 
dBEAS. 
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Figure 5.61. Dynamic external force time-history for numerical example in subsection 5.4.5.1 

–  = 0%. 

 
Figure 5.62. SDOF system of Impact_Beam used to calculate the response of a deformable 

BEAS. 
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Figure 5.63. Response time-history; dBEAS 2-DOF and Impact_Beam SDOF models,  = 0%. 

A second case was evaluated using dBEAS with  = 15%, and the impact 
force from dBEAS as shown in Figure 5.64 with all other parameters of the 
dBEAS remaining the same. The response of the SDOF system of 
Impact_Beam and the response of the 2-DOF system of dBEAS computer 
programs are presented in Figure 5.65. The maximum displacement for 
the SDOF system and the 2-DOF system was 28.1467 inches and 
28.1472 inches, respectively. In both cases, the second slope of the force-
displacement relationship of the spring was not reached (x1 = 28.2 inches). 
It can be observed that the same response was obtained from two 
independent mathematical tools, Impact_Beam and dBEAS. 

A third case was evaluated with  = 30%, impact force from dBEAS, as 
shown in Figure 5.66, with all other parameters for the dBEAS remaining 
the same. The response of the SDOF system of Impact_Beam and the 
response of the 2-DOF system of dBEAS computer programs are presented 
in Figure 5.67. The maximum displacement for the SDOF system and the 
2-DOF system was 27.0217 inches and 27.0192 inches, respectively. In 
both cases, the second slope of the force-displacement relationship of the 
spring was not reached (x1 = 28.2 inches). It can be observed that the same 
response was obtained for Impact_Beam and dBEAS. 
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Figure 5.640. Dynamic external force time-history for numerical example in subsection 

5.4.5.1 –  = 15%. 

 
Figure 5.65. Response time-history; dBEAS 2-DOF and Impact_Beam SDOF models,  = 15%. 
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Figure 5.66. Dynamic external force time-history for numerical example in subsection 5.4.5.1 

–  = 30%. 

 
Figure 5.67. Response time-history; dBEAS 2-DOF and Impact_Beam SDOF models,  = 30%. 
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5.4.5.2 SDOF comparison with low stiffness BEAS 

The computer program dBEAS was used to estimate the impact force time-
history for the super-barge model (single barge with the weight of 15 barges 
+ tow) and this force was used as input force for the SDOF model in 
Impact_Beam. The responses of both models are compared by observing 
the behavior of a 2-DOF system and a SDOF system. The dBEAS model is 
presented in Figure 5.68. Note, as shown in Figure 5.68, that the center of 
gravity of both systems is coincident with the center of rigidity of the dBEAS 
and the line of action of the impact force, so all motions will be translational 
along the line of action (i.e., no rotations). This condition (head-on impact 
event) can be modeled by a 2-DOF system as idealized in Figure 5.69. That 
is, the 2-DOF system is equivalent to a “super-barge” model impacting the 
deformable BEAS. The barge train longitudinal stiffness was estimated at 
1,200 kips/inch and the deformable bullnose properties are the following; 
weight of 3,978.255 lbs  s2 / inch, 8 base isolators with linear secant 
stiffness defined as shown in Figure 5.70. In this case the force-displace-
ment relationship is defined by k = 129,350.0 lbs/in and xult = 60 inches. 
The damping ratio for this example was 0% for each base isolator. Because 
the group of base isolators are acting in parallel on the impact nosing of the 
Deformable BEAS, the total stiffness and total damping for the SDOF model 
of Impact_Beam is calculated by adding the contribution of each single base 
isolator to obtain an equivalent single stiffness and damping ratio. 

 
Figure 5.68. Plan View of the 2-DOF system of the super-barge dBEAS model. 
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Figure 5.69. 2-DOF system of the super-barge dBEAS model. 

 
Figure 5.70. Deformable BEAS spring (k8-base isolators) linear secant force-displacement idealized 

relationship. 

The impact force time-history produce by dBEAS is presented in 
Figure 5.71. This force time-history is used as input force time-history for 
the SDOF system of Impact_Beam, as shown in Figure 5.72. 

The response of the SDOF system of Impact_Beam and the response of the 
2-DOF system of dBEAS computer programs are presented in Figure 5.73. 
The maximum displacement for the SDOF system and the 2-DOF system 
was 7.0107 inches and 7.0092 inches, respectively. In both cases, the 
ultimate displacement of the force-displacement relationship of the spring 
was not reached (xult = 60 inches). It can be observed that the same 
response was obtained for Impact_Beam and dBEAS. 
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Figure 5.71. Dynamic external force time-history for numerical example in subsection 5.4.5.2 

–  = 0%. 

 
Figure 5.72. SDOF system of Impact_Beam used to calculate the response of a deformable 

BEAS. 
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Figure 5.73. Response time-history; dBEAS 2-DOF and Impact_Beam SDOF models,  = 0%. 

A second case was evaluated using dBEAS with  = 15%, the impact force 
from dBEAS as shown in Figure 5.74, with all other parameters of the 
dBEAS remaining the same. The response of the SDOF system of 
Impact_Beam and the response of the 2-DOF system of dBEAS computer 
programs are presented in Figure 5.75. The maximum displacement for 
the SDOF system and the 2-DOF system was 6.4840 inches and 
6.4824 inches, respectively. In both cases, the ultimate displacement of 
the force-displacement relationship of the spring was not reached (xult = 
60 inches). It can be observed that the same response was obtained for 
Impact_Beam and dBEAS. 

A third case was evaluated using dBEAS with  = 30%, the impact force 
from dBEAS, as shown in Figure 5.76, with all others parameters of the 
dBEAS remaining the same. The response of the SDOF system of 
Impact_Beam and the response of the 2-DOF system of dBEAS computer 
programs are presented in Figure 5.77. The maximum displacement for 
the SDOF system and the 2-DOF system was 6.3356 inches and 
6.3360 inches, respectively. In both cases, the ultimate displacement of 
the force-displacement relationship of the spring was not reached (xult = 
60 inches). It can be observed that the same response was obtained from 
Impact_Beam and dBEAS. 
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Figure 5.74. Dynamic external force time-history for numerical example in subsection 5.4.5.2 

–  = 15%. 

 
Figure 5.75. Response time-history; dBEAS 2-DOF and Impact_Beam SDOF models,  = 15%. 

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Im
p

a
c

t F
o

rc
e

  (
lb

s
)

Time  (sec)



ERDC/ITL TR-11-1 136 

 

 
Figure 5.76. Dynamic external force time-history for numerical example in subsection 5.4.5.2 

–  = 30%. 

 
Figure 5.77. Response time-history; dBEAS 2-DOF and Impact_Beam SDOF models,  = 30%. 
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5.4.5.3 SDOF comparison with high stiffness BEAS 

The computer program dBEAS was used to estimate the impact force time-
history for the “super-barge” model (single barge with the weight of 
15 barges + tow) and this force was used as input force for the SDOF model 
in Impact_Beam. The responses of both models were observed to compare 
the behavior of a 2-DOF system and a SDOF system. The dBEAS model is 
idealized in Figure 5.78. Note as shown in Figure 5.78, that the center of 
gravity of both systems is coincident with the center of rigidity of the dBEAS 
and the line of action of the impact force, so all motions will be translational 
along the line of action (i.e., no rotations). This condition (head-on impact 
event) can be modeled by a 2-DOF system as idealized in Figure 5.79. That 
is, the 2-DOF system is equivalent to a super-barge model impacting the 
deformable BEAS. The barge train longitudinal stiffness was estimated at 
1,200 kips/inch and the deformable bullnose properties are the following; 
weight of 3,978.255 lbs  s2/inch, 8 base isolators with linear secant stiffness 
defined as shown in Figure 5.80. In this case the force-displacement 
relationship is defined by k = 12,935,000.0 lbs/in and xult = 60 inches. The 
damping ratio for this example was 0% for each base isolator. Because the 
group of base isolators are acting in parallel on the impact nosing of the 
Deformable BEAS, the total stiffness and total damping for the SDOF model 
of Impact_Beam is calculated by adding the contribution of each single base 
isolator to obtain an equivalent single stiffness and damping ratio. 

 
Figure 5.78. Plan View of the 2-DOF system of the super-barge dBEAS model. 
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Figure 5.79. 2-DOF system of the super-barge dBEAS model. 

 
Figure 5.80. Deformable BEAS spring (k8-base isolators) linear secant force-displacement 

relationship. 

The impact force time-history produced by dBEAS is presented in 
Figure 5.81. This force time-history is used as an input force time-history 
for the SDOF system of Impact_Beam, as shown in Figure 5.82. 

The response of the SDOF system of Impact_Beam and the response of the 
2-DOF system of dBEAS computer programs are presented in Figure 5.83. 
The maximum displacement for the SDOF system and the 2-DOF system 
was 0.0961 inch and 0.0984 inch, respectively. In both cases, the ultimate 
displacement of the force-displacement relationship of the spring was not 
reached (xult = 60 inches). It can be observed that the same response was 
obtained from Impact_Beam and dBEAS. 
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Figure 5.81. Dynamic external force time-history for numerical example in subsection 5.4.5.3 

–  = 0%. 

 
Figure 5.82. SDOF system of Impact_Beam used to calculate the response of a deformable 

BEAS. 
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Figure 5.83. Response time-history; dBEAS 2-DOF and Impact_Beam SDOF models,  = 0%. 

A second case was evaluated using dBEAS with  = 15%, the impact force 
from dBEAS as shown in Figure 5.84, with all other parameters of the 
dBEAS remaining the same. The response of the SDOF system of 
Impact_Beam and the response of the 2-DOF system of dBEAS computer 
programs are presented in Figure 5.85. The maximum displacement for the 
SDOF system and the 2-DOF system was 0.0951 inch and 0.0948 inch, 
respectively. In both cases, the ultimate displacement of the force-
displacement relationship of the spring was not reached (xult = 60 inches). It 
can be observed that the same response was obtained from Impact_Beam 
and dBEAS. 

A third case was evaluated using dBEAS with  = 30%, the impact force 
from dBEAS as shown in Figure 5.86, with all other parameters of the 
dBEAS remaining the same. The response of the SDOF system of 
Impact_Beam and the response of the 2-DOF system of dBEAS computer 
programs are presented in Figure 5.87. The maximum displacement for 
the SDOF system and the 2-DOF system was 0.0951 inch and 0.0948 inch, 
respectively. The maximum response was the same for a system with 
damping ratios of 15% and 30%. In both cases, the ultimate displacement 
of the force-displacement relationship of the spring was not reached (xult = 
60 inches). It can be observed that the same response was obtained from 
Impact_Beam and dBEAS. 



ERDC/ITL TR-11-1 141 

 

 
Figure 5.84. Dynamic external force time-history for numerical example in subsection 5.4.5.3 

–  = 15%. 

 
Figure 5.85. Response time-history; dBEAS 2-DOF and Impact_Beam SDOF models,  = 15%. 
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Figure 5.86. Dynamic external force time-history for numerical example in subsection 5.4.5.3 

–  = 30%. 

 
Figure 5.87. Response time-history; dBEAS 2-DOF and Impact_Beam SDOF models,  = 30%. 
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5.4.5.4 SDOF comparison with high stiffness BEAS and stiff barge model 

The computer program dBEAS was used to estimate the impact force time-
history for the “super-barge” model (single barge with the weight of 15 
barges + tow) and this force was used as input force for the SDOF model in 
Impact_Beam. The responses of both models were observed to compare the 
behavior of a 2-DOF system and a SDOF system. The dBEAS model is 
idealized in Figure 5.88. Note as shown in Figure 5.88, that the center of 
gravity of both systems is coincident with the center of rigidity of the dBEAS 
and the line of action of the impact force, so all motions will be translational 
along the line of action (i.e., no rotations). This condition (head-on impact 
event) can be modeled by a 2-DOF system as shown in Figure 5.89. That is, 
the 2-DOF system is equivalent to a super-barge model impacting the 
deformable BEAS. This example is the same as the example presented in 
Sub-section 5.4.5.3 but using a stiffer barge train spring constant, that is, 
the barge train longitudinal stiffness was set equal to the estimated barge 
train transverse stiffness. In this example, the barge train longitudinal 
stiffness has a value of 2,100 kips/inch and the deformable bullnose 
properties are the following; weight of 3,978.255 lbs  s2/inch, 8 base 
isolators with linear secant stiffness defined as shown in Figure 5.90. The 
force-displacement relationship is defined by k = 12,935,000.0 lbs/in and 
xult = 60 inches. The damping ratio for this example was 0% for each base 
isolator. Because the group of base isolators are in parallel on the impact 
nosing of the Deformable BEAS, the total stiffness and total damping for the 
SDOF model of Impact_Beam is calculated by adding the contribution of 
each single base isolator to obtain an equivalent single stiffness and 
damping ratio. 

 
Figure 5.88. Plan View of the 2-DOF system of the super-barge dBEAS model. 
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Figure 5.89. 2-DOF system of the super-barge dBEAS model. 

 
Figure 5.90. Deformable BEAS spring (k8-base isolators) linear secant force-displacement 

relationship. 

The impact force time-history produced by dBEAS is presented in 
Figure 5.91. This force time-history is used as the input force time-history 
for the SDOF system of Impact_Beam, as shown in Figure 5.92. 

The response of the SDOF system of Impact_Beam and the response of the 
2-DOF system of dBEAS computer programs are presented in Figure 5.93. 
The maximum displacement for the SDOF system and the 2-DOF system 
was 0.0961 inch and 0.0984 inch, respectively. In both cases, the ultimate 
displacement of the force-displacement relationship of the spring was not 
reached (xult = 60 inches). It can be observed that the same response was 
obtained from Impact_Beam and dBEAS. 
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Figure 5.91. Dynamic external force time-history for numerical example in subsection 5.4.5.4 

–  = 0%. 

 
Figure 5.92. SDOF system of Impact_Beam used to calculate the response of a deformable 

BEAS. 
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Figure 5.93. Response time-history; dBEAS 2-DOF and Impact_Beam SDOF models,  = 0%. 

A second case was evaluated using dBEAS with  = 15%, the impact force 
from dBEAS as shown in Figure 5.94, with all other parameters of the 
dBEAS remaining the same. The response of the SDOF system of 
Impact_Beam and the response of the 2-DOF system of dBEAS computer 
programs are presented in Figure 5.95. The maximum displacement for the 
SDOF system and the 2-DOF system was 0.0951 inch and 0.0948 inch, 
respectively. In both cases, the ultimate displacement of the force-
displacement relationship of the spring was not reached (xult = 60 inches). It 
can be observed that the same response was obtained from Impact_Beam 
and dBEAS. 

A third case was evaluated using dBEAS with  = 30%, the impact force 
from dBEAS as shown in Figure 5.96, with all other parameters of the 
dBEAS remaining the same. The response of the SDOF system of 
Impact_Beam and the response of the 2-DOF system of dBEAS computer 
programs are presented in Figure 5.97. The maximum displacement for 
the SDOF system and the 2-DOF system was 0.0951 inch and 0.0948 inch, 
respectively. The maximum response was the same for a system with 
damping ratio of 15% and 30%. In both cases, the ultimate displacement of 
the force-displacement relationship of the spring was not reached (xult = 
60 inches). It can be observed that the same response was obtained from 
Impact_Beam and dBEAS. 
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Figure 5.94. Dynamic external force time-history for numerical example in subsection 5.4.5.4 

–  = 15%. 

 
Figure 5.95. Response time-history; dBEAS 2-DOF and Impact_Beam SDOF models,  = 15%. 
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Figure 5.96. Dynamic external force time-history for numerical example in subsection 5.4.5.4 

–  = 30%. 

 
Figure 5.97. Response time-history; dBEAS 2-DOF and Impact_Beam SDOF models,  = 30%. 
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5.4.5.5 Bilinear force-displacement base isolators stiffness with β = 15% 

In the following examples, the same input data as in the example presented 
in sub -section 5.4.5.1 was used but with a different barge train approach 
velocity, that is 4 and 6 ft/sec. The results from the example in sub -section 
5.4.5.1 (barge train approach velocity equal to 2 ft/s) is repeated here as a 
matter of comparison. The computer program dBEAS was used to estimate 
the impact force time-history for the “super-barge” model (single barge with 
the weight of 15 barges + tow) and this force was used as input force in 
Impact_Beam SDOF model. The responses of both models were observed to 
compare the behavior of a 2-DOF system and a SDOF system. The dBEAS 
model is idealized in Figure 5.98. Note, as shown in Figure 5.98, that the 
center of gravity of both systems is coincident with the center of rigidity of 
the dBEAS and the line of action of the impact force, so all motions will be 
translational along the line of action (i.e., no rotations). This condition 
(head-on impact event) can be modeled by a 2-DOF system as shown in 
Figure 5.99. That is, the 2-DOF system is equivalent to a super-barge model 
impacting the deformable BEAS. The barge train longitudinal stiffness was 
estimate as 1,200 kips/inch and the deformable bullnose properties are the 
following; weight of 3,978.255 lbs  s2/inch, 8 base isolators with bilinear 
stiffness defined as shown in Figure 5.100. In this case the force-
displacement relationship is defined by k1 = 11,170.21 lbs/in, k2 = 
57,558.14 lbs/in, x1 = 28.2 inches, and x2 = 54 inches. The damping ratio for 
this example was 15% for each base isolator. Because the group of base 
isolators are acting against the impact nosing of the Deformable BEAS in 
parallel, the total stiffness and total damping for the SDOF model of 
Impact_Beam is calculated by adding the contribution of each single base 
isolator to obtain an equivalent single stiffness and damping ratio. 

 
Figure 5.98. Plan View of the 2-DOF system of the super-barge dBEAS model. 
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Figure 5.99. 2-DOF system of the super-barge dBEAS model. 

 
Figure 5.100. Deformable BEAS spring (k8-base isolators) bilinear force-displacement relationship. 

The impact force time-history produced by dBEAS is presented in 
Figure 5.101. This force time-history at the point of contact between the 
super-barge and the dBEAS is based on a super-barge approach velocity of 
2 ft/sec. This force time-history is used as input force time-history for the 
SDOF system of Impact_Beam, as shown in Figure 5.102. 

The response of the SDOF system of Impact_Beam and the response of the 
2-DOF system of dBEAS computer programs are presented in Figure 5.103. 
The maximum displacement for the SDOF system and the 2-DOF system 
was 28.1467 inches and 28.1472 inches, respectively. In both cases, the 
second slope of the force-displacement relationship of the spring was not 
reached (x1 = 28.2 inches). It can be observed that the same response was 
obtained from Impact_Beam and dBEAS. 
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Figure 5.101. Dynamic external force time-history for numerical example in subsection 

5.4.5.5 –  = 15%, v = 2 ft/s. 

 
Figure 5.102. SDOF system of Impact_Beam used to calculate the response of a deformable 

BEAS. 
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Figure 5.103. Response time-history; dBEAS 2-DOF and Impact_Beam SDOF models,  = 

15%, v = 2 ft/s. 

A second case was evaluated using dBEAS with v = 4 ft/sec, the impact force 
from dBEAS as shown in Figure 5.104, with all other parameters of the 
dBEAS remaining the same. The response of the SDOF system of 
Impact_Beam and the response of the 2-DOF system of dBEAS computer 
programs are presented in Figure 5.105. The maximum displacement for 
the SDOF system and the 2-DOF system was 42.8047 inches and 
42.8928 inches, respectively. In both cases, the second slope of the force-
displacement relationship of the spring was reached (x1 = 28.2 inches). It 
can be observed that the same response was obtained from Impact_Beam 
and dBEAS. 

A third case was evaluated using dBEAS with v = 6 ft/sec, the impact force 
from dBEAS as shown in Figure 5.106, with all other parameters of the 
dBEAS remaining the same. The response of the SDOF system of 
Impact_Beam and the response of the 2-DOF system of dBEAS computer 
programs are presented in Figure 5.107. The maximum displacement for the 
SDOF system and the 2-DOF system was 53.952 inches and 54.1416 inches, 
respectively. In both cases, the second slope of the force-displacement 
relationship of the spring was reached (x1 = 28.2 inches) and the base 
isolator presents failure because the x2 = 54 inches was reached. It can be 
observed that the same response was obtained from Impact_Beam and 
dBEAS. 
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Figure 5.104. Dynamic external force time-history for numerical example in subsection 

5.4.5.5 –  = 15%, v = 4 ft/s. 

 
Figure 5.105. Response time-history; dBEAS 2-DOF and Impact_Beam SDOF models,  = 

15%, v = 4 ft/s. 
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Figure 5.106. Dynamic external force time-history for numerical example in subsection 

5.4.5.5 –  = 15%, v = 6 ft/s. 

 
Figure 5.107. Response time-history; dBEAS 2-DOF and Impact_Beam SDOF models,  = 

15%, v = 6 ft/s. 
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5.4.6 dBEAS-SDOF response subjected to force time-history of Winfield 
Test #10 

The SDOF system used in this numerical example represents the behavior 
of an impacted bullnose supported over a single base isolator. The force-
displacement relationship of the base isolator is bilinear as shown in 
Figure 5.108. 

 
Figure 5.108. Deformable BEAS spring (kbase isolator) bilinear force-displacement relationship. 

The force applied to the bullnose is a time-history obtained from the 
Winfield Test #10 as shown in Figure 5.109. The objective of this example 
is to show that the use of the SDOF model is comparable to a Deformable 
BEAS with a impact nosing supported by a single base isolator. The 
following input data was used in this example: 

 Mass (M) = 3,978.255 lbs  s2/inch 
 Stiffness coefficients: k1 =11,170.21 lbs/in, k2 = 57,558.14 kips/inch 
 Limits for displacement: = x1 = 28.2 inches; x2 = 54 inches 
 Damping ratio (c) = 15% 
 Time step = 0.002 
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Figure 5.109. Dynamic external force time-history obtained from Winfield Test #10. 

The maximum value for the time-history used in this example is 517.4 kips, 
as was obtained during Winfield Test #10. The maximum value for the 
dynamic response of the SDOF system was 27.4183 inches. This 
displacement indicates that the second slope is not reached by the single 
base isolator if the force time-history obtained from Winfield Test #10 is 
applied to a deformable BEAS with the properties used in this example. 

5.5 Conclusions 

In this Chapter, verification and validation for the SDOF solver in the 
Impact_Beam software were performed using the commercial off-the-shelf 
(COTS) software SAP2000, full-scale test data from Winfield Test #10, and 
independently developed software dBEAS, which has been developed to 
simulate a barge train impact with an innovative flexible bullnose system. 
Force time-history data were used from an example taken from Paz (1985), 
from Winfield Test #10 processed by Impact_Force to match a specified 
barge train configuration, and from simulations performed using the 
dBEAS software. This series of assessments showed that the results of the 
Impact_Beam software matched the results from the comparison software 
and full-scale barge impact tests. 
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Also, methods to calculate the dynamic modulus of elasticity for a flexible 
beam from differing sensor data of the full-scale test data have been 
presented and solved with the data from Winfield Test #10. Determining 
the dynamic modulus of elasticity as accurately as possible is important for 
multiple degree of freedom solutions which will be presented in Chapter 6, 
where moment and shear forces, due to deflection of the beam, will be 
calculated. 

 
Figure 5.110. Displacement time-history for dBEAS-SDOF response subjected to force time-

history of Winfield Test #10. 
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6 Summary of Interpretation of Full-Scale 
Impact Test Results Conducted at 
Winfield Lock and Dam Using 
Impact_Beam 

6.1 Introduction 

On the 25th through the 26th of August 2008, a series of full-scale barge 
train impact experiments with a flexible approach lock wall were per-
formed (Barker et al. 2010). The series of barge train impacts consisted of 
twenty-three glancing blow impact experiments conducted at the Winfield 
Lock and Dam at Red House, WV. All experiments were conducted with a 
3-by-3 barge train impacting a flexible approach guide wall. A force-
measuring load-cell bumper was mounted to the impact corner of the 
barge. The load-cell bumper measured the amount of force of the barge 
impacting the lock wall. Of the twenty-three impact experiments, only 
eighteen were considered to have a sufficient amount of recorded data that 
could be used for impact analysis. Additionally, four of these impact tests 
were performed using a “possum” placed between the lock wall face and 
the load cell bumper. A possum is a knotted section of rope covered with a 
nylon mesh, used to act as a “shock absorber” between the barge train and 
the flexible approach wall.  

Chapter 5 presented methods for the estimation of the dynamic modulus of 
elasticity Edyn based on a full interpretation of Winfield Test #10 results. The 
Winfield impact beam 28-day design, compressive strength was f’c= 5,000 
psi. For this f’c the corresponding static modulus of elasticity, Est, was 
calculated as 4,104.71 ksi. As presented in Johns and Belanger (1981), 
multiplying the static modulus of elasticity, Est by a dynamic amplification 
factor equal to 1.3 gives a dynamic modulus of elasticity. Then, the dynamic 
modulus of elasticity for the Winfield impact beam results in 5,336.12 ksi. 
This dynamic modulus of elasticity value was compared with the resulting 
values obtained using the calculated beam deflection and normal strains 
from the Impact_Beam software. This was accomplished by fixing the 
maximum beam deflection or the maximum curvature at each sensor 
location as a target value to be matched. Impact_Beam was then executed 
with the corresponding time-history iterating through values for the 
modulus of elasticity until the target value was reached. This procedure 
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guarantees that the maximum experimental response and the maximum 
simulation response are the same. The average dynamic modulus of 
elasticity based on the experimental beam deflection using LD3, LD4 and 
LD5 sensors was 5,574.54 ksi. The average dynamic modulus of elasticity 
based on the strain sensors (the strains were transformed to curvatures) 
was 10,525 ksi. 

This chapter presents the interpretation of the full-scale impact test results 
conducted at Winfield lock and dam. The interpretation is done by the use 
of Impact_Beam computer software. First, a summary of the simply 
supported elastic beam properties used at Winfield experiments and the 
summary of the velocities along the beam recorded during the experiments 
are presented. This is the required input data used by Impact_Beam to 
generate the simulation results. Then for each test, the maximum beam 
deflection and maximum curvature (from normal strain) is provided as 
input and Impact_Beam, with the corresponding force time-history, 
iterated varying the dynamic modulus of elasticity until the target deflection 
or curvature is obtained. Based on these calculations, a summary of the 
values for the dynamic modulus of elasticity for each test and each sensor is 
presented. The resulting set of calculated values for the dynamic modulus of 
elasticity for each sensor during each barge impact test is then averaged to 
produce a best estimate for the comprehensive dynamic modulus of 
elasticity. This comprehensive dynamic modulus of elasticity is then 
compared with values of dynamic modulus cited in technical literature. 
Finally, the interpretation of the dynamic modulus of elasticity values 
expressed as an amplification factor between field curvature and simulation 
curvature is presented. 

6.2 Summary of the simply supported elastic beam properties and 
velocities along the beam 

Impact_Beam computer program has the capability to calculate the 
dynamic response of a continuous elastic beam due to a moving transverse 
concentrated dynamic load. This section presents the basic beam 
properties used in the interpretation of the impact beam used at the 
Winfield experiment. The model has the following data;  

 effective beam length (from center to center of neoprene pads) is 
112.6 ft,  

 the moment of inertia of the elastic beam is 517.2 ft4,  
 the cross sectional area is equal to 46 ft2,  



ERDC/ITL TR-11-1 160 

 

 the total weight per unit length of the beam is 8.2 kips/ft, which 
considers the hydrodynamic added mass (as discussed in Appendix H).  

The force time-history used in the analysis done in this chapter corresponds 
to the force time-history recorded during the Winfield experiment for each 
barge impact test. The velocity of the dynamic load, which acts with a force 
normal to the beam, as it moves along the beam and the initial point of 
contact of the load on the beam are presented in Table 6.1. The damping 
ratio assigned was 2% of the critical damping for each of the twelve modes 
of vibration considered. The locations along the beam where the results 
need to be known are the same as the positions along the beam where the 
strain and laser deflections were recorded during the Winfield experiments. 
These locations for LD3, LD4, LD5, (S1B;S1F), (S2B;S2F), (S3B;S3F), 
(S4B;S4F) and (S5B;S5F) are the following 71.0425 ft, 56.38625 ft, 
41.7196 ft, 80.28208333 ft, 68.2925 ft, 56.3029 ft, 44.31333 ft and 
32.32375 ft, respectively. 

Table 6.1. Velocity during contact with impact beam (vx) at Winfield. 

 
 

Location 
from Target 
[measured 
from beam 
center line]

ft/sec mph (feet) ft/sec mph

Test 6 15.5 1.55 1.06 7.5 1.55 1.057

Test 7 20.2 1.53 1.04 9.7 1.53 1.044

Test 8 10.2 3 2.05 -18.9 2.99 2.041

Test 9 13.6 2.22 1.51 -9.7 2.21 1.509

Test 10 15.8 2.99 2.04 7.8 2.97 2.03

Test 11 6.9 0.8 0.55 35.8 0.78 0.535

Test 12 6.1 1.41 0.96 15.9 1.4 0.954

Test 13 10.2 1.5 1.02 5.6 1.5 1.022

Test 14 11.7 1.48 1.01 -15.2 1.46 0.998

Test 15 11.3 1.6 1.09 -26.2 1.58 1.079

Test 16 9.7 3.55 2.42 4.6 3.55 2.42

Test 17 21.2 1.44 0.98 3.8 1.46 0.998

Test 18 16.8 2.19 1.5 -18 2.18 1.486

Test 19 17.3 2.25 1.53 -12.7 2.21 1.507

Possum used between 
impact beam and load cell 
bumper

Test 20 13 2.81 1.92 3.8 2.79 1.9

Test 21 13 2.8 1.91 4.5 2.78 1.892

Possum used between 
impact beam and load cell 
bumper

Test 22 9.6 1.61 1.1 -25.1 NA NA

Possum used between 
impact beam and load cell 
bumper

Test 23 13.8 2.87 1.96 4.1 2.74 1.87

Possum used between 
impact beam and load cell 
bumper

NotesTest Number
Angle of 
the Bow

Velocity at Impact

Velocity during 
Contact with 

Impact Beam (Vx )
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6.3 Estimation of the dynamic modulus of elasticity based on 
experimental beam deflection using Impact_Beam 

This section will present the results of estimating the dynamic modulus of 
elasticity for the Winfield impact beam based on the experimental beam 
deflection. These moduli are obtained by fixing the maximum experi-
mental beam deflection at each sensor (LD3, LD4 and LD5) as a target 
value. Then, Impact_Beam is iterated, modifying the modulus of elasticity 
until the target beam deflection is obtained. This procedure guarantees 
that the peak simulation value is the same as the peak experimental value. 
The resulting dynamic modulus of elasticity for each case is presented in 
Figures 6.1 through 6.39. 

 
Figure 6.1. Edyn estimation based on experimental beam displacement at LD3-Test #6. 
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Figure 6.2. Edyn estimation based on experimental beam displacement at LD4-Test # 6. 

 
Figure 6.3. Edyn estimation based on experimental beam displacement at LD5-Test # 6. 
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Figure 6.4. Edyn estimation based on experimental beam displacement at LD3-Test # 7. 

 
Figure 6.5. Edyn estimation based on experimental beam displacement at LD4-Test # 7. 
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Figure 6.6. Edyn estimation based on experimental beam displacement at LD5-Test # 7. 

 
Figure 6.7. Edyn estimation based on experimental beam displacement at LD3-Test # 8. 
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Figure 6.8. Edyn estimation based on experimental beam displacement at LD4-Test # 8. 

 
Figure 6.9. Edyn estimation based on experimental beam displacement at LD5-Test # 8. 
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Figure 6.10. Edyn estimation based on experimental beam displacement at LD3-Test #9. 

 
Figure 6.11. Edyn estimation based on experimental beam displacement at LD4-Test # 9. 
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Figure 6.12. Edyn estimation based on experimental beam displacement at LD5-Test # 9. 

 
Figure 6.13. Edyn estimation based on experimental beam displacement at LD3-Test #10. 
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Figure 6.14. Edyn estimation based on experimental beam displacement at LD4-Test #10. 

 
Figure 6.15. Edyn estimation based on experimental beam displacement at LD5-Test #10. 
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Figure 6.16. Edyn estimation based on experimental beam displacement at LD3-Test #11. 

 
Figure 6.17. Edyn estimation based on experimental beam displacement at LD4-Test #11. 
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Figure 6.18. Edyn estimation based on experimental beam displacement at LD5-Test #11. 

 
Figure 6.19. Edyn estimation based on experimental beam displacement at LD3-Test #12. 
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Figure 6.20. Edyn estimation based on experimental beam displacement at LD4-Test #12. 

 
Figure 6.21. Edyn estimation based on experimental beam displacement at LD5-Test #12. 
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Figure 6.22. Edyn estimation based on experimental beam displacement at LD3-Test #13. 

 
Figure 6.23. Edyn estimation based on experimental beam displacement at LD4-Test #13. 
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Figure 6.24. Edyn estimation based on experimental beam displacement at LD5-Test #13. 

 
Figure 6.25. Edyn estimation based on experimental beam displacement at LD3-Test #14. 
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Figure 6.26. Edyn estimation based on experimental beam displacement at LD4-Test #14. 

 
Figure 6.27. Edyn estimation based on experimental beam displacement at LD5-Test #14. 
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Figure 6.28. Edyn estimation based on experimental beam displacement at LD3-Test #15. 

 
Figure 6.29. Edyn estimation based on experimental beam displacement at LD4-Test #15. 
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Figure 6.30. Edyn estimation based on experimental beam displacement at LD5-Test #15. 

 
Figure 6.31. Edyn estimation based on experimental beam displacement at LD3-Test #16. 
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Figure 6.32. Edyn estimation based on experimental beam displacement at LD4-Test #16. 

 
Figure 6.33. Edyn estimation based on experimental beam displacement at LD5-Test #16. 
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Figure 6.34. Edyn estimation based on experimental beam displacement at LD3-Test #17. 

 
Figure 6.35. Edyn estimation based on experimental beam displacement at LD4-Test #17. 
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Figure 6.36. Edyn estimation based on experimental beam displacement at LD5-Test #17. 

 
Figure 6.37. Edyn estimation based on experimental beam displacement at LD3-Test #20. 
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Figure 6.38. Edyn estimation based on experimental beam displacement at LD4-Test #20. 

 
Figure 6.39. Edyn estimation based on experimental beam displacement at LD5-Test #20. 
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6.4 Summary of the values for the dynamic modulus of elasticity 

This section presents a comparison between the experimental internal 
bending moment and the simulation internal bending moment (from 
Impact_Beam) based on the average dynamic modulus of elasticity 
obtained from the beam deflection sensors presented in Section 6.3. The 
average dynamic modulus of elasticity obtained for Tests 9, 10, 12, 16, 17 
and 20 was 5,622.69 ksi, 5,574.54 ksi, 6,696.76 ksi, 5,271.99 ksi, 
6,153.93 ksi and 5,315.51 ksi, respectively. The simulation internal bending 
moment produces a similar shape but with a higher amplitude than the 
experimental internal bending moment. It can be observed that the shape of 
the pulse (impact event) was captured by the strain gages but with a 
difference in magnitude. The analysis of the strain gage experimental data is 
beyond the scope of this report and needs more research to clarify the 
essence of the internal moment amplification factor. The behavior between 
the experimental and simulation internal bending moment is presented in 
Figures 6.40 through 6.78. Each figure presents the internal bending 
moment time-history for each strain gage location (back and front sensor) 
and is compared against the simulation internal bending moment time-
history using the average dynamic modulus of elasticity obtained from the 
beam deflection for each experiment as shown in Section 6.3. 

 
Figure 6.40. Moment comparison with Eavg at S1-Test #6. 
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Figure 6.41. Moment comparison with Eavg at S2-Test #6. 

 
Figure 6.42. Moment comparison with Eavg at S3-Test #6. 
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Figure 6.43. Moment comparison with Eavg at S1-Test #7. 

 
Figure 6.44. Moment comparison with Eavg at S2-Test #7. 
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Figure 6.45. Moment comparison with Eavg at S3-Test #7. 

 
Figure 6.46. Moment comparison with Eavg at S1-Test #8. 
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Figure 6.47. Moment comparison with Eavg at S2-Test #8. 

 
Figure 6.48. Moment comparison with Eavg at S3-Test #8. 
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Figure 6.49. Moment comparison with Eavg at S1-Test #9. 

 
Figure 6.50. Moment comparison with Eavg at S2-Test #9. 
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Figure 6.51. Moment comparison with Eavg at S3-Test #9. 

 
Figure 6.52. Moment comparison with Eavg at S1-Test #10. 
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Figure 6.53. Moment comparison with Eavg at S2-Test #10. 

 
Figure 6.54. Moment comparison with Eavg at S3-Test #10. 
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Figure 6.55. Moment comparison with Eavg at S1-Test #11. 

 
Figure 6.56. Moment comparison with Eavg at S2-Test #11. 
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Figure 6.57. Moment comparison with Eavg at S3-Test #11. 

 
Figure 6.58. Moment comparison with Eavg at S1-Test #12. 
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Figure 6.59. Moment comparison with Eavg at S2-Test #12. 

 
Figure 6.60. Moment comparison with Eavg at S3-Test #12. 
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Figure 6.61. Moment comparison with Eavg at S1-Test #13. 

 
Figure 6.62. Moment comparison with Eavg at S2-Test #13. 
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Figure 6.63. Moment comparison with Eavg at S3-Test #13. 

 
Figure 6.64. Moment comparison with Eavg at S1-Test #14. 
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Figure 6.65. Moment comparison with Eavg at S2-Test #14. 

 
Figure 6.66. Moment comparison with Eavg at S3-Test #14. 
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Figure 6.67. Moment comparison with Eavg at S1-Test #15. 

 
Figure 6.68. Moment comparison with Eavg at S2-Test #15. 
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Figure 6.69. Moment comparison with Eavg at S3-Test #15. 

 
Figure 6.70. Moment comparison with Eavg at S1-Test #16. 

Moment Comparison with Eavg at S3B and S3F

‐1000

0

1000

2000

3000

4000

5000

0 0.5 1 1.5 2 2.5 3 3.5 4

Time  (sec)

M
o

m
e

n
t 

 (
k

ip
s

 *
 f

t)

Location S3B Location S3F Impact_Beam

Eavg  =  839,333.33 ksf  =  5,828.7  ksi

Moment Comparison with Eavg at S1B and S1F

‐1000

0

1000

2000

3000

4000

5000

6000

7000

0 0.5 1 1.5 2 2.5 3 3.5 4

Time  (sec)

M
o

m
e

n
t 

 (
k

ip
s

 *
 f

t)

Location S1B Location S1F Impact_Beam

Eavg  =  759,167 ksf  =  5,271.99  ksi



ERDC/ITL TR-11-1 197 

 

 
Figure 6.71. Moment comparison with Eavg at S2-Test #16. 

 
Figure 6.72. Moment comparison with Eavg at S3-Test #16. 
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Figure 6.73. Moment comparison with Eavg at S1-Test #17. 

 
Figure 6.74. Moment comparison with Eavg at S2-Test #17. 
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Figure 6.75. Moment comparison with Eavg at S3-Test #17. 

 
Figure 6.76. Moment comparison with Eavg at S1-Test #20. 
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Figure 6.77. Moment comparison with Eavg at S2-Test #20. 

 
Figure 6.78. Moment comparison with Eavg at S3-Test #20. 
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6.5 Summary of the values for the dynamic modulus of elasticity 

This section presents the resulting values for the dynamic modulus of 
elasticity estimated based on experimental beam deflection and 
experimental curvatures. The experimental beam deflections for Winfield 
Test#10 produced values in the range of 5,500 ksi. But the strain gage data 
for this test, transformed to curvatures as explained in Chapter 5, 
produces high values of dynamic modulus of elasticity that range to the 
order of over 10,000 ksi. Both sets of data are repeated for Winfield 
Test#10 in Table 6.2. The computed value, based on correlations to the 
unconfined compressive strength defined in the literature with a value of 
1.3 times the static modulus of elasticity (as per Nam, Compomanes and 
Kim, 1977, and Johns and Belanger, 1981), is 5,336.12 ksi (see Section 
5.3.2.3). This value is based on the 28-day design compressive strength of 
5,000 ksi which is adjusted for long term strength increase. The resulting 
dynamic modulus of elasticity values for the laser deflection data agrees 
very well with this definition for Winfield Test #10. The data reduction for 
the complete set of barge impact tests is summarized in Table 6.2. 

In Barge Impact Tests #14-20, complete data for the neoprene displacement 
for the beam was unavailable due to a loss of sensor information at the end 
of the beam. For these tests, the neoprene displacement was estimated 
based on laser displacement sensors near the end of the impact beam and 
the adjacent beam on the upstream side of the impact beam (LD7 and LD6, 
respectively). The values for laser deflection for sensors LD3, LD4, and LD5 
were determined using the Impact_Beam software for the computed 
literature dynamic modulus of elasticity and the average dynamic modulus 
of elasticity discussed below at the target sensor location. A dynamic 
modulus of elasticity value consistent with the Winfield Test data was then 
determined for sensors LD3, LD4, and LD5 by performing a linear 
interpolation/extrapolation using the peak measured deflection from the 
appropriate Winfield Test and the force acting on the beam at that location 
and at that time. The resulting values are shown with asterisks in Table 6.2. 
The extreme dynamic modulus results for Tests 14 and 17 reveal that this 
method may be error-prone due to the interpolation of the LD6 and LD7 
sensor data or the accuracy of measurements for very low deflection or 
force. These results were calculated but not used to determine the statistics 
of the chart, or the average dynamic modulus of elasticity value. The 
positions of the sensor locations are explained in Appendix J. 
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Table 6.2. Summary of the values for the dynamic modulus of elasticity for each test and each sensor. 
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The average dynamic modulus of elasticity using Winfield Barge Impact 
Tests 6 through 13 for the laser deflection sensor # LD3 is equal to 
6,455.97 ksi (Table 6.2). The average values for laser deflection sensors 
LD4 and LD6 are 6,410.98 ksi and 6,384.60 ksi, respectively. The average 
for these three laser deflection sensors is 6,417.18 ksi. This average value 
from all laser deflection sensors is 20.25 percent above the estimated 
dynamic modulus of elasticity (5,336.12 ksi) from the literature (i.e., 
1.3 times the long-term static value). This average value of 6,417.18 ksi that 
was obtained from the laser deflection sensor data is in the range of 
1.56 times the long-term static modulus of elasticity value (4,104.71 ksi). 
However, the resulting values obtained from the strain gages were not in 
the same range (see average values cited in Table 6.2). Further research is 
recommended to determine why the strain gage sensors recorded normal 
strains lower than expected for the magnitude of the applied load, 
resulting in the higher than expected dynamic modulus of elasticity. 

6.6 Interpretation of the variation of the beam deflection based on 
fundamental natural period of the Winfield impact beam 

The Impact_Beam computer program was validated using the well-known 
structural analysis computer program SAP2000, as discussed in Chapter 5. 
The same beam model was analyzed with both programs and the funda-
mental natural period of the Winfield impact beam was determined. Both 
software packages produced basically the same results. That is, the funda-
mental natural period of the Winfield impact beam was 0.2 seconds. 

In this section, an interpretation of the variation of the beam deflection is 
presented based on the computed fundamental natural period. The 
comparison has to be made by transforming the continuous elastic beam in 
a SDOF oscillator system. The mass per unit length of the beam is estimated 
at 0.25486 kips●s2/ft/ft. The total mass of the beam is the mass per unit 
length times the total length of the beam of 112.6 ft. The computed total 
mass is 28.697 kips●s2/ft. To transform the continuous beam in a SDOF 
system, it is expected that half of the total beam mass will contribute to the 
SDOF model and ¼ of the mass goes to each support. Finally, the 
contributing mass of the continuous beam to the SDOF model is half of the 
mass and is equal to 14.3486 kips●s2/ft (= 1.1957 kips●s2/in). The stiffness 
of the SDOF oscillator can be calculated based on the maximum experi-
mental recorded normal force and the experimental maximum beam 
deflection along the beam (LD4). Table 6.3 shows the maximum normal 
force and the maximum beam deflection which occurs at the LD4 sensor for 
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each test. It is important to mention that the location of the maximum 
normal force along the beam and the location of the LD4 sensor are not 
coincident locations. However, they are close enough to provide a good 
estimate of the displacement associated to the applied normal force. Based 
on the SDOF model of the continuous beam, the resulting fundamental 
natural periods agree perfectly with the fundamental natural period 
produced by SAP2000 and Impact_Beam. The fundamental natural period 
of the SDOF model is in the range of 0.196 ൑ ܶ ൑ 0.211 seconds. That result 
means that the fundamental natural period is the predominant mode of 
vibration for the simply supported beam and that higher modes will have 
small contribution to the total vibration. The resulting value for each test is 
summarized in Table 6.3. 

Table 6.3. Fundamental natural period based on a SDOF model using experimental peak 
beam displacement and peak forces. 

Test 
# 

Fmax 
(kip) 

Beam Deflection 
࢑ ൌ

࢞ࢇ࢓ࡲ

࢓ࢇࢋ࡮ ૝ࡰࡸ.ࢉࢋ࢒ࢌࢋࡰ
 

 (kip / in) 

ω 
(rad / 
sec) 

T 
(sec) 

LD3  
(in) 

LD4  
(in) 

LD5  
(in) 

9 359.84 0.258 0.294 0.282 1,223.95 31.99 0.196 

10 517.42 0.399 0.424 0.376 1,220.33 31.94 0.197 

12 59.27 0.497 0.051 0.046 1,162.16 31.18 0.202 

16 355.03 0.301 0.330 0.302 1,075.85 29.99 0.209 

17 226.07 0.194 0.213 0.195 1,061.36 29.79 0.211 

20 411.44 0.346 0.382 0.351 1,077.07 30.01 0.209 

6.7 Conclusions 

6.7.1 Final remarks on dynamic modulus computation 

This chapter presented a summary of the analysis performed to estimate 
the dynamic modulus of elasticity for each Winfield test. The results are 
consistent with those presented in Chapter 5. The full-scale experimental 
beam deflections were used to estimate the dynamic modulus of elasticity 
which produced a dynamic amplification factor (dynamic modulus over 
the long-term static modulus) of approximately 1.56. This value is above 
the range reported in the technical literature, which was an approximate 
dynamic amplification factor of 1.3. This measured dynamic amplification 
factor is 1.2 times the literature dynamic amplification factor. For beam 
normal strain experimental data transformed into curvatures, high values 
of the dynamic modulus of elasticity resulted from the data processing. It 
is believed that these values are in error, but more research will need to be 
done to ascertain the reason for the discrepancy. Also, to demonstrate that 
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the experimental beam deflection data are satisfactory, an analysis of the 
fundamental natural period of the continuous beam transformed into a 
SDOF model was performed. The fundamental natural period of the 
Winfield impact beam was determined by SAP2000 and Impact_Beam 
and had similar values of around 0.2 seconds. The calculated fundamental 
period for the SDOF model, with a stiffness coefficient calculated using the 
beam deflection and the maximum normal force for each test, produced 
fundamental natural periods between 0.196 seconds and 0.211 seconds. 
These results imply that the beam deflection is a good measure of the 
response of the Winfield impact beam system. 

6.7.2 Final remarks regarding Impact_Beam verification 

Dynamic Impact_Beam simulations for barge impact were validated 
against recorded sensor results for a series of full-scale barge impact tests 
conducted at Winfield lock and dam. Two sets of sensor data were used in 
this investigation: beam deflections were measured using laser deflection 
sensors and the in-line displacement of the beam was removed using 
LVDT and LD sensor data from the adjacent beams, and internal bending 
strains for determination of moments were measured with strain gages. 
Computed deflections were a match for recorded deflection sensor data 
and simulation results from SAP-2000 and dBEAS when an appropriate 
value of the dynamic modulus is assigned. The simulation bending 
moment computations had consistent waveforms to the recorded sensor 
data but differed in amplitude due to the magnitude of dynamic modulus 
computed from the normal strain sensor data. The reason for this 
difference is unknown. However, with the correct dynamic Young’s 
modulus, Impact_Beam will provide correct results because the computed 
wave form is consistent. 

Figures 6.79 and 6.80 show the results of processing the inputs that 
correspond with the Winfield Test #10, and the actual measured values 
from Winfield Test #10. The value for the dynamic Young’s modulus used in 
the simulation was the value determined from the mean of the three sensor 
averages, at 6,417.18 kips per square inch. The full beam plot is shown at the 
time 0.25 seconds that corresponds to the peak deflection of sensor LD3, 
which is in the region of the moving impact. It is apparent that the 
magnitudes and trends of the computed deflection histories agree with the 
Winfield measurements to a significant degree of precision. 
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Figure 6.79. Comparison of dynamic deflections at sensor location LD3 for Impact_Beam 

results and Winfield Test #10 measurements. 

 
Figure 6.80. Simulated Beam response compared to Winfield Test #10 response at 0.25 

seconds. 
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Appendix A: Traditional Single-Degree-of-
Freedom System Free Vibration Response 

Figure A.1 shows a mathematical model of a single degree of freedom 
(SDOF) system commonly used in structural dynamics. The mass of 
magnitude m is attached to a fixed reference system with a linear elastic 
spring and damper. The Figure A.1 SDOF system is subjected to an initial 
displacement at time equal to zero of magnitude xo and an initial velocity 

of magnitude ox which sets the SDOF system in free vibration response. 

 
Figure A.1. Free vibration response example of a damped SDOF system with a natural period 

T of 1 second. 

The governing differential equation for the free-vibration state for a SDOF 
system is 

 m x c x k x· + · + · =0    (A.1) 
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Note that in free vibration response, the right-hand side of Equation A.1 is 
equal to zero.1 Introducing the critical damping ratio , defined as 

 
n

c
ζ

m ω
=

· ·2
 (A.2) 

Equation A.1 becomes 

 n nx ζ ω x ω x+ · · · + · =22 0   (A.3) 

The undamped natural circular frequency of the SDOF system is 

  n

k
ω

m
=  (A.4) 

The natural period of vibration (undamped) is 

 
n

π
T

ω

·
=

2
 (A.5) 

The damped natural circular frequency of the SDOF system is 

 D nω ω ζ= · - 21  (A.6) 

and for completeness, the damped natural period of vibration is 

 D

T
T

ζ
=

- 21
 (A.7) 

The solution to the Equation A.3 differential equation is given in numerous 
textbooks on Structural Dynamics, including Ebeling (1992), as 

 ( ) ( ) ( )cos sinnζ ω t o n o
o D D

D

x ζ ω x
x t e x ω t ω t

ω
- · ·

ì üé ùï ï+ · ·ï ïê ú= · · + · ·í ýê úï ïï ïë ûî þ


 (A.8) 

                                                                 
1 In a forced-vibration response problem, the right-hand side of Equation A.1 would be set equal to a 

forcing function, e.g. p(t), as discussed in Appendix B.  
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Example: For a K value of 39.5 inches/sec and a mass m of 1 lbs.sec2/ inch, 

and with initial values of xo of zero and ox of 1 inch/sec, the first six seconds 
of free vibration response computed using Equation A.8 with a time 
increment of 0.02 seconds and the results shown in Figure A.1. The fraction 
of critical damping  is set equal to 0.05 (or equivalently, 5 percent) in this 
example. 

The undamped natural circular frequency of the SDOF system is 
6.285 radians/sec by Equation A.4. The (undamped) natural period T for 
the SDOF is 1 second, by Equation A.5. The damped natural circular 
frequency of the SDOF system is 6.277 radians/sec by Equation A.6. The 
displacement response in free vibration is computed using Equation A.8 
and shown in Figure A.1. 

Figure A.1 observations regarding the impact of 5% damping specified for 
the SDOF system; 

 the amplitude of the periodic response decays with time, and 
 the periodic response of the SDOF in free-vibration is slightly longer 

than the undamped periodic response by a factor equal to 1.001; refer 
to Equation A.7 with  equal to 0.05. 

For this example problem in which the initial displacement xo is set equal to 

zero and the initial velocity ox  is nonzero, the Equation A.8 free-vibration 
displacement response relationship reduces to 

 ( ) ( )sinnζ ω t o
D

D

x
x t e ω t

ω
- · ·

ì üé ùï ïï ïê ú= · ·í ýê úï ïï ïë ûî þ


 (A.9) 

Equation A.9 is of special interest in the solution of a forced vibration 
problem of a SDOF system by Duhamel’s Integral (Appendix B). 
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Appendix B: Application of Duhamel’s 
Integral to Calculate the Displacement 
Response of a Single Degree of Freedom 
System 

B.1. General formulation of the Duhamel’s Integral. 

Figure B.1 shows a mathematical model of a single degree of freedom 
(SDOF) system commonly used in structural dynamics. The mass of 
magnitude m is attached to a fixed reference system with a linear elastic 
spring and damper. The Figure B.1 SDOF system is subjected to a pulse 
force time-history p(t).1 

 
Figure B.1. Damped SDOF system subjected to a pulse force time-history p(t). 

The equation of motion is a second order differential equation  

 ( )m x c x k x p t· + · + · =   (B.1) 

                                                                 
1 This forcing function could be a constant force of finite time duration, a short duration pulse function 

that varies in amplitude with time or a harmonic function. See for example, Chopra (1995) Chapter 4 
for examples of force-vibration response problems such as a pulse force time-history or Ebeling (1992) 
for an earthquake time-history applied as a an equivalent forcing function p(t) applied to a SDOF 
system. 
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for this SDOF system. One approach for solving for the SDOF system 
response is application of Duhamel’s Integral. It is based on representing 
the applied force as a sequence of infinitesimally short impulses. The 
displacement response x(t) of the SDOF system to an applied force that 
varies in magnitude with time t, p(t), is obtained by adding the responses 
to all the individual impulses up at a single time t of interest. Note that 
because superposition is used, application of Duhamel’s Integral is limited 
to linear elastic SDOF systems. Numerous books on Structural Dynamics, 
including Ebeling (1992)1 and Chopra (1995)2, discuss the derivation of the 
SDOF response relationship to the forced vibration problem. 

In summary, the approach is to represent the load time-history p(t) as a 
series of impulse loadings p() that are each applied to the SDOF system for 
infinitesimal time intervals d. One impulse (out of the series of impulses) is 
highlighted in Figure B.2. Using the impulse momentum principle as noted 
in this figure, the velocity boundary condition at the time t of the application 
of the impulse is established. (The displacement is zero prior to and up to 
this single impulse.) This single impulse, converted into an initial velocity 

boundary condition      d
m

p
xo   causes a free vibration response from 

time  up to time t for the SDOF system.3 Adapting Equation A.9, the 
incremental displacement response dx(t) at time t for this single impulse 
applied at time  is 

 ( ) ( ) ( )
( )( )sinnζ ω t τ

D
D

p τ dτ
dx t e ω t τ

m ω
- · · -

ì üé ùï ïï ïê ú= · · -í ýê úï ï·ï ïë ûî þ
 (B.2) 

for t>. Equation B.2 would be applied to all remaining impulses shown in 
Figure B.2 and the final displacement response at time t would equal the 
sum of these individual responses. The total displacement at time t for all 
pulses would be 

 ( ) ( )
t

x t dx t dτ=ò
0

 (B.3) 

                                                                 
1 Pages 18-21. 
2 Sections 4.1 and 4.2 on pages 120-123. 
3 Note the equation of motion being solved for the SDOF system is now the homogenous differential 

equation of Equation A.1. 
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t  ) is the time interval of 
free-vibration response due to 
an initial velocity boundary 
condition at time  of

x
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k
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time
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 
dt

dx
mdp     xdmdp  

  
d

m

p
xd 

xd  ox

or

rearranging

equals the incremental velocity

t  )

  
d

m

p


 
Figure B.2. Conversion of a forcing function time-history to a series of impulses and 
the response computed at time t due to a single impulse in this series of impulses. 

Mathematically, this results in Duhamel’s Integral expression for a 
damped SDOF system, as 

 ( ) ( ) ( )( ) sinn

t
ζω t τ

D
D

x t p τ e ω t τ dτ
m ω

- - é ù= · · · -ë û· ò
0

1
 (B.4) 

for a critical damping ratio value , undamped natural circular frequency 
n, and damped natural circular frequency D. 

Should the SDOF system have an initial displacement xo and/or initial 

velocity ox at time t equal to zero, the complete equation describing the 
displacement response of the SDOF system is 

 

( ) ( )

( ) ( ) ( )

( ) cos sin

sin

n

n

ζω t o n o
o D D

D

t
ζω t τ

D
D

x ζ ω x
x t e x ω t ω t

ω

p τ e ω t τ dτ
m ω

-

- -

ì üé ùï ï+ · ·ï ïê ú= · · + · ·í ýê úï ïï ïë ûî þ

é ù+ · · · -ë û· ò
0

1



 (B.5) 
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B.2. Modification of the equation of motion of underdamped SDOF  
 systems with bilinear elastic spring stiffness 

As presented in Section B.1, the equation of motion of a SDOF system with 
linear elastic spring stiffness as the one shown in Figure B.3 is 

 ( )mx cx kx p t+ + =   (B.6) 

 
Figure B.3. Single degree of freedom system with linear elastic spring. 

In that case, the equation of motion can be solved using the numerical 
procedures presented in Appendix C. If the single degree of freedom system 
has a spring with an elastic bilinear stiffness spring, the equation of motion 
can be modified to account for this elastic bilinear behavior of the spring. 

It can be followed easily that for the first slope of an elastic bilinear 
stiffness, as shown in Figure B.4, the equation of motion that applies is the 
one presented in Equation (B.6). That is, if the displacement of the mass is 
equal or below x1 Equation (B.6) applies. If the displacement of the mass is 
greater than x1 and less than x2 a different equation of motion has to be 
used. A displacement greater than x2 indicates a spring model failure. 

 
Figure B.4. Single degree of freedom system with bilinear elastic spring. 
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If the displacement of the SDOF system is greater than x1 the equation of 
motion is the following, 

 ( )smx cx f p t+ + =   (B.7) 

where the third term to the left ( ௦݂) is the force the spring exerts on the 
mass. This force is calculated as 

 s bf k x f= +2  (B.8) 

where ௕݂ is the intercept in the vertical axis, as shown in Figure B.5. 
Introducing Equation (B.8) into (B.7), a new expression for the equation of 
motion arrives as 

 ( )bmx cx k x f p t+ + + =2
   (B.9) 

 
Figure B.5. Modification of the second slope of the force-displacement 

relationship. 

fs

x

k2

x1 x2

k1

fb

fs= k1  x
for x < x1

fs= k2  x + fb
for x1 < x < x2
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where ݔଵ ൏ ݔ ൏  ଶ. Rearranging terms in Equation (B.9), the finalݔ
equation of motion that is valid for the second slope is 

 ( ) bmx cx k x p t f+ + = -2
   (B.10) 

or, 

 ( )*   mx cx k x p t for x x x+ + = < <2 1 2
   (B.11) 

where כ݌ሺݐሻ ൌ ሻݐሺ݌ െ ௕݂. The equation of motion (Equation B.11) applies if 
the displacement of the mass is between ݔଵ and ݔଶ. The equation of motion 
for the second slope of the elastic bilinear spring is the same as the equation 
of motion for the first slope of the elastic bilinear spring, Equation (B.6), but 
with a modification of the excitation. 
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Appendix C: Numerical Procedure Used to 
Solve for the Dynamic Displacement of a 
Generalized Single Degree of Freedom 
System 

C.1. Numerical procedure to solve the Duhamel’s Integral 

The response of a damped SDOF system expressed by the Duhamel’s 
integral is obtained if the impulse ܨሺ߬ሻ݀߬ producing an initial velocity 
ݒ݀ ൌ  ሺ߬ሻ݀߬/݉ is substituted into the damped free-vibrationܨ
Equation (C.1). 

 ( ) ( )βωt
D D

D

v x βω
x t e x cosω t sinω t

ω
- +

= + 0 0
0  (C.1) 

Setting ݔ଴ ൌ ଴ݒ ,0 ൌ ݐ for ݐ ሺ߬ሻ݀߬/݉ and substitutingܨ െ ߬ in Equation 
(C.1), the differential displacement at time t is 

 ( ) ( ) ( )
( )sinβω t τ

D
D

F τ dτ
dx t e ω t τ

mω
- -= -  (C.2) 

Summing these differential response terms over the entire loading interval 
results in 

 ( ) ( ) ( ) ( )sin
t

βω t τ
D

o
d

x t F τ e ω t τ dτ
mω

- -= -ò
1

 (C.3) 

which is the response for a damped system in terms of the Duhamel’s 
integral. For numerical evaluation, we proceed with Equation (C.3) as 

 ( ) ( ) ( ){ }sin cos
βωt

d D D D
D

e
x t A t ω t B t ω t

mω

-

= -  (C.4) 

where 

 ( ) ( ) ( ) cos
i

i

t
βωτ

D i D i D
t

A t A t F τ e ω τdτ
-

-= +ò
1

1  (C.5) 
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 ( ) ( ) ( ) sin
i

i
i

t
βωτ

D i DD t t
B B t F τ e ω τdτ

-
-= +ò

1
1  (C.6) 

For a linear piecewise loading function, ܨሺ߬ሻ is substituted into Equations 
(C.5) and (C.6) requiring the evaluation of the following integrals: 

 
( )

( )cos cos sin

ti

i

i

ti

βωτ
t

βωτ

D D D D
t

D

e
I e ω τdτ βω ω τ ω ω τ

βω ω-

-

= = +
+

ò
1

1

1 2 2
 (C.7) 

 
( )

( )sin sin cos

ti

i

i

ti

βωτ
t

βωτ

D D D D
t

D

e
I e ω τdτ βω ω τ ω ω τ

βω ω-

-

= = -
+

ò
1

1

2 2 2
 (C.8) 

 
( ) ( )

' 'sin

ti

i

i

ti

t
βωτ D

D
t

D D

ωβω
I τe ω τdτ τ I I

βω ω βω ω-

-

= = - +
+ +

æ ö÷ç ÷ç ÷ç ÷÷çè ø
ò

1

1

3 2 12 22 2
 (C.9) 

 
( ) ( )

' 'cos

ti

i

i

ti

t
βωτ D

D
t

D D

ωβω
I τe ω τdτ τ I I

βω ω βω ω-

-

= = - -
+ +

æ ö÷ç ÷ç ÷ç ÷÷çè ø
ò

1

1

4 1 22 22 2
 (C.10) 

where ܫଵ
ᇱ  and ܫଶ

ᇱ  are the integrals indicated in Equations (C.7) and (C.8) 
before their evaluation at the limits. In terms of these integrals, ܣ஽ሺݐ௜ሻ and 
 ௜ሻ may be evaluated fromݐ஽ሺܤ

 ( ) ( ) ( ) ΔΔ

Δ Δ
i

D i D i i i i
i i

FF
A t A t F t t I I

t t- - -

æ ö÷ç ÷= + - +ç ÷ç ÷çè ø
1

1 1 1 4  (C.11) 

 ( ) ( ) ( ) Δ Δ

Δ Δ
i i

D D i i i
i i

F F
B t B t F t t I I

t t- - -

æ ö÷ç ÷= + - +ç ÷ç ÷çè ø
1 1 1 1 2 3  (C.12) 

Finally, the substitution of Equations (C.11) and (C.12) into Equation (C.4) 
gives the displacement at time ݐ௜ as 

 ( ) ( ){ ( ) }sin cos
iβωt

i D i D i D i D i
D

e
x t A t ω t B t ω t

mω

-

= -  (C.13) 



ERDC/ITL TR-11-1 220 

 

C.2. Numerical evaluation of the response of underdamped SDOF  
 systems subjected to an arbitrary dynamic excitation by using  
 the recursive alternate formulation (explicit formulation) 

Because of its convenience, precision, and simplicity, one of the most used 
methods to calculate in a numerical fashion the response of a SDOF 
oscillator is based on a recursive equation used to calculate the response at 
the end of the time interval as a function of the response at the beginning 
of the time interval and the excitation of the interval. Consider the case of 
a viscous underdamped oscillator, which means a system with damping 
ratio <1. Assume the response u(t) is wanted at the same instant of time t 
but using another time scale as shown in Figure B.2. The expression to 
calculate the response due to initial conditions and due to an external load 
for this new time scale is the following: 

 ( ) ( ) ( )cos sin n

τ

βω τi n i

i d d

d

x βω u
x τ u ω τ ω τ e f τ h τ τ dτ

ω

-+
= + + -
æ ö÷ç ÷ç ÷÷çè ø ò 1 1 1

0


 (C.14) 

where the integral in Equation (C.14) is known as the Duhamel’s Integral 
and the unit impulse response function for an underdamped system is; 

 ( ) ( ) ( )sin nβω τ τ
d

d

h τ τ ω τ τ e
mω

- -- = - 1

1 1

1
 (C.15) 

To solve the Duhamel’s Integral in Equation (C.14), a variation for the 
excitation is assumed. If we adopt a constant variation of the excitation at 
each time step, then ݂ሺ߬ଵሻ ൌ  ௜, as shown in Figure B.2, and the integralܨ
results in; 

 ( ) ( ) ( ) ( )sin n

τ τ
βω τ τi

d
d

F
f τ h τ τ dτ ω τ τ e dτ

mω
- -- = -ò ò 1

1 1 1 1 1

0 0

 (C.16) 

The solution of this integral for a constant load for each time step is; 

 ( ) ( ) cos sin n

τ

βω τ

d d i

n

β
f τ h τ τ dτ ω τ ω τ e F

mω β

-- = - +
-

é æ ö ù÷çê ú÷ç ÷çê ú÷÷çè øê úë û
ò 1 1 1 2 2

0

1
1

1
 (C.17) 

Then, substituting Equation (C.17) back into Equation (C.14) and 
reordering terms, the response in the interval 0 ൑ ߬ ൑ ݄ is; 
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( ) cos sin sin
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1



 (C.18) 

The velocity at the same time interval can be obtained taking the first 
derivative with respect to ࣎ of Equation (C.18). The resulting expression is; 

 

( ) sin cos sin

sin

n n

n

βω τ βω τn

d i d d i

βω τn

d i

n
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x τ ω τ e x ω τ ω τ e x
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+
-

æ ö æ ö÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷÷ ÷ç çè ø è ø

æ ö÷ç ÷ç ÷ç ÷÷çè ø

2 2

2 2

1 1

1

1

 

 (C.19) 

The next step is to obtain the recursive equation for evaluating Equations 
(C.18) and (C.19) at ߬ ൌ ݄ ൌ  at the end of the interval. In this case ,ݐ߂
ሺ߬ሻݔ ൌ ሶݑ ௜ାଵ andݔ ሺ߬ሻ ൌ  ሶ௜ାଵ, resulting in the following expressions for theݔ
displacement and velocity at the end of the time interval. 
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Appendix D: Listing and Description of 
Impact_Beam ASCII Input Data File (file 
name:Impact_Beam.IN) 

This appendix lists and describes the contents of the ASCII input data file to 
the FORTRAN engineering computer program portion of Impact_Beam. 
This data file, always designated as Impact_Beam.IN, is created by the 
graphical user interface (GUI), the visual modeler portion of Impact_Beam. 
The software performs a dynamic structural response analysis of a simply 
supported, flexible impact beam of distributed mass to a barge impact 
event. The collision of a barge train with an approach wall is represented as 
a short duration pulse force time-history. The impact force time-history to 
be used in the Impact_Beam analysis is created by the companion PC-based 
program Impact_Force (Ebeling, White, Mohamed and Barker, 2010). The 
engineering formulation for Impact_Force uses the impulse momentum 
principle to convert the linear momentum of a barge train into a pulse force 
time-history acting normal to the approach wall. Figure D.1 idealizes the 
problem being solved. 

 
Figure D.1. Impact between a barge train and a simply supported, flexible impact beam that is 

represented by the user specified pulse force time-history Fnormal-wall(t) normal to the beam. 
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This Impact_Beam software may also be used to compute the dynamic 
response of a Single-Degree-Of-Freedom (SDOF) system to an external 
forcing function time-history p(t). Figure D.2 idealizes the problem being 
solved. 

 
Figure D.2. The dynamic response problem being solved for a SDOF system subjected to a 

force time-history p(t). 

The ASCII input data to Impact_Force is provided in 7 groups of data for 
dynamic uniform beam response computations and in 4 groups of data for 
dynamic SDOF system response computations. They are as follows: 

Group #1 – Type of analysis and units for the problem. 

KEY_ANALYSIS, Gconstant, Factor_IN 

KEY_ANALYSIS  = 1 for dynamic response analysis of a simply  
 supported, slender distributed mass beam. 

    = 2 for a Single Degree of Freedom (SDOF) system. 
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The values for Gconstant and Factor_IN identify the units of length, 
acceleration, force (and weight), and mass being used according to the 
table below. 

Value for 
Gconstant 

Value for 
Factor_IN 

Units of 
Length Acceleration 

Units of Force 
(and Weight) Units of Mass 

32.174 1000 feet ft/sec2 kips kips-sec2/ft 

386.086 1000 inch in/sec2 kips kips-sec2/inch 

32.174 1 feet ft/sec2 lbs lbs-sec2/ft 

386.086 1 inch in/sec2 lbs lbs-sec2/inch 

9.80665 1 meters m/sec2 kN kN-sec2/m 

980.665 1 centimeters cm/sec2 kN kN-sec2/cm 

9806.65 1 millimeters mm/sec2 kN kN-sec2/mm 

 

 

Group #2 – Comparison file option of Winfield Barge Impact experimental 
data 

Comp 

Comp = 0 for No, a comparison file will not be used in the Impact_Beam   
  analysis  

= 1 for Yes, a comparison file will be used in the Impact_Beam  
  analysis 

 

 

 

 
Filename 

Filename is the full file path name to a Winfield Barge Impact 
experimental data file. The experimental data file has the beam 

Simply supported, slender flexible impact beam of distributed 
mass dynamic response problem with KEY_ANALYSIS = 1 

* Note: The filename of the comparison file is required for 
Comp = 1. The value for the filename should be placed a line 
below the value for the Comp variable. A description of the 
filename is listed directly below. If Comp = 0, then proceed to 
Group #3. 
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deflections, the rigid body deflections, and the strain gages that were 
recorded on the 25th and 26th August 2008 at the Winfield Lock and Dam 
in Red House, WV. These experimental data files will be provided to the 
user under a directory called Winfield_Barge_Impact. The user will select 
one of these files for comparing the Winfield Barge Impact experimental 
data results to the results of the Impact_Beam simulation. 

An example of specifying the value for Filename would be 
C:\Temp\filename.dat. 

Group #3 – Simply supported, slender flexible impact beam span and 
properties. 

X_Impact, X_Impact_velocity, X_length, Beam_mass, Beam_I, Beam_E, 
X_Over_Left, X_Over_Right 

X_Impact is the point of initial impact along the beam as measured from 
the support; this distance measurement is in the positive XGlobal direction 
(as defined by the direction of the positive barge train approach velocity 
vector component shown below and parallel to the beam). 

X_Impact_velocity is the velocity of the barge train after initial impact as 
it slides along the impact beam, specified in the positive XGlobal direction. 
Note that this global X-velocity may differ from that velocity component of 
the barge train as it approaches the impact beam and prior to impact. This 
variable is used to move the user specified impact force time-history along 
the beam during the impact normal force time-history event. Note: set 
X_Impact_velocity equal to zero when the impact force time-history is to 
be specified at a constant position of X_Impact. 

X_length is the length of the slender, distributed mass, uniform beam 
from support center to support center. 

Beam_mass is the mass per unit length of the uniform beam. 

Beam_I is the moment of inertia of the uniform beam. 

Beam_E is the Young’s modulus for the beam. 

X_Over_Left is the overlap of the beam extending from the left support. 
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X_Over_Right is the overlap of the beam extending from the right 
support. 

 
Figure D.3. Definition of the point of initial impact, X_Impact, as measured from the 
support and the velocity of the barge train, X_Impact_velocity, as it slides along the 

beam. 

Group #4 – Dynamic analysis control information. 

No_frequency 

XI(j) for j = 1, No_frequency 

No_frequency_print 

I_out_Frequency(j) for j = 1, No_frequency_print 

No_frequency is the total number of beam frequencies to be included in 
the analysis.1 

XI(j) is the damping ratio (also referred to as fraction of critical damping) 
expressed as a decimal fraction for frequency j = 1 through No_frequency. 

                                                                 
1 Accurate dynamic shear force computations typically require more frequencies than dynamic moment 

computations and accurate dynamic moment computations typically require more frequencies that 
dynamic displacement computations. 
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No_frequency_print is the number of SDOF frequencies for which the 
Duhamel Integral Solution are to be printed. 

I_out_Frequency(j) are the frequency numbers for which the Duhamel’s 
Integral solution for the SDOF system output is to be printed, with j = 1 
through No_frequency_print. 

Group #5 – Dynamic analysis computational output control information. 

No_pts_X_out_pt 

X_out_pt(j) for j = 1, No_pts_X_out_pt 

No_pts_X_out_pt is the number of points along the impact beam that the 
computed displacements, shear forces and moments (internal to the 
beam) are reported. 

X_out_pt(j) is the coordinate of the point along the beam at which these 
computations are to be reported, for points j = 1 through 
No_pts_X_out_pt. 

Group #6 – Forcing function time-history p(t). 

DT , No_pts_TH, TMAX, KEY_INT 

T_in(i), Force_in(i) for i = 1, No_pts_TH 

DT is the incremental time step in seconds. 

No_pts_TH is the number of values defining the force time-history Fnormal-

wall(t) in Figure D.1. 

TMAX is the ending time for dynamic beam response in seconds. 

KEY_INT is a key to engage interpolation between forcing function p(t) 
time-history points to match the DT specified for the analysis 

= 0 for no interpolation. 

 = 1 for interpolation. 
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T_in(i) is the time at time step i in seconds, 

Force_in(i) is the user specified pulse force value at time step i, Fnormal-

wall(t) normal to the Figure D.1 beam. 

Group #7 – Units for Computed Output. 

DISPACC, BMOMACC, Factor_OUT  

DISPACC The value for DISPACC identifies the 
desired units for the computed dynamic 
uniform beam displacements. 

BMOMACC & Factor_OUT The values for BMOMACC & Factor_OUT 
identifies the desired units for the 
computed dynamic uniform beam bending 
moments and shear force time histories. 

 

Value for DISPACC 
Units of 
Acceleration Units of Velocity Units of Displacement 

32.174 ft/sec2 ft/sec feet 

386.086 in/sec2 in/sec inch 

9.80665 m/sec2 m/sec meters 

980.665 cm/sec2 cm/sec centimeters 

9806.65 mm/sec2 mm/sec millimeters 

 

Value for 
BMOMACC 

Value for 
Factor_OUT 

Units of 
Length Units of Force Units of Moment 

32.174 1000 feet kips ft-kips 

386.086 1000 inch kips inch-kips 

32.174 1 feet lbs ft-lbs 

386.086 1 inch lbs inch-lbs 

9.80665 1 meters kN m-kN 

980.665 1 centimeters kN cm-kN 

9806.65 1 millimeters kN mm-kN 

 

 

Group #2 – SDOF model parameters and problem control information. 

SDOF system dynamic response problem with 
KEY_ANALYSIS = 2 
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NTYPE_SDOF, SDOF_M, XI(1), NBASE_ISO 

NTYPE_SDOF designates the type of forcing functioning being prescribed. 

= 0 for a force time-history p(t) prescribed to the SDOF system 
mass as shown in Figure D.2 

= 1 for a base acceleration time-history a(t); the forcing function 
   tamtp   as depicted in Figure 10 and discussed in Part IV 

of Ebeling (1992). 

SDOF_M is the mass of the SDOF system. 

XI(1) is the damping ratio (also referred to as fraction of critical damping) 
expressed as a decimal fraction. 

NBASE_ISO is the number of base isolators of the SDOF system. The 
value of NBASE_ISO will determine what kind of slope type will be used in 
the SDOF analysis. 

= 0 for a Linear slope type 

= Integer value > 0, for a Bi-Linear slope type 

 

SDOF_K 

SDOF_K is the spring stiffness of the Linear slope SDOF system. 

* Note: The spring stiffness of the SDOF system is required for 
NBASE_ISO = 0. The value for the spring stiffness should be 
placed a line below the values for the Group #2 variables 
mentioned above. A description of the spring stiffness of the 
Linear case is listed directly below. If NBASE_ISO = 1, then 
proceed to the next note below in regards to the Bi-Linear 
slope case. 
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SDOF_K1, SDOF_K2, SDOF_X1, SDOF_X2 

SDOF_K1 is the first spring stiffness of the Bi-Linear slope SDOF system. 

SDOF_K2 is the second spring stiffness of the Bi-Linear slope SDOF  
system. 

SDOF_X1 is the first displacement of the Bi-Linear slope SDOF system. 

SDOF_X2 is the second displacement of the Bi-Linear slope SDOF system. 

Group #3 – Forcing function time-history p(t) or base acceleration time-
history a(t). 

DT , No_pts_TH, TMAX, KEY_INT 
T_in(i), Force_in(i) for i = 1, No_pts_TH 

DT is the incremental time step in seconds. 

No_pts_TH is the number of values defining the force time-history p(t) or 
base acceleration time-history a(t). 

TMAX is the ending time for SDOF system response in seconds. 

KEY_INT is a key to engage interpolation between forcing function p(t) or 
base acceleration a(t) time-history points to match the DT specified for the 
analysis 

= 0 for no interpolation. 

* Note: The spring stiffness and the displacement of the SDOF 
system is required for NBASE_ISO = 1. The value for the 
spring stiffness and the displacement should be placed a line 
below the values for the Group #2 variables mentioned above. 
A description of the spring stiffness and the displacement of 
the Bi-Linear case is listed directly below. If NBASE_ISO = 0, 
then proceed to the previous note above in regards to the 
Linear slope case. 
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= 1 for interpolation. 

T_in(i) is the time at time step i in seconds, 

Force_in(i) is the force value at time step i when NTYPE_SDOF equals 0 
or the acceleration value expressed as a fraction of g’s (a decimal fraction) 
at time step I when NTYPE_SDOF equals 1. 

Group #4 – Units for Output for the problem. 

DISPACC, FORCACC, Factor_OUT  

DISPACC The value for DISPACC identifies the 
desired units of acceleration, computed 
velocity and computed 

FORCACC & Factor_OUT The values for FORCACC & Factor_OUT 
identifies the desired units for the 
computed support forces. 

 

Value for 
DISPACC Units of Acceleration 

Units of 
Velocity Units of Displacement 

32.174 ft/sec2 ft/sec feet 

386.086 in/sec2 in/sec inch 

9.80665 m/sec2 m/sec meters 

980.665 cm/sec2 cm/sec centimeters 

9806.65 mm/sec2 mm/sec millimeters 

 

Value for FORCACC Value for Factor_OUT Units of Length Units of Force 

32.174 1000 feet kips 

386.086 1000 inch kips 

32.174 1 feet lbs 

386.086 1 inch lbs 

9.80665 1 meters kN 

980.665 1 centimeters kN 

9806.65 1 millimeters kN 
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Appendix E: Listing and Description of 
Impact_Beam ASCII Output Data File (file 
name: Impact_Beam_Simulation.IBO) 

E.1 Description of Output Data File: Impact_Beam_Simulation.IBO 

This appendix lists and describes the contents of the ASCII output data file 
from the FORTRAN engineering computer program portion of 
Impact_Beam. This data file is always designated as 
Impact_Beam_Simulation.IBO. The software performs a dynamic 
structural response analysis of a simply supported, flexible impact beam of 
distributed mass to a barge impact event.  

The ASCII output data from Impact_Beam FORTRAN Code is provided in 
2 groups of data. The first group of data contains the general descriptions 
of the output file. The second group of data contains the results for each of 
the output data, which are; Transverse Displacement (u), Dynamic Shear 
Force (V), Dynamic Bending Moment (M), Dynamic Impact Factor (DIF), 
Shear Force Impact Factor (SFIF) and the Moment Impact Factor (MIF). 
The groups are as follows: 

Group #1 – General description 

1. File Identifier Tag – This line contains a simple string with the value of 
“Impact_Beam”.  

2. Number of Description Lines – This line presents the number of 
description lines immediately following. This number can be either 2 or 3. 
If there are three description lines, a data comparison is being performed. 

3. Description Lines – These lines contain strings describing the general 
information about this analysis. If the number of description lines is three, 
the third line contains the filename of the file used to compare the results 
against the Impact_Beam results. 

4. Units – This line contain an echo of the input parameters for unit 
designation. KEY_ANALYSIS – “1” for dynamic response analysis of a 
simply supported, slender, distributed mass beam and “2” for a SDOF 
system; Gconstant – Floating point value for the constant force of 
gravity; Factor_IN – Floating point factor to determine the units of force; 
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BEAM_I - Moment of inertia for the beam; BEAM_E – Young’s 
modulus for the beam. 

5. Beam Geometry – This line contains four values. Beam origin – A 
floating point value for the beam simulation reference frame origin; 
Effective beam length – The floating point length of the simulation 
model from the left reaction to the right reaction; Left beam overlap – a 
floating point value representing the amount of the beam extending 
beyond the support to the left; Right beam overlap – a floating point 
value representing the amount of the beam extending beyond the support 
to the right. 

6. Impact Parameters – This line contains the parameters for the barge 
train impact with the wall. Input start point – a floating point value 
indicating where the impact occurs along the wall; Impact Velocity – a 
floating point value giving the velocity that the barge train travels along the 
wall. 

7. Number of output data types – This line contains an integer number 
of the different types of output data = 6 (u, V, M, DIF, SFIF and MIF).  

Group #2 – Output data (This data group is repeated six times, one for 
each output data type as specified in Group #1 - 5)  

1. Description of the output data type – This line is a string giving the 
title of the next output corresponding to u, V, M, DIF, SFIF or MIF. 

2. Total number of locations reporting output along the beam – 
This number indicates the total integral number of points along the beam 
for which results will be reported. 

3. Reporting Beam Location – This line, which has three values, is 
repeated for each location reporting output along the beam. Index of the 
location of the reported output along the beam – This integer 
number identifies the location of each reported output value; Identifier 
name for each location – This non-whitespace string is the name 
assigned to each location where the results will be reported along the 
beam; Location (distance) along the beam for each location – 
This is the distance from the beam origin to the location of each reported 
output value. 

4. Number of connections – This line contains the integral number of 
nodes connected from the previous node. At this time, the number is 
always equal to 1. 
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5. Number of connection elements – This line contains an integral 
number that is equal to the total number of locations reporting output 
along the beam.  

6. Index of the location of the reported output along the beam – 
This line contains the integral index identifying the location of each 
reported output value. This line is repeated for the total number of 
locations reporting output along the beam. 

7. The next two groups are performed for each sensor type:  

 Analysis Parameters – This line contains three values. Start Time 
– This floating point value gives the time at which analysis start; Delta 
time – This is a floating point value giving the time step increment for 
the analysis; Number of output values for each reported result 
– This integral number is the number of available output information 
for each of the output data types. It is calculated by multiplying the 
number of time steps by the number of the locations reporting output 
along the beam. 

 Current Results – This line is repeated for the number of output 
values for each reported result. Each line contains the results at a 
specified time step for specific data at an output reporting point. 
Current time step – The integer index of the current time interval 
for this step during the analysis; Index of the location reporting 
output along the beam – The number that uniquely identifies the 
location of each reported output value; Results – The floating point 
data value at this location and at this time step for the output data type. 

Group #3 – Reaction Forces (This data group has the shear reactions 
at the supports for the beam) 

1. Title – a string reading “Reaction Point Shear” 
2. Number of time steps for reactions – an integer value giving the 

number of step 2 reaction force lines below. 
3. Reactions – one line with two values for each number of time steps. Left 

Reaction – a floating point value for the shear at the left-most support; 
Right Reaction – a floating point value for the shear at the right-most 
support. 

Group #4 – Input Time-History (This data group echoes the input 
time-history for plotting) 
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1. Title – a string with the title of the section, “Force Time History”. 
2. Header lines – Three lines with the string headers for the time-history. 
3. Time history parameters – one line with four values. Time Step 

Duration – a floating point value for duration of a time step; Number 
of Time Steps – integral number of time steps for the history; Time 
History Duration – a floating point value with the end time of the time-
history; Interpolation Flag – an integer telling if the time-history has 
been interpolated (0 for no interpolation, 1 for interpolation) 

4. Time history lines – one for each of the number of time steps. Time – 
a floating point value representing the time of the current sample; Value 
– a floating point value with the force for the current time step.  
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Appendix F: Derivation of the Equations for 
Deflection of a Simply Supported Beam under 
a Concentrated Static Load 

F.1 Derivation of Equations 3.5 and 3.6 

This appendix presents the derivation of Equations (3.5) and (3.6). These 
equations are used in Impact_Beam computer software to calculate the 
static transverse deflection of a simply supported beam subjected to a 
static load as shown in Figure F.1.  

 
Figure F.1. Simply supported, flexible beam subjected to a static force normal to the beam. 

By static equilibrium the left vertical reaction is equal to 

 b
L

P
R

L
=  (F.1) 

and the right reaction is equal to 

 R

Pa
R

L
=  (F.2) 

The free body diagram for a segment from 0 ൑ ݔ ൑ ܽ is presented in 
Figure F.2. 

  P

“left of P”

L

”right of P”

true x
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Figure F.2. Free body diagram used to obtain the internal shear force and the internal 

bending moment from ૙ ൑ ࢞ ൑  .ࢇ

Using this segment of the beam and establishing the equations of 
equilibrium the internal shear V and internal bending moment M is 
obtained as 

 
Pb

V
L

=  (F.3) 

 
x

M Pb
L

=  (F.4) 

The free body diagram for a segment from ܽ ൑ ݔ ൑  is presented in ܮ
Figure F.3. 

 
Figure F.3. Free body diagram used to obtain the internal shear force and the internal 

bending moment from ࢇ ൑ ࢞ ൑  .ࡸ

Using this segment of the beam and establishing the equations of 
equilibrium the internal shear V and internal bending moment M is 
obtained as 

RL V

M

x

Pa
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Pa

V
L

=  (F.5) 

 
x

M P b x a
L

æ ö÷ç= - + ÷ç ÷çè ø
 (F.6) 

Now, applying the relationship between moment and curvature ܯ ൌ  "ݒܫܧ
for 0 ൑ ݔ ൑ ܽ, using Equation (F.4) and integrating two times, one obtains 

 ' Pbx
v C

EI L

é ù
ê ú= +ê úë û

2

1

1
2

 (F.7) 

 
Pbx
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1 2

1
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Proceeding in the same fashion for segment ܽ ൑ ݔ ൑  but using ,ܮ
Equation (F.5), one obtains 

 ' Pbx Px
v Pax C

EI L

é ù
ê ú= - + +ê úë û

2 2

3

1
2 2

 (F.9) 
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 (F.10) 

Now, applying the following boundary conditions, 

  , At x v= =0 0  

  , At x L v= =0  

And the following continuity conditions, 

  , At x a v v+ -= =  

  , ' 'At x a v v+ -= =  
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where the superscript + or – of the transverse displacement (ݒ) or the 
slope (ݒԢ) means to the right and to the left of the corresponding variables, 
respectively. The four integration constant are obtained as, 

 
Pa PL PbL PaL Pa

C
L

= + - - -
2 2 3

1 2 6 6 2 6
 (F.11) 

 C =2 0  (F.12) 

 
PL PbL PaL Pa

C
L

= - - -
2 3

3 6 6 2 6
 (F.13) 

 
Pa

C =
3

4 6
 (F.14) 

Finally using the Equations (F.8), (F.10), (F.11) through (F.14), the 
expressions for the transverse displacement for a simply supported beam 
under a static load is 

 
P bx a L bL aL a

v x
EI L L
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Appendix G: Estimation of the Dynamic 
Modulus of Elasticity Considering the Axial 
and Bending Deformation. 

G.1 Estimation of the dynamic modulus of elasticity based on  
 experimental curvature at strain gage S1, S2, S3, S4 and S5  
 sensor location. 

The Impact_Beam computer program has the capability to calculate the 
dynamic internal moment of a continuous elastic beam affected by a moving 
dynamic load. This feature allows the use of Impact_Beam to estimate the 
dynamic modulus of elasticity of the concrete continuous beam used during 
Winfield Test #10. To perform this analysis, the following Impact_Beam 
input data are presented. For the Winfield Test #10 the effective beam 
length (from center to center of the neoprene pads) was 112.6 ft. The 
moment of inertia of the beam was 517.2 ft4. The mass per unit length of the 
beam was 0.25486 kips/ft including the hydrodynamic added mass. The 
barge train was moving at 2.99 ft/s and the first point of contact was at 64.1 
ft from right reaction (right neoprene pads, Figure G.1). The procedure for 
the estimation of the dynamic modulus of elasticity was as follows. First, the 
location of each sensor S1B;S1F, S2B;S2F, S3B;S3F, S4B;S4F and S5B;S5F 
was calculated as 80.28208 ft, 68.2925 ft, 56.30291667 ft, 44.31333 ft and 
32.32375 ft, respectively, as shown in Figure G.1. 

 
Figure G.1. Location of S1B;S1F, S2B;S2F, S3B;S3F, S4B;S4F and S5B;S5F sensors. 

In the input file for the modified Impact_Beam FORTRAN code, each one 
of these sensor locations was specified as a position where the results were 
of interest. Ten modes were used and a damping ratio of 0.02 was used for 
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each mode. The elastic modulus is a variable that needs to be entered as 
input data in the input file. The initial modulus of elasticity was assigned a 
value of 790,000 ksf, which is lower than the expected value for the dyna-
mic modulus of elasticity. Then, the modified Impact_Beam FORTRAN 
software was iterated from this initial modulus of elasticity until the 
specified curvature at sensor locations S1, S2, S3, S4 and S5 is achieved. 
Each sensor location represents one run of the computer program and one 
value for the estimated modulus of elasticity. The maximum curvature at 
each sensor location was obtained from the experimental curvature time-
history. The curvature time-history at each sensor location was obtained 
from the normal strain recorded during the Winfield Test #10 and divided 
by the distance to the position of zero normal strain. Due to the fact that this 
beam was not under pure bending (axial effect was present due to the 
friction between the barge train and the beam) the centroid of the cross-
section cannot be the neutral axis. The neutral axis position, when the axial 
force is acting, can be determined by similar triangles (assuming plane 
sections remain planar) as shown in Figure G.2. The equation to calculate 
the position of the neutral axis (distance y) is the following, 

 fb
εε

y a y
=

-
 (G.1) 

or, 

 
( )
 b

b f

aε
y

ε ε
=

+
 (G.2) 

 
Figure G.2. Experimental curvature calculation at sensors S1, S2, S3, S4 and S5. 
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After calculating the distance y based on the normal strains in the back 
and front location at S1, S2, S3, S4 and S5, the curvature ߠ can be 
calculated as the back normal strain divided by the calculated distance y, 
and in mathematical form, 

 bεθ
y

=  (G.3) 

The calculated experimental curvatures (from experimental normal strains) 
were calculated as; at S1 – 1.57498E-05 rads/ft, S2 – 2.50751E-05 rads/ft, 
S3 – 2.57593E-05 rads/ft, S4 – 4.86897E-06 rads/ft, and S5 – 2.79889E-
06 rads/ft. The Impact_Beam software calculates the dynamic internal 
bending moment, so the comparison had to be performed against the 
experimental internal moment. The experimental bending moment is 
calculated multiplying the curvature at each sensor by the modulus of 
elasticity and the moment of inertia. The experimental moment and the 
simulation moment both depend on the modulus of elasticity. Therefore, 
both values change during the process of increasing the modulus of 
elasticity. The process ends when the experimental and simulation bending 
moments reach the same results. The modulus of elasticity at this step is the 
corresponding dynamic modulus of elasticity based on the curvature at this 
sensor location. 

The resulting values for the dynamic modulus of elasticity for S1, S2, S3, S4, 
and S5 was 1,618,000 ksf (11,236 ksi), 1,245,000 ksf (8,645.8 ksi), 
1,152,000 ksf (8,000 ksi), 5,423,000 ksf (37,659.7 ksi), 6,980,000 ksf 
(48,472 ksi), respectively. Figures G.3 through G.22 show the experimental 
and simulation moments and curvature time histories at each specific 
sensor location. The convergence of the mathematical process to find the 
dynamic modulus of elasticity at each sensor location is also presented in 
these set of figures. 
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Figure G.3. Curvature time-history at S1 sensor. 

 
Figure G.4. Curvature convergence at S1 sensor. 
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Figure G.5. Moment time-history at S1 sensor. 

 
Figure G.6. Moment convergence at S1 sensor. 
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Figure G.7. Curvature time-history at S2 sensor. 

 
Figure G.8. Curvature convergence at S2 sensor. 
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Figure G.9. Moment time-history at S2 sensor. 

 
Figure G.10. Moment convergence at S2 sensor. 
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Figure G.11. Curvature time-history at S3 sensor. 

 
Figure G.12. Curvature convergence at S3 sensor. 
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Figure G.13. Moment time-history at S3 sensor. 

 
Figure G.14. Moment convergence at S3 sensor. 
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Figure G.15. Curvature time-history at S4 sensor. 

 
Figure G.16. Curvature convergence at S4 sensor. 
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Figure G.17. Moment time-history at S4 sensor. 

 
Figure G.18. Moment convergence at S4 sensor. 
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Figure G.19. Curvature time-history at S5 sensor. 

 
Figure G.20. Curvature convergence at S5 sensor. 
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Figure G.21. Moment time-history at S5 sensor. 

 
Figure G.22. Moment convergence at S5 sensor. 
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G.2. Final remarks on the dynamic modulus of elasticity estimation 
based on axial and bending strains 

The resulting values for the dynamic modulus of elasticity based on 
experimental curvatures obtained from the experimental axial and 
bending normal strains are presented in Table G.1. 

Table G.1. Dynamic modulus of elasticity based on axial and bending normal strains. 

Sensor S1 S2 S3 S4 S5 

Dynamic 
Modulus of 
Elasticity, ksf 
(ksi) 

1,618,000 
(11,236) 

1,245,000 
(8,645.8) 

1,152,000 
(8,000) 

5,423,000 
(37,659.7) 

6,980,000 
(48,472) 

Average Dynamic Modulus of Elasticity = 3,283,600 ksf (22,803 ksi) 

There exists an inconsistency of the dynamic modulus of elasticity obtained 
from experimental curvature calculated including the axial and bending 
effects when compared to the dynamic modulus of elasticity obtained from 
experimental beam deflections in Chapter 5. The dynamic modulus of 
elasticity obtained from the experimental curvature was greater than the 
expected values because the experimental curvatures used in the estimation 
of the dynamic modulus of elasticity were small values. It can be observed 
that the curvature values at S4 and S5 were 10 times lower than the S1, S2, 
and S3 curvatures. If these values of curvature are used to estimate the 
dynamic modulus of elasticity, a very high dynamic modulus is obtained 
that does not correspond to either the literature recommended value, which 
is 1.3 times the static modulus of elasticity (Nam, Compomanes and Kim, 
1977, Johns and Belanguer, 1981) or the values determined from deflection 
sensors, as shown in Chapters 5 and 6. The static modulus of elasticity is 
shown in Equation 5.7 and the dynamic modulus of elasticity is computed in 
Equation 5.8. The explanation of the behavior of the strain gages (curva-
tures) during Winfield Test #10 is outside the scope of this analysis. More 
research will need to be done to accurately process this normal strain data, 
so that it can be used to estimate the dynamic modulus of elasticity. 

G.3. Simulation and experimental moment time-history comparison  
 based on average dynamic modulus of elasticity obtained from  
 experimental beam deflection 

This section presents the calculation of the moment time-history using the 
Impact_Beam software and from experimental curvatures using the average 
dynamic modulus of elasticity obtained in Chapter 5, which was obtained 
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from the experimental beam deflection. To perform this analysis the input 
data for the Impact_Beam software is the following: for the Winfield Test 
#10, the effective beam length (from center to center of the neoprene pads) 
was 112.6 ft. The moment of inertia of the beam was 517.2 ft4. The mass per 
unit length of the beam was 0.25486 kips/ft. The barge train was moving at 
2.99 ft/s and the first point of contact was at 64.1 ft from right reaction 
(right neoprene pads, Figure G.23). The location of each sensor S1B;S1F, 
S2B;S2F, S3B;S3F, S4B;S4F and S5B;S5F was calculated as 80.28208 ft, 
68.2925 ft, 56.30291667 ft, 44.3133 ft and 32.32375 ft, respectively as 
shown in Figure G.23. 

 
Figure G.23. Location of S1B;S1F, S2B;S2F, S3B;S3F, S4B;S4F and S5B;S5F sensors. 

In the Impact_Beam input file, each of these sensor locations was specified 
as a position where the results were of interest. Ten modes were used and a 
damping ratio of 0.02 was used for each mode. The elastic modulus was 
assigned a value of 802,733 ksf, which is the average value obtained from 
the experimental beam deflection analysis in the previous section. This 
dynamic modulus of elasticity was multiplied by the moment of inertia and 
the experimental curvature to calculate the dynamic experimental moment. 
The results obtained with these values at sensors S1, S2, and S3 are 
presented in Figures G.24 through G.26. The experimental moment time-
history is observed to be similar to the shape of the simulation response. 
However, the magnitude of the simulation results is higher than the 
experimental results. This can be explained by considering that the dynamic 
modulus of elasticity used in these calculations was based on the 
experimental beam displacement and not on the experimental curvature. 
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Figure G.24. Moment comparison at sensor S1 using the average dynamic modulus of 

elasticity obtained from experimental beam deflection. 

 
Figure G.25. Moment comparison at sensor S2 using the average dynamic modulus of 

elasticity obtained from experimental beam deflection. 
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Figure G.26. Moment comparison at sensor S3 using the average dynamic modulus of 

elasticity obtained from experimental beam deflection. 
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Appendix H: Mass per Unit Length of the 
Winfield Beam (Including Hydrodynamic 
Added Mass) 

To process the effects of an impact of a barge train with the beam at 
Winfield, the mass of the beam per unit length had to be determined. 
Figure H.1 shows a cross-section of the beam and the additional, hinged 
concrete skirt that was added to affect the currents flowing around and 
under the beam. Because the movement was small and the skirt was hinged, 
the skirt mass was negligible for calculating the motion of the beam along 
the line of force and therefore not determined, as discussed below. From 
this cross-section, the volume of the beam can be determined for a unit 
length and multiplied by the unit weight of concrete. An additional 10% 
mass was included to account for steel framing, etc., as shown in Figure H.1. 
The mass of the concrete structure, without hydrodynamic mass, was there-
fore 7.59 kips per foot along the beam. 

This unit weight does not take into account the effects of trying to move the 
structure while it is sitting in water. These effects are usually accounted for 
by an additional mass per unit length referred to as the Hydrodynamic 
Added Mass. Because the skirt is hinged along the length of the beam and 
swings in the direction opposite to impact, the skirt has negligible impact on 
the hydrodynamic effects on the beam, as discussed below. The beam is 
suspended by its supports to a depth of 3.0 feet in the water. Figure H.2 
shows the pressures and forces due to inertia of the water in response to 
loading of the beam (in blue). The force on one side of this structure may be 
computed by means of the Westergaard formula (EM 1110-2-2200, 1995) 
using a parabolic approximation: 

 ( ) ( )Ke Ce α y hy=
2
3

 (H.1) 

and, 

 

. ( )
e

Ce
h

t

=
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⋅
2
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1 0 72
1000
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1.0 ft
10.0 ft

8.0 ft

6.5 ft 2.5 ft

5.5 ft

1.25 ft

1.25 ft

1.0 ft

0.5 ft

8.1 ft

1.6 ft

17.5 
ft

11.0 ft

Per Foot Estimated Effective Weight of Impact Beam and Skirt
Beam = 46 (0.15) = 6.90 kips / foot
Skirt Concrete Wt. (not effective)         
Increase 10% for steel framing, etc. 0.69
Estimated Total Weight per Foot = 7.59 kips / foot
Hydrodynamic weight not included.

Hinge in skirt allowing movement.  Therefore mass of 
skirt (including hydrodynamic mass on skirt) not 
considered to lengthen period of vibration.  Such 
lengthening could result in the first mode of the impact 
beam coming within close proximity of the barge impact 
primary pulse thereby causing dynamic amplification.  
Dynamic amplification was not observed in strain gages 
except possibly for Test 4.

 
Figure H.1. Computing the area and the weight per foot for the Winfield experiment beam. 

3.0 ft

y2=3.0ft

y1=0.0ft

KEKE

 
Figure H.2. Hydrostatic added mass is determined by Westergaard equations. 
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Where Ke is the additional water load acting on the beam, Ce is a factor 
depending on the depth of the water and the vibration period of the 
impact, is the seismic coefficient (which is set to 1.0 for these 
calculations), and te is the period of vibration (which is also set to 1.0 for 
these calculations). 

with 

 h y y= -2 1  (H.3) 

Equation H-2 reduces to 

 .
.

. ( )

Ce = =
- 2

51
51 0002

3 0
1 0 72

1000

 (H.4) 

and, for the whole structure, Equation H-1 returns 

 ( ). . . .
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Ke

lbs kips

= ⋅ ⋅ ⋅ = ⋅

⋅ = =

2 2
51 0002 3 0 3 0 3 0

3 3
51 0002 9 0 306 0012 0 306

 (H.5) 

To account for water on both sides of the structure, the force Fw (along a 
unit length) is 

 . .WF Ke kips kips= ⋅ = ⋅ =2 2 0 306 0 612  (H.6) 

The total force per unit length (FT) is equal to the sum of the concrete mass 
force and the hydrodynamic added force: 

 . . .TF kips kips kips= + =7 59 0 61 8 2  (H.7) 

Given the total force due to weight and movement in water per unit 
distance, it is possible to determine the appropriate total mass per unit 
distance of the structure by dividing the force by the gravitational constant 
(g): 
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Initial dynamic beam response analyses were conducted prior to under-
standing the implications of the connection detail between the skirt and the 
beam. Hydrodynamic added mass along the front and back faces of the skirt 
as well as the beam were included in the analyses. A simulation of Winfield 
Test #10 was then conducted. A comparison of these computed results with 
Barge Impact Test # 10 field measurements showed poor correlation with 
the beam response. Additional assessments of the beam and skirt model as 
well as further investigation into the framing and connection details for the 
hydraulic skirt to the impact beam led the authors to conclude that the 
addition of hydrodynamic added mass along the faces of the skirt in the 
dynamic model is excessive. Subsequent dynamic analyses consider the 
hinging action of the skirt to the impact beam and therefore exclude 
hydrodynamic added mass along the faces of the skirt. This modification to 
the model led to much better agreement with the field data. Consequently, 
all analyses discussed in this report consider hydrodynamic added mass 
added to the front and rear face of the impact beam only, as shown in Figure 
H.2.  
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Appendix I: The Effects of Selecting the 
Number of Frequency Modes for the Multi 
Degree of Freedom Solution 

Impact_Beam uses a time-history modal response method of dynamic 
analysis (Chapter 2). It was shown in Chapter 5, subsection 5.2, for the 
Winfield Test #10 data, that Impact_Beam was able to replicate the 
displacement time-history results computed using SAP2000. The 
Impact_Beam solution was made using 10 modes so as to predict the 
displacement time-histories accurately. This Appendix describes the 
effects of choosing the number of modes on the precision of the computed 
deflections, moments, and shear forces. 

The parameters used for the Winfield Test #10 data were chosen to be as 
close to the physical experiment as possible. The model for determining 
the effect of varying the number of modes used for a solution has the 
following input data;  

 the effective beam length (from center to center of neoprene pads) is 
112.6 ft,  

 the moment of inertia of the beam is 517.2 ft4, the cross-sectional area 
is equal to 46 ft2,  

 the mass per unit length of the beam is 0.25486 kips / ft, which 
considers the hydrodynamic added mass (discussed in Appendix H).  

The force time-history of Winfield Test #10, which has a maximum force of 
517.4 kips was used as the excitation. The total length of the wall (including 
overlap beyond the neoprene pads) was 117.6458 feet. The initial impact 
point, measured from the upstream end of the beam, was at 66.6229 along 
the total beam. This equates to an impact location of 64.1 feet from the 
upstream neoprene support. The impact travels along the beam in the 
downstream direction with a velocity of 2.99 feet/second. The unit mass of 
the beam is 0.25486 kips-sec2/ft, and the moment of inertia for the beam is 
517.2 ft4. For these tests, the Young’s modulus used for the beam was the 
average Young’s modulus of Chapter 6 of 6222.47 ksi, or 896035.7 ksf. 
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The following example uses the parameters described above and collects the 
results for a sensor that is 44.083 feet from the upstream end of the beam. 
This point is behind the impact region. The values collected for this sensor 
location are the deflection, moment, and shear time-histories for a total 
number of specified modes from one to seventeen. The peak values for these 
variables are shown in Table I.1. Figures I.1-I.3 show the change in value for 
the computed peak values as a function of the total number of modes 
included in the analysis. For this set of tests, the peak deflections converge 
when 5 modes or greater were used for a solution. For peak moments, the 
number of modes required to converge were higher, at approximately 
15 modes. The peak shears did not seem to converge with a total of 17 modes 
attempted. 

Table I.1. Peak values for a sensor at a position of 44.083 feet along the beam from the Winfield Test 
#10 example problem (with average Young’s modulus) based on up to 17 modes. 

Total Number of Modes Peak Deflection (ft) Peak Moment (kip-ft) Peak Shear (kips) 

1 0.371104 11156.33 135.7491 

2 0.364783 10412.55 206.2053 

3 0.365779 10680.27 271.9839 

4 0.3645 10063.91 266.5793 

5 0.364465 10037.9 273.831 

6 0.364295 9853.798 233.2689 

7 0.364357 9945.035 228.2544 

8 0.364367 9963.399 199.3272 

9 0.364406 10059.35 215.1679 

10 0.364414 10082.29 210.5652 

11 0.364418 10098.93 238.7279 

12 0.364413 10076.4 236.932 

13 0.364407 10045.36 253.0412 

14 0.364403 10023.96 237.8878 

15 0.364401 10005.81 238.8059 

16 0.364402 10018.03 220.0577 

17 0.364403 10023.19 222.264 
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Figure I.1. Peak deflections as a function of the total number modes used for the solution. 

 
Figure I.2. Peak moments as a function of the total number modes used for the solution. 

 
Figure I.3. Peak moments as a function of the total number modes used for the solution. 
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Figures I.4-I.6 show the total time-history convergence of solutions for 
deflections, moments, and shear for the sensor located at 44.083 feet 
downstream from the end of the beam. The results for deflections 
overlapped within just a few total modes. The moments had very similar 
curves but took longer to converge, and the shears seemed to be settling in, 
but still had not converged by a total of 17 modes. Further testing showed 
that there was a difference of 0.77% between the solution for shears with 
30 total modes and the solution with 40 modes. Given the speed of the 
modal time-history solution method for analysis of the beam, it is desirable 
to use the maximum total number of frequency modes for a solution for 
precision, and at least 30 if shear response is of primary concern. 

From the test results, it is recommended that the user enter at least 
5 frequencies to ensure that deflections have converged to consistent 
results. For moments to converge to consistent results a total of at least 
15 frequencies need to be entered, and for shear forces to converge a total of 
at least 30 frequencies need to be entered. Fortunately, the analysis occurs 
rather quickly so, computationally, selecting a large number of frequencies 
does not take a lot of time. 

 
Figure I.4. Deflection time-history responses of a beam solved with different total number of 

modes at a location 44.083 feet downstream from the end of the beam. 
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Figure I.5. Moment time-history responses of a beam solved with different total number of 

modes at a location 44.083 feet downstream from the end of the beam. 

 
Figure I.6. Shear time-history responses of a beam solved with different total number of 

modes at a location 44.083 feet downstream from the end of the beam. 
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Appendix J: Winfield Sensor Locations for 
Comparison 

Throughout this report, sensor positions at the Winfield experiment have 
been discussed. Shown in Figure J.1 are the positions of the laser deflection 
sensors, where displacement of the beam is measured. Shown in Figure J.2 
are the positions of the strain gage sensors, where moments of the beam are 
calculated. In Chapter 4, Tables 4.1 and 4.2 show the distances from the 
upstream support point of the beam to each sensor location. In these 
diagrams, the barge approach proceeds downstream. The upstream end of 
the wall is labeled “A” and the downstream end of the wall is labeled “B” for 
discussion in the report. 

 
Figure J.1. Positions of the laser deflection sensors. 

A B 
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Figure J.2. Positions of strain gages (for moment calculations). 

Table 4.1(Bis). Location along the beam of laser deflection sensors used for Winfield barge 
impact tests. 

Sensor Location from support (ft) 

LD2 111.781 

LD3 73.5625 

LD4  58.906 

LD5 44.24 

LD7 6.094 

LD1 and LD6 are on the adjacent beams  

 

Table 4.2(Bis). Location along the beam of strain sensors used to determine moments for 
Winfield barge impact tests. 

Sensor Location from support (ft) 

S1 82.802 

S2 70.813 

S3 58.823 

S4 46.833 

S5 34.844 
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Appendix K: Computing the Neoprene Pad 
compression secant stiffness from Winfield 
Test results 

K.1 Introduction 

In the investigation of the Winfield barge impact test results, it became 
apparent that the back of the Winfield simply-supported beam did not rest 
directly against the rigid supports of the stop blocks. The impacts of the 
beam were cushioned at the beam’s supports by neoprene pads. Only by 
subtracting out the neoprene pad displacements could the Winfield beam 
displacements be compared to the Impact_Beam computed simply 
supported beam displacements. These elastomeric pads were placed 
between the stop block for the beam and the beam itself and absorbed 
energy from the barge train/beam impacts and the support points by 
compressing and acting as a spring between the beam and the stopper 
block. 

Figure K.1 shows the location and dimensions of the rectangular elastomeric 
pads used at the Winfield location (as well as other information about the 
beam supports). These elastomeric pads at Winfield had a length of 
42 inches, a width of 18 inches, and a thickness of 2 inches. The thickness 
was comprised of 4 elastomeric layers of 3/8 inch, ½ inch, ½ inch, and 
3/8 inch, respectively. There were 3 layers of material (shims) between the 
layers that made up the rest of the pad thickness. The pads were made with 
a 50 durometer hardness elastomer as measured using the Shore A scale 
(AASHTO 1998). This measure is also known as the IRHD, or International 
Rubber Hardness Degree. These measurements were specified in Inca 
(1996). 

K.2 Winfield measurements 

From the measured deflection data at Winfield and the shear forces 
computed (using Impact_Beam) at the support points for the beam, where 
no deflection should occur for rigid supports, a time-history of shear force 
versus deflection should give a valid approximation of the stiffness (K) of 
the neoprene pad over time. Because the deflections are very small, the  
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maximum recorded value of deflection was determined and any stiffness 
value that would be calculated for a deflection of less than 5% of the 
maximum recorded deflection was discarded from the time-history to 
prevent extreme values of stiffness due to a division by an extremely small 
number. 

Because deflection sensors were not placed at the support points during 
the Winfield barge impact tests, the deflections needed to be interpolated 
between existing sensor data. A linear interpolation was used given the 
relative deflections at the ends of the beam for each support point, giving 
an in-line displacement for the beam at the support point. A time-history 
of deflections at the support points were recorded for each of the Winfield 
tests. Because LVDT measurements were not recorded at the end of the 
upstream portion (from the barge approach in Figure J.1) of the beam for 
barge impact tests after test #13, the relative deflections at that end of the 
beam were approximated using a linear interpolation between the closest 
laser deflection sensors on either side of the beam end. Of course, one 
laser deflection sensor was on the upstream neighboring beam. 

The shear forces at the support points of the beam were directly computed 
using Impact_Beam with output sensors specified at the support points. 
For each Winfield test, an appropriately scaled time-history (from the 
Impact_Force software), impact point, and forward velocity along the 
beam were input into Impact_Beam, as well as the appropriate beam 
properties. The average dynamic Young’s modulus of 6,417.18 ksi for the 
beam that was determined in Chapter 6 was used in these calculations. 
The results were stored as a time-history of stresses at the upstream and 
downstream support points. 

A time-history of upstream neoprene support stiffness was created by 
dividing each computed shear force from the upstream shear force time-
history at each time increment by its concurrent deflection from the 
upstream deflection time-history, discarding values where the deflection 
was 20% or less of the maximum deflection, to avoid divisions by very small 
values. A similar process was used to produce a time-history of downstream 
neoprene support stiffness. 

Figures K.2 – K.6 show the process discussed above in action for Winfield 
Test #10. Figure K.2 shows the input force time-history for Test #10 as it is 
output from Impact_Force, and the inverse of the summation of the 
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reactions forces at the support points for the flexible beam. The input force 
and the inverse sum of the reaction forces is comparable, which implies that 
the stiffness computation based on the reaction forces divided by the 
reaction deflections provide for a reasonable approximation for the dynamic 
stiffness of the neoprene pad. The reaction forces are shown in Figure K.3. 
The vertical scale has been inverted because the reaction forces are acting 
against the force of compression. The measured neoprene deflections are 
shown in Figure K.4 as well as the line delineating the filter below which 
stiffness values are not computed. For neoprene deflections above the filter 
line, stiffness values are calculated as discussed above. Figures K.5 and K.6 
show the stiffness values calculated for the filtered reaction force divided by 
the deflection, resulting in stiffness units of kips per inch. A line demarking 
the average stiffness for upstream and downstream using the filtered values 
is also shown. 

 
Figure K.2. Input Force and a comparison with the inverse sum of the reactions forces. 
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Figure K.3. Reaction forces at the supports for the flexible beam for Winfield Test #10. 

 
Figure K.4. Neoprene deflections at the support points for the flexible beam for Winfield Test 

#10. Included are the cut-off limits at 20% of peak value for stiffness computations. 
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Figure K.5. The measured stiffness of the upstream neoprene pad for Winfield Test #10. 

 
Figure K.6. The measured stiffness of the downstream neoprene pad for Winfield Test #10. 
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These computations were performed for all of the valid Winfield Barge 
Impact tests. Table K.1 summarizes the input data and the resulting average 
stiffnesses and statistical variations for these impact events. The upstream 
range of average stiffness varies from a minimum value of 2,032.07 kpi to a 
maximum value of 9,850.37 kpi. The 9,850.37 kpi value seems to be an 
outlier from the rest of the data, being nearly double the next highest value 
of 4,858.31 kpi. The coefficient of variation for the upstream stiffness varies 
from a low of 0.25 to a high of 1.87. The downstream range of average 
stiffness varies from a minimum value of 2,045.44 kpi to a maximum value 
of 3,009.20 kpi. The coefficient of variation for the downstream stiffness 
varies from a low of 0.24 to a high of 0.82. 

From the measured averages of Table K.1, it is possible to determine the 
average values for the upstream K, the downstream K, and both upstream 
and downstream K. For all of the upstream Ks, the average stiffness was 
3,753 kips per inch. For all of the downstream Ks, the mean of the average 
stiffness was 2,623 kips per inch. For both upstream and downstream K 
values, the mean of the average stiffness was 3,189 kips per inch. Given the 
high uncertainty of some values for K, another calculation of average 
stiffness for both upstream and downstream was calculated by discarding 
values where the coefficient of variation was greater than 0.6. When these 
five values were removed, the mean of the average stiffness value for the 
neoprene pads was calculated to be 2,921 kips per inch. 

For Winfield Test #10, the maximum compression of the upstream and 
downstream neoprene pads corresponds to 0.081 inch and 0.125 inch, 
respectively, for the Impact_Beam computed peak forces of 255.3 kips and 
334 kips. The compressive strains in the 1.75 inch thick elastomer layers of 
the two neoprene pads are equal to 4.6 percent and 7.1 percent. Because 
Winfield Test #10 has the greatest impact force applied to the beam, these 
compressive strains should be the maximums for all of the barge impact 
tests. 
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Table K.1. Average neoprene stiffness measured from Winfield Barge Impact Tests and their statistical properties. 

Test 
# 

Peak 
Force 
(kips) 

Velocity 
(fps) 

Angle 
(degrees) 

Impact 
Location 
– center 
= 58.8 
(ft) 

Peak 
Deflection 
Upstream 
(in) 

Peak 
Deflection 
Downstream 
(in) 

Average 
Upstream 
k (kpi) 

Average 
Downstream 
k (kpi) 

Std Dev 
Upstream 

Std Dev 
Downstream 

COV 
Upstream 

COV 
Downstream 

6 285.66 8.802 16.98 66.30 0.050 0.071 4,059.64 2,659.01 2,659.01 709.13 0.65 0.27 

7 255.18 10.269 14.78 68.50 0.043 0.063 4,195.30 2,615.65 1,660.87 707.33 0.40 0.27 

8 296.49 11.736 9.58 39.90 0.058 0.063 4,858.31 2,509.34 1,723.94 975.35 0.35 0.39 

9 359.3 13.203 14.78 49.10 0.066 0.082 4,381.25 2,240.58 1,422.82 769.76 0.32 0.34 

10 516.44 14.670 16.88 66.60 0.081 0.125 2,570.97 2,045.44 1,057.60 613.38 0.41 0.30 

11 124.56 16.137 16.98 94.60 0.012 0.031 2,032.07 2,909.61 3,800.28 1,438.78 1.87 0.49 

12 58.8 17.604 6.18 74.70 0.006 0.012 2,853.48 3,009.20 2,691.89 1,478.41 0.94 0.49 

13 150.17 19.071 11.48 64.40 0.022 0.031 3,493.30 2,973.77 1,563.17 1,058.93 0.45 0.36 

14 110.93 20.538 9.08 43.60 0.006 0.016 9,850.37 2,760.96 8,016.26 2,265.83 0.81 0.82 

15 235.41 22.005 14.58 32.60 0.058 0.044 3,644.39 2,364.69 1,028.84 1,283.95 0.28 0.54 

16 354.97 23.472 9.18 63.40 0.081 0.096 2,346.27 2,651.24 666.19 660.70 0.28 0.25 

17 255.87 24.939 15.28 62.60 0.051 0.058 2,288.48 2,802.94 855.46 813.15 0.37 0.29 

20 411.03 29.340 13.58 62.60 0.095 0.110 2,221.15 2,555.54 563.80 604.95 0.25 0.24 
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K.3 Literature review for compression stiffness of laminated 
elastomer bearing pads 

Table K.2 shows the plethora of literature evaluations for the stiffness of a 
neoprene pad, given the input pad parameters described above for the 
Winfield beam supports. The primary differences between the calculations 
are the equations for the shape function (S), which measures the ability of 
rubber to bulge given the shape of the rubber with loaded areas that are 
constrained not to spread (usually by vulcanization bonding with shims), 
and the equations for the compressive modulus (Ec) which is related to but 
not the same as Young’s modulus (Eo) according to Derham (1982). 

K.3.1 Shape function calculations 

The shape function is used because of the high incompressibility of rubber 
(Derham 1982). The compression stiffness is therefore determined by the 
ability of rubber to bulge from the compression point, which is related to the 
shape of the rubber and how the rubber is laminated with shims. In this 
case, only the area along the perimeter of each layer of the bearing is 
allowed to bulge. According to Derham (1982), the shape function is defined 
by 

 
  

   

oneloaded area
S

total force free area
=  (K.1) 

Because the laminated elastomer layers would be acting in parallel, the 
least stiffness layer would drive the compressibility of the entire laminated 
structure. Using Equation K.1, it is easy to prove that the thickest layer in 
an elastomer laminate, with the greatest total force free area, would have 
the smallest shape function and therefore have the lowest stiffness.  

Derham (1982) uses a similar equation as AASHTO (1998) to define the 
rectangular shape function: 

 
( )

WL
S

t W L
=

+2
 (K.2) 
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Table K.2. Table of literature review equations and results given Winfield inputs for compressive neoprene pads. 
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where W and L are the width and length of the rectangular bearing, 
respectively, and t is the thickness of the thickest layer of elastomeric 
material (e.g. neoprene). Kelly (1991) assumes that his bearings are 
constrained to be square or circular in his shape function calculation(s). 
For a square bearing, Equation K.2 simplifies to 

 
a

S
t

=
4

 (K.3) 

where a is the length of the side of a bearing and t is the thickness of the 
bearing. 

K.3.2 Compressive modulus calculations 

For Table K.2, the square root of the rectangular area is used as the length a 
(of an equivalent square) for Equation K.3, to approximate the shape 
function for the bearing in the first value column of the table. This approxi-
mation was to be used in conjunction with the equation for the compressive 
modulus of a square bearing, discussed below. The more accurate 
rectangular Equation K.2 is used for the next three value columns. 

From Derham (1982), the equation for the compressive modulus (Ec) is 

 ( )CE G S= + 23 1 2  (K.4) 

where G is the shear modulus of the elastomer material. Eo should 
approximately equal 3G for a rubber material, which has a Poisson’s ratio of 
nearly one half. For a rectangular pad, Kelly (1991) uses an approximation 
for the compressive modulus, 

 .CE GS= 26 75  (K.5) 

AASHTO uses a similar approximation for rectangular pads, with a 
constant of 6.0 instead of 6.75. Kelly’s equation for the compressive 
modulus is used for value columns 1 and 2. Equation K.4 was used for 
column 3. G was given from tables of the typical values of G for the 
durometer measure of 50 IHRD. 

According to international standards, the compressive modulus can also 
be defined according to the hardness of the elastomer material measured 
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with a durometer, and using the units of IRHD. The equation based on 
hardness is given by Derham to be 

 
.

C

H S
E S

S

ì üï ï+ï ï= +í ýï ï+ï ïî þ

1 9 2
2

2

1 9
2

900 1 4
 (K.6) 

This equation returns units of MPas, and care must be taken to convert to 
the units of choice. In this case, we are working with psi. Table K.2’s fourth 
value column has the value determined by this equation converted to units 
of psi. 

K.3.2 Compression stiffness and shear stiffness calculations 

From the compressive modulus, the compression stiffness can be obtained 
by 

 C
V

E A
K

t
=  (K.7) 

where KV is the compression stiffness of the pad, A is the plan area of the 
pad, and t is the thickness of the thickest layer. This equation is the same 
for Derham (1982), Kelly (1991), and AASHTO (1998). 

Podolny and Muller [1982] uses a different equation to determine the 
deflection due to compression of a laminate material, 

 
b

nt
v C V

GA a
=

2

2
 (K.8) 

Where v is the compression displacement of the material, n is the number 
of layers, t is the thickness of the thickest layer, G is the shear modulus, Ab 
is the area of the pad, a is the length of the shortest side, and V is the 
applied compression force. Since the compression stiffness is the ratio of 
compression force to compression displacement, the equation simplifies to 

 V
b

nt
K C

GA a
=

2

2
 (K.9) 

This result is given in the fifth value column of Table K.2. Kelly [1991] also 
presented two equations for the shear stiffness of an elastomer laminate: 
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 H
r

GA
K

t
=  (K.10) 

where A is the plan area of the pad and tr is the total thickness of the 
rubber in the pad, and 

 V
H

c

K G
K

E
=  (K.11) 

Because KH could be calculated with or without KV, these equations were 
used as a check of the equations for KV. The values for Equation K.11 are 
presented above the calculated value from Equation K.10 in Table K.2. 
Equation K.10 held for each variant of the equations for the compressive 
modulus (EC). 

K.4 Comparison of compression stiffness between literature review 
and values computed from measurements at Winfield 

AASHTO (1998) provides a limit in any elastomeric bearing layer for 
bearings subject to shear deformation that the live-load compressive stress 
is 

 .Lσ G S£ ⋅ ⋅0 66  (K.12) 

where G is the shear modulus, and S is the Shape factor. For Winfield, G has 
a value of 95 psi for a 50 IRHD elastomer and the shape function S is 11.59 
for a pad that is 16 inches by 42 inches, for a shear deformation of 726.7 psi. 
The largest reaction forces occurred during Winfield Test #10, and had a 
peak force of 255.3 kips for the upstream reaction and a peak force of 334 
kips for the downstream reaction. The compressive stress is the reaction 
force divided by the area of the neoprene pad. The compressive stress for 
the neoprene pads during a live load is therefore 379.9 psi and 497 psi for 
the upstream and down neoprene pads, respectively. These compressive 
stresses are approximately 0.5 to 0.7 of the limiting compressive stress. 
Recall that Winfield Test #10 had a peak force value of 517.4 kips, the 
largest of the Barge Impact Tests. From these calculations we observe that 
the level of normal live load is significant but less than the AASHTO 
compression stress limit. 
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The reduction of the Winfield Barge Impact neoprene displacements 
combined with the Impact_Beam dynamic response computations for 
reaction forces, as summarized in Table K.1, indicate that the interpreted 
“average” value for the Dynamic spring stiffness is on the order of 3,188 kpi. 
This value is nearly an order of magnitude lower than the compression 
stiffnesses determined by the literature review, which ranged from 
24,393 kips per inch to 41,368 kips per inch. The original INCA (1996) 
computations provide a compressive stiffness of 9,714 kips per inch for a 
TRANSU impact load of 680 kips acting on the neoprene pad. This was 
obtained by using the AASHTO (interim 1994) Figure 14.4.1.2a compressive 
stress versus compressive strain curve with a shape factor of 11.5. With the 
TRANSU Load of 680 kips acting on a Neoprene pad cross-sectional area of 
672 square inches and the interim AASHTO curve, the corresponding 
compressive strain is 4%. The deflection of the 1.75 inch thick elastomer 
layers of the neoprene pad undergoing a compressive strain of 4% equals 
0.07 inch. INCA then computed the compressive stiffness as equal to 
680 kips divided by the deflection of 0.07 inch, resulting in the value of 
9,714 kips per inch. This compressive stiffness computed by INCA is closer 
to the Winfield Barge Impact test results than the literature values. 

In the Section 14 commentary of AASHTO (1998), it is recognized that the 
load-deflection curve of an elastomeric bearing is nonlinear, and that the 
compressive modulus (EC) is load dependent. The authors of this report 
offer the speculation that the order of magnitude difference in the measured 
stiffness values and the literature calculated stiffness values is due to the 
difference in loads between a full barge impact test and the loads typically 
encountered for bridge bearing pads, which most of the literature covered. 
This assertion seems to be supported by the INCA calculations based on the 
usual condition TRANSU Load of 680 kips, where the calculated stiffness is 
closer to the measured values than the literature review values determined 
in Table K.2. 

The authors also observe that the neoprene pads at Winfield have been in 
continuous service for approximately 20 years at the time of the Winfield 
Barge Impact testing. It is also possible that the effects of aging and 
deterioration on the neoprene pads may have affected their stiffness. 
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